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Preface  
 
This book deals with Colombeau solutions to Einstein field equations in general relativity: Gravitational 
singularities, distributional SAdS BH spacetime-induced vacuum dominance. This book covers key areas 
of Colombeau nonlinear generalized functions, distributional Riemannian, geometry, distributional 
schwarzschild geometry, Schwarzschild singularity, Schwarzschild horizon, smooth regularization, 
nonsmooth regularization, quantum fields, curved spacetime, vacuum fluctuations, vacuum dominance 
etc. This book contains various materials suitable for students, researchers and academicians of this 
area. 
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Abstract

This paper dealing with Colombeau extension of the Einstein field equations using apparatus of the
Colombeau generalized function [1]-[2] and contemporary generalization of the classical Lorentzian
geometry named in literature Colombeau distributional geometry, see for example [5]-[30] and [15]-
[31]. The regularizations of singularities present in some Colombeau solutions of the Einstein
equations is an important part of this approach. Any singularities present in some solutions of the
Einstein equations recognized only in the sense of Colombeau generalized functions [1]-[2] and not
classically. In this paper essentially new class Colombeau solutions to Einstein fild equations is
obtained. We leave the neighborhood of the singularity at the origin and turn to the singularity at
the horizon.Using nonlinear distributional geometry and Colombeau generalized functions it seems
possible to show that the horizon singularity is not only a coordinate singularity without leaving
Schwarzschild coordinates. However the Tolman formula for the total energy ET of a static and
asymptotically flat spacetime, gives ET = m, as it should be. The vacuum energy density of free
scalar quantum field Φ with a distributional background spacetime also is considered. It has been
widely believed that, except in very extreme situations, the influence of gravity on quantum fields
should amount to just small, sub-dominant contributions. Here we argue that this belief is false by
showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free
quantum fields is forced, by the very same background distributional spacetime such distributional
BHs, to become dominant over any classical energy density component. This semiclassical gravity
effect finds its roots in the singular behavior of quantum fields on curved distributional spacetimes.
In particular we obtain that the vacuum fluctuations

⟨
Φ2
⟩
has a singular behavior on BHs horizon

r+:
⟨
Φ2 (r)

⟩
˜ |r − r+|−2 . A CHALLENGE TO THE BRIGHTNESS TEMPERATURE LIMIT

OF THE QUASAR 3C273 explained successfully.

Keywords: Colombeau nonlinear generalized functions; Distributional Riemannian; Geometry;
Distributional Schwarzschild Geometry; Schwarzschild singularity; Schwarzschild Horizon;
smooth regularization; nonsmooth regularization; quantum fields; curved spacetime;
vacuum fluctuations; vacuum dominance.
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1 Introduction

1.1 Remarks on Linear Distributional Geometry in General
Relativity

A degenerate (singular) semi-Riemannian manifold (M ; g) is a differentiable manifold M endowed
with a symmetric bilinear form g ∈ T 0

2M named metric. Note that the metric g is not required
to be non-degenerate. In particular, if the metric is non-degenerate, (M ; g) is a semi-Riemannian
manifold. If in addition g is positive definite, (M ; g) is a Riemannian manifold.

This paper dealing with Colombeau extension of the Einstein field equations using apparatus of the
Colombeau generalized function [1]-[2] and contemporary generalization of the classical Lorentzian
geometry named in literature Colombeau distributional geometry. The regularizations of singularities
present in some solutions of the Einstein equations is an important part of this approach. Any
singularities present in some solutions such that Schwarzschild solution etc. of the Einstein equations
recognized only in the sense of Colombeau generalized functions [1]-[2] and not classically. Note
that in physical literature these singular solutions many years were mistakenly considered as vacuum
solutions of the Einstein field equations, see for example [3],[4].

During last 30 years the applications classical linear distributional geometry in general relativity
was many developed [5]-[31].

Remark 1.1.1. Let
(
Ra

bcd,ε

)
ε
∈ Gδ(R4) be Colombeau generalized function obtained using the

standard definition of the Riemann curvature in a coordinate basis, i.e.(
Ra

bcd,ε

)
ε
=
(
Γa
db,c,ε

)
ε
−
(
Γa
cb,d,ε

)
ε
+
(
Γa
cf,εΓ

f
ab,ε

)
ε
−
(
Γa
df,εΓ

f
cb,ε

)
ε
, (1.1.1)

where
(
Γa
bc,ε

)
ε

∈ Gδ(Rn) and Γa
bc,ε, ε ∈ (0, δ] , δ ≤ 1 is the regularized Levi-Civita connection

coefficients in terms of the regularized metric gab,ε, ε ∈ (0, 1] such that (gab,ε)ε ,
(
gabε
)
ε

∈
G(R4), (det (gab,ε))ε ̸= 0R̃. It has been shown by many authors (see for example [22]) that under
apropriate regularization using the Eq.(1.1.1) one can defines the curvature scalar as a classical
Schwartz distribution in D′ (Rn) , [18], [19].

Remark 1.1.2. This is the case even for the well-known Schwarzschild spacetime, which is given
in the Schwarzschild coordinates (x̂0, r̂, θ, ϕ), by the metric.

ds2 = −
(
1− a

r̂

)
(dx̂0)2 +

(
1− a

r̂

)−1

(dr̂)2 + r̂2
[
(dθ)2 + sin2 θ(dϕ)2

]
. (1.1.2)

Here, a is the Schwarzschild radius a = 2GM/c2 with G,M and c being the Newton gravitational
constant, mass of the source, and the light velocity in vacuum Minkowski space-time, respectively.
Obviously the fundamental tensor corresponding to ds2 has the components which is degenerate
or singular: (i) at r̂ = 0 and (ii) at r̂ = a.

Remark 1.1.3. Note that in classical papers [5]-[31], etc. (i) the Colombeau distributional metric
tensor (gab,ε)ε ∈ Gδ(R4) related to

(
Ra

bcd,ε

)
ε
∈ Gδ(R4) by Eq.(1.1.1) never is not considered as the

Colombeau solution of the Einstein field equations, (ii) Colombeau nonlinear distributional geometry
never is not considered as the rigorous mathematical model related to really physical spacetime but
only as useful purely mathematical tools in order to obtain related to

(
Ra

bcd,ε

)
ε
∈ Gδ(R4) classical

Schwartz distributions inD′ (Rn) , (iii) there is no any important physical applications of the classical

2
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linear distributional geometry were obtained.

Remark 1.1.4. Originally fundamental physical applications of the Colombeau nonlinear distributi-
onal geometry has been obtained in authors papers [33]-[37].

By using now the Cartesian coordinates (x̂0, x̂1, x̂2, x̂3), which are related to (x̂0, r̂, θ, ϕ) through
the canonical relations: x̂1 = r̂ cosϕ sin θ , x̂2 = r̂ sinϕ sin θ , x̂3 = r̂ cos θ ,the metric (1.1.2) reads
ds2 = ĝµνdx̂

µdx̂ν ,where at points r̂ ̸= 0, r̂ ̸= a the metric ĝµν is given by [29]:

ĝ00 = −(1− h) , ĝ0α = 0 ,

ĝαβ = δαβ + h(1− h)−1 x̂
αx̂β

r̂2
, α, β = 1, 2, 3

(1.1.3)

with h , a/r̂. Well known that at points r̂ ̸= 0, r̂ ̸= a :

κ
ˆ̃
T

0

0 = −h
′

r̂
− h

r̂2
,

κ
ˆ̃
T

α

0 = 0 , κ
ˆ̃
T

0

α = 0 ,

κ
ˆ̃
T

β

α = δ β
α

(
−h

′′

2
− h′

r̂

)
+
x̂αx̂β

r̂2

(
h′′

2
− h

r̂2

)
,

(1.1.4)

where the hatted symbols
ˆ̃
T

ν

µ represent the quantity T̃ ν
µ in the coordinate system {x̂µ;µ = 0, 1, 2, 3}.

Also, we have defined h′ , dh/dr̂ and h′′ , d2h/dr̂2.

Remark 1.1.5. We extend now the quantity (1.1.3)-(1.1.4) in point r̂ = 0 as Colombeau
generalized functions from Colombeau algebra Gδ

(
R3
)
. Regularizing now the function h = a/r̂

as (hε)ε = a/
(√
r̂2 + ε2

)
ε
and the function

x̂αx̂β

r̂2
as

x̂αx̂β

(r̂2 + ε2)ε
with ε ∈ (0, 1], we replace now the

the singular metric (1.1.3) by the Colombeau generalized metric

ds2 = (ĝµν,εdx̂
µdx̂ν)ε , (1.1.5)

where

(ĝ00,ε)ε = −(1− hε) , (ĝ0α,ε)ε = 0R̃ ,

(ĝαβ,ε)ε = δαβ +
((
hε(1− hε)

−1
)
ε

)( x̂αx̂β

r̂2 + ε2

)
ε

, α, β = 1, 2, 3
(1.1.6)

and therefore

κ

(
ˆ̃
T

0

0,ε(x̂)

)
ε

= −
(

aε2

(r̂2 + ε2)5/2

)
ε

, κ

(
ˆ̃
T

α

0 (x̂; ε)

)
ε

= 0R̃, κ

(
ˆ̃
T

0

α(x̂; ε)

)
ε

= 0R̃,

κ

(
ˆ̃
T

β

α(x̂; ε)

)
ε

= δ β
α

(
3aε2

2(r̂2 + ε2)5/2

)
ε

−((
x̂αx̂β

r̂2 + ε2

)
ε

)(
aε2

(r̂2 + ε2)5/2

)
ε

(
5

2
+

(
ε2

r̂2 + ε2

)
ε

)
.

(1.1.7)

Note that from Eq. (1.1.7) one obtains

ˆ̃
T

ν

µ(x̂) , w- limϵ→0
ˆ̃
T

ν

µ,ε(x̂) ∼ −Mc2δ 0
µ δ

ν
0 δ

(3)(x̂). (1.1.8)

Remark 1.1.6. Note that

(
ˆ̃
T

0

0(x̂; ε)

)
ε

,

(
ˆ̃
T

β

α(x̂; ε)

)
ε

∈ G
(
R4
)
. Thus the generalized Einstein

3
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equation [33,37-39] related to Eq.(1.1.6)-Eq.(1.1.7) in Colombeau notations reads:(
Ĝν

µ,ε

)
ε
=
(
R̂ν

µ,ε

)
ε
− 1

2
δµ

ν
(
R̂ε

)
ε
= κ

(
T̃µ,ε

ν
)
ε
, (1.1.9)

where

(
R̂ε (r̂)

)
ε
=
(
R̂µ

µ,ε (r̂)
)
ε
=

−
(

3aε2

(r̂2 + ε2)5/2

)
ε

+

(
2aε2

(r̂2 + ε2)5/2

)
ε

= −
(

aε2

(r̂2 + ε2)5/2

)
ε

(1.1.10)

Remark 1.1.7. Note that the regularized scalar curvature R̂ε has the well-defined weak limit R̂w

in D′ (Rn)

R̂w , w- limϵ→0 R̂ε = −4

3
πaδ(3)(x̂) . (1.1.11)

Remark 1.1.8. Note that: (i) for any (r̂ε)ε ∈ R̃ such that st
(
(r̂ε)ε

)
= r̂fin ̸= 0,(see Definition

1.2.5) where r̂fin ∈ R from Eq.(1.1.10) it follows that

st
((
R̂ε (r̂ε)

)
ε

)
= −st

((
aε2

(r̂2ε + ε2)5/2

)
ε

)
= −st

((
aε2

(r̂2fin + ε2)5/2

)
ε

)
= 0, (1.1.12)

(ii) for any (r̂ε)ε ∈ R̃ such that (r̂ε)ε ≈R̃ 0̃ (see Definition 1.2.4) from Eq.(1.1.10) it follows that((
R̂ε (r̂)

)
ε

)
≈R̃ −∞̃, (1.1.13)

(iii) at origin
(
r̂Oε
)
ε
=R̃ 0R̃ (see Definition 1.2.4) one obtains((

R̂ε

(
r̂Oε
))

ε

)
=R̃ −

(
aε2

(ε2)5/2

)
ε

=R̃ − a

(ε3)ε
, (1.1.14)

where ε ∈ (0, δ] .

Remark 1.1.9. Note that the Eq.(1.1.12) in accordance with Eq.(1.1.11) and by Eqs.(1.1.12)-
(1.1.14) we have recovered the intuitive meaning about δ-function. For the regularized quadratic
scalars one obtains [29]:

R̂µν
ε (r̂) R̂µν,ε (r̂) =

1

2

[
3aε2

(r̂2 + ε2)5/2

]2
+ 2

[
aε2

(r̂2 + ε2)5/2

]2
=

13

2

[
aε2

(r̂2 + ε2)5/2

]2

R̂ρσµν
ε (r̂) R̂ρσµν,ε (r̂) =

4a2

r̂2 + ε2

[
3

(r̂2 + ε2)2

]
− 12a2ε2

(r̂2 + ε2)4
+

+
9a2ε4

(r̂2 + ε2)5
.

(1.1.15)

Remark 1.1.10. Note that in contrast with the regularized scalar curvature R̂ε the regularized
quadratic scalars do not have the weak limits, which can be symbolically written as

4
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R̂µν(x̂)R̂µν(x̂) , limε→0 R̂
µν(x̂; ε)R̂µν(x̂; ε) ∼ 40π2a2

[
δ(3)(x̂)

]2
,

R̂ρσµν(x̂)R̂ρσµν(x̂) , limϵ→0 R̂
ρσµν(x̂; ε)R̂ρσµν(x̂; ε)

∼ 12a2

r̂6
+

16πa2

3

1

r̂3
δ(3)(x̂) + 16π2a2

[
δ(3)(x̂)

]2
.

(1.1.16)

Remark 1.1.11. However Colombeau quadratic scalars
(
R̂µν

ε (r̂ε) R̂µν,ε (r̂ε)
)
ε
and(

R̂ρσµν
ε (r̂ε) R̂ρσµν,ε (r̂ε)

)
ε
well defined as Colombeau generalized functions in Gδ

(
R̃3
)
.

(
R̂µν

ε (r̂ε) R̂µν,ε (r̂ε)
)
ε
=

1

2

[(
3aε2

(r̂2ε + ε2)5/2

)
ε

]2
+ 2

[(
aε2

(r̂2ε + ε2)5/2

)
ε

]2
,(

R̂ρσµν
ε (r̂) R̂ρσµν,ε (r̂)

)
ε
=

12a2

((r̂2ε + ε2)3)ε
−
(

12a2ε2

(r̂2ε + ε2)4

)
ε

+

+

(
9a2ε4

(r̂2ε + ε2)5

)
ε

.

(1.1.17)

Remark 1.1.12. Note that Colombeau quadratic scalars
(
R̂µν

ε (r̂) R̂µν,ε (r̂)
)
ε
and(

R̂ρσµν
ε (r̂) R̂ρσµν,ε (r̂)

)
ε
can be triating only nonclassically as Colombeau generalized functions

extended on R̃3 = R̃× R̃× R̃, since at origin
(
r̂Oε
)
ε
= 0R̃ we get

(
R̂µν

ε

(
r̂Oε
)
R̂µν,ε

(
r̂Oε
))

ε
=

1

2

[(
3aε2

(ε2)5/2

)
ε

]2
+ 2

[(
aε2

(ε2)5/2

)
ε

]2
,(

R̂ρσµν
ε

(
r̂Oε
)
R̂ρσµν,ε

(
r̂Oε
))

ε
=

12a2

(ε6))ε
−
(
12a2ε2

(ε8)

)
ε

+

+

(
9a2ε4

(ε10)

)
ε

.

(1.1.18)

Remark 1.1.13. In the usual Schwarzschild coordinates (t, r, θ, ϕ), r ̸= a the Schwarzschild
metric (1.1.2) takes the form above horizon r > a and below horizon r < a correspondingly

above horizon r > 2m : ds+2 = h+(r)dt2 −
[
h+(r)

]−1
dr2 + r2dΩ2,

h+(r) = −1 +
a

r
= −r − a

r
below horizon r < 2m : ds−2 = h−(r)dt2 − h−(r)−1dr2 + r2dΩ2,

h−(r) = −1 +
a

r
=
a− r

r

(1.1.19)

Following the above discussion we consider the metric coefficients h+ (r) ,
[
h+(r)

]−1
h− (r) , and[

h−(r)
]−1

as an element of D′(R3) and embed it into Gδ(R3) by replacements above horizon r > 2m
and below horizon r 6 2m correspondingly

r > 2m : r − 2m 7−→
√

(r − 2m)2 + ε2; r < 2m : 2m− r 7−→
√

(2m− r)2 + ε2. (1.1.20)

Inserting (1.1.16) into (1.1.2) we obtain Colombeau generalized object modeling the singular Schwarzs-
child metric above (below) gorizon, i.e.,(

ds+2
ε

)
ε
=
(
h+
ε (r)dt

2
)
ε
−
([
h+
ϵ (r)

]−1
dr2
)
ε
+ r2dΩ2 ,(

ds−2
ε

)
ε
=
(
h−
ε (r)dt

2
)
ε
−
([
h−
ε (r)

]−1
dr2
)
ε
+ r2dΩ2

(1.1.21)

The generalized Ricci tensor above horizon
([

R+
ε

]β
α

)
ε
may now be calculated componentwise using

5
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the classical formulae([
R+

ε (r)
]0
0

)
ε
=
([

R+
ε (r)

]1
1

)
ε
=

1

2

((
h+′′
ε

)
ε
+

2

r

(
h+′
ε

)
ε

)
([

R+
ε (r)

]2
2

)
ε
=
([

R+
ε (r)

]3
3

)
ε
=

(
h+′
ε

)
ε

r
+

1 +
(
h+
ε

)
ε

r2
,

(1.1.22)

where

(
h+′
ε (r)

)
ε
= − r − 2m

r
([

(r − 2m)2 + ε2
]1/2)

ε

+

([
(r − 2m)2 + ε2

]1/2)
ε

r2
,

(h′′
ε (r))ε = − 1(

r
[
(r − 2m)2 + ε2

]1/2)
ε

+
(r − 2m)2

r
([

(r − 2m)2 + ε2
]3/2)

ε

+

+
r − 2m

r2
([

(r − 2m)2 + ε2
]1/2)

ε

+
r − 2m

r2
([

(r − 2m)2 + ε2
]1/2)

ε

−

−
2
([

(r − 2m)2 + ε2
]1/2)

ε

r3
.

(1.1.23)

From Eq.(1.1.18)- Eq.(1.1.23) we obtain (see sect.3)

w -lim
ϵ→0

[
R+

ϵ (r)
]1
1
= w -lim

ϵ→0

[
R+

ϵ (r)
]0
0
= −2mδ(2m). (1.1.24)

Remark 1.1.14. Note that the ε-regularization of degenerate and singular metric fields originally
has been proposed in A. Einstein and N. Rosen paper [32].

Remark 1.1.15. The full non-linear theory of Colombeau distributional geometry based on
Colombeau algebras in general relativity and its various applications to fundamental problems
of the quantum gravity in curved Colombeau distributional spacetime originally has been obtained
in authors papers [33]-[37].

1.2 Basic Notions of Colombeau Generalized Functions and Colom-
beau Generalized Numbers. Point Values of Colombeau Gener-
alized Functions

1.2.1 Basic Notions of Colombeau Generalized Functions

In contemporary mathematics, a Colombeau algebra of Colombeau generalized functions is an
algebra of a certain kind containing the space of Schwartz distributions. While in classical distribution
theory a general multiplication of distributions is not possible, Colombeau algebras provide a
rigorous framework for this.

Remark 1.2.1. Such a multiplication of distributions has been a long time mistakenly believed to
be impossible because of Schwartz’ impossibility result, which basically states that there cannot be
a differential algebra containing the space of distributions and preserving the product of continuous
functions. However, if one only wants to preserve the product of smooth functions instead such a
construction becomes possible, as demonstrated first by J. F. Colombeau [1], [2].

As a mathematical tool, Colombeau algebras can be said to combine a treatment of singularities,
differentiation and nonlinear operations in one framework, lifting the limitations of distribution
theory. These algebras have found numerous applications in the fields of partial differential equations,
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geophysics, microlocal analysis and general relativity so far. Basic idea.

Definition 1.2.1. The algebra moderate functions C∞
M (Rn) on Rn is the algebra of families of

smooth functions (fε (x))ε , (fε (x))ε , x ∈ Rn, ε ∈ (0, δ] , δ ≤ 1 (smooth ε-regularisations, where ε
is the regularization parameter), such that: (i) for all compact subsets K of Rn and all multiindices
3b1, there is an N > 0 such that

sup
x∈K

∣∣∣∣ ∂|α|fε (x)

(∂x1)
α1 · · · (∂xn)αn

∣∣∣∣ = O
(
ε−N

)
, ε→ 0, (1.2.1)

with addition and multiplication defined by natural way:

(fε (x))ε + (gε (x))ε = (fε (x) + gε (x))ε (1.2.2)

and

(fε (x))ε × (gε (x))ε = (fε (x)× gε (x))ε . (1.2.3)

Definition 1.2.2. The ideal Nδ (Rn) of negligible functions is defined in the same way but with
the partial derivatives instead bounded by O(εN ) for all N > 0,i.e.

sup
x∈K

∣∣∣∣ ∂|α|fε (x)

(∂x1)
α1 · · · (∂xn)αn

∣∣∣∣ = O
(
εN
)
, ε→ 0. (1.2.4)

Definition 1.2.3. The Colombeau Algebra Gδ (Rn) [1],[2] is defined as the quotient algebra

G(Rn) = C∞
M (Rn) /Nδ (Rn) . (1.2.5)

Elements of calGδ(Rn) are denoted by:

u = cl[(uε)ε] , (uε)ε +Nδ(Rn). (1.2.6)

Embedding of distributions

The space of Schwartz distributions D′ (Rn) can be embedded into the Colombeau algebra G (Rn) by
(component-wise) convolution with any element (φ∈)ε of the algebra Gδ (Rn) having as representative
a δ-net, i.e. a family of smooth functions φ∈ such that φ∈ → δ in D′ (Rn) as ∈→ 0.

Remark 1.2.2. Note that the embedding ι : D′ (Rn) ↩→ Gδ (Rn) is non-canonical, because it
depends on the choice of the δ-net.

Example 1.2.1. Delta function δ (x) ∈ D′ (R) for example has the following different representatives
in Colombeau algebra Gδ (R) :

1

2

(
1√
πε

exp

(
−x

2

4ε

))
ε

∈ Gδ (R) ,
1

π

(
1

x
sin
(x
ε

))
ε

∈ Gδ (R) ,

1

π

(
ε

x2 + ε2

)
ε

∈ Gδ (R) ,
1

π

(
1

x2
sin2

(x
ε

))
ε

∈ Gδ (R) ,
(1.2.7)

since

1

2

1√
πε

exp

(
−x

2

4ε

)
→ δ (x) ,

1

π

1

x
sin
(x
ε

)
→ δ (x) ,

1

π

ε

x2 + ε2
→ δ (x) ,

1

π

1

x2
sin2

(x
ε

)
→ δ (x)

(1.2.8)

in D′ as ∈→ 0.
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Remark 1.2.3. However note that embeddingD′ (Rn) ↩→ G (Rn) does not meant the full equivalence
of the Schwartz distributions and corresponding by embedding Colombeau generalized functions.
In contrast with the Schwartz distributions Colombeau generalized functions has well defined walue
at any point x ∈ Rn these point values of the Colombeau generalized functions is the Colombeau
generalized numbers.

Example 1.2.2. Delta function δ (x) ill defined at point x = 0 since δ (0) = ∞.However any
Colombeau generalized function defined by Eq.(1.2.7) has well defined point value at point x = 0.
For example

1

2

(
1√
πε

exp

(
−x

2

4ε

))
ε

∣∣∣∣
x=0

=
1

2
√
πε

(
1√
ε

)
ε

∈ R̃δ,

1

π

(
ε

x2 + ε2

)
ε

∣∣∣∣
x=0

=
1

π

(
1

ε

)
ε

∈ R̃δ.
(1.2.9)

Here R̃ is the ring of real Colombeau generalized numbers [34].

1.2.2 The Ring of Colombeau Generalized Numbers R̃δ. Point Values
of Colombeau Generalized Functions

Designation 1.2.1. (I) We denote by R̃δ, δ ≤ 1 the ring of real Colombeau generalized numbers.

Recall that by definition R̃δ = ER,δ (R) /Nδ (R) where [34],[36],[37]:

ER,δ (R) =
{
(xε)ε ∈ R(0,δ)

∣∣∣ (∃a ∈ R+) (∃ε0 ∈ (0, 1)) (∀ε ≤ ε0)
[
|xε| ≤ ε−a

]}
,

Nδ (R) =
{
(xε)ε ∈ R(0,δ)

∣∣∣ (∀a ∈ R+) (∃ε0 ∈ (0, 1)) (∀ε ≤ ε0) [|xε| ≤ εa]
}
.

(1.2.10)

(II) In this subsection we will be write for short R̃ instead R̃δ.

Notice that the ring R̃ arises naturally as the ring of constants of the Colombeau algebras Gδ (Ω) .

Recall that there exists natural embedding r̃ : R ↩→ R̃ such that for all r ∈ R, r̃ = (rε)ε where rε ≡ r

for all ε ∈ (0, 1] . We say that r is standard number and abbreviate r ∈ R for short. The ring R̃ can

be endowed with the structure of a partially ordered ring: for r, s ∈ R̃ η ∈ R+, η ≤ δ we abbreviate
r ≤R̃,η s or simply r ≤R̃ s if and only if there are representatives (rε)ε and (sε)ε with rε ≤ sε for all

ε ∈ (0, η] . Colombeau generalized number r ∈ R̃ with representative (rε)ε we abbreviate cl
[
(rε)ε

]
.

Definition 1.2.4. (i) Let δ̆ = cl
[
(δε)ε

]
∈ R̃. We say that δ̆ is infinite small Colombeau generalized

number and abbreviate δ̆ ≈R̃ 0̃ if there exists representative (δε)ε and some q ∈ N such that

|δε| = O (εq) as ε→ 0. (ii) Let ∆ ∈ R̃.We say that ∆ is infinite large Colombeau generalized number

and abbreviate ∆ =R̃ ∞̃ if ∆−1

R̃
≈R̃ 0̃.(iii) Let R±∞ be R ∪ {±∞} We say that Θ ∈ R̃±∞ is infinite

Colombeau generalized number and abbreviate Θ =R̃ ±∞R̃ if there exists representative (Θε)ε
where |Θε| = ∞ for all ε ∈ (0, 1] .Here we abbreviate EM (R±∞) = EM (R ∪ {±∞}) , N (R±∞) =

N (R ∪ {±∞}) and R̃±∞ = EM (R±∞) /N (R±∞)

Definition 1.2.5. (Standard Part Mapping). (i) The standard part mapping st : R̃ → R is defined
by the formula:

st (x) = sup
{
r ∈ R|r ≤R̃ x

}
. (1.2.11)

If x ∈ R̃, then st (x) is called the standard part of x.

(ii) The mapping st : R̃ → R∪{±∞} is defined by (i) and by st (x) = ±∞ for x ∈ R̃ and for x ∈
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R̃±∞,respectively.

Definition 1.2.6.[37]. Let (fε (x))ε ∈ G(R) and x̆ ∈ R,then cl
[
(fε (x̆))ε

]
∈ R̃.We will say that

Colombeau generalized number cl
[
(fε (x̆))ε

]
is a point values of Colombeau generalized function

(fε (x))ε at point x̆ ∈ R.

Definition 1.2.7. (Principal value mapping) The principal value mapping p.v. :R̃ → R

of Colombeau generalized function (fε (x))ε at point x̆ ∈ R is defined by the formula:

p.v.
{
cl
[
(fε (x̆))ε

]}
= sup

ε∈(0,1]

|fε (x̆)| . (1.2.12)

We will be write for short p.v.
[
(fε (x̆))ε

]
.

Example 1.2.3. The principal value of the curvature scalar
(
R̂ε (r, a)

)
ε
(1.1.10) at point r̆ ∈ R

reads

p.v.
[(
R̂ε (r̆, a)

)
ε

]
= sup

ε∈(0,1]

aε2

(r̆2 + ε2)5/2
. (1.2.13)

Fig. 1. Plot of the function R(a, r̆, ε) =
aε2

(r̆2 + ε2)5/2
,

a=1, r̆=10−3, z = ε ∈ (0, 0.01] .

R
(
10−3, 7× 10−4

)
= 1.808× 108.

p.v.
[(
R̂ε (r̆, a)

)
ε

]
≃ 1.808× 108.

1.3 The Point Free Classical Colombeau Geometry

The first definition (prior to the well-known five postulates) of Euclides describes the point as
“that of which there is no part” [40].

A huge portion of our mathematics of the physical world is based on the amazingly simple Euclidean
geometry. Indeed, starting from very straightforward assumptions and theorems such as those found
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in Euclid’s geometry, it is feasible to build also non-Euclidean geometries and complex manifolds
able to explain issues such as those in quantum mechanics. One of the main components of Euclidean
geometry is the point, that stands for the most fundamental object. The first definition of a point
(prior to Euclid) is given by the Pythagoreans: a point is a monad having position. Euclid begins
his geometry with the definition of a point [that of which there is no part] (Def. 1, Euclid, 300
BCE) and the extremities of a line are points (Def. 2). Euclid’s Def.1 is interpreted by T.L. Heath
to mean that a point is that which is indivisible in parts. Therefore, we are confronted with a
primitive notion defined only by axioms that it must satisfy, i.e., the point upon which the whole
apparatus is built, meaning that geometry cannot be described in terms of previously defined real
objects or structures. Here we ask whether the zero-substance point holds true in our physical world
and extend our analysis also to other Euclidean objects, such as lines, surfaces, volumes and so on
[41].

Definition 1.3.1. Let (fε (x))ε ∈ Gδ(R) and cl
[
(x̆ε)ε

]
∈ R̃δ.Assume that cl

[
(fε (x̆ε))ε

]
∈ R̃δ.

We will say that Colombeau generalized number cl
[
(fε (x̆ε))ε

]
is a point values of Colombeau

generalized function (fε (x))ε at point (x̆ε)ε ∈ R̃δ.

Example 1.3.1. For any (r̂ε)ε ∈ R̃δ, ε ∈ (0, δ] the point values
(
R̂ε (r̂ε)

)
ε
of Colombeau

generalized function
(
R̂ε (r̂)

)
ε
(see Eq.(1.1.10) reads

(
R̂ε (r̂ε)

)
ε
=
(
R̂µ

µ,ε (r̂ε)
)
ε
= −

(
aε2

(r̂2ε + ε2)5/2

)
ε

= −a
(
ε2
)
ε[

(r̂2ε)ε + (ε2)ε
]5/2 =

−a
δ2
(
ε21
)
ε1[

(r̂2ε)ε + δ2 (ε21)ε1

]5/2 , (1.3.1)

where ε1 ∈ (0, 1] .

Remark 1.3.1. We choose now (r̂ε)ε = (r̂∗ε)ε = η (ε)ε = ηδ (ε1)ε1and from Eq.(1.3.1) we get

(
R̂ε (r̂

∗
ε)
)
ε
= −a

δ2
(
ε21
)
ε1[

(r̂∗2ε )ε + δ2 (ε21)ε1

]5/2 = −a
δ2
(
ε21
)
ε1[

ηδ (ε21)ε1 + δ2 (ε21)ε1

]5/2 =

−a
δ2
(
ε21
)
ε1[

η2δ2 (ε21)ε1 + δ2 (ε21)ε1

]5/2 = −a
δ2
(
ε21
)
ε1

δ5 (ε51)ε1 [η
2 + 1]5/2

=

−a
δ3 (ε31)ε1 [η

2 + 1]5/2
.

(1.3.2)

Thus in ”point limit” δ ≍ 0 the curvature scalar
(
R̂ε (r̂

∗
ε)
)
ε
diverges as δ−3

(
ε−3
1

)
ε1
.

Remark 1.3.2. In order prevent the divergence mentioned above, we assume now that there exists

fundamental generalized length l∗ = cl
[
(l∗ε1)ε1

]
= ηcl

[
(ε1)ε1

]
, ε1 ∈ (0, 1] , η ∈ R, δ ≪ η ≪ 1

, such that: (r̂ε1)ε1 ≥ l∗,see [36] sec.2.Thus from Eq.(1.3.1) we get now instead Eq.(1.3.2)
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∣∣∣(R̂ε (r̂ε)
)
ε

∣∣∣ ≤ ( aε2

(l∗2ε1 + ε2)5/2

)
ε

= a
a
(
ε2
)
ε[

(l∗2ε1 )ε + (ε2)ε
]5/2 =

a
δ2
(
ε21
)
ε1[

η2 (ε21)ε1 + δ2 (ε21)ε1

]1/2 1[
η2 (ε21)ε1 + δ2 (ε21)ε1

]1/2 1[
(r̂ε1)ε1 + (ε2)ε

]3/2 =

aδ2

[η2 + δ2]

1[
(r̂2ε1)ε1 + (ε2)ε

]3/2 =
aδ2

[η2 + δ2]

1[
(r̂2r̂)r̂∈(0,1]

+ (ε2)ε

]3/2 .
(1.3.3)

1.4 The Point-Free Loop Quantum Gravity

We remind that canonical quantization of GRT can be expressed as an SU(2) gauge theory on the 3
dimensional manifold Σ furnished by canonical point-like geometry, where a topology of space-time
M of the form M ∼= R× Σ is assumed, in a background independent manner. In such formulation
of GR, the gravitational field is described by a pair of conjugate variables (A,E), where Ai

a(x) is
an SU(2) connection and Ea

i (x) is the densitised triad vector field, conjugate to A :{
Ai

a(x), E
b
j (x

′)
}
= 8πγδijδ

b
aδ(x− x′), (1.4.1)

with G the gravitational constant and γ the Immirzi parameter.The conjugate pair are constraint
to satisfy the system

Gi = DaE
a
i = 0,Hb = Ea

i F
i
ab = 0,

H = ϵijkF
i
abE

a
jE

b
k − 2(1 + γ2)Ki

[aK
j
b]E

a
i E

b
j = 0,

(1.4.2)

which are called Gauss, spatial diffeomorphism and Hamiltonian constraints respectively. In fact,
the task of finding a metric satisfying the Einstein’s equations, describing configuration of a gravitating
system, is now replaced by finding a conjugate pair (A,E) satisfying the constraint system (1.4.1).
On quantization, one smears the basic fields (A,E) to holonomies of Aa

i along a curve γ, defined by

hγ [A] = P
[
exp

(∫
γ
A
)]

, and fluxes of Ea
i through the surface S, defined by Ei(S) =

∫
S
d2σnaE

a
i .

They form the holonomy-flux algebra in which holonomies act by multiplication, and fluxes act by
derivation. Using a functional representation of quantum field theory and representing states as
functionals of the cylindrical functions of holonomies, the kinematical Hilbert space of the theory is
constructed. After imposing Gauss and diffeomorphism constraints as operators on such states, the
true gauge and diffeomorphism invariant states of the theory turns out to be spin networks acted
upon by holonomies and fluxes operators which form a unique representation. More precisely, a
spin network is a triplet (Γ, jl, in) consisting of a graph Γ with nodes in Σ, labeled by intertwiners
in, and links connecting different nodes, labeled by SU(2) representations jl.

Remark 1.4.1. (I)The quantum geometrical picture suggested by canonical LQG [44] is manifest
in quantization of geometrical observables, such as area and volume, as quantum operators acting
on spin network states which result in discrete spectra and reflect the discrete nature of space-time.

(II) In fact singularity resolution occurs as a result of fundamental discreteness of space; while in
a classical continuum, divergences emerge as distance goes to zero, there is no room for divergences
in quantum level since there is no zero distance below the Planck length.

Remark 1.4.2. Canonical quantization of nonlinear distributional GRT can be expressed as
an S̃U(2) gauge theory on the 3 dimensional Colombeau distributional manifold Σ̃ furnished by

Colombeau point-free geometry, where a topology of space-time M̃ of the form M̃ ∼= R̃δ × Σ̃ is
assumed, in a background independent manner. In such formulation of GRT, the gravitational
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field is described by a pair of conjugate variables ((Aε)ε , (Eε)ε), where
(
Ai

a,ε(xε)
)
ε
is an S̃U(2)

Colombeau distributional connection and
(
Ea

i,ε(xε)
)
ε
is the distributional densitised triad vector

field, conjugate to (Aε)ε :{(
Ai

a,ε(xε)
)
ε
,
(
Eb

j (x
′
ε)
)
ε

}
= 8πγδijδ

b
a (δ(xε − x′ε))ε , (1.4.3)

with G the gravitational constant and γ the Immirzi parameter.The conjugate pair are constraint
to satisfy the system

(Gi,ε)ε =R̃
(
Da,εE

a
i,ε

)
ε
= 0, (Hb,ε)ε =

(
Ea

i,εF
i
ab,ε

)
ε
=R̃ 0R̃,

(Hε)ε =R̃ ϵijk
(
F i
ab,εE

a
j,εE

b
k,ε

)
ε
− 2(1 + γ2)

(
Ki

[a,εK
j
b,ε]E

a
i,εE

b
j,ε

)
ε
=R̃ 0R̃,

(1.4.4)

In fact, the task of finding Colombeau metric satisfying the generalized Einstein’s field equations (see
subsect.1.8), describing configuration of a gravitating system, is now replaced by finding a conjugate

pair ((Aε)ε , (Eε)ε) satisfying the constraint system (1.4.3). On quantization, one smears the basic
Colombeau generalized fields ((Aε)ε , (Eε)ε) to holonomies of

(
Aa

i,ε

)
ε
along a curve γ = (γε)ε,

defined by (hγ [Aε])ε = P
[
exp

(∫
γ
Aε

)
ε

]
, and fluxes of

(
Ea

i,ε

)
ε
through the surface S̃, defined by(

Ei,ε(S̃)
)
ε
=
(∫

S̃
d2σnaE

a
i,ε

)
ε
.

A spin network is a triplet (Γ̃, jl, in) consisting of a graph Γ̃ with nodes in Σ̃, labeled by intertwiners

in, and links connecting different nodes, labeled by S̃U(2) representations jl.

1.4.1 Classical Point-Free Phase Space

Definition 1.4.1.(1) The general linear group over Colombeau algebras R̃, C̃ (the set of real,complex
Colombeau numbers) is the group of n×n invertible matrices of real (complex) Colombeau numbers,

and is denoted by GLn

(
R̃
)
, GLn

(
C̃
)
or GL

(
n, R̃

)
, GL

(
n, C̃

)
.

(2) The unitary group of degree n over Colombeau algebra C̃, denoted Ũ(n), or U(n, C̃)
is the group of n× n unitary matrices over C̃.

(3) The unitary group is a subgroup of the general linear group GL
(
n, C̃

)
.

(4) In the simple case n = 1, the group U(n, C̃) corresponds to the circle group T̃, consisting of all

Colombeau complex numbers with absolute value 1 under multiplication,i.e. T̃ =
{
z ∈ C̃

∣∣∣ |z| = 1
}
.

(5) The special unitary group of degree n, denoted S̃U(n), is the Lie group of n×n unitary matrices

over Colombeau algebra R̃ with determinant 1.

The Colombeau distributional manifold Σ̃ over Colombeau algebra R̃ having the symmetry group
S̃ with an isotropy subgroup F̃ , can be decomposed as Σ̃ ∼= Σ̃/S̃ × S̃/F̃ . The connection can

generally be written as (Aε)ε =
(
AΣ̃/S̃,ε

)
ε
+
(
AS̃/F̃ ,ε

)
ε
. Then

(
AΣ̃/S̃,ε

)
ε
can be considered as

the connection of the reduced theory and its holonomies along curves in Σ̃/S̃ can be quantized.For

the spherically symmetric case, Σ̃ ∼= R̃δ × S̃2, and the symmetry group is S̃ = S̃U(2). This implies

identifying Σ̃/S̃ with R̃δ and the gauge group of the reduced theory F with U(1). Therefore,

reduced connections are Ũ(1) gauge fields on R̃. Roughly speaking, spherical symmetry implies
that our basic fields, in the spherical coordinate ((xε)ε , θ, ϕ), are independent of angular variables.
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Thus, the Colombeau generalized connection (Aε(x⃗ε))ε is just a function of the radial coordinate;
(Aε)ε = (Aε(xε))ε.These connections and triads of the reduced spherically symmetric phase space
have the general form:

(Aε)ε =
[
(Axε(xε))ε

]
τ3
[
(dxε)ε

]
+ (
[
(A1(xε))ε

]
τ1 +

[
(A2(xε))ε

]
τ2)
[
(dθε)ε

]
+

(((A1,ε(xε)τ2)ε − (A2,ε(xε)τ1 sin θε)ε) + τ3 (cos θε)ε)
[
(dϕε)ε

] (1.4.5)

and

(Eε)ε = (Exε
ε (xε)τ3 sin θε∂xε)ε + (

(
E1

ε (xε)τ1
)
ε
+(

E2
ε (xε)τ2) sin θε∂θε

)
ε
+
(
(E1

ε (xε)τ2
)
ε
−
(
E2

ε (xε)τ1)∂ϕε

)
ε

(1.4.6)

correspondingly, where τi = − i
2
σi are the generators of s̃u(2) algebra. They define the Colombeau

generalized symplectic structure:

(Ωε)ε =
1

2γG

(∫
dxε(dAxε,ε ∧ dExε

ε + 2dA1,ε ∧ dE1
ε + 2dA2,ε ∧ dE2

ε )
)
ε
. (1.4.7)

However, a suitable canonical transformation can be made resulting in Colombeau generalized
canonical variables ((Axε(xε))ε , (E

xε
ε (xε))ε), (γ (Kϕε,ε(xε))ε ,

(
Eϕε

ε (xε)
)
ε
) and ((ηε(xε))ε , (P

ηε
ε (xε))ε):

(Ωε)ε =
1

2γG

∫
dxε(dAx ∧ dEx

ε + d(γKϕε) ∧ dEϕ
ε + 2dηε ∧ dP η

ε )ε, (1.4.8)

with (Kϕε,ε)ε being the (ϕε)ε component of the extrinsic Colombeau generalized curvature.The

Gauss constraint, generating Ũ(1) gauge transformations, takes the form:

(Gε[λε])ε =
(∫

dxελε(E
x′
ε

ε + P ηε
ε )
)
ε
=R̃ 0R̃, (1.4.9)

where prime denotes differentiation with respect to xε.

Note that in terms of these variables, conjugate pair is not simply the connection-flux pair which
suggests a different situation than the full theory.The Colombeau generalized Hamiltonian constraint
can be written as

(Hε[Nε])ε = −
1

2G
×∫ dxεNε(xε)

1√
|Exε

ε |

(
(1 − Γ2

ϕε,ε + K2
ϕε,ε)E

ϕε
ε +

2

γ
Kϕε,εE

xε
ε (Axε,ε + η′

ε) + 2Exε
ε Γ′

ϕε,ε

)
ε

.
(1.4.10)

1.4.2 Quantization

Along the standard lines of constructing basic operators and states in the kinematical Hilbert
space of classical LQG, we start with holonomies of the connections. Holonomies of (Ax,ε)ε along

curves (γε)ε in R̃ are defined as
(
h
(γε)
ε

)
ε
≡ exp

[
i

2

(∫
γε
Axε(xε)

)
ε

]
which are elements in Ũδ(1) =

R̃δ/Z̃. For (Aϕε,ε)ε point holonomies exp
[
iµ (Aϕε,ε(xε))ε

]
are used which belongs to the space

of continuous almost periodic functions on the Bohr compactification of real line R̃δ , and point
holonomies of (ηε)ε ∈ S̃1, have the form exp

[
(iηε(xε))ε

]
which are elements of Ũ(1).

The kinematical Hilbert space of the present reduced theory is the space spanned by spin network
state (Tg,k,µ,ε)ε :

13
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(Tg,k,µ,ε)ε =∏
e∈g exp

(
i

2
ke
(∫

e
dxεAxε(xε)

)
ε

)(∏
ν∈V (g) exp (iµν,εγKϕε,ε(ν)) exp (ikνηε(ν))

)
ε
.

(1.4.11)

For a given graph g, these are cylindrical functions of holonomies along edges e of g. Vertices V (g)

of such spin networks are labeled by irreducible
¯̃RBohr representations (µν,ε)ε ∈ R̃δ and irreducible

S̃1 representation kν ∈ Z̃, while edges are labeled by irreducible representations of Ũδ(1).

Holonomies act on spin network states by multiplication. Their corresponding momenta, on the
other hand, act by differentiation(
Êxε

ε (xε)Tg,k,µ,ε

)
ε
= γ

ℓ2p
2

(
(ke+(xε) + ke−(xε))Tg,k,µ,ε

)
ε
, (1.4.12)

∫
dxεÊ

ϕε
ε (xε)Tg,k,µ = γℓ2p

∑
v µν,εTg,k,µ,ε, (1.4.13)∫

dxεP̂
ηε
ε (xε)Tg,k,µ,ε = 2γℓ2p

∑
v kν,εTg,k,µ,ε. (1.4.14)

The generalized volume operator can be expressed as(
V̂ε

)
ε
= 4π

∫
dxε|Êϕε

ε (xε)|
√

|Êxε
ε (xε)| (1.4.15)

which is diagonal in spin network representation(
V̂εTg,k,µ,ε

)
ε
= (Vk,m,εTg,k,µ,ε)ε , (1.4.16)

where

(Vk,m,ε)ε = 4πγ3/2ℓ3p

(∑
ν |µν |

√
1

2
|ke+(xε) + ke−(xε)|

)
ε

. (1.4.17)

Implementing the Gauss constraint as an operator on spin networks to select the gauge invariant
states, leads to a restriction on labels(
Ĝε[λε]Tg,k,µ,ε

)
ε
= γℓ2p

(∑
ν λε(ν)(ke+(xε) − ke−(xε) + 2kν)Tg,k,µ,ε

)
ε

(1.4.18)

(
Ĝε[λε]Tg,k,µ

)
ε
= 0R̃ =⇒ kν = −1

2
(ke+(xε) − ke−(xε))ε. (1.4.19)

Imposing now this on (1.4.11) results in the gauge invariant states

(Tg,k,µ,ε)ε =∏
e∈g exp

[
i

2
ke
(∫

e
dxε(Axε(xε) + η′ε)

)
ε

](∏
ν∈V (g) exp (iµνγKϕε,ε(ν))

)
ε
.

(1.4.20)

1.5 Schwarzschild Black Hole

Remind that the Schwarzschild metric is a spherically symmetric solution to Einstein equations
describing the space-time of a source with massm in coordinate system (x, θ, ϕ) reads

14
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ds2 = −
(
1− 2m

x

)
dt2 +

(
1− 2m

x

)−1

dx2 + x2dΩ2. (1.5.1)

Horizon x+ appear where g00 = 0:

x+ − 2m = 0. (1.5.2)

The event horizons partition space-time into 2 regions: I (x > x+), and II (0 < x < x+). By
inspecting the sign of g00, one observes that in region II, x and t interchange their roles and
becomes time-like and space-like respectively.

1.5.1 Classical Point-like Phase Space Variables

In region II, the metric of space-time takes the form

ds2 = −
(
2m

t
− 1

)−1

dt2 +

(
2m

t
− 1

)
dx2 + t2dΩ2. (1.5.3)

According to definition of tetrad (frame) fields gµν = ηIJe
I
µe

J
ν , they can be determined only up

to a Lorentz transformation. This leaves us with an SO(3, 1) freedom in choosing tetrad. In fact,
given the metric gµν = ηIJe

I
µe

J
ν we are free to choose their sign and Minkowski indices, which can

be viewed as sort of a labeling 4 tetrad fields. However, in order to serve as the fundamental fields
for constructing the conjugate pair (A,E), a particular labeling must be chosen which will be clear
below.The suitable choice for labeling 4 orthogonal frame fields reads

e0 = ±
(
2m

t
− 1

)−1/2

dt ; e1 = ±t sin θdϕ; e2 = ±tdθ ; e3 = ±
(
2m

t
− 1

)1/2

dx, (1.5.4)

which gives the compatible spin connection components

ω30 = −ω03 =
(
−m
t2

)
dx ; ω20 = −ω02 =

(
2m

t
− 1

)1/2

dθ,

ω10 = −ω01 =

(
2m

t
− 1

)1/2

sin θdϕ ; ω12 = −ω21 = cos θdϕ.

(1.5.5)

The A field can be constructed using spin connections:

A3 = ±γ
(
−m
t2

)
dx,A2 = ±γ

(
2m

t
− 1

)1/2

dθ,

A1 = ±γ
(
2m

t
− 1

)1/2

sin θdϕ,A3 = ± cos θdϕ.

(1.5.6)

To construct the E field on Σin we choose a gauge in which e0µ = nµ, the normal vector field to the
spatial slice. This way we are in fact breaking the SO(3, 1) symmetry into SO(3) on a hypersurface
with topology Σ = R× S2. The 3 triad fields become:

e1 = ±t sin θdϕ ; e2 = ±tdθ ; e3 = ±
(
2m

t
− 1

)1/2

dx, (1.5.7)

with determinant
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det (e) = t2 sin θ

(
2m

t
− 1

)1/2

, (1.5.8)

and inverse triad

e1 = ± 1

t sin θ
∂ϕ ; e2 = ±1

t
∂θ ; e3 = ±

(
2m

t
− 1

)−1/2

∂x, (1.5.9)

The E fields become

E1 = ±t
(
2m

t
− 1

)1/2

∂ϕ, E2 = ±t
(
2m

t
− 1

)1/2

sin θ∂θ, E3 = ±t2 sin θ∂x. (1.5.10)

The 3 triad fields (1.5.7) define their compatible spin connection, Γij ∧ ej + dei = 0 :

Γ12 = −Γ21 = cos θdϕ, (1.5.11)

and

Γ3 = 1
2

(
ϵ312Γ12 + ϵ321Γ21

)
= cos θdϕ. (1.5.12)

Extrinsic curvature is related to A via γK = A− Γ reads

K3
r =

1

γ
A3

r = ±
(
−m
t2

)
dx,K2

θ =
1

γ
A2

θ = ±
(
2m

t
− 1

)1/2

, (1.5.13)

K1
ϕ = 1

γ
A1

ϕ = ±
(
2m

t
− 1

)1/2

sin θ. (1.5.14)

Note that had we chosen other Minkowski indices for tetrad (1.5.4) we would not have obtained the
conjugate pair(A,E) with correct indices satisfying

{
Ai

a(x), E
b
j

(
x′j
)}

= δijδ
b
aδ(x− x′).

The phase space variables are determined up to a sign freedom. By demanding E and A to satisfy
the diffeomorphism, Gauss and Hamiltonian constraints, their signs can be fixed relative to each
other. All components of diffeomorphism and Gauss constraints are zero except

Hθ = γt

(
2m

t
− 1

)
cos θ

{
sgn(A1

ϕ) + sgn(A2
θA

3
ϕ)
}
, (1.5.15)

G2 = t

(
2m

t
− 1

)1/2

cos θ
{
sign(Eθ

2 ) + sign(A3
ϕE

ϕ1)
}
, (1.5.16)

and Hamiltonian constraint gives:

C = t

(
2m

t
− 1

)
sin2 θ

{
sign(Eθ

2 ) + sign(Eϕ
1 )
}
. (1.5.17)

For the above constraints to be zero we must have

sign(Eθ
2 ) = −sign(Eϕ

1 ), sign(A
3
ϕ) = +1, sign(A1

ϕ) = −sign(A2
θ). (1.5.18)

This leaves us with two alternatives corresponding to the residual gauge freedom (b, pb) → (−b,−pb).

Ai
a = cτ3dr + bτ2dθ + (cos θτ3 − b sin θτ1)dϕ
Ea

i = pcτ3 sin θ∂r + pbτ2 sin θ∂θ − pbτ1∂ϕ,
(1.5.19)
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and

Ai
a = cτ3dr − bτ2dθ + (cos θτ3 + b sin θτ1)dϕ
Ea

i = pcτ3 sin θ∂r − pbτ2 sin θ∂θ + pbτ1∂ϕ,
(1.5.20)

where,

b = ±γ
(
2m

t
− 1

)1/2

; c = ±γ
(
−m
t2

)
, (1.5.21)

pc = ±t2 ; pb = t

(
2m

t
− 1

)1/2

. (1.5.22)

The momentum pc = ±t2 is a monotonic function and can be interpreted as an internal time
parameter (as is interpreted in [44] for the case of the Kantowski-Sachs minisuperspace of Schwarzshild
black hole).

Region I.

The analoguos calculations for region I with line element (1.5.1) leads to the folowing phase space
coordinates

Ãi
a = c̃τ3dr + b̃τ2dθ + (cosθτ3 − b̃sinθτ1)dϕ

Ẽa
i = p̃cτ3sinθ∂r + p̃bτ2sinθ∂θ − p̃bτ1∂ϕ,

(1.5.23)

Ãi
a = c̃τ3dr − b̃τ2dθ + (cos θτ3 + b̃ sin θτ1)dϕ

Ẽa
i = p̃cτ3 sin θ∂r − p̃bτ2 sin θ∂θ + p̃bτ1∂ϕ,

(1.5.24)

where,

b̃ = ±γ
(
1− 2m

x

)1/2

; c̃ = ∓γ
(m
x2

)
; p̃c = ±x2 ; p̃b = x

(
1− 2m

x

)1/2

. (1.5.25)

This defines variables (1.4.5)-(1.4.6) introduced above in subsection 1.4 as

Ax = c̃ , Ex = p̃c; γKϕ = b̃ , Eϕ = p̃b; η = (2n+ 1)π, P η = 0 (1.5.26)

which constitute a 4 dimensional phase space.

1.6 Classical Point-like Loop Quantum Gravity Contradict with a
Linear Colombeau Geometry

1.6.1 The Point-like Quantum Schwarzschild Geometry

We remind that in accordance with a linear Colombeau geometry approach [30], the Schwarzschild
black hole,etc. has a distributional source ∼ δ (x̂) ∈ D′ (R) ,see Eq. (1.1.8) and Eq. (1.1.11). This
result as well established and acceptet by scientific community as physical reality [29]-[31].

Remark 1.6.1.However under local singularity resolution based on canonical LQG approach [44],
these distributional sources vanishes and we go bak to ubnormal and mistaken results from classical
handbooks, see for example [3],[4].Obviously this is a contradiction. Thus by using canonical LQG
approach we can not quantized the well established classically distributional Schwarzschild black
hole,etc.
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Viewing LQG as a method to quantize connections, one would be able to impose a symmetry
through two avenues: (i) to pick, in the classical level, only those connections which are invariant
under symmetry group action and consequently reduce the phase space, and (ii) to restrict the
distributional states of the quantum theory, at the kinematical level, only to invariant connection
[42]-[45].

We will consider the simplest case of a spin network that is equispaced in normal coordinates with
lattice spacing ∆ ∼ lPl.

Remind that under naive formal calculation the Kretschmann scalar curvature of the Schwarzschild
black hole reads [43]:

R̂ρσµν (r̂) R̂ρσµν (r̂) =
48M2

t6
. (1.6.1)

Obviously (1.6.1) indicates that in this case the singularity of space-time lies at r̂ = 0 as well. The
classical phase space variables calculated in subsect.1.5 {c, pc} used in this section are given by
Eq.(1.5.21)-Eq.(1.5.22) and therefore

b = ±γ
(
2m

t
− 1

)1/2

; c = ∓γ
(m
t2

)
; pc = ±t2 ; pb = t

(
2m

t
− 1

)1/2

. (1.6.2)

Let us consider the following quantity on the classical point-like phase space [43]:

R ≡ 1

2πγG

{
c,
√

|pc|
}
=
sgn(pc)√

|pc|
=

1

t
. (1.6.3)

Following the methods presented in [44], we expand now the holonomy along x direction of Σ =
R× S2 with oriented length τ as

h
(τ)
x = 1 + ϵ

∫ τ

0
dxcτ3 +O(ϵ2), (1.6.4)

and rewrite R as

R =
1

2πγG
tr
(
τ3h

(τ)
x

{
h
(τ)−1
x ,

√
|pc|
})

. (1.6.5)

Now, quantization would be straightforward:

R̂ =
1

2πγℓ2Pl

tr
(
τ3ĥ

(τ)
x

[
ĥ
(τ)−1
x ,

√
|p̂c|
])

=
1

2πγℓ2Pl

(
cos
(τc
2

)√
|p̂c| sin

(τc
2

)
− sin

(τc
2

)√
|p̂c| cos

(τc
2

))
.

(1.6.6)

Its action on |τ, µ⟩ which are the simplified version of the spin network states in this reduced model
(with µ being the oriented length along the equator of S2), then becomes:

R̂ |τ, µ⟩ = 1

2π
√
γℓPl

(√
|τ + 1| −

√
|τ − 1|

)
|τ, µ⟩ . (1.6.7)

Such operator R̂ |τ, µ⟩ has a bounded spectrum with maximum value of
(√

2π
√
γℓPl

)−1
. Thus the

Kretschmann scalar curvature, which is classically divergent, at quantum level has a maximum
value of [43]:

R̂ρσµν (r̂) R̂ρσµν (r̂)
∣∣∣
max

=
48M2

r̂6

∣∣∣∣
max

=
48M2

γ3π6l6Pl

. (1.6.8)
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Remark 1.6.2. Note that a quantity
(
R̂ε (r̂)

)
ε
which is classically has a weak distributional

limit, at quantum level obtained by canonical LQG has a maximum value of

∣∣∣R̂ε (r̂)
∣∣∣∣∣∣

max
∼ Mε2

l5Pl

∣∣∣∣
max

. (1.6.9)

Thus limε→0 R̂ε (r̂) = 0 since RHS of the Eq.(1.6.9) wanishes in the limit ε→ 0.

1.6.2 The Point Free Quantum Schwarzschild Geometry

In region II, the Colombeau metric of point-free Schwarzschild space-time takes the form

(
ds2ε
)
ε
= −

[
2m

(tε)ε
− 1

]−1 (
dt2ε
)
ε
+

[
2m

(tε)ε
− 1

] (
dx2ε
)
ε
+
(
t2εdΩ

2
ε

)
ε
, (1.6.10)

where cl
[
(tε)ε

]
∈ R̃.According to definition of Colombeau tetrad (frame) fields (gµν,ε)ε

= ηIJ
(
eIµ,εe

J
ν,ε

)
ε
, they can be determined only up to a Lorentz transformation. This leaves us

with an SO(3, 1) freedom in choosing tetrad. In fact, given the Colombeau metric (gµν,ε)ε =
ηIJ

(
eIµ,εe

J
ν,ε

)
ε
we are free to choose their sign and Minkowski indices, which can be viewed as sort

of a labeling 4 tetrad fields. However, in order to serve as the fundamental fields for constructing
the conjugate pair ((Aε)ε , (Eε)ε), a particular labeling must be chosen which will be clear below.
The suitable choice for labeling 4 orthogonal Colombeau generalized frame fields reads

(
e0ε
)
ε
= ±

[
2m

(tε)ε
− 1

]−1/2

(dtε)ε ;
(
e1ε
)
ε
= ±

[
(tε)ε

] [
(sin θε)ε

] [
(dϕε)ε

]
;(

e2ε
)
ε
= ±

[
(tε)ε

] [
(dθε)ε

]
;
(
e3ε
)
ε
= ±

[
2m

(tε)ε
− 1

]1/2 [
(dxε)ε

]
,

(1.6.11)

which gives the compatible Colombeau generalized spin connection components(
ω30
ε

)
ε
= −

(
ω03
ε

)
ε
= − m[

(t2ε)ε
] [(dxε)ε] ;

(
ω20
ε

)
ε
= −

(
ω02
ε

)
ε
=

[
2m

(tε)ε
− 1

]1/2 [
(dθε)ε

]
,(

ω10
ε

)
ε
= −

(
ω01
ε

)
ε
=

[
2m

(tε)ε
− 1

]1/2 [
(sin θε)ε

] [
(dϕε)ε

]
;(

ω12
ε

)
ε
= −

(
ω21
ε

)
ε
=
[
(cos θε)ε

] [
(dϕε)ε

]
.

(1.6.12)

The (Aε)ε field can be constructed using spin connections:

(
A3

ε

)
ε
= ±γ

(
− m

(t2ε)ε

)[
(dxε)ε

]
,
(
A2

ε

)
ε
= ±γ

[
2m

(tε)ε
− 1

]1/2 [
(dθε)ε

]
,(

A1
ε

)
ε
= ±γ

[
2m

(tε)ε
− 1

]1/2 [
(sin θε)ε

] [
(dϕε)ε

]
,
(
A3

ε

)
ε
= ±

[
(cos θε)ε

] [
(dϕε)ε

]
.

(1.6.13)

To construct Colombeau generalized field (Eε)ε on Σ̃ we choose a gauge in which e0µ = nµ, the
normal vector field to the spatial slice. This way we are in fact breaking the SO(3, 1) symmetry

into SO(3) on a hypersurface with topology Σ̃ = R̃× S̃2. The Colombeau generalized 3 triad fields
become:

19



Colombeau Solutions to Einstein Field Equations in General Relativity:Gravitational singularities,
Distributional SAdS BH Spacetime-Induced Vacuum Dominance

(
e1ε
)
ε
= ±

[(
t
1/2
ε

)
ε

] [
(sin θε)ε

] [
(dϕε)ε

]
;
(
e2ε
)
ε
= ±

[
(tε)ε

] [
(dθε)ε

]
;(

e3ε
)
ε
= ±

[
2m

(tε)ε
− 1

]1/2 [
(dxε)ε

]
,

(1.6.14)

with determinant

(det (eε))ε =
[(
t2ε
)
ε

] [
(sin θε)ε

] [ 2m

(tε)ε
− 1

]1/2
, (1.6.15)

and inverse triad

(e1,ε)ε = ± 1[
(tε)ε

] [
(sin θε)ε

] [(∂ϕε)ε
]
; (e2,ε)ε = ± 1[

(tε)ε
] [(∂θε)ε] ;

(e3,ε)ε = ±
[
2m

(tε)ε
− 1

]−1/2 [
(∂x,ε)ε

]
.

(1.6.16)

The (Eε)ε fields become

(E1,ε)ε = ±
[
(tε)ε

] [ 2m

(tε)ε
− 1

] [
1/2 (∂ϕε)ε

]
,

(E2,ε)ε = ±
[
(tε)ε

] [ 2m

(tε)ε
− 1

]1/2 [
(sin θε)ε

] [
(∂θε)ε

]
,

(E3,ε)ε = ±
[(
t2ε
)
ε

] [
(sin θε)ε

] [
(∂x,ε)ε

]
.

(1.6.17)

The Colombeau generalized 3 triad fields (1.6.14) define their generalized compatible spin connection,(
Γij
ε ∧ ejε

)
ε
+
(
deiε
)
ε
= 0R̃ :

(
Γ12
ε

)
ε
= −

(
Γ21
ε

)
ε
=
[
(cos θε)ε

] [
(dϕε)ε

]
, (1.6.18)

and(
Γ3
ε

)
ε
=

1

2

(
ϵ312Γ12

ε + ϵ321Γ21
ε

)
ε
=
[
(cos θε)ε

] [
(dϕε)ε

]
. (1.6.19)

Extrinsic distributional curvature is related to (Aε)ε via γ (Kε)ε = (Aε)ε−(Γε)ε reads(
K3

rε,ε

)
ε
=

1

γ

(
A3

rε,ε

)
ε
= ±

(
− m

(t2ε)ε

)[
(dxε)ε

]
,(

K2
θε,ε

)
ε
=

1

γ

(
A2

θε,ε

)
ε
= ±

[
2m

(tε)ε
− 1

]1/2
,

(1.6.20)

(
K1

ϕε,ε

)
ε
=

1

γ

(
A1

ϕε,ε

)
ε
= ±

[
2m

(tε)ε
− 1

]1/2 [
(sin θε)ε

]
. (1.6.21)

Note that had we chosen other Minkowski indices for tetrad (1.6.11) we would not have obtained the
conjugate pair(A,E) with correct indices satisfying

({
Ai

a,ε(xε), E
b
j (x

′
ε)
})

ε
= δij

(
δbaδ(xε − x′ε)

)
ε
.

The phase space variables are determined up to a sign freedom. By demanding E and A to satisfy
the diffeomorphism, Gauss and Hamiltonian constraints, their signs can be fixed relative to each
other. All components of diffeomorphism and Gauss constraints are zero except

(Hθε,ε)ε = γ
[
(tε)ε

] [ 2m

(tε)ε
− 1

] [
(cos θε)ε

] {
sign

[
(A1

ϕε,ε)ε
]
+ sign

[
(A2

θε,εA
3
ϕε,ε)ε

]}
, (1.6.22)
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(G2,ε)ε =
[
(tε)ε

] [ 2m

(tε)ε
− 1

]1/2 [
(cos θε)ε

] {
sign

[
(Eθε

2,ε)ε
]
+ sign

[
(A3

ϕε
Eϕε1

ε )ε
]}
, (1.6.23)

and Hamiltonian constraint gives:

(Cε)ε =
[
(tε)ε

]( 2m[
(tε)ε

] − 1

)[(
sin2 θε

)
ε

] {
sign

[
(Eθε

2,ε)ε
]
+ sign

[
(Eϕε

1,ε)ε
]}

. (1.6.24)

For the above constraints to be zero we must have

sign
[
(Eθε

2,ε)ε
]
= −sign

[
(Eϕε

1,ε)ε
]
,

sign
[
(A3

ϕε,ε)ε
]
= +1, sign

[
(A1

ϕε,ε)ε
]
= −sign

[
(A2

θε,ε)ε
]
.

(1.6.25)

This leaves us with two alternatives corresponding to the residual gauge freedom

((bε)ε , (pbε,ε)ε) → (− (bε)ε ,− (pbε,ε)ε).(
Ai

a,ε

)
ε
=
[
(cε)ε

]
τ3
[
(drε)ε

]
+
[
(bε)ε

]
τ2
[
(dθε)ε

]
+([

(cos θε)ε
]
τ3 −

[
(bε)ε

] [
(sin θε)ε

]
τ1
) [

(dϕε)ε
](

Ea
i,ε

)
ε
=
[
(pcε,ε)ε

]
τ3
[
(sin θε)ε

] [
(∂rε)ε

]
+[

(pbε,ε)ε
]
τ2
[
(sin θε)ε

] [
(∂θε)ε

]
−
[
(pbε,ε)ε

]
τ1
[
(∂ϕε)ε

]
,

(1.6.26)

and (
Ai

a,ε

)
ε
=
[
(cε)ε

]
τ3
[
(drε)ε

]
−
[
(bε)ε

]
τ2
[
(dθε)ε

]
+

(
[
(cos θε)ε

]
τ3 +

[
(bε)ε

] [
(sin θε)ε

]
τ1)dϕ(

Ea
i,ε

)
ε
=
[
(pcε,ε)ε

]
τ3
[
(sin θε)ε

] [
(∂rε)ε

]
−
[
(pcε,ε)ε

]
τ2
[
(sin θε)ε

] [
(∂θε)ε

]
+

+
[
(pbε,ε)ε

]
τ1
[
(∂ϕε)ε

]
,

(1.6.27)

where,

(bε)ε = ±γ
[
2m

(tε)ε
− 1

]1/2
; (cε)ε = ∓γ m[

(t2ε)ε
] , (1.6.28)

(pcε,ε)ε = ±
(
t2ε
)
ε
; (pbε,ε)ε =

[
(tε)ε

]([ 2m

(tε)ε
− 1

])1/2

. (1.6.29)

The momentum (pcε,ε)ε = ±
(
t2ε
)
ε
is a monotonic generalized function on R̃ and can be interpreted

as an internal generalized time parameter.

Region I.

The analoguos calculations for region I with Colombeau generalized line element (1.6.10) leads to
the folowing phase space coordinates(

Ãi
a,ε

)
ε
=
[
(c̃ε)ε

]
τ3
[
(drε)ε

]
+
[(
b̃ε
)
ε

]
τ2
[
(dθε)ε

]
+

(
[
(cos θε)ε

]
τ3 −

[(
b̃ε
)
ε

] [
(sin θε)ε

]
τ1)
[
(dϕε)ε

]
,(

Ẽa
i,ε

)
ε
=
[
(p̃cε,ε)ε

]
τ3
[
(sin θε)ε

] [
(∂rε)ε

]
+[

(p̃bε,ε)ε
]
τ2
[
(sin θε)ε

] [
(∂θε)ε

]
−
[
(p̃bε,ε)ε

]
τ1
[
(∂ϕε)ε

]
,

(1.6.30)
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(
Ãi

a,ε

)
ε
=
[
(c̃ε)ε

]
τ3
[
(drε)ε

]
−
[(
b̃ε
)
ε

]
τ2
[
(dθε)ε

]
+

(
[
(cos θε)ε

]
τ3 +

[(
b̃ε
)
ε

] [
(sin θε)ε

]
τ1)
[
(dϕε)ε

]
,(

Ẽa
i,ε

)
ε
=
[
(p̃cε,ε)ε

]
τ3
[
(sin θε)ε

] [
(∂rε)ε

]
−[

(p̃bε,ε)ε
]
τ2
[
(sin θε)ε

] [
(∂θε)ε

]
+
[
(p̃bε,ε)ε

]
τ1
[
(∂ϕε)ε

]
,

(1.6.31)

where,(
b̃ε
)
ε
= ±γ

[
1− 2m

(xε)ε

]1/2
; (c̃ε)ε = ∓γ m[

(x2ε)ε
] ; (p̃cε,ε)ε = ±

(
x2ε
)
ε
;

(p̃bε)ε =
[
(xε)ε

] [
1− 2m

(xε)ε

]1/2
.

(1.6.32)

This defines variables (1.4.5)-(1.4.6) introduced above as

(Axε,ε)ε = (c̃ε)ε , (E
xε
ε )ε = (p̃cε,ε)ε ; γ (Kϕε,ε)ε =

(
b̃ε
)
ε
,(

Eϕε
ε

)
ε
= (p̃bε,ε)ε ; η = (2n+ 1)π, (P ηε

ε )ε = 0R̃
(1.6.33)

which constitute a 4 dimensional phase space.

Let us consider the following quantity on the point-free phase space mentioned above

(Rε)ε ≡ 1

2πγG

{[
(cε)ε

]
,
[√[

(|pcε,ε|)ε
]]}

=
sign [(pcε,ε)ε]√[

(|pcε,ε|)ε
] =

1[
(tε)ε

] . (1.6.33a)

Following the canonical methods presented in [44], we expand now the holonomy along x direction

of Σ̃ = R̃× S̃2 with oriented generalized length (τε)ε as

(
h
(τε)
xε,ε

)
ε
= 1 + ϵ

(∫ τε
0
dxεcετ3

)
ε
+
(
Oε(ϵ

2)
)
ε
, (1.6.34)

and rewrite (Rε)ε as

(Rε)ε =
1

2πγG
tr
(
τ3
[(
h
(τε)
xε,ε

)
ε

]{[(
h
(τε)−1
xε,ε

)
ε

]
,
√[

(|pcε,ε|)ε
]})

. (1.6.35)

Now, quantization would be straightforward:

(
R̂ε

)
ε
=

1

2πγℓ2Pl

tr
(
τ3
[(
ĥ
(τε)
xε,ε

)
ε

]{[(
ĥ
(τε)−1
xε,ε

)
ε

]
,
√[

(|p̂cε,ε|)ε
]})

=
1

2πγℓ2Pl

([
cos
(τεcε

2

)
ε

]√[
(|p̂cε,ε|)ε

] [
sin
(τεcε

2

)
ε

]
−[

sin
(τεcε

2

)
ε

]√[
(|p̂cε,ε|)ε

] [
cos
(τεcε

2

)
ε

])
.

(1.6.36)

Its action on
∣∣(τε)ε , (µε)ε

⟩
which are the simplified version of the spin network states in this reduced

model (with (µε)ε being the oriented length along the equator of S̃2), then becomes:

(
R̂ε |τε, µε⟩

)
ε
=

1

2π
√
γℓPl

(√
| (τε)ε + 1| −

√
| (τε)ε − 1|

) ∣∣(τε)ε , (µε)ε
⟩
. (1.6.37)

Such operator
(
R̂ε |τε, µε⟩

)
ε
has a bounded spectrum with maximum value of

(√
2π

√
γℓPl

)−1
.
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Remark 1.6.3. Thus the Colombeau generalized Kretschmann scalar curvature(
R̂ρσµν

ε (tε) R̂ρσµν,ε (tε)
)
ε
, which is classically has infinite large point value ∼ cl

[(
ε−6
)
ε

]
∈ R̃ (see

Eq.(1.1.18)), at quantum level has a maximum value of :

cl
[(

R̂ρσµν
ε (tε) R̂ρσµν,ε (tε)

)
ε

]∣∣∣
max

∼

M2

cl
[
(t6ε)ε

] ∣∣∣∣∣
max

≤R̃ st

(
M2

cl
[
(t6ε)ε

] ∣∣∣∣∣
max

)
≤ M2

γ3π6l6Pl

.
(1.6.38)

Remark 1.6.4. Note that the Colombeau generalized curvature scalar
(
R̂ε (tε)

)
ε

obtained at quantum level by point-free LQG by using similarly calculation as it has been applied
above, has nonzero maximum value(∣∣∣R̂ε (tε)

∣∣∣)
ε

∣∣∣
max

∼ M

l3Pl

∣∣∣∣
max

. (1.6.39)

Remark 1.6.5. We emphasize that in contrast with trivial (zero valued) result obtained at

quantum level for Colombeau generalized curvature scalar
(
R̂ε (tε)

)
ε
by using canonical LQG, see

Remark 1.6.2, Colombeau generalized curvature scalar
(
R̂ε (tε)

)
ε
obtained at quantum level by

point-free LQG has nonzero maximum value given by Eq.(1.6.39). .

1.7 Generalized Stokes’ Theorem

1.7.1 The Colombeau Generalized Curvilinear Coordinates

Let us consider now the Colombeau generalized transformation from one generalized coordinate
system,(
x0ε
)
ε
,
(
x1ε
)
ε
,
(
x2ε
)
ε
,
(
x3ε
)
ε
,to another generalized coordinate system

(
x′0ε
)
ε
,
(
x′1ε
)
ε
,
(
x′2ε
)
ε
,
(
x′3ε
)
ε
:

transform according to the relation(
xiε
)
ε
=
(
f i
ε

(
x′0ε , x

′1
ε , x

′2
ε , x

′3
ε

))
ε
, (1.7.1)

where the
(
f i
ε

)
ε
are certain Colombeau generalized functions and where

(
Jε

(
x′0, x′1, x′2, x′3

))
ε

(
Jε

(
x′0ε , x

′1
ε , x

′2
ε , x

′3
ε

))
ε
=

(
∂
(
x0ε, x

1
ε, x

2
ε, x

3
ε

)
∂ (x′0ε , x′1ε , x′2ε , x′3ε )

)
ε

̸= 0R̃ (1.7.2)

is the Jacobian of the Colombeau generalized transformation (1.7.1).

Remark 1.7.1. When we transform the coordinates, their Colombeau differentials
(
dxiε
)
ε
transform

according to the relation

(
dxiε
)
ε
=

(
∂xiε
∂x′kε

dx′kε

)
ε

=

[(
∂xiε
∂x′kε

)
ε

] (
dx′kε

)
ε
. (1.7.3)

Definition 1.7.1. Every tuple of four Colombeau quantities
(
Ai

ε

)
ε
, i = 0, 1, 2, 3, which under a

transformation (1.7.1) of coordinates, transform like the Colombeau coordinate differentials (1.7.2),
is called Colombeau contravariant four-vector:(
Ai

ε

)
ε
=

(
∂xiε
∂x′kε

A′k
ε

)
ε

=

[(
∂xiε
∂x′kε

)
ε

] (
A′k

ε

)
ε
. (1.7.4)
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Let (φε)ε be the Colombeau scalar. Under a coordinate transformation (1.7.1), the four Colombeau

quantities

(
∂φε

∂xiε

)
ε

, i = 0, 1, 2, 3 transform according to the formula

(
∂φε

∂xiε

)
ε

=

(
∂φε

∂x′kε

∂x′kε
∂xiε

)
ε

=

(
∂φε

∂x′kε

)
ε

(
∂x′kε
∂xiε ε

)
. (1.7.5)

Definition 1.7.2. Every tuple of four Colombeau generalized functions (Ai,ε)ε which, under a
coordinate transformation (1.7.1), transform like the Colombeau derivatives of a scalar, is called
Colombeau generalized covariant four-vector

(Ai,ε)ε =

(
∂x′kε
∂xiε

A′
k,ε

)
ε

=

(
∂x′kε
∂xiε

)
ε

(
A′

k,ε

)
ε
. (1.7.6)

Definition 1.7.3. We call the Colombeau generalized contravariant tensor of the second rank,(
Aik

ε

)
ε
,any tuple of sixteen Colombeau generalized functions which transform like the products of

the components of two Colombeau generalized contravariant vectors, i.e. according to the law

(
Aik

ε

)
ε
=

(
∂x′kε
∂xiε

∂x′mε
∂xiε

A′
im,ε

)
ε

=

(
∂x′kε
∂xiε

∂x′mε
∂xiε

)
ε

(
A′

im,ε

)
ε

(1.7.7)

and a mixed Colombeau generalized tensor transforms as follows

(
Ai

k,ε

)
ε
=

(
∂xiε
∂x′lε

∂x′mε
∂xkε

A′l
m,ε

)
ε

=

(
∂xiε
∂x′lε

∂x′mε
∂xkε

)
ε

(
A′l

m,ε

)
ε
. (1.7.8)

Remark 1.7.2. Note that the scalar product of two four-vectors
(
Ai

εBi,ε

)
is invariant since

(
Ai

εBi,ε

)
ε
=

(
∂xiε
∂x′lε

∂x′mε
∂xiε

A′l
εB

′
m,ε

)
ε

=

(
∂x′mε
∂x′lε

A′l
εB

′
m,ε

)
ε

=
(
A′l

εB
′
l,ε

)
ε
. (1.7.9)

The unit four-tensor δik is defined the same as in classical case: δik = 0 for i ̸= k and δik =
1 for i = k.If

(
Ak

ε

)
ε
is a Colombeau generalized four-vector,then multiplying by δik we obtain

(
Ak

εδ
i
k

)
ε
=
(
Ai

ε

)
ε
, (1.7.10)

i.e. again Colombeau generalized four-vector; this proves that δik is a tensor.

Remark 1.7.3. The square of the Colombeau generalized line element
(
ds2ε
)
ε
in curvilinear

coordinates is a quadratic form in the differentials dxi, i = 0, 1, 2, 3 :(
ds2ε
)
ε
=
(
gik,εdx

idxk
)
ε
=
[
(gik,ε)ε

]
dxidxk. (1.7.11)

where the (gik,ε)ε are Colombeau generalized functions of the coordinates; (gik,ε)ε is symmetric in
the indices i and k :

(gik,ε)ε = (gki,ε)ε . (1.7.12)

Definition 1.7.4.Since the (contracted) product of (gik,ε)ε and the contravariant tensor

dxidxkis a scalar, the (gik,ε)ε form a covariant tensor; it is called the Colombeau generalized
metric tensor.

Definition 1.7.5. Two tensors (Aik,ε)ε and
(
Bik

ε

)
ε
are said to be reciprocal to each other if
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(
Aik,εB

ik
ε

)
ε
=
[
(Aik,ε)ε

] [(
Bik

ε

)
ε

]
= δik. (1.7.13)

In particular the contravariant metric tensor is the tensor (gik,ε)εreciprocal to the tensor(
gikε
)
ε
,that is,{

(gik,ε)ε
}{(

gikε
)
ε

}
= δik. (1.7.14)

The same physical quantity can be represented in contravariant or covariant components.

It is obvious that the only quantities that can determine the connection between the different forms
are the components of the metric tensor. This connection is given by the formulas:(
Ai

ε

)
ε
=
(
gikε Ak,ε

)
ε
, (Ai,ε)ε =

(
gik,εA

k
ε

)
ε
. (1.7.15)

These remarks also apply to Colombeau generalized tensors. The transition between the different
forms of a given physical generalized tensor is accomplished by using the metric tensor according
to the formulas:(
Ai

k,ε

)
ε
=
(
gilε Alk,ε

)
ε
,
(
Aik

ε

)
ε
=
(
gilε g

km
ε Alm,ε

)
ε
, etc. (1.7.16)

The completely antisymmetric unit pseudotensor in galilean coordinates we denote by eiklm.Let
us transform it to an arbitrary system of Colombeau generalized coordinates, and now denote
it by

(
Eiklm

ε

)
ε
. We keep the notation eiklm for the quantities defined as before by e0123 = 1 (or

e0123 = −1).Let the x′i, i = 0, 1, 2, 3 be galilean, and the
(
xiε
)
ε
, i = 0, 1, 2, 3 be arbitrary Colombeau

generalized curvilinear coordinates. According to the general rules for transformation of Colombeau
generalized tensors, we have

(
Eiklm

ε

)
ε
=

[(
∂xiε
∂x′p

∂xkε
∂x′r

∂xlε
∂x′s

∂xmε
∂x′t

)
ε

]
eprst, (1.7.17)

or(
Eiklm

ε

)
ε
=
{(

Jε

(
x′0, x′1, x′2, x′3

))
ε

}
eprst, (1.7.18)

where
(
Jε

(
x′0, x′1, x′2, x′3

))
ε
̸= 0R̃ is the determinant formed from the derivatives ∂xi/∂x′p, i.e. it

is just the Colombeau generalized Jacobian of the Colombeau generalized transformation from the
galilean to the Colombeau generalized curvilinear coordinates:

(
Jε

(
x′0, x′1, x′2, x′3

))
ε
=

(
∂
(
x0ε, x

1
ε, x

2
ε, x

3
ε

)
∂ (x′0, x′1, x′2, x′3)

)
ε

. (1.7.19)

This Colombeau generalized Jacobian can be expressed in terms of the determinant of the Colombeau
generalized metric tensor (gik,ε)ε (in the system

(
xiε
)
ε
). To do this we write the formula for the

transformation of the metric tensor:(
gikε
)
ε
=

[(
∂xiε
∂x′i

∂xkε
∂x′m

)
ε

]
g(0)im, (1.7.20)

where

g(0)im = g
(0)
im =


1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (1.7.21)
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and equate the determinants of the two sides of this equation. The determinant of the reciprocal
tensor det

∣∣(gikε )ε∣∣ = 1/ (gε)ε. The determinant det |g(0)im| = −1. Thus we have 1/ (gε)ε =

−
(
J2
ε

(
x′0, x′1, x′2, x′3

))
ε
, and so(

J2
ε

(
x′0, x′1, x′2, x′3

))
ε
= 1/

√
(gε)ε. (1.7.22)

Thus, in curvilinear coordinates the antisymmetric unit tensor of rank four must bedefined as(
Eiklm

ε

)
ε
=

1√
− (gε)ε

eiklm (1.7.23)

and its covariant components are

(Eiklm,ε)ε =
√

− (gε)εeiklm. (1.7.24)

In a galilean coordinate system x′i, i = 0, 1, 2, 3 the integral of a scalar with respect to dΩ′ =
dx′0dx′1dx′2dx′3 is also a scalar, i.e. the element dΩ′ behaves like a scalar in the integration. On
transforming to Colombeau generalized curvilinear coordinates

(
xiε
)
ε
, i = 0, 1, 2, 3, the element of

integration dΩ′ goes over into

dΩ′ :=
{(

J−1
ε

)
ε

}
dΩ =

√
− (gε)ε (dΩε)ε , (1.7.25)

where (dΩε)ε =
{(
dx0ε
)
ε

}{(
dx1ε
)
ε

}{(
dx2ε
)
ε

}{(
dx3ε
)
ε

}
.

Thus, in Colombeau generalized curvilinear coordinates, when integrating over a four-volume the
quantity

√
− (gε)ε (dΩε)ε behaves like an invariant.

Remark 1.7.4. The element of ”area” of the Colombeau generalized hypersurface spanned by three
infinitesimal Colombeau generalized displacements is the contravariant antisymmetric Colombeau
generalized tensor

(
dSikl

ε

)
ε
; the vector dual to it is gotten by multiplying by the tensor

√
− (gε)εeiklm,

so it is equal to√
− (gε)ε (dSε,i)ε = − 1

6

√
− (gε)εeiklm

(
dSkim

ε

)
ε
. (1.7.26)

Remark 1.7.5. Let
(
df ik

ε

)
ε
be the element of two-dimensional Colombeau generalized surface

spanned by two infinitesimal Colombeau generalized displacements, the dual Colombeau generalized
tensor is defined as√

− (gε)ε
(
df ∗

ik,ε

)
ε
=

1

2

√
− (gε)εeiklm

(
df lm

ε

)
ε
. (1.7.27)

We will be use the designations (dSε,i) and
(
df ∗

ki,ε

)
ε
for eiklm

(
dSkim

ε

)
ε
and eiklm

(
df lm

ε

)
ε
(and not

for their products by
√

− (gε)ε).

1.7.2 Generalized Stokes’ Theorem

Remark 1.7.6. Note that the canonical rules for transforming the various integrals into one
another remain the same, since their derivation was formal in character and not related to the
tensor properties of the different quantities. Of particular importance is the rule for transforming
the integral over a hypersurface into an integral over a four-volume (Gauss’ theorem), which is
accomplished by the substitution

(dSi,ε)ε :=
[
(dΩε)ε

]( ∂

∂xiε

)
ε

. (1.7.28)
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Remark 1.7.7. (Stokes’ theorem) Note that for the integral of Colombeau generalized vector
(
Ai

ε

)
ε

we have(∮
Ai

εdSi,ε

)
ε
=

(∫ ∂Ai
ε

∂xiε
dΩε

)
ε

=
∫ [(∂Ai

ε

∂xiε

)
ε

] [
(dΩε)ε

]
. (1.7.29)

which is the generalization of Stokes’ theorem.

Note that in galilean coordinates the Colombeau generalized differentials (dAi,ε)ε of a vector (Ai,ε)ε
form the Colombeau generalized vector, and the derivatives

(
∂Ai,ε/∂x

k
ε

)
ε
of the components of a

vector with respect to the coordinates form the Colombeau generalized tensor. In Colombeau
generalized curvilinear coordinates this is not so; (dAi,ε)ε is not a vector, and

(
∂Ai,ε/∂x

k
ε

)
ε
is

not the Colombeau generalized tensor.This is due to the fact that (dAi,ε)ε is the difference of
vectors located at different (infinitesimally separated) points of space; at different points in space
vectors transform differently, since the coefficients in the transformation formulas (1.7.3), (1.7.4)
are Colombeau generalized functions of the generalized coordinates.Thus in order to compare two
infmitesimally separated generalized vectors we must subject one of them to a parallel translation
to the point where the second is located. Let us consider an arbitrary generalized contravariant
vector ; if its value at the point xi is

(
Ai

ε

)
ε
, then at the neighboring point xi + dxi it is equal

to
(
Ai

ε

)
ε
+
(
dAi

ε

)
ε

=
(
Ai

ε + dAi
ε

)
ε
. We subject the vector

(
Ai

ε

)
ε
to an infinitesimal parallel

displacement to the point xi + dxi; the change in the vector which results from this we denote
by
(
δAi

ε

)
ε
Then the difference

(
DAi

ε

)
ε
between the two Colombeau generalized vectors which are

now located at the same point is(
DAi

ε

)
ε
=
(
dAi

ε

)
ε
−
(
δAi

ε

)
ε
. (1.7.30)

The change
(
δAi

ε

)
ε
in the components of Colombeau generalized vector under an infinitesimal

parallel displacement depends on the values of the components themselves, where the dependence
must clearly be linear. This follows directly from the fact that the sum of two Colombeau generalized
vectors must transform according to the same law as each of the constituents. Thus

(
δAi

ε

)
ε
has the

form(
δAi

ε

)
ε
= −

(
Γi
kl,εA

k
εdx

l
)
ε
, (1.7.31)

where
(
Γi
kl,ε

)
ε
the are certain Colombeau generalized functions of the coordinates. Their form

depends, of course, on the coordinate system; for a galilean coordinate system
(
Γi
kl,ε

)
ε
= 0R̃. From

this it is already clear that the quantities
(
Γi
kl,ε

)
ε
do not form Colombeau generalized tensor, since

a tensor which is equal to zero in one coordinate system is equal to zero in every other one. In
a curvilinear space it is, of course, impossible to make all the

(
Γi
kl,ε

)
ε
vanish over all of space.

But we can choose a coordinate system for which the
(
Γi
kl,ε

)
ε
become 0R̃ over a given infinitesimal

region. The quantities
(
Γi
kl,ε

)
ε
, are called generalized Christoffel symbols. In addition to the

quantities
(
Γi
kl,ε

)
ε
we shall later also use Colombeau generalized quantities (Γi,kl,ε)ε defined as

follows

(Γi,kl,ε)ε =
(
gim,εΓ

m
km,ε

)
ε
. (1.7.32)

Conversely,(
Γi
kl,ε

)
ε
=
(
gimε Γm,kl,ε

)
ε
. (1.7.33)

It is also easy to relate the change in the components of a covariant vector under a parallel
displacement to the Christoffel symbols. To do this we note that under a parallel displacement,
a scalar is unchanged. In particular, the scalar product of two vectors does not change under a
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parallel displacement.Let (Ai,ε)ε and
(
Bi

ε

)
ε
be any covariant and contravariant vectors. Then from

δ
(
Ai,εB

i
ε

)
ε
= 0R̃, we have(

Bi
εδAi,ε

)
= −

(
Ai,εδB

i
ε

)
ε
=
(
Γi
kl,εB

k
εAi,εdx

l
)
ε

(1.7.34)

or, changing the indices,(
Bi

εδAi,ε

)
=
(
Γk
il,εB

i
εAk,εdx

l
)
ε

(1.7.35)

From this, by the arbitrariness of the
(
Bi

ε

)
ε
one obtains

(δAi,ε)ε =
((
Γk
il,εAk,ε

)
ε

)
dxl (1.7.36)

which determines the change in a covariant vector under a parallel displacement.

Substituting (1.7.31) and
(
dAi

ε

)
ε
=
(
(∂Ai

ε/∂x
l)ε
)
dxl in (1.7.30), we obtain

(
DAi

ε

)
ε
=

[(
∂Ai

ε

∂xl

)
ε

+
(
Γi
kl,εA

k
ε

)
ε

]
dxl. (1.7.37) .

1.8 The Colombeau Generalized Curvature Tensor

In this subsection we derive the general formula for the change in a vector after parallel displacement
around any infinitesimal closed contour γ. This generalized change (∆Ak,ε)ε ∈ R̃ can clearly be
written in the form

(∮
δAk,ε

)
ε
, where the Colombeau integral is taken over the given regular contour

γ. Substituting in place of (δAk,ε)εthe expression (1.7.36), we get

(∆Ak,ε)ε =
(∮

γ
Γi
kl,ε (x)Ai (x) dx

l
)
ε
∈ R̃, (1.8.1)

where for any i, k, l = 0, 1, 2, 3 :
(
Γi
kl,ε (x)

)
ε
∈ G(R4), x =

(
x0, x1, x2, x3

)
, Ai (x) ∈ D (G) , G ⊆ R4.

Note that the vector Ai which appears in the integrand obviously changes as we move along the
contour γ.

Definition 1.8.1.We will say that generalized change (∆Ak,ε)ε exists in the sense of the Schwartz
distributions if for any Ai (x) ∈ D (G) the limit: limε→0 ∆Ak,ε exists. Of course in this case
obviously cl

[(
Γi
kl,ε (x)

)
ε

]
∈ D′ (G) and cl

[
(∆Ak,ε)ε

]
∈ R.

For the further transformation of this Colombeau integral, we must note the following. The values
of the vector Ai at points inside the contour are not unique; they depend on the path along which
we approach the particular point. However, as we shall see from the result obtained below, this
non-uniqueness is related to terms of second order. We may therefore, with the first-order accuracy
which is sufficient for the transformation, regard the components of the vector (Ai,ε)ε at points
inside the infinitesimal contour γ as being uniquely determined by their values on the contour itself
by the formulas

(δAi (x))ε =
(
Γn
il,ε (x)An,ε (x) dx

l
)
ε
, (1.8.2)

i.e., by the derivatives

∂Ai,ε (x)

∂xl
=
(
Γn
il,ε (x)An,ε (x)

)
ε
. (1.8.3)

Now applying generalized Stokes’ theorem (see Theorem 1.7.1) to the integral (1.8.1) and considering
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that the area enclosed by the contour has the infinitesimal value
(
∆f im

ε

)
ε
, we get:

(∆Ak,ε)ε =
1

2

[(
∂
(
Γi
km,ε (x)Ai (x)

)
∂xl

)
ε

−

(
∂
(
Γi
kl,ε (x)Ai (x)

)
∂xm

)
ε

] (
∆f im

ε

)
ε
=

=
1

2

[
Ai (x)

(
∂
(
Γi
km,ε (x)

)
∂xl

)
ε

−Ai (x)

(
∂
(
Γi
kl,ε (x)

)
∂xm

)
ε

+(
∂Ai (x)

∂xl

)(
Γi
km,ε (x)

)
ε
−
(
∂Ai (x)

∂xm

)(
Γi
kl,ε (x)

)
ε

] (
∆f im

ε

)
ε
.

(1.8.4)

Definition 1.8.2. Colombeau generalized k-form (ωε)ε on a differentiable manifold M is a smooth
section of the bundle of alternating Colombeau generalized k-tensors on M .

Equivalently, (ωε)ε associates to each x ∈M an alternating Colombeau generalized k-tensor (ωx,ε)ε,
in such a way that in any chart for M , the coefficients(ωi1...ik,ε)ε are Colombeau generalized
functions.

Theorem 1.8.1. (Generalized Stokes’ Theorem) Let (ωε)ε be Colombeau generalized differential
form.Then the Colombeau integral of a differential form (ωε)ε over the boundary of some orientable
manifold Σ ⊂M is equal to the integral of its exterior Colombeau derivative (dωε)ε over the whole
of Σ, i.e.,

∫
∂Σ

(ωε)ε =

( ∫
∂Σ

ωε

)
ε

=

(∫
Σ

dωε

)
ε

=
∫
Σ

(dωε)ε . (1.8.5)

Proof. Immediately from the classical Stokes’ Theorem and definitions.

Example 1.8.1. For example, for the integral of Colombeau generalized vector (Ai,ε (x))ε

we have(∮
Γ

Ai,εdx
i

)
ε

=

(∫
Σ

df ki ∂Ai,ε

∂xk

)
ε

=
1

2

(∫ [(
df ki

ε

)
ε

](∂Ak,ε

∂xi
− ∂Ai,ε

∂xk

))
ε

=

1

2

∫ [(
df ki

ε

)
ε

](∂Ak,ε

∂xi
− ∂Ai,ε

∂xk

)
ε

=
1

2

∫ [(
df ki

ε

)
ε

] [(∂Ak,ε

∂xi

)
ε

−
(
∂Ai,ε

∂xk

)
ε

]
,

(1.8.6)

where Γ = ∂Σ and
(
df ki

ε

)
ε
=
(
dxiεdx

′k
ε

)
ε
−
(
dxkεdx

′i
ε

)
ε
is the infinitesimal element of surface which

is given by the antisymmetric tensor of second rank
(
df ki

ε

)
ε
.

Substituting the values of the derivatives (1.4.3) into Eq.(1.4.4), we get

(∆Ak,ε)ε =
1

2

(
Ri

klm,ε (x)Ai,ε (x)∆f
im
ε

)
ε
, (1.8.7)

where
(
Ri

klm,ε (x)
)
ε
is a Colombeau generalized tensor field of the fourth rank:

(
Ri

klm,ε (x)
)
ε
=

(
∂
(
Γi
km,ε (x)

)
∂xl

)
ε

−

(
∂
(
Γi
kl,ε (x)

)
∂xm

)
ε

+(
Γi
ni,ε (x) Γ

n
km,ε (x)

)
ε
−
(
Γi
nm,ε (x) Γ

n
kl,ε (x)

)
ε
.

(1.8.8)

Definition 1.8.3. The tensor field
(
Rl

kim,ε (x)
)
ε
is called the distributional curvature tensor or the

distributional Riemann tensor.

Remark 1.8.1. Note that in general case for any i, k, l = 0, 1, 2, 3 : cl
[(
Ri

klm,ε (x)
)
ε

]
∈ G(R4).
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Definition 1.8.4. We will say that the distributional Riemann tensor
(
Ri

klm,ε (x)
)
ε
exists in the

sense of the Schwartz distributions if for any i, k, l = 0, 1, 2, 3 and for any Ai (x) ∈ D (G) the limit:

limε→0

∫
G
Ri

klm,ε (x)Ai (x) d
4x (1.8.9) exists.

Definition 1.8.5. We will say that the distributional Riemann tensor
(
Ri

klm,ε (x)
)
ε
exists in the

classical sense at point x̆ ∈ R if there exists standard part of point value of Colombeau generalized
function

(
Ri

klm,ε (x)
)
ε
at point x̆ ∈ R,i.e. st

(
cl
[(
Ri

klm,ε (x̆)
)
ε

])
∈ R.

From the expression (1.8.8) it follows directly that ∀x ∈ R the distributional curvature tensor is
antisymmetric in the indices l and m :(
Ri

klm,ε (x)
)
ε
= −

(
Ri

kml,ε (x)
)
ε

(1.8.10)

and therefore ∀z = (xε)ε ∈ R̃ the following identity holds(
Ri

klm,ε (xε)
)
ε
= −

(
Ri

kml,ε (xε)
)
ε
. (1.8.11)

1.9 Generalized Einstein’s Field Equations

The action functional for the gravitational field reads [33,36,37](∫
Rε

√
−gεdΩ

)
ε
. (1.9.1)

The invariant Colombeau integral (1.9.1) can be transformed by means of Gauss’theorem to the
integral of an expression not containing the second derivatives. Thus Colombeau integral (1.9.1)
can be presented in the following form

(∫
Rε

√
−gεdΩ

)
ε
=
(∫
Gε

√
−gεdΩ

)
ε
+

(∫ ∂ (√−gεwi
ε

)
∂xi

dΩ

)
ε

, (1.9.2)

where (Gε)ε contains only the tensor (gik,ε)ε and its first derivatives, and the integrand of the second
integral has the form of a divergence of a certain quantity

(
wi

ε

)
ε
.According to Gauss’ theorem, this

second integral can be transformed into an integral over a hypersurface surrounding the four-volume
over which the integration is carried out in the other two integrals. When we vary the action, the
variation of the second term on the right vanishes, since in the principle of least action, the variations
of the field at the limits of the region of integration are zero. Consequently, we may write

δ
(∫
Rε

√
−gεdΩ

)
ε
=
(
δ
∫
Rε

√
−gεdΩ

)
ε
=
(
δ
∫
Gε

√
−gεdΩ

)
ε
. (1.9.3)

The left side is Colombeau scalar; therefore the expression on the right is also Colombeau scalar
(the quantity (Gε)ε itself is, of course, not Colombeau scalar). The quantity (Gε)ε satisfies the
condition imposed above, since it contains only the (gik,ε)ε and its Colombeau derivatives. Thus
finally we obtain

δS
[
(gε)ε

]
= − c3

16πκ

(
δ
∫
Gε

√
−gεdΩ

)
ε
= − c3

16πk

(
δ
∫
Rε

√
−gεdΩ

)
ε
. (1.9.4)

The constant κ is called the gravitational constant. The dimensions of κ follow from (1.9.4). Its
numerical value is κ = 6.67× 10−8sm3×gr−1 × sec−2 .

We now proceed to the derivation of the equations of the gravitational field. These equations are
obtained from the principle of least action δ((Sm,ε)ε + (Sgε)ε) = 0R̃, where (Sm,ε)ε and (Sgε)εare
the distributional actions of the gravitational field and matter respectively. We now subject the
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gravitational Colombeau metric field, that is,the quantities gik, to variation. Calculating the
variation δ (Sgε)ε, we get

δ
(∫
Rε

√
−gεdΩ

)
ε
=
(
δ
∫
Rε

√
−gεdΩ

)
ε
=
(
δ
∫
gikε Rik,ε

√
−gεdΩ

)
ε
={(∫

Rik,ε
√
−gεδgikε dΩ

)
ε
+
(∫
Rik,εg

ik
ε δ

√
−gεdΩ

)
ε
+
(∫
gikε

√
−gεδRik,εdΩ

)
ε

}∫ {(
Rik,ε

√
−gεδgikε

)
ε
+
(
Rik,εg

ik
ε δ

√
−gε

)
ε
+
(
gikε

√
−gεδRik,ε

)
ε

}
dΩ.

(1.9.5)

Thus, the variation S
[
(gε)ε

]
is equal to

S
[
(gε)ε

]
= − c3

16πκ

(∫ {
Rik,ε −

1

2
gik,εRε

}
√
−gεδgikε dΩ

)
ε

. (1.9.6)

Remark 1.9.1. We note that if we had started from the expression

δSg

[
(gε)ε

]
= − c3

16πκ

(
δ
∫
Gε

√
−gεdΩ

)
ε

(1.9.7)

for the action of the field, then we get

δS
[
(gε)ε

]
=

− c3

16πκ

∫
δ
(
gikε
)
ε
dΩ


(
∂ {Gε

√
−gε}

∂gikε

)
ε

−

 ∂

∂xl
∂ {Gε

√
−gε}

∂
∂gikε
∂xl


ε

 .
(1.9.8)

Comparing Eq.(1.9.8) with Eq.(1.9.6), we get

(Rik,ε)ε −
1

2
(gik,εRε)ε =

{(
1√
−gε

)
ε

}
(
∂ {Gε

√
−gε}

∂gikε

)
ε

−

 ∂

∂xl
∂ {Gε

√
−gε}

∂
∂gikε
∂xl


ε

 .
. (1.9.9)

For the variation of the action of the matter we can write

(δSm,ε)ε =
1

2c

(∫
Tik,ε

√
−gεδgikε dΩ

)
ε
, (1.9.10)

where (Tik,ε)ε ∈ G(R4) is the generalized energy-momentum tensor of the matter fields.

Thus, from the principle of least action

δ
{
S
[
(gε)ε

]
+ (Sm,ε)ε

}
= 0R̃ (1.9.11)

one obtains

− c3

16πκ

(∫ {
Rik,ε −

1

2
gik,εRε −

8πκ

c4
Tik,ε

}
√
−gεδgikε dΩ

)
ε

. = 0R̃ (1.9.12)

From Eq.(1.9.12), since of the arbitrariness of the
(
δgikε

)
ε
∈ G(R4) finally we get

(Rik,ε)ε −
1

2
(gik,εRε)ε =

8πκ

c4
(Tik,ε)ε (1.9.13)
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or, in mixed components,

(
Rk

i,ε

)
ε
− 1

2
δki (Rε)ε =

8πκ

c4
(
T k
i,ε

)
ε
. (1.9.14)

They are called the generalized Einstein equations.

Contracting (1.9.14) on the indices i and k,we get

(Rε)ε = −8πκ

c4
(
T i
i,ε

)
ε
= −8πκ

c4
(Tε)ε . (1.9.15)

Therefore the generalized Einstein equations of the field can also be written in the form

(Rik,ε)ε =
8πκ

c4

{
(Tik,ε)ε −

1

2
(gik,εTε)ε

}
. (1.9.16)

Note that the generalized Einstein equations of the gravitational field are nonlinear Colombeau
equations.[37].

1.10 The breakdown of canonical formalism of Riemann geometry
for the singular solutions of the Einstein field equations

1.10.1 The Densitized Einstein Field Equations Revisited

The densitized Einstein field equations originally considered in A. Einstein and N. Rosen paper [32],
see also [46].

Remark 1.10.1. Note that if some components of the Riemann curvature tensor Ri
klm (x̂) become

infinite at point x̂0 one obtain the breakdown of canonical formalism of Riemann geometry in
a sufficiently small neighborhood Ω of the point x̂0 ∈ Ω,i.e. in such neighborhood Ω Riemann
curvature tensor Ri

klm (x̂) will be changed by formula (1.10.7) see remark 1.10.2.

Remark 1.10.2. Let Γ be infinitesimal closed contour and let ΣΓ be the corresponding surface
spanning by Γ, see Fig.1. We assume now that: (i) christoffel symbol Γi

kl (x̂) become infinite at
singular point x̂0 by formulae{

Γi
kl (x̂) ≍ Ξkl (x̂)

(
xi − x0i

)−δ
, δ ≥ 1

Ξkl (x̂) ∈ C∞ (ΣΓ)
(1.10.1)

and (ii) x̂0 ∈ ΣΓ.Let us derive now to similarly canonical calculation [3]-[4] the general formula for

the regularized change ∆̃Ak in a vector Ai (x̂) after parallel displacement around infinitesimal closed

(1.9.16) contour Γ. This regularized change ∆̃Ak can clearly be written in the form

∆̃Ak =
∮
Γ

Φ
(
x̂− x̂0

)
δAk, (1.10.2)

where

Φ
(
x̂− x̂0

)
= Π4

i=0

(
xi − x0i

)2δ
, δ ≥ 1 and where the integral is taken over the given contour Γ.

Substituting in place of δAk the canonical expression δAk = Γi
kl (x̂)Akdx

l (see [9], Eq. (85.5)) we
obtain

∆̃Ak =
∫
Γ
Φ
(
x̂− x̂0

)
δAk =

∫
Γ
Φ
(
x̂− x̂0

)
Γi
kl (x̂)Akdx

l , (1.10.3)

where
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Fig. 2. Infinitesimal closed contour Γand corresponding singular surface ΣΓ ∋
x̂0 spanning by Γ.

Due to the degeneracy of the metric (1.10.12) at point r=0, the Levi-Civita’ connection Γ+l
kj ({}) =

=
1

2

[
glm ({})

]
[(gmk,j ({}) + gmj,k ({})− gkj,m ({})]

is not available on R 3
+ ∪ {0} in canonical sense but only in an distributional sense.

∂Ai

∂xl
= Γi

kl (x̂)Ak. (1.10.4)

Now applying Stokes’ theorem (see [4],Eq.(6.19)) to the integral (1.10.3) and considering that the
area enclosed by the contour has the infinitesimal value ∆f lm, we get

∆̃Ak =
∮
Γ

Φ
(
x̂− x̂0

)
Γi
kl (x̂)Akdx

l =

=
1

2

∫
ΣΓ

[
∂
(
Γi
km (x̂)AiΦ

(
x̂− x̂0

))
∂xl

−
∂
(
Γi
kl (x̂)AiΦ

(
x̂− x̂0

))
∂xm

]
df lm ≈

≈

[
∂
(
Γi
km (x̂)AiΦ

(
x̂− x̂0

))
∂xl

−
∂
(
Γi
kl (x̂)AiΦ

(
x̂− x̂0

))
∂xm

]
∆f lm

2
=[

Φ
(
x̂− x̂0

) ∂ (Γi
km

(
x̂− x̂0

)
Ai

)
∂xl

+
(
Γi
km (x̂)Ai

) ∂Φ (x̂− x̂0
)

∂xl
−

−Φ
(
x̂− x̂0

) ∂ (Γi
kl (x̂)Ai

)
∂xm

−
(
Γi
kl (x̂)Ai

) ∂Φ (x̂− x̂0
)

∂xm

]
∆f lm

2
=[

Φ
(
x̂− x̂0

) ∂ (Γi
km (x̂)Ai

)
∂xl

− Φ
(
x̂− x̂0

) ∂ (Γi
kl (x̂)Ai

)
∂xm

−

Ai (x̂)Φ
(
x̂− x̂0

) 2δΓi
km (x̂)

xl − x0l
−Ai (x̂)Φ

(
x̂− x̂0

) 2δΓi
kl (x̂)

xm − x0m

]
∆f lm

2
.

(1.10.5)

Substituting the values of the derivatives (1.10.4) into Eq.(1.10.5), we get finally:

∆̃Ak = R̃i
klm

Ai (x̂)Φ
(
x̂− x̂0

)
∆f lm

2
, (1.10.6)
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Fig. 3. Infinitesimal closed contour Γ with a singularity at point x̂0

on Horizon and corresponding singular surface ΣΓ ∋ x̂0 spanning by Γ.
Due to the deheneracy of the metric (1.12) at r=2m,

the Levi-Civita’ connection Γ+l
kj ({}) =

=
1

2

[
glm ({})

]
[(gmk,j ({}) + gmj,k ({})− gkj,m ({})]

is not available on horizon in canonical sense but only in a distributional sense.

where R̃i
klm, is a tensor of the fourth rank

R̃i
klm = Ri

klm + 2δ

[
Γi
km (x̂)

xl − x0l
− Γi

kl (x̂)

xm − x0m

]
. (1.10.7)

Here Ri
klm is the classical Riemann curvature tensor.That R̃i

klm is a tensor is clear from the fact

that in (1.10.6) the left side is a vector—the difference ∆̃Ak between the values of vectors at one
and the same point. Note that an similar results was obtained by many authors [5]-[17] by using
Colombeau nonlinear generalized functions [1]-[2].

Definition1.10.1. The tensor R̃i
klm is called the generalized curvature tensor or the generalized

Riemann tensor.

Definition1.10.2. The generalized Ricci curvature tensor R̃km is defined as

R̃km = R̃i
kim. (1.10.8)

Definition1.10.3. The generalized Ricci scalar R̃ is defined as

R̃ = gkm R̃km. (1.10.9)

Definition1.10.4. The generalized Einstein tensor G̃km is defined as

G̃km = R̃km − 1

2
gkmR̃. (1.10.10)

Remark 1.10.3. (I) Note that the Schwarzschild spacetime is well defined only for r > 2m.
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The boundary of the manifold {r > 2m} in R3×R is the submanifold {r = 2m} of R3×R, diffeomorfic
to a product S2 × R.

This submanifold is colled the event horizon, or simply the horizon [33],[34].

(II) The Schwarzschild metric (1.10.12) in canonical coordinates (x0, r, θ, ϕ), with m > 0, ceases to
be a smooth Lorentzian metric for r = 2m, because for such a value of r the coefficient g00 becomes
zero while g11 becomes infinite. For 0 < r < 2m the metric (1.10.12) again a smooth Lorentzian
metric but t is a space coordinate while r is a time coordinate. Hence the metric (1.10.12) cannot
be said to be either spherically symmetric or static for r < 2m [33].

(III) From consideration above obviously it follows the metric (1.10.12) that on Schwarzschild
spacetime

Sh =
(
S2 × {r > 2m} ∪ {0 < r < 2m}

)
× R the Levi-Civita connection

{
Γ+l
kj ({}) ==

1

2

[
glm ({})

]
[(gmk,j ({}) + gmj,k ({})− gkj,m ({})] (1.10.11)

is not available in classical sense and that is well known many years from mathematical literature,
see for example [22] section 6 and Remark 1.10.1 Remark 1.10.2 above.

(IV) Note that [4] : (i) The determinat det (glm({})) = −r4 sin2 θ of the metric (1.10.12) is reqular
on horizon,i.e., smooth and non-vanishing for r = 2m.

In addition:

(ii) The curvature scalar R({}) = gµνRµν({}) is zero for r = 2m.

(iii) The none of higher-order scalars such as Rµν({})Rµν({}),etc. blows up. For example the
quadratic scalarRρσµν({})Rρσµν({}) = 48m2/r6 is reqular on horizon,i.e.,smooth and non-vanishing
for r = 2m.

(V) Note that: (i) In physical literature (see for example [4],[33],[35],) it was wrongly assumed
that a properties (i)-(iii) is enough to convince us that r = 2m represent an non honest physical
singularity but only coordinate singularity.

(VI) Such assumption based only on formal extensions R̂({}), R̂µν({})R̂µν({}), ...,

R̂ρσµν({})R̂ρσµν({}) of the curvature scalar R({}) and higher-order scalars such as

Rµν({})Rµν({}), ...,Rρσµν({})Rρσµν({}) on horizon r = 2m and on origin r = 0 by formulae

R̂(r)
∣∣∣
r=2m

= lim
r→2m

R(r) = 0, R̂(r)
∣∣∣
r=0

= lim
r→0

R(r) = 0

............................

R̂ρσµν(r)R̂ρσµν(r)
∣∣∣
r=2m

= lim
r→2m

(Rρσµν(r)Rρσµν(r)) = lim
r→2m

48m2

r6
=

48m2

r6

∣∣∣∣
r=2m

,

R̂ρσµν(r)R̂ρσµν(r)
∣∣∣
r=0

= lim
r→0

(Rρσµν(r)Rρσµν(r)) = lim
r→0

48m2

r6
= ∞.
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However in the limit r → 2m the Levi-Civitá connection Γ+l
kj ({}) becomes infinite [4]:

Γ1
00 (r)

∣∣∣
r=2m

= lim
r→2m

m (r − 2m)

r3
= 0, Γ1

11 (r)
∣∣∣
r=2m

= lim
r→2m

−m

r (r − 2m)
= ∞,

Γ0
01 (r)

∣∣∣
r=2m

= lim
r→2m

m

r (r − 2m)
= ∞,

Γ2
12 (r)

∣∣∣
r=2m

= lim
r→2m

1

r
= 2−1m−1, Γ1

22

∣∣∣
r=2m

= − lim
r→2m

(r − 2m) = 0,

Γ3
13

∣∣∣
r=2m

= lim
r→2m

1

r
= 2−1m−1, Γ1

33

∣∣∣
r=2m

= − lim
r→2m

(r − 2m) sin2 θ = 0,

Γ1
00 (r)

∣∣∣
r=0

= lim
r→0

m (r − 2m)

r3
= ∞ Γ1

11 (r)
∣∣∣
r=0

= lim
r→0

−m

r (r − 2m)
= ∞,

....................................................................

Γ2
33 = − sin θ cos θ,Γ3

23 =
cos θ

sin θ
.

Thus obviously by consideration above (see Remark 1.10.1-Remark 1.10.2) this extension given by
Eq.(1.10.15) has no any sense in respect of the canonical Riemannian geometry.

(VII) From consideration above (see Remark 1.10.1-Remark 1.10.2) it obviously follows that

the scalars such as R̂({}), R̂µν({})R̃µν({}), ..., R̂ρσµν({})R̂ρσµν({}) have no any rigorous sense in
respect to the canonical Levi-Civitá connection (1.10.11) and therefore cannot be said to be either
honest physical singularity or only coordinate singularity in respect of the canonical Riemannian
geometry.

Remark 1.10.4. Note that in physical literature the spacetime singularity usually is defined as
location where the quantities that are used to measure the gravitational field become infinite in
a way that does not depend on the coordinate system. These quantities are the classical scalar
invariant curvatures of singular spacetime, which includes a measure of the density of matter.

Remark 1.10.5. In general relativity, many investigations have been derived with regard to
singular exact vacuum solutions of the Einstein equation and the singularity structure of space-
time. Such solutions have been formally derived under condition Tν

µ(x) = 0,where Tν
µ(x) represent

the energy-momentum densities of the gravity source. This for example is the case for the well-
known Schwarzschild solution, which is given by, in the Schwarzschild coordinates (x0, r, θ, ϕ),

ds2 = −h (r) (dx0)2 + h−1 (r) (dr)2 + r2
[
(dθ)2 + sin2 θ(dϕ)2

]
, h (r) = 1− rs

r
, (1.10.12)

where, rs is the Schwarzschild radius rs = 2GM/c2 with G,M and c being the Newton gravitational
constant, mass of the source, and the light velocity in vacuum Minkowski space-time, respectively.
The metric (1.3.12) describes the gravitational field produced by a point-like particle located at
r = 0.

Remark 1.10.6. Note that when we say, on the basis of the canonical expression of the curvature
square

Rρσµν(r)Rρσµν(r) =
12r2s
r6

(1.10.13)

formally obtained from the metric (1.3.12), that r = 0 is a singularity of the Schwarzschild space-
time, the source is considered to be point-like and this metric is regarded as meaningful everywhere
in space-time.

Remark 1.10.7. From the metric (1.10.12), the calculation of the canonical Einstein tensor
proceeds in a straighforward manner gives for r ̸= 0
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Gt
t (r) = Gr

r (r) = −h
′ (r)

r̂
− 1 + h (r)

r̂2
≡ 0 , Gθ

θ (r) = Gφ
φ (r) = −h

′′ (r)

2
− h (r)

r̂2
≡ 0, (1.10.14)

Where h (r) = −1 + rs/r.Using Eq.(1.10.14) one formally obtains a boundary conditions{
Gt

t (0) , lim
r→0

Gt
t (r) = 0, Gr

r (0) , lim
r→0

Gr
r (r) = 0,

Gθ
θ (0) , lim

r→0
Gθ

θ (r) = 0, Gφ
φ (0) , lim

r→0
Gφ

φ (r) = 0.
(1.10.15)

However as pointed out above the canonical expression of the Einstein tensor in a sufficiently small
neighborhood Ω of the point r = 0 and must be replaced by the generalized Einstein tensor G̃km

(1.10.10). By simple calculation easy to see that G̃t
t (0) , lim

r→0
G̃t

t (r) = −∞, G̃r
r (0) , lim

r→0
G̃r

r (r) = −∞,

G̃θ
θ (0) , lim

r→0
G̃θ

θ (r) = −∞, G̃φ
φ (0) , lim

r→0
G̃φ

φ (r) = −∞.
(1.10.16)

and therefore the boundary conditions (1.15) is completely wrong. But on the other hand as pointed
out by many authors [5]-[17] that the canonical representation of the Einstein tensor, is valid only
in a weak (distributional) sense,i.e. [12]:

Ga
b (x̂) = −8πmδa0δ

0
bδ

3 (x̂) (1.10.17)

and therefore again we obtain Ga
b (0) = −∞ ×

(
δa0δ

0
b

)
.Thus canonical definition of the Einstein

tensor is breakdown in rigorous mathematical sense for the Schwarzschild solution at origin r = 0.

1.10.2 The Distributional Schwarzschild Geometry

General relativity as a physical theory is governed by particular physical equations; the focus of
interest is the breakdown of physics which need not coincide with the breakdown of geometry. It has
been suggested to describe singularity at the origin as internal point of the Schwarzschild spacetime,
where the Einstein field equations are satisfied in a weak (distributional) sense [5]-[22].

1.10.3 The Distributional Schwarzschild Geometry at the Origin. The
Smooth Regularization of the Singularity at the Origin

The two singular functions we will work with throughout this paper (namely the singular components

of the Schwarzschild metric) are
1

r
and

1

r − rs
, rs ≥ 0.Since

1

r
∈ L1

loc(R3), it obviously gives the

regular distribution
1

r
∈ D′(R3).

By convolution with a mollifier ρ (x) (adapted to the symmetry of the spacetime, i.e. chosen radially
symmetric) we embed it into the Colombeau algebra G

(
R3
)
[22]:

1

r

ι→ ι

(
1

r

)
,
(
1

r

)
∗ ρε ,

(
1

r

)
ε

, ρε =
1

ε3
ρ
(r
ε

)
, ε ∈ (0, 1] . (1.10.18)

Inserting (1.10.18) into (1.3.12) we obtain a generalized Colombeau object modeling the singular
Schwarzschild spacetime [22]:

(
ds2ε
)
ε
=
(
hε (r) (dt)

2
)
ε
−
(
h−1
ε (r) (dr)2

)
ε
+ r2

[
(dθ)2 + sin2 θ(dϕ)2

]
,

hε (r) = −1 + rs

(
1

r

)
ε

, ε ∈ (0, 1] .
(1.10.19)
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Remark 1.10.8. Note that under regularization (1.10.18) for any ε ∈ (0, 1] the metric

ds2ε = hε (r) (dt)
2 − h−1

ε (r) (dr)2 + r2
[
(dθ)2 + sin2 θ(dϕ)2

]
obviously is a classical Riemannian object and there no exist an the breakdown of canonical
formalism of Riemannian geometry for these metrics, even at origin r = 0. It has been suggested
by many authors to describe singularity at the origin as an internal point, where the Einstein field
equations are satisfied in a distributional sense [5]-[22]. From the Colombeau metric (1.10.19) one
obtains in a distributional sense [22]:

(
R2

2 (r, ε)
)
ε
=
(
R3

3

)
ε
=

(
h′
ε (r)

r
+

1 + hε (r)

r2

)
ε

= 8πm
δ (r)

r2
,(

R0
0 (r, ε)

)
ε
=
(
R1

1

)
ε
=

1

2

(
h′′
ε (r)

2
+
h′
ε (r)

r

)
ε

= −4πmδ
δ (r)

r2
.

(1.10.20)

Hence, the distributional Ricci tensor and the distributional curvature scalar (Rε (r))
ε
are of δ-type,

i.e. (Rε (r))
ε
= πm

δ (r)

r2
.

Remark 1.10.9. Note that the formulae (1.10.20) should be contrasted with what is the expected
result Ga

b (x) = −8πmδa0δ
0
bδ

3 (x) given by Eq.(1.10.17). However the equations (1.10.20) are
obviously given in spherical coordinates and therefore strictly speaking this is not correct, because

the basis fields

{
∂

∂r
,
∂

∂φ
,
∂

∂θ

}
are not globally defined. Representing distributions concentrated

at the origin requires a basis regular at the origin. Transforming the formulae for (Rε(r))∈ into
Cartesian coordinates associated with the spherical ones, i.e., {r, θ, φ} ↔ {xi}, we obtain, e.g., for
the Einstein tensor the expected result Ga

b (x) = −8πmδa0δ
0
bδ

3 (x) given by Eq.(1.10.17), see [22].

1.10.4 The Nonsmooth Regularization of the Singularity at the Origin

The nonsmooth regularization of the Schwarzschild singularity at the origin r = 0 is considered by
N. R. Pantoja and H. Rago in paper [12]. Pantoja non smooth regularization regularization of the
Schwarzschild singularity reads

(hε (r))ε = −1 +
(rs
r
Θ(r − ε)

)
ε
, ε ∈ (0, 1] , r < rs. (1.10.21)

Here Θ (u) is the Heaviside function and the limit ε → 0 is understood in a distributional sense.
Equation (1.10.19) with hε as given in (1.10.21) can be considered as an regularized version of the
Schwarzschild line element in curvature coordinates. From equation (1.10.21), the calculation of
the distributional Einstein tensor proceeds in a straighforward manner. By simple calculation it
gives [12]:


(
Gt

t (r, ε)
)
ε
= (Gr

r (r, ε))ε = −
(
h′
ε (r)

r

)
ε

−
(
1 + hε (r)

r2

)
ε

=

= −rs
(
δ (r − ε)

r2

)
ε

= −rs
δ (r)

r2

(1.10.22)

and
(
Gθ

θ (r, ε)
)
ε
=
(
Gφ

φ (r, ε)
)
ε
= −

(
h′′
ε (r)

2

)
ε

−
(
hε (r)

r2

)
ε

=

rs

(
δ (r − ε)

r2

)
ε

− rs

(
ε

r2
d

dr
δ (r − ε)

)
ε

= −rs
δ (r)

r2
.

(1.10.23)
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Which is exactly the result obtained in Ref. [9] using smoothed versions of the Heaviside function
Θ(r−ε). Transforming now the formulae for (Ga

b (r, ε))∈ into Cartesian coordinates associated with
the spherical ones, i.e., {r, θ, φ} ↔ {xi}, we obtain for the generalized Einstein tensor the expected
result given by Eq.(1.10.17)

Ga
b (x) = −8πmδa0δ

0
bδ

3 (x) , (1.10.24)

see Remark 1.10.9.

1.10.5 The Smooth Regularization Via Horizon

The smooth regularization via Horizon is considered by J.M.Heinzle and R.Steinbauer in paper [22].

Note that
1

r − rs
/∈ L1

loc(R3). An canonical regularization is the principal value vp

(
1

r − rs

)
∈

D′(R3) which can be embedded into G
(
R3
)
[22]:

1

r − rs

vp→ vp

(
1

r − rs

)
ι→ ι

[
ρε ∗ vp

(
1

r − rs

)]
,
(

1

r − rs

)
ε

∈ G
(
R3
)
. (1.10.25)

Inserting now (1.10.25) into (1.10.12) we obtain a generalized Colombeau object modeling the
singular Schwarzschild spacetime [22]:(

ds2ε
)
ε
=
(
h (r) (dt)2

)
ε
−
(
h−1
ε (r) (dr)2

)
ε
+ r2

[
(dθ)2 + sin2 θ(dϕ)2

]
, (1.10.26)

where

h (r) = −1 +
rs
r
, h−1

ε (r) = −1− rs

(
1

r − rs

)
ε

, ε ∈ (0, 1] . (1.10.27)

Remark 1.10.10. Note that obviously Colombeau object, (1.10.27) is degenerate at r = rs,
because h(r) is zero at the horizon. However, this does not come as a surprise. Both h(r) and
h−1(r) are positive outside of the black hole and negative in the interior. As a consequence any
smooth regularization of h(r) (or h−1) must pass through zero somewhere and, additionally, this
zero must converge to r = rs as the regularization parameter goes to zero.

Remark 1.10.11. Note that due to the degeneracy of Colombeau object (1.10.26), even the
distributional Levi-Civitá connection obviously is not available by using the smooth regularization
via horizon [22].

1.10.6 The Nonsmooth Regularization Via Gorizon

In this Book we leave the neighborhood of the singularity at the origin and turn to the singularity
at the horizon. The question we are aiming at is the following: using distributional geometry (thus
without leaving Schwarzschild coordinates), is it possible to show that the horizon singularity of
the Schwarzschild metric is not merely a coordinate singularity. In order to investigate this issue
we calculate the distributional curvature at the horizon in Schwarzschild coordinates.

The main focus of this work is a (nonlinear) superdistributional description of the Schwarzschild
spacetime. Although the nature of the Schwarzschild singularity is much “worse” than the quasi-
regular conical singularity, there are several distributional treatments in the literature [8]-[29],
mainly motivated by the following considerations: the physical interpretation of the Schwarzschild
metric is clear as long as we consider it merely as an exterior (vacuum) solution of an extended
(sufficiently large) massive spherically symmetric body. Together with the interior solution it
describes the entire spacetime. The concept of point particles—well understood in the context
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of linear field theories—suggests a mathematical idealization of the underlying physics: one would
like to view the Schwarzschild solution as defined on the entire spacetime and regard it as generated
by a point mass located at the origin and acting as the gravitational source.

This of course amounts to the question of whether one can reasonably ascribe distributional
curvature quantities to the Schwarzschild singularity at the horizon.

The emphasis of the present work lies on mathematical rigor. We derive the “physically expected”
result for the distributional energy momentum tensor of the Schwarzschild geometry, i.e., T 0

0 =
8πmδ(3)(x⃗), in a conceptually satisfactory way. Additionally, we set up a unified language to
comment on the respective merits of some of the approaches taken so far. In particular, we
discuss questions of differentiable structure as well as smoothness and degeneracy problems of the
regularized metrics, and present possible refinements and workarounds.These aims are accomplished
using the framework of nonlinear supergeneralized functions (supergeneralized Colombeau algebras

G̃(R3,Σ)).Examining the Schwarzschild metric (1.12) in a neighborhood of the horizon, we see that,
whereas h(r) is smooth, h−1(r) is not even L1

loc (note that the origin is now always excluded from our
considerations; the space we are working on is R3\{0}). Thus, regularizing the Schwarzschild metric

amounts to embedding h−1 into G̃(R3,Σ) (as done in (3.2)).Obviously, (3.1) is degenerate at r = 2m,
because h(r) is zero at the horizon. However, this does not come as a surprise. Both h(r) and h−1(r)
are positive outside of the black hole and negative in the interior. As a consequence any (smooth)
regularization h+

ϵ (r) (h
−
ϵ (r)) [above (below) horizon] of h(r) must pass through small enough vicinity

O+
ϵ (2m) =

{
x⃗ ∈ R3| ∥x⃗∥ > 2m, ∥x⃗− 2m∥ 6 ϵ

}
(O−

ϵ (2m) =
{
x⃗ ∈ R3| ∥x⃗∥ < 2m, ∥x⃗− 2m∥ 6 ϵ

}
)

of zeros set O0 (2m) =
{
y⃗ ∈ R3| ∥y⃗∥ = 2m

}
somewhere and, additionally, this vicinity O+

ϵ (2m)
(O−

ϵ (2m)) must converge to O0 (2m) as the regularization parameter ϵ goes to zero.Due to the
degeneracy of (1.10.12), the Levi-Cività connection is not available. By apriporiate nonsmooth
regularization (see section 3) we obtain an Colombeau generalized object modeling the singular
Schwarzschild metric above and below horizon, i.e.,

(
ds+2

ϵ

)
ϵ
=
(
h+
ϵ (r)dt

2
)
ϵ
−
([
h+
ϵ (r)

]−1
dr2
)
ϵ
+ r2dΩ2 ,(

ds−2
ϵ

)
ϵ
=
(
h−
ϵ (r)dt

2
)
ϵ
−
([
h−
ϵ (r)

]−1
dr2
)
ϵ
+ r2dΩ2,

ϵ ∈ (0, 1] .

(1.10.28)

Consider corresponding distributional connections(
Γ+l
kj (ϵ)

)
ϵ
=
(
Γ+l
kj

[
h+
ϵ

])
ϵ
∈ G̃(R3,Σ) and

(
Γ−l
kj (ϵ)

)
ϵ
=
(
Γ−l
kj

[
h+
ϵ

])
ϵ
∈ G̃(R3,Σ) :

(
Γ+l
kj (ϵ)

)
ϵ
=

1

2

((
g+lm
ϵ

)
[(g+ϵ )mk,j + (g+ϵ )mj,k − (g+ϵ )kj,m]

)
ϵ
,(

Γ−l
kj (ϵ)

)
ϵ
=

1

2

(
(g− lm

ϵ )[(g−ϵ )mk,j + (g−ϵ )mj,k − (g−ϵ )kj,m]
)
ϵ
.

(1.10.29)

Obviously
(
Γ+l
kj

[
h+
ϵ

])
ϵ
,
(
Γ−l
kj

[
h+
ϵ

])
ϵ
coincides with the corresponding Levi-Cività connection on

R3\{(r = 0) ∪ (r = 2m)}, as (h+
ϵ )ϵ = h+

0 , (h
−
ϵ )ϵ = h−

0 , and
(
g+lm
ϵ

)
ϵ
= g+lm

0 ,
(
g−lm
ϵ

)
ϵ
= g−lm

0 there.

Clearly, connections Γ+l
kj (ϵ) ,Γ

−l
kj (ϵ) , ϵ ∈ (0, 1] in respect the regularized metric g±ϵ , ϵ ∈ (0, 1] ,i.e.,

(g±ϵ )ij;k = 0. Proceeding in this manner, we obtain the nonstandard result
([

R+
ϵ

]1
1

)
ϵ
=
([

R+
ϵ

]0
0

)
ϵ
≈ −mΦ̃(2m),([

R−
ϵ

]1
1

)
ϵ
=
([

R−
ϵ

]0
0

)
ϵ
≃ mΦ̃(2m).

(1.10.30)

Investigating the weak limit of the angular components of the generalized Ricci tensor using the
abbreviation
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Φ̃(r) =
π∫
0

sin θdθ
2π∫
0

dϕΦ(x)

and let Φ(x) be the function Φ(x) ∈ S+
2m(R3) (Φ(x) ∈ S−

2m(R3)), where by S+
2m(R3) (S−

2m(R3)) we
denote the class of all functions Φ(x) with compact support such that

(i) supp(Φ(x)) ⊂ {x| ∥x∥ ≥ 2m} (supp(Φ(x)) ⊂ {x| ∥x∥ ≤ 2m}) (ii) Φ̃(r) ∈ C∞ (R) . Then for any
function Φ(x) ∈ S±

2m(R3) we get: w -lim
ϵ→0

[
R+

ϵ

]1
1
= w -lim

ϵ→0

[
R+

ϵ

]0
0
= m

⟨
δ̃|Φ
⟩
= −mΦ̃(2m),

w -lim
ϵ→0

[
R−

ϵ

]1
1
= w -lim

ϵ→0

[
R−

ϵ

]0
0
= m

⟨
δ̃|Φ
⟩
= mΦ̃(2m),

(1.10.31)

i.e., the Schwarzschild spacetime is weakly Ricci-nonflat (the origin was excluded from our considera-
tions). Furthermore,the Tolman formula [3],[4] for the total energy of a static and asymptotically
flat spacetime with g the determinant of the four dimensional metric and d3x the coordinate volume

element, gives

ET =
∫ (

Tr
r +Tθ

θ +Tϕ
ϕ +Tt

t

)√
−gd3x = m, (1.10.32)

as it should be.

The paper is organized in the following way: in chapter II we discuss the conceptual as well as
the mathematical prerequisites. In particular we comment on geometrical matters (differentiable
structure, coordinate invariance) and recall the basic facts of nonlinear superdistributional geometry

in the context of algebras G̃(M,Σ) of supergeneralized functions. Moreover, we derive sensible
nonsmooth regularizations of the singular functions to be used throughout the paper. chapter
III is devoted to these approach to the problem. We present a new conceptually satisfactory
method to derive the main result. In this final chapter III we investigate the horizon and describe
its distributional curvature. Using nonlinear superdistributional geometry and supergeneralized
functions it seems possible to show that the horizon singularity is not only a coordinate singularity
without leaving Schwarzschild coordinates.

1.10.7 Distributional Eddington-Finkelstein Space-time

In physical literature many years a belief exist that Schwarzschild spacetime
(
S2 × {r > 2m}

)
×R is

extendible, in the sense that it can be immersed in a larger spacetime whose manifold is not covered
by the canonical Schwarzschild coordinate with r > 2m.In physical literature [4],[33], [34],[35] one
considers the formal change of coordinates obtained by replacing the canonical Schwarzschild time
by ”retarded time” above horizon ν+ given when r > 2m by

ν+ = t+ r + 2m ln
( r

2m
− 1
)
. (1.10.33)

From (1.10.31) it follows for r > 2m

dt = − dr

1− 2m

r

+ dv+. (1.10.34)

The Schwarzschild metric (1.10.12) above horizon ds+2 (see section 3) in this coordinate obviously
takes the form
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ds+2 = −
(
1− 2m

r

)
dv+2 + 2drdv− + r2

[
(dθ)2 + sin2 θ(dϕ)2

]
. (1.10.35)

When r < 2m we replace (1.10.33) below horizon by

ν− = t+ r + 2m ln
(
1− r

2m

)
. (1.10.36)

From (1.10.36) it follows for r < 2m

dt =
dr

2m

r
− 1

+ dv−. (1.10.37)

The Schwarzschild metric (1.10.12) below horizon ds2− (see section 3) in this coordinate obviously
takes the form

ds−2 =

(
2m

r
− 1

)
dv−2 − 2drdv− + r2

[
(dθ)2 + sin2 θ(dϕ)2

]
. (1.10.38)

Remark 1.10.12.(i) Note that the metric (1.10.33) is defined on the manifold S2 × (r > 0)× R
and obviously it is regular Lorentzian metric: its coefficients are smooth.

(ii) The term 2drdv ensures its non-degeneracy for r = 2m.

(iii) Due to the nondegeneracy of the metric (1.10.32) the Levi-Civita connection{
Γ+l
kj ({}) ==

1

2

[
glm ({})

]
[(gmk,j ({}) + gmj,k ({})− gkj,m ({})] (1.10.39)

obviously now available and therefore nonsingular on horizon in contrast with Schwarzschild metric
(1.10.12) one obtains [3]:

Γν
νν =

rs
2r2

,Γr
νν =

rs (r − rs)

2r3
,Γr

νr = − rs
2r2

,Γθ
rθ =

1

r
,

Γφ
rφ =

1

r
,Γν

θθ = −r,Γr
θθ = −r (r − rs) ,Γ

φ
θφ = cot θ,

Γν
φφ = −r sin2 θ,Γr

φφ = −r (r − rs) sin
2 θ,Γθ

φφ = − sin θ cos θ.

(1.10.40)

(iv) In physical literature [3],[4] by using properties (i)-(iii) this spacetime wrongly convicted as
an rigorous mathematical extension of the Schwarzschild spacetime.

Remark 1.10.13. Let us consider now the coordinates: (i) v+, r′ = r, θ′ = θ, φ′ = φ and (ii)
v−, r′ = r, θ′ = θ, φ′ = φ. Obviously both transformations given by Eq.(1.10.33) and Eq.(1.10.36 )
are singular because the both Jacobian of these transformations is singular at r = 2m :∂v

+

∂t

∂v+

∂r
∂r′

∂t

∂r′

∂r

 =

(
1

r

r − 2m
0 1

)
(1.10.41) and

∂v
−

∂t

∂v−

∂r
∂r′

∂t

∂r′

∂r

 =

(
1 − r

2m− r
0 1

)
. (1.10.42)

Remark 1.10.14. Note first (i) such singular transformations are not allowed in conventional
Lorentzian geometry and second (ii) both Eddington-Finkelstein metrics given by Eq.(1.10.35) and
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by Eq.(1.10.38 ) are well defined in rigorous mathematical sense at r = 2m.

Remark 1.10.15. (I) From consideration above it follows that Schwarzschild spacetime(
S2 × {r > 2m}

)
× R is not extendible, in the sense that it can be immersed in a larger spacetime

whose manifold is not covered by the canonical Schwarzschild coordinate with r > 2m. Thus
Eddington-Finkelstein spacetime cannot be considered as an extension of the Schwarzschild spacetime
in natural way in respect with conventional Lorentzian geometry. Such an ”extension” is the
extension by abnormal definition and nothing more. (II) However distributional Eddington-
Finkelstein spacetime (1.10.53) is equivalent of the distributional Schwarzschild spacetime in natural
way.

Remark 1.10.16. From consideration above it follows that it is necessary a regularization of
the Eq.(1.10.34) and Eq.(1.10.37) on horizon. However obviously only nonsmooth regularization
via horizon r = 2m is possible. Under nonsmooth regularization (see section 3) Eq.(1.10.34) and
Eq.(1.10.37) take the form

dt = − dr
1

r

√
(r − 2m)2 + ϵ2

+ dv+ϵ ,

ϵ ∈ (0, 1]

(1.10.43)

and

dt =
dr

1

r

√
(2m− r)2 + ϵ2

+ dv−ϵ ,

ϵ ∈ (0, 1]

(1.10.44)

correspondingly. Therefore Eq.(1.10.41)-Eq.(1.10.42) take the form∂v
+
ϵ

∂t

∂v+ϵ
∂r

∂r′

∂t

∂r′

∂r

 =

1
r√

(r − 2m)2 + ϵ2

0 1

 (1.10.45)

and∂v
−
ϵ

∂t

∂v−ϵ
∂r

∂r′

∂t

∂r′

∂r

 =

1 − r√
(2m− r)2 + ϵ2

0 1

 . (1.10.46)

From Eq.(1.10.43)-Eq.(1.10.44) one obtain generalized Eddington-Finkelstein transformatios such
that

dt = − rdr(√
(r − 2m)2 + ϵ2

)
ϵ

+
(
dv+ϵ

)
ϵ
,

ϵ ∈ (0, 1]

(1.10.47)

and

dt =
rdr(√

(2m− r)2 + ϵ2
)

ϵ

+ dv−ϵ ,

ϵ ∈ (0, 1] .

(1.10.48)
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Therefore Eq.(1.10.45)-Eq.(1.10.46) take the form
(
∂v+ϵ
∂t

)
ϵ

(
∂v+ϵ
∂r

)
ϵ

∂r′

∂t

∂r′

∂r

 =

1
r(√

(r − 2m)2 + ϵ2
)

ϵ

0 1

 (1.10.49)

and
(
∂v−ϵ
∂t

)
ϵ

(
∂v−ϵ
∂r

)
ϵ

∂r′

∂t

∂r′

∂r

 =

1 − r(√
(2m− r)2 + ϵ2

)
ϵ

0 1

 . (1.10.50)

At point r = 2m one obtains
(
∂v+ϵ
∂t

)
ϵ

(
∂v+ϵ
∂r

)
ϵ

∂r′

∂t

∂r′

∂r


∣∣∣∣∣∣∣
r=2m

=

(
1 r

(
ϵ−1
)
ϵ

0 1

)
(1.10.51)

and
(
∂v−ϵ
∂t

)
ϵ

(
∂v−ϵ
∂r

)
ϵ

∂r′

∂t

∂r′

∂r


∣∣∣∣∣∣∣
r=2m

=

(
1 −r

(
ϵ−1
)
ϵ

0 1

)
, (1.10.52)

where
(
ϵ−1
)
ϵ
∈ R̃.

Thus generalized Eddington-Finkelstein transformations (1.10.47)- (1.10.48) well defined in sense of
Colombeau generalized functions. Therefore Colombeau generalized object modeling the classical
Eddington-Finkelstein metric (1.10.35)-(1.10.36) above and below horizon take the form(

ds+2
ϵ

)
ϵ
=

1

r

√
(r − 2m)2 + ϵ2dv+2

ϵ + 2drdv+ϵ + r2
[
(dθ)2 + sin2 θ(dϕ)2

]
.(

ds−2
ϵ

)
ϵ
=

1

r

√
(2m− r)2 + ϵ2dv−2

ϵ + 2drdv−ϵ + r2
[
(dθ)2 + sin2 θ(dϕ)2

]
.

(1.10.53)

It easily to verify by using formula A.2 (see appendix) that the distributional curvature scalar
(R (ϵ))ϵ again singular at r = 2m as in the case of the distributional Schwarzschild spacetime
given by Eq.(1.10.28). However this is not surprising because the classical Eddington- Finkelstein
spacetime and generalized Eddington-Finkelstein specetime given by Eq.(1.10.53) that is essentially
different geometrical objects.

2 Generalized Colombeau Calculus

2.1 Notation and Basic Notions from Standard Colombeau Theory

We use [1],[2],[7] as standard references for the foundations and various applications of standard
Colombeau theory. We briefly recall the basic Colombeau construction. Throughout the paper Ω
will denote an open subset of Rn.

Stanfard Colombeau generalized functions on Ω are defined as equivalence classes u = [(uε)ε] of
nets of smooth functions uε ∈ C∞(Ω) (regularizations) subjected to asymptotic norm conditions
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with respect to ε ∈ (0, 1] for their derivatives on compact sets.

The basic idea of classical Colombeau’s theory of nonlinear generalized functions [1],[2] is regularization
by sequences (nets) of smooth functions and the use of asymptotic estimates in terms of a regularization
parameter ε. Let (uε)ε∈(0,1] with (uε)ε ∈ C∞(M) for all ε ∈ R+,where M a separable, smooth
orientable Hausdorff manifold of dimension n.

Definition 2.1.1. The classical Colombeau’s algebra of generalized functions on M is defined as
the quotient:

G(M) , EM (M)/N (M) (2.1)

of the space EM (M) of sequences of moderate growth modulo the spaceN (M) of negligible sequences.
More precisely the notions of moderateness resp. negligibility are defined by the following asymptotic
estimates (where X(M) denoting the space of smooth vector fields on M):


EM (M) , {(uε)ε| ∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))

[
sup
p∈K

|Lξ1 . . . Lξk uε(p)| = O(ε−N ) as ε→ 0

]}
,

(2.2)


N (M) , {(uε)ε| ∀K (K $M) , ∀k (k ∈ N0) ∀q (q ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))

[
sup
p∈K

|Lξ1 . . . Lξk uε(p)| = O(εq) as ε→ 0

]}
.

(2.3)

Remark 2.1.1. In the definition the Landau symbol aε = O (ψ (ε)) appears, having the following
meaning: ∃C (C > 0)∃ε0 (ε0 ∈ (0, 1]) ∀ε (ε < ε0) [aε ≤ Cψ (ε)] .

Definition 2.3. Elements of calG(M) are denoted by:

u = cl[(uε)ε] , (uε)ε +N (M). (2.4)

Remark 2.1.2. With componentwise operations (·,± ) G(M) is a fine sheaf of differential algebras
with respect to the Lie derivative defined by Lξu , cl[(Lξuε)ε].

The spaces of moderate resp. negligible sequences and hence the algebra itself may be characterized
locally, i.e., u ∈ G(M) iff u ◦ ψα ∈ G(ψα(Vα)) for all charts (Vα, ψα), where on the open set
ψα(Vα) ⊂ Rn in the respective estimates Lie derivatives are replaced by partial derivatives.

The spaces of moderate resp. negligible sequences and hence the algebra itself may be characterized
locally, i.e., u ∈ G(M) iff u ◦ ψα ∈ G(ψα(Vα)) for all charts (Vα, ψα), where on the open set
ψα(Vα) ⊂ Rn in the respective estimates Lie derivatives are replaced by partial derivatives.

Remark 2.1.3. Smooth functions f ∈ C∞(M) are embedded into G(M) simply by the “constant”
embedding σ, i.e., σ(f) = cl[(f)ε], hence C∞(M) is a faithful subalgebra of G(M).

2.2 Point Values of Generalized Functions on M . Generalized
Numbers

Within the classical distribution theory, distributions cannot be characterized by their point values
in any way similar to classical functions. On the other hand, there is a very natural and direct way
of obtaining the point values of the elements of Colombeau’s algebra: points are simply inserted
into representatives. The objects so obtained are sequences of numbers, and as such are not the
elements in the field R or C.
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Instead, they are the representatives of Colombeau’s generalized numbers. We give the exact
definition of these ”numbers”.

Definition 2.2.1. Inserting p ∈ M into u ∈ G(M) yields a well defined element of the ring of
constants (also called generalized numbers) K (corresponding to K = R resp. C), defined as the set
of moderate nets of numbers ((rε)ε ∈ K(0,1] with |rε| = O(ε−N ) for some N) modulo negligible nets
(|rε| = O(εm) for each m); componentwise insertion of points of M into elements of G(M) yields
well-defined generalized numbers, i.e.,elements of the ring of constants:

K = Ec (M) /Nc (M) (2.5)

(with K = R̃ or K = C̃ for K = R or K = C), where
Ec (M) =

{
(rϵ)ϵ ∈ KI |∃n (n ∈ N)

[
|rϵ| = O

(
ϵ−n

)
as ε→ 0

]}
Nc (M) =

{
(rϵ)ϵ ∈ KI |∀m (m ∈ N) [|rϵ| = O (ϵm) as ε→ 0]

}
I = (0, 1].

(2.6)

Generalized functions on M are characterized by their generalized point values, i.e., by their values
on points in M̃c, the space of equivalence classes of compactly supported nets (pε)ε ∈ M (0,1] with
respect to the relation pε ∼ p′ε :⇔ dh(pε, p

′
ε) = O(εm) for all m, where dh denotes the distance on

M induced by any Riemannian metric.

Definition 2.2.2. For u ∈ G(M) and x0 ∈M, the point value of u at the point x0, u(x0),is defined
as the class of (uε(x0))ε in K.

Definition 2.7.We say that an element r ∈ K is strictly nonzero if there exists a representative
(rε)ε and a q ∈ N such that |rε| > εq for ε sufficiently small. If r is strictly nonzero, then it is also
invertible with the inverse [(1/rε)ε]. The converse is true as well.

Treating the elements of Colombeau algebras as a generalization of classical functions, the question
arises whether the definition of point values can be extended in such a way that each element is
characterized by its values. Such an extension is indeed possible.

Definition 2.2.3. Let Ω be an open subset of Rn. On a set Ω̂ :

{
Ω̂ =

{
(xε)ε ∈ ΩI |∃p (p > 0) [|xε| = O (εp)]

}
={

(xε)ε ∈ ΩI |∃p (p > 0) ∃ε0 (ε0 > 0) [|xε| ≤ εp, for 0 < ε < ε0]
}
.

(2.7)

We introduce an equivalence relation:

(xε)ε ∼ (yε)ε ⇐⇒ ∀q (q > 0) ∀ε (ε > 0) [|xε − yε| ≤ εq, for 0 < ε < ε0] . (2.8)

and denote by Ω̃ = Ω̂/ ∼ the set of generalized points. The set of points with compact support is

Ω̃c =
{
x̃ = cl[(xε)ε] ∈ Ω̃|∃K (K ⊂ Ω) ∃ε0 (ε0 > 0) [xε ∈ K for 0 < ε < ε0]

}
. (2.9)

Definition 2.2.5 A generalized function u ∈ G(M) is called associated to zero, u ≈ 0 on Ω ⊆ M
in L.Schwartz sense if one (hence any) representative (uϵ)ϵ converges to zero weakly,i.e.

w - limϵ→0 uϵ = 0. (2.10)
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We shall often write:

u ≈
Sch

0. (2.11)

The G(M)-module of generalized sections in vector bundles-especially the space of generalized tensor
fields T r

s (M) is defined along the same lines using analogous asymptotic estimates with respect to
the norm induced by any Riemannian metric on the respective fibers. However, it is more convenient
to use the following algebraic description of generalized tensor fields

Gr
s(M) = G(M)⊗ T r

s (M) , (2.12)

where T r
s (M) denotes the space of smooth tensor fields and the tensor product is taken over the

module C∞(M). Hence generalized tensor fields are just given by classical ones with generalized
coefficient functions. Many concepts of classical tensor analysis carry over to the generalized setting
[1]-[2], in particular Lie derivatives with respect to both classical and generalized vector fields, Lie
brackets, exterior algebra, etc. Moreover, generalized tensor fields may also be viewed as G(M)-
multilinear maps taking generalized vector and covector fields to generalized functions, i.e., as
G(M)-modules we have

Gr
s(M) ∼= L(M)(G0

1(M)r,G1
0(M)s;G(M)). (2.13)

In particular a generalized metric is defined to be a symmetric, generalized (0, 2)-tensor field gab =
[((gϵ)ab )ϵ] (with its index independent of ε and) whose determinant det(gab) is invertible in G(M).
The latter condition is equivalent to the following notion called strictly nonzero on compact sets: for
any representative det((gϵ)ab )ϵ of det(gab) we have ∀K ⊂M ∃m ∈ N [infp∈K | det(gab (ϵ))| ≥ ϵm] for
all ϵ small enough. This notion captures the intuitive idea of a generalized metric to be a sequence
of classical metrics approaching a singular limit in the following sense: gab is a generalized metric iff
(on every relatively compact open subset V of M) there exists a representative ((gϵ)ab )ϵ of gab such
that for fixed ϵ (small enough)(gϵ)ab = gab (ϵ) (resp. (gϵ)ab |V ) is a classical pseudo-Riemannian
metric and det(gab) is invertible in the algebra of generalized functions. A generalized metric
induces a G(M)-linear isomorphism from G1

0(M) to G0
1(M) and the inverse metric gab , [(g−1

ab (ϵ))ϵ]
is a well defined element of G2

0(M) (i.e., independent of the representative ((gϵ)ab )ϵ). Also
the generalized Levi-Civita connection as well as the generalized Riemann-, Ricci- and Einstein
tensor of a generalized metric are defined simply by the usual coordinate formulae on the level of
representatives.

2.3 Generalized Colombeau Calculus

We briefly recall the basic generalized Colombeau construction. Colombeau supergeneralized functions
on Ω ⊆ Rn, where dim (Ω) = n are defined as equivalence classes u = [(uε)ε] of nets of smooth
functions uε ∈ C∞(Ω\Σ),where dim (Σ) < n (regularizations) subjected to asymptotic norm
conditions with respect to ε ∈ (0, 1] for their derivatives on compact sets.

The basic idea of generalized Colombeau’s theory of nonlinear supergeneralized functions [1],[2] is
regularization by sequences (nets) of smooth functions and the use of asymptotic estimates in terms
of a regularization parameter ε. Let (uε)ε∈(0,1] with uε such that: (i) uε ∈ C∞(M\Σ) and (ii)
uε ∈ D′(M),for all ε ∈ (0, 1] ,where M a separable, smooth orientable Hausdorff manifold of
dimension n.

Definition 2.3.1. The supergeneralized Colombeau’s algebra G̃ = G̃(M,Σ) of supergeneralized
functions on M, where Σ ⊂M, dim (M) = n,dim (Σ) < n , is defined as the quotient:

G̃(M,Σ) , EM (M,Σ)/N (M,Σ) (2.14)
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of the space EM (M,Σ) of sequences of moderate growth modulo the space N (M,Σ) of negligible
sequences. More precisely the notions of moderateness resp. negligibility are defined by the following
asymptotic estimates (where X(M\Σ) denoting the space of smooth vector fields on M\Σ):

EM (M,Σ) , {(uε)ε| ∀K (K $M\Σ) ∀k (k ∈ N) ∃N (N ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M\Σ))
[
sup
p∈K

|Lξ1 . . . Lξk uε(p)| = O(ε−N ), ε→ 0

]
&

∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N) ∀ (f ∈ C∞(M))∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))[∥∥Lw
ξ1
. . . Lw

ξk
uε

∥∥ =

(
sup

f∈C∞(M)

∣∣Lw
ξ1
. . . Lw

ξk
uε(f)

∣∣) = O(ε−N ), ε→ 0

]}
,

(2.15)

N (M,Σ) , {(uε)ε| ∀K (K $M\Σ) , ∀k (k ∈ N0) ∀q (q ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M\Σ))
[
sup
p∈K

|Lξ1 . . . Lξk uε(p)| = O(εq), ε→ 0

]}
&

∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N) ∀ (f ∈ C∞(M))∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))[∥∥Lw
ξ1
. . . Lw

ξk
uε

∥∥ =

(
sup

f∈C∞(M)

∣∣Lw
ξ1
. . . Lw

ξk
uε(f)

∣∣) = O(εq), ε→ 0

]}
,

(2.16)

where Lw
ξk

denoting the weak Lie derivative in L.Schwartz sense.In the definition the Landau symbol
aε = O (ψ (ε)) appears, having the following meaning:
∃C (C > 0)∃ε0 (ε0 ∈ (0, 1]) ∀ε (ε < ε0) [aε ≤ Cψ (ε)] .

Definition 2.3.2. Elements of G̃(M,Σ) are denoted by:

u = cl[(uε)ε] , (uε)ε +N (M,Σ). (2.17)

Remark 2.3.1. With componentwise operations (·,± ) G̃(M,Σ) is a fine sheaf of differential
algebras with respect to the Lie derivative defined by Lξu , cl[(Lξuε)ε].

The spaces of moderate resp. negligible sequences and hence the algebra itself may be characterized
locally, i.e., u ∈ G̃(M,Σ) iff u ◦ ψα ∈ G̃(ψα(Vα)) for all charts (Vα, ψα), where on the open set
ψα(Vα) ⊂ Rn in the respective estimates Lie derivatives are replaced by partial derivatives.

Remark 2.6. Smooth functions f ∈ C∞(M\Σ) are embedded into G̃(M,Σ) simply by the

“constant” embedding σ, i.e., σ(f) = cl[(f)ε], hence C∞(M\Σ) is a faithful subalgebra of G̃(M,Σ).

2.4 Point Values of Supergeneralized Functions on M .
Supergeneralized Numbers

Within the classical distribution theory, distributions cannot be characterized by their point values
in any way similar to classical functions. On the other hand, there is a very natural and direct way
of obtaining the point values of the elements of Colombeau’s algebra: points are simply inserted
into representatives. The objects so obtained are sequences of numbers, and as such are not the
elements in the field R or C.

Instead, they are the representatives of Colombeau’s generalized numbers. We give the exact
definition of these ”numbers”.

Definition 2.4.1. Inserting p ∈ M into u ∈ G̃(M,Σ) yields a well defined element of the ring of

constants (also called generalized numbers) K̃ (corresponding to K = R resp. C), defined as the
set of moderate nets of numbers ((rε)ε ∈ K(0,1] with |rε| = O(ε−N ) for some N) modulo negligible
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nets (|rε| = O(εm) for each m); componentwise insertion of points of M into elements of G̃(M,Σ)
yields well-defined generalized numbers, i.e.,elements of the ring of constants:

K̃Σ= Ec (M,Σ) /Nc (M,Σ) (2.18)

(with K̃Σ = R̃Σ or K = C̃Σ for K = R or K = C),

where
Ec (M,Σ) =

{
(rϵ)ϵ ∈ KI |∃n (n ∈ N)

[
|rε| = O

(
ε−n

)
as ε→ 0

]}
,

Nc (M,Σ) =
{
(rϵ)ϵ ∈ KI |∀m (m ∈ N) [|rε| = O (εm) as ε→ 0]

}
I = (0, 1].

(2.19)

Supergeneralized functions on M are characterized by their generalized point values, i.e., by their
values on points in M̃c, the space of equivalence classes of compactly supported nets (pε)ε ∈
(M\Σ)(0,1] with respect to the relation pε ∼ p′ε :⇔ dh(pε, p

′
ε) = O(εm) for all m, where dh denotes

the distance on M\Σ induced by any Riemannian metric.

Definition 2.4.2. For u ∈ G̃(M,Σ) and x0 ∈ M,the point value of u at the point x0, u(x0),is

defined as the class of (uε(x0))ε in K̃.

Definition 2.4.3. We say that an element r ∈ K̃ is strictly nonzero if there exists a representative
(rε)ε and a q ∈ N such that |rε| > εq for ε sufficiently small. If r is strictly nonzero, then it is also
invertible with the inverse [(1/rε)ε]. The converse is true as well.

Treating the elements of Colombeau algebras as a generalization of classical functions, the question
arises whether the definition of point values can be extended in such a way that each element is
characterized by its values. Such an extension is indeed possible.

Definition 2.4.5. Let Ω be an open subset of Rn\Σ. On a set Ω̂Σ :

 Ω̂Σ =
{
(xε)ε ∈ (Ω\Σ)I |∃p (p > 0) [|xε| = O (εp)]

}
={

(xε)ε ∈ (Ω\Σ)I |∃p (p > 0)∃ε0 (ε0 > 0) [|xε| ≤ εp, for 0 < ε < ε0]
} (2.20)

we introduce an equivalence relation:

(xε)ε ∼ (yε)ε ⇐⇒ ∀q (q > 0) ∀ε (ε > 0) [|xε − yε| ≤ εq, for 0 < ε < ε0] (2.21)

and denote by Ω̃Σ = Ω̂Σ/ ∼ the set of supergeneralized points. The set of points with compact
support is

Ω̃Σ,c =
{
x̃ = cl[(xε)ε] ∈ Ω̃Σ|∃K (K ⊂ Ω\Σ) ∃ε0 (ε0 > 0) [xε ∈ K for 0 < ε < ε0]

}
(2.22)

Definition 2.4.6. A supergeneralized function u ∈ G̃(M,Σ) is called associated to zero, u ≈ 0 on
Ω ⊆M in L. Schwartz’s sense if one (hence any) representative (uε)ε converges to zero weakly,i.e.

w - limε→0 uε = 0 (2.23)

We shall often write:

u ≈
Sch

0. (2.24)

49



Colombeau Solutions to Einstein Field Equations in General Relativity:Gravitational singularities,
Distributional SAdS BH Spacetime-Induced Vacuum Dominance

Definition 2.4.7. The G̃(M,Σ)-module of supergeneralized sections in vector bundles- especially
the space of generalized tensor fields T r

s (M\Σ)-is defined along the same lines using analogous
asymptotic estimates with respect to the norm induced by any Riemannian metric on the respective
fibers. However, it is more convenient to use the following algebraic description of generalized tensor
fields

G̃r
s(M,Σ) = G̃(M,Σ)⊗ T r

s (M\Σ) , (2.25)

where T r
s (M\Σ) denotes the space of smooth tensor fields and the tensor product is taken over the

module C∞(M\Σ). Hence generalized tensor fields are just given by classical ones with generalized
coefficient functions. Many concepts of classical tensor analysis carry over to the generalized setting,
in particular Lie derivatives with respect to both classical and generalized vector fields, Lie brackets,
exterior algebra, etc. Moreover, generalized tensor fields may also be viewed as G̃(M,Σ)-multilinear

maps taking generalized vector and covector fields to generalized functions, i.e., as G̃(M,Σ)-modules
we have

G̃r
s(M,Σ) ∼= L(M)(G̃0

1(M,Σ)r, G̃1
0(M,Σ)s; G̃(M,Σ)). (2.26)

In particular a supergeneralized metric is defined to be a symmetric, supergeneralized (0, 2)-tensor
field gab = [((gε)ab )ε] (with its index independent of ε and) whose determinant det(gab) is invertible

in G̃(M\Σ). The latter condition is equivalent to the following notion called strictly nonzero
on compact sets: for any representative det((gε)ab )ε of det(gab) we have ∀K ⊂ M\Σ ∃m ∈
N [infp∈K |det(gab (ε))| ≥ εq] for all ε small enough. This notion captures the intuitive idea of a
generalized metric to be a sequence of classical metrics approaching a singular limit in the following
sense: gab is a generalized metric iff (on every relatively compact open subset V ofM) there exists a
representative ((gε)ab )ε of gab such that for fixed ε (small enough)(gε)ab = gab (ε) (resp. (gε)ab |V )
is a classical pseudo-Riemannian metric and det(gab) is invertible in the algebra of generalized

functions. A generalized metric induces a G̃(M,Σ)-linear isomorphism from G̃1
0(M,Σ) to G̃0

1(M,Σ)

and the inverse metric gab , [(g−1
ab (ε))ε] is a well defined element of G̃2

0(M,Σ) (i.e., independent
of the representative ((gε)ab )ε). Also the supergeneralized Levi-Civita connection as well as the
supergeneralized Riemann, Ricci and Einstein tensor of a supergeneralized metric are defined simply
by the usual coordinate formulae on the level of representatives.

2.5 Distributional General Relativity

We briefly summarize the basics of distributional general relativity, as a preliminary to latter
discussion.In the classical theory of gravitation one is led to consider the Einstein field equations
which are,in general,quasilinear partial differential equations involving second order derivatives
for the metric tensor. Hence, continuity of the first fundamental form is expected and at most,
discontinuities in the second fundamental form, the coordinate independent statements appropriate
to consider 3-surfaces of discontinuity in the spacetime manifolfd of General Relativity.

In standard general relativity, the space-time is assumed to be a four-dimensional differenti-able
manifoldM endowed with the Lorentzian metric ds2 = gµνdx

µdxν (µ, ν = 0, 1, 2, 3). At each point p

of space-timeM , the metric can be diagonalized as ds2p = ηµν(dX
µ)p(dX

ν)p with ηµν , (−1, 1, 1, 1),
by choosing the coordinate system {Xµ;µ = 0, 1, 2, 3} appropriately.

In superdistributional general relativity the space-time is assumed to be a four dimensional differenti-
able manifoldM\Σ, where dim (M) = 4,dim (Σ) 6 3 endowed with the Lorentzian supergeneralized
metric(

ds2ϵ
)
ϵ
= (gµν (ϵ) dx

µdxν)ϵ ;µ, ν = 0, 1, 2, 3). (2.27)
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at each point p ∈M\Σ, the metric can be diagonalized as(
ds2p (ϵ)

)
ϵ
= (ηµν(dX

µ
ϵ )p(dX

ν
ϵ )p)ϵ with ηµν , (−1, 1, 1, 1), (2.28)

by choosing the generalized coordinate system {(Xµ
ϵ )ϵ ;µ = 0, 1, 2, 3} appropriately.

The classical smooth curvature tensor is given by

Rρ
σµν , ∂µ

{
ρ

σ ν

}
− ∂ν

{
ρ

σ µ

}
+
{

ρ
λ µ

}{
λ

σ ν

}
−
{

ρ
λ ν

}{
λ

σ µ

}
(2.29)

with
{

ρ
σ ν

}
being the smooth Christoffel symbol.The supergeneralized nonsmooth curvature tensor

is given by (Rρ
σµν (ϵ))ϵ , ∂µ

({
ρ

σ ν

}
ϵ

)
ϵ
− ∂ν

({
ρ

σ µ

}
ϵ

)
ϵ
+
({

ρ
λ µ

}
ϵ

)
ϵ

({
λ

σ ν

}
ϵ

)
ϵ
−

−
({

ρ
λ ν

}
ϵ

)
ϵ

({
λ

σ µ

}
ϵ

)
ϵ

(2.30)

with
({

ρ
σ ν

}
ϵ

)
ϵ
being the supergeneralized Christoffel symbol.The fundamental classical action

integral I is

I = 1

c

∫
(L̄G + LM )d4x, (2.31)

where LM is the Lagrangian density of a gravitational source and L̄G is the gravitational Lagrangian
density given by

L̄G =
1

2κ
G . (2.32)

Here κ is the Einstein gravitational constant κ = 8πG/c4 and G is defined by

G =
√
−ggµν

({
λ

µ ρ

}{
ρ

ν λ

}
−
{

λ
µ ν

}{
ρ

λ ρ

})
(2.33)

with g = det(gµν). There exists the relation

√
−gR = G+ ∂µDµ , (2.34)

with

Dµ = −
√
−g
(
gµν

{
λ

ν λ

}
− gνλ

{
µ

ν λ

})
. (2.35)

Thus the supergeneralized fundamental action integral (Iϵ)ϵ is

(Iϵ)ϵ =
1

c

∫
(
(
L̄G (ϵ)

)
ϵ
+ (LM (ϵ))ϵ)d

4x , (2.36)

where (LM (ϵ))ϵ is the supergeneralized Lagrangian density of a gravitational source and
(
L̄G (ϵ)

)
ϵ

is the supergeneralized gravitational Lagrangian density given by(
L̄G (ϵ)

)
ϵ
=

1

2κ
(Gϵ)ϵ . (2.37)

Here κ is the Einstein gravitational constant κ = 8πG/c4 and (Gϵ)ϵ is defined by

(Gϵ)ϵ =
√

− (gϵ)ϵ (g
µν
ϵ )ϵ

(({
λ

µ ρ

}
ϵ

) ({
ρ

ν λ

}
ϵ

)
−
({

λ
µ ν

}
ϵ

)({
ρ

λ ρ

}
ϵ

))
(2.38)
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with gϵ = det [(gµν (ϵ))ϵ]. There exists the relation

√
− (gϵ)ϵ (Rϵ)ϵ = (Gϵ)ϵ + ∂µ (Dµ

ϵ )ϵ , (2.39)

with

(Dµ
ϵ )ϵ = −

√
− (gϵ)ϵ

(
(gµνϵ )ϵ

({
λ

ν λ

}
ϵ

)
ϵ
−
(
gνλϵ
)
ϵ

({
µ

ν λ

}
ϵ

)
ϵ

)
. (2.40)

Also, we have defined the classical scalar curvature by

R = Rµ
µ (2.41)

with the smooth Ricci tensor

Rµν = Rλ
µλν . (2.42)

from the action I, the classical Einstein equation

Gµ
ν = Rµ

ν − 1

2
δµ

νR = κTµ
ν , (2.43)

follows, where Tµ
ν is defined by

Tµ
ν =

T̃µ
ν

√
−g

(2.44)

with

T̃ ν
µ , 2gµλ

δLM

δgλν
(2.45)

being the energy-momentum density of the classical gravity source. Thus we have defined the
supergeneralized scalar curvature by

(Rϵ)ϵ = (Rµ
µ (ϵ))ϵ (2.46)

with the supergeneralized Ricci tensor

(Rµν (ϵ))ϵ =
(
Rλ

µλν (ϵ)
)
ϵ
. (2.47)

from the action (Iϵ)ϵ , the generalized Einstein equation

(Gµ
ν (ϵ))ϵ = (Rµ

ν (ϵ))ϵ −
1

2
δµ

ν (Rϵ)ϵ = κ (Tµ
ν (ϵ))ϵ , (2.48)

follows, where (Tµ
ν (ϵ))ϵ is defined by

(Tµ
ν (ϵ))ϵ =

(
T̃µ

ν (ϵ)
)
ϵ√

− (gϵ)ϵ
(2.49)
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with(
T̃ ν

µ (ϵ)
)
ϵ
, 2 (gµλ (ϵ))ϵ

δ (LM (ϵ))ϵ
δ (gλν (ϵ))ϵ

(2.50)

being the supergeneralized energy-momentum density of the supergeneralized gravity source. The
classical energy-momentum pseudo-tensor density t̃ ν

µ of the gravitational field is defined by

t̃ ν
µ = δµ

ν L̄G − ∂L̄G

∂gστ,ν
gστ,µ (2.51)

with gστ,ν = ∂gστ/∂x
ν . The supergeneralized energy-momentum pseudo-tensor density t̃ ν

µ of the
gravitational field is defined by

(
t̃ ν
µ (ϵ)

)
ϵ
= δµ

ν
(
L̄G (ϵ)

)
ϵ
−
(
∂L̄G (ϵ)

∂gστ,ν (ϵ)

)
ϵ

(gστ,µ (ϵ))ϵ (2.52)

with (gστ,ν (ϵ))ϵ = (∂gστ (ϵ) /∂x
ν)ϵ.

3 Distributional Schwarzschild Geometry from
Nonsmooth Regularization via Horizon

3.1 Calculation of the Stress-tensor by Using Nonsmooth
Regularization Via Horizon

In this section we leave the neighborhood of the singularity at the origin and turn to the singularity
at the horizon. The question we are aiming at is the following: using distributional geometry (thus
without leaving Schwarzschild coordinates), is it possible to show that the horizon singularity of the
Schwarzschild metric is not merely only a coordinate singularity. In order to investigate this issue
we calculate the distributional curvature at horizon in Schwarzschild coordinates. In the usual
Schwarzschild coordinates (t, r, θ, ϕ), r ̸= 2m the Schwarzschild metric (1.12) takes the form above
horizon r > 2m and below horizon r < 2m correspondingly



above horizon r > 2m :

ds+2 = h+(r)dt2 −
[
h+(r)

]−1
dr2 + r2dΩ2,

h+(r) = −1 +
2m

r
= −r − 2m

r
below horizon r < 2m :

ds−2 = h−(r)dt2 − h−(r)−1dr2 + r2dΩ2,

h−(r) = −1 +
2m

r
=

2m− r

r

(3.1)

Remark 3.1.1. Following the above discussion we consider the metric coefficients h+ (r) ,
[
h+(r)

]−1

h− (r) ,and
[
h−(r)

]−1
as an element of D′(R3) and embed it into (G(R3)) by replacements above

horizon r > 2m and below horizon r 6 2m correspondingly
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r > 2m : r − 2m 7−→
√

(r − 2m)2 + ϵ2,

r 6 2m : 2m− r 7−→
√

(2m− r)2 + ϵ2.

Remark 3.1.2. Note that, accordingly, we have fixed the differentiable structure of the manifold:
the usual Schwarzschild coordinates and the Cartesian coordinates associated with the spherical
Schwarzschild coordinates in (3.1) are extended on r = 2m through the horizon. Therefore we have
above horizon r > 2m and below horizon r 6 2m correspondingly

h(r) =

{
−r − 2m

r
if r > 2m

0 if r 6 2m

}
7−→

(
h+
ϵ (r)

)
ϵ
=

−

√
(r − 2m)2 + ϵ2

r


ϵ

,

where
(
h+
ϵ (r)

)
ϵ

∈ G̃(R3, B+ (2m,R)), B+ (2m,R) =
{
x ∈ R3|2m 6 ∥x∥ 6 R

}
.

h−1(r) =

{
− r

r − 2m
, r > 2m

∞, r = 2m

}
7−→

(
h+
ϵ

)−1
(r) =

h−(r) =

{
−r − 2m

r
if r 6 2m

0 if r ≥ 2m

}
7−→ h−

ϵ (r) =

=


√

(2m− r)2 + ϵ2

r


ϵ

∈ G̃(R3, B− (0, 2m)) ,

where B− (0, 2m) =
{
x ∈ R3|0 < ∥x∥ 6 2m

}{
− r

r − 2m
, r < 2m

∞, r = 2m

}
7−→

(
h−
ϵ

)−1
(r) =

=

 r√
(r − 2m)2 + ϵ2


ϵ

∈ G̃(R3, B− (0, 2m))

(3.2)

Inserting (3.2) into (3.1) we obtain a generalized object modeling the singular Schwarzschild metric
above (below) gorizon, i.e.,


(
ds+2

ϵ

)
ϵ
=
(
h+
ϵ (r)dt

2
)
ϵ
−
([
h+
ϵ (r)

]−1
dr2
)
ϵ
+ r2dΩ2 ,(

ds−2
ϵ

)
ϵ
=
(
h−
ϵ (r)dt

2
)
ϵ
−
([
h−
ϵ (r)

]−1
dr2
)
ϵ
+ r2dΩ2

(3.3)

The generalized Ricci tensor above horizon
[
R+
]β
α
may now be calculated componentwise using the

classical formulae


([

R+
ϵ

]0
0

)
ϵ
=
([

R+
ϵ

]1
1

)
ϵ
=

1

2

((
h+′′
ϵ

)
ϵ
+

2

r

(
h+′
ϵ

)
ϵ

)
([

R+
ϵ

]2
2

)
ϵ
=
([

R+
ϵ

]3
3

)
ϵ
=

(
h+′
ϵ

)
ϵ

r
+

1 +
(
h+
ϵ

)
ϵ

r2
.

(3.4)

From (3.2) we obtain
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h+′
ϵ (r) = −

r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2 +

[
(r − 2m)2 + ϵ2

]1/2
r2

,

r
(
h+′
ϵ

)
ϵ
+ 1 +

(
h+
ϵ

)
ϵ
=

r

−
r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2 +

[
(r − 2m)2 + ϵ2

]1/2
r2

 + 1 −

√
(r − 2m)2 + ϵ2

r
=

−
r − 2m[

(r − 2m)2 + ϵ2
]1/2 +

[
(r − 2m)2 + ϵ2

]1/2
r

+ 1 −

√
(r − 2m)2 + ϵ2

r
=

−
r − 2m[

(r − 2m)2 + ϵ2
]1/2 + 1.

h′′
ϵ (r) = −

(
r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2
)′

+


[
(r − 2m)2 + ϵ2

]1/2
r2


′

=

= −
1

r
[
(r − 2m)2 + ϵ2

]1/2 +
(r − 2m)2

r
[
(r − 2m)2 + ϵ2

]3/2 +
r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2 +

+
r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2 −
2
[
(r − 2m)2 + ϵ2

]1/2
r3

.

r2
(
h+′′
ϵ

)
ϵ
+ 2r

(
h+′
ϵ

)
ϵ
=

r2

{
−

1

r
[
(r − 2m)2 + ϵ2

]1/2 +
(r − 2m)2

r
[
(r − 2m)2 + ϵ2

]3/2 +
r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2 +

+
r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2 −
2
[
(r − 2m)2 + ϵ2

]1/2
r3

+

+2r

−
r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2 +

[
(r − 2m)2 + ϵ2

]1/2
r2

 =

−
r[

(r − 2m)2 + ϵ2
]1/2 +

r (r − 2m)2[
(r − 2m)2 + ϵ2

]3/2 +
r − 2m[

(r − 2m)2 + ϵ2
]1/2 +

+
r − 2m[

(r − 2m)2 + ϵ2
]1/2 −

2
[
(r − 2m)2 + ϵ2

]1/2
r

+

−
2 (r − 2m)[

(r − 2m)2 + ϵ2
]1/2 +

2
[
(r − 2m)2 + ϵ2

]1/2
r

=

−
r[

(r − 2m)2 + ϵ2
]1/2 +

r (r − 2m)2[
(r − 2m)2 + ϵ2

]3/2 .

(3.5)

Investigating the weak limit of the angular components of the Ricci tensor (using the abbreviation)

Φ̃(r) =
π∫
0

sin θdθ
2π∫
0

dϕΦ(x)

and let Φ(x) be the function Φ(x) ∈ S+
2m(R3), where by S+

2m(R3) we denote the class of all functions
Φ(x) with compact support such that:

(i) supp(Φ(x)) ⊂ {x| ∥x∥ ≥ 2m} (ii) Φ̃(r) ∈ C∞ (R) .

Then for any function Φ(x) ∈ S2m(R3) we get:∫
K

([
R+

ϵ

]2
2

)
ϵ
Φ(x⃗) d3x =

∫
K

([
R+

ϵ

]3
3

)
ϵ
Φ(x⃗) d3x =

R∫
2m

(
r
(
h+′
ϵ

)
ϵ
+ 1 +

(
h+
ϵ

)
ϵ

)
Φ̃(r)dr =

R∫
2m

{
− r − 2m[

(r − 2m)2 + ϵ2
]1/2

}
Φ̃(r)dr +

R∫
2m

Φ̃(r)dr.

(3.6)
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By replacement r − 2m = u, from (3.6) we obtain∫
K

([
R+

ϵ

]2
2

)
ϵ
Φ(x) d3x =

∫
K

([
R+

ϵ

]3
3

)
ϵ
Φ(x) d3x =

−
R−2m∫

0

uΦ̃(u+ 2m)du

(u2 + ϵ2)1/2
+

R−2m∫
0

Φ̃(u+ 2m)du. (3.7)

By replacement u = ϵη, from (3.7) we obtain the expression
I+3 (ϵ) =

∫
K

([
R+

ϵ

]3
3

)
ϵ
Φ(x) d3x = I+2 (ϵ) =

∫
K

([
R+

ϵ

]2
2

)
ϵ
Φ(x⃗) d3x =

−ϵ×

 R−2m
ϵ∫
0

ηΦ̃(ϵη + 2m)dη

(η2 + 1)1/2
−

R−2m
ϵ∫
0

Φ̃(ϵη + 2m)dη

 .
(3.8)

From Eq.(3.8) we obtain

I+3 (ϵ) = I+2 (ϵ) = −ϵ Φ̃(2m)

0!

R−2m
ϵ∫
0

[
η

(η2 + 1)1/2
− 1

]
dη−

− ϵ
2

1!

R−2m
ϵ∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη =

−ϵΦ̃(2m)

√(R− 2m

ϵ

)2

+ 1−
(
R− 2m

ϵ
− 1

)−

− ϵ
2

1

R−2m
ϵ∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη,

(3.9)

Where we have expressed the function Φ̃(ϵη + 2m) as Φ̃(ϵη + 2m) =
∑n−1

l=0

Φ(l)(2m)

l!
(ϵη)l +

1

n!
(ϵη)nΦ(n)(ξ) ,

ξ , θϵη + 2m , 1 > θ > 0 , n = 1
(3.10)

with Φ̃(l)(ξ) , dlΦ̃/dξl. Equations (3.9)-(3.10) gives



lim
ϵ→0

I+3 (ϵ) = lim
ϵ→0

I+2 (ϵ) =

lim
ϵ→0

−ϵΦ̃(2m)

√(R− 2m

ϵ

)2

+ 1 + 1− R− 2m

ϵ

+

+lim
ϵ→0

− ϵ
2

1

R−2m
ϵ∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη

 = 0

(3.11)

Thus in S ′
2m

(
B+

R (2m)
)
⊂ S ′

2m

(
R3
)
⊂ D′(R3), where B+ (2m,R) =

{
x ∈ R3|2m 6 ∥x∥ 6 R

}
from

Eq.(3.11) we obtain w − lim
ϵ→0

[
R+

ϵ

]3
3
= lim

ϵ→0
I+3 (ϵ) = 0,

w − lim
ϵ→0

[
R+

ϵ

]2
2
= lim

ϵ→0
I+2 (ϵ) = 0.

(3.12)

For
([

R+
ϵ

]1
1

)
ϵ
,
([

R+
ϵ

]0
0

)
ϵ
we get:
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2K
([

R+
ϵ

]1
1

)
ϵ
Φ(x) d3x = 2K

([
R+

ϵ

]0
0

)
ϵ
Φ(x) d3x =

R∫
2m

(
r2
(
h+′′
ϵ

)
ϵ
+ 2r

(
h+′
ϵ

)
ϵ

)
Φ̃(r)dr =

=
R∫

2m

{
− r[

(r − 2m)2 + ϵ2
]1/2 +

r (r − 2m)2[
(r − 2m)2 + ϵ2

]3/2
}
Φ̃(r)dr.

(3.13)

By replacement r − 2m = u, from (3.13) we obtain

I+1 (ϵ) = 2K
([

R+
ϵ

]1
1

)
ϵ
Φ(x) d3x = I+2 (ϵ) = 2K

([
R+

ϵ

]0
0

)
ϵ
Φ(x) d3x

=
R∫

2m

(
r2
(
h+′′
ϵ

)
ϵ
+ 2r

(
h+′
ϵ

)
ϵ

)
Φ̃(r)dr =

=
R−2m∫

0

{
− u+ 2m

(u2 + ϵ2)1/2
+
u2 (u+ 2m)

(u2 + ϵ2)3/2

}
Φ̃(u+ 2m)du.

(3.14)

By replacement u = ϵη, from (3.14) we obtain

2K
([

R+
ϵ

]1
1

)
ϵ
Φ(x) d3x = 2K

([
R+

ϵ

]0
0

)
ϵ
Φ(x) d3x =

=
R∫

2m

(
r2
(
h+′′
ϵ

)
ϵ
+ 2r

(
h+′
ϵ

)
ϵ

)
Φ̃(r)dr =

= ϵ

R−2m
ϵ∫
0

{
− ϵη + 2m

(ϵ2η2 + ϵ2)1/2
+
ϵ2η2 (ϵη + 2m)

(ϵ2η2 + ϵ2)3/2

}
Φ̃(ϵη + 2m)dη =

−
R−2m

ϵ∫
0

ϵ2ηΦ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)1/2
− 2m

R−2m
ϵ

0

ϵΦ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)1/2
+

R−2m
ϵ∫
0

ϵ4η3Φ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)3/2
+ 2m

R−2m
ϵ

0

ϵ3η2Φ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)3/2
=

ϵ

− R−2m
ϵ∫
0

ηΦ̃(ϵη + 2m)dη

(η2 + 1)1/2
+

R−2m
ϵ∫
0

η3Φ̃(ϵη + 2m)dη

(η2 + 1)3/2

+

2m

− R−2m
ϵ∫
0

Φ̃(ϵη + 2m)dη

(η2 + 1)1/2
+

R−2m
ϵ∫
0

η2Φ̃(ϵη + 2m)dη

(η2 + 1)3/2

 .

(3.15)

From Eq.(3.15) we obtain

I+0 (ϵ) = I+1 (ϵ) = 2m
Φ̃(2m)

0!

R−2m
ϵ∫
0

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη+

+
ϵ

1!

R−2m
ϵ∫
0

Φ̃(1)(ξ)

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
ηdη+

+
ϵΦ̃(2m)

0!

R−2m
ϵ∫

−2m
ϵ

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη+

+
ϵ2

1!

R−2m
ϵ∫
0

Φ̃(1)(ξ)

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
ηdη,

(3.16)

Where we have expressed the function Φ̃(ϵη + 2m) as
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 Φ̃(ϵη + 2m) =
∑n−1

l=0

Φαβ(l)(2m)

l!
(ϵη)l +

1

n!
(ϵη)nΦαβ(n)(ξ) ,

ξ , θϵη + 2m , 1 > θ > 0 , n = 1
(3.17)

With Φ̃(l)(ξ) , dlΦ̃/dξl.Equation (3.17) gives

w -lim
ϵ→0

I+0 (ϵ) = w -lim
ϵ→0

I+1 (ϵ) =

2mΦ̃(2m)lim
ϵ→0


R−2m

ϵ∫
0

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη

 =

2mΦ̃(2m) lim
s→∞

[∫ s

0

η2dη

(η2 + 1)3/2
−
∫ s

0

dη

(η2 + 1)1/2

]
=

= −2mΦ̃(2m).

(3.18)

Where use is made of the relation

lim
s→∞

[
s∫
0

η2dη

(η2 + 1)3/2
−

s∫
0

dη

(u2 + 1)1/2

]
= −1 (3.19)

Thus in S ′
2m

(
B+ (2m,R)

)
⊂ S ′

2m(R3)

We obtain

w -lim
ϵ→0

[
R+

ϵ

]1
1
= w -lim

ϵ→0

[
R+

ϵ

]0
0
= −mΦ̃(2m). (3.20)

The supergeneralized Ricci tensor below horizon
[
R−

ϵ

]β
α
=
[
R−

ϵ

]β
α

May now be calculated componentwise using the classical formulae
([

R−
ϵ

]0
0

)
ϵ
=
([

R−
ϵ

]1
1

)
ϵ
=

1

2

((
h−′′
ϵ

)
ϵ
+

2

r

(
h−′
ϵ

)
ϵ

)
,([

R−
ϵ

]2
2

)
ϵ
=
([

R−
ϵ

]3
3

)
ϵ
=

(
h−′
ϵ

)
ϵ

r
+

1 +
(
h−
ϵ

)
ϵ

r2
.

(3.21)

From Eq.(3.21) we obtain

h−
ϵ (r) = −r − 2m

r
7−→ h−

ϵ (r) =


√

(2m− r)2 + ϵ2

r

 = −h+
ϵ (r), r < 2m.

h−′
ϵ (r) = −h+′

ϵ (r) =
r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2 −
[
(r − 2m)2 + ϵ2

]1/2
r2

,

r
(
h−′
ϵ

)
ϵ
+ 1 +

(
h−
ϵ

)
ϵ
= −r

(
h+′
ϵ

)
ϵ
+ 1−

(
h+
ϵ

)
ϵ
=

r − 2m[
(r − 2m)2 + ϵ2

]1/2 + 1.

h−′′
ϵ (r) = −h+′′

ϵ (r) =

− r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2 +
2
[
(r − 2m)2 + ϵ2

]1/2
r3

.

r2
(
h−′′
ϵ

)
ϵ
+ 2r

(
h−′
ϵ

)
ϵ
= −r2

(
h+′′
ϵ

)
ϵ
− 2r

(
h+′
ϵ

)
ϵ
=

r[
(r − 2m)2 + ϵ2

]1/2 − r (r − 2m)2[
(r − 2m)2 + ϵ2

]3/2 .

(3.22)

Investigating the weak limit of the angular components of the Ricci tensor (using the abbreviation
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Φ̃(r) =
π∫
0

sin θdθ
2π∫
0

dϕΦ(x) where Φ(x⃗) ∈ C∞ (R3
)
, Φ(x) is a function with compact support K

such that K ⊆ B− (0, 2m) =
{
x ∈ R3|0 6 ∥x∥ 6 2m

}
We get:∫

K

([
R−

ϵ

]2
2

)
ϵ
Φ(x⃗) d3x =

∫
K

([
R−

ϵ

]3
3

)
ϵ
Φ(x⃗) d3x =

2m∫
0

(
r
(
h−′
ϵ

)
ϵ
+ 1 +

(
h−
ϵ

)
ϵ

)
Φ̃(r)dr =

2m∫
0

{
r − 2m[

(r − 2m)2 + ϵ2
]1/2

}
Φ̃(r)dr +

2m∫
0

Φ̃(r)dr.

(3.23)

By replacement r − 2m = u, from Eq.(3.23) we obtain


∫
K

([
R−

ϵ

]2
2

)
ϵ
Φ(x) d3x =

∫
K

([
R−

ϵ

]3
3

)
ϵ
Φ(x) d3x =

0∫
−2m

uΦ̃(u+ 2m)du

(u2 + ϵ2)1/2
+

0∫
−2m

Φ̃(u+ 2m)du.
(3.24)

By replacement u = ϵη, from (3.23) we obtain

I−3 (ϵ) =
∫
K

([
R−

ϵ

]3
3

)
ϵ
Φ(x) d3x = I−2 (ϵ) =

∫
K

([
R−

ϵ

]2
2

)
ϵ
Φ(x⃗) d3x =

ϵ×

 0∫
− 2m

ϵ

ηΦ̃(ϵη + 2m)dη

(η2 + 1)1/2
+

0∫
− 2m

ϵ

Φ̃(ϵη + 2m)dη

 ,
(3.25)

Which is calculated to give

I−3 (ϵ) = I−2 (ϵ) = ϵ
Φ̃(2m)

0!

0∫
− 2m

ϵ

[
η

(η2 + 1)1/2
+ 1

]
dη+

+
ϵ2

1!

0∫
− 2m

ϵ

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη =

ϵΦ̃(2m)

1−√(2m

ϵ

)2

+ 1 +
2m

ϵ

+

+
ϵ2

1

0∫
− 2m

ϵ

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη,

(3.26)

Where we have expressed the function Φ̃(ϵη + 2m) as

 Φ̃(ϵη + 2m) =
∑n−1

l=0

Φ(l)(2m)

l!
(ϵη)l +

1

n!
(ϵη)nΦ(n)(ξ) ,

ξ , θϵη + 2m , 1 > θ > 0 , n = 1
(3.27)

With Φ̃(l) , dlΦ̃/drl. Equation (3.27) gives
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lim
ϵ→0

I−3 (ϵ) = lim
ϵ→0

I−2 (ϵ) =

lim
ϵ→0

ϵΦ̃(2m)

1−√(2m

ϵ

)2

+ 1 +
2m

ϵ

+

+lim
ϵ→0

 ϵ2

2

0∫
− 2m

ϵ

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη

 = 0.

(3.28)

Thus in S ′
2m

(
B−

R (2m)
)
⊂ S ′

2m(R3), where B− (0, 2m) =
{
x ∈ R3|0 6 ∥x∥ 6 2m

}
from Eq.(3.28)

we obtain w − lim
ϵ→0

[
R−

ϵ

]3
3
= lim

ϵ→0
I−3 (ϵ) = 0.

w − lim
ϵ→0

[
R−

ϵ

]2
2
= lim

ϵ→0
I−2 (ϵ) = 0.

(3.29)

For
([

R−
ϵ

]1
1

)
ϵ
,
([

R−
ϵ

]0
0

)
ϵ
we get:

2K
([

R−
ϵ

]1
1

)
ϵ
Φ(x) d3x = 2K

([
R−

ϵ

]0
0

)
ϵ
Φ(x) d3x =

2m∫
0

(
r2
(
h−′′
ϵ

)
ϵ
+ 2r

(
h−′
ϵ

)
ϵ

)
Φ̃(r)dr =

=
2m∫
0

{
r[

(r − 2m)2 + ϵ2
]1/2 − r (r − 2m)2[

(r − 2m)2 + ϵ2
]3/2

}
Φ̃(r)dr.

(3.30)

By replacement r − 2m = u, from (3.30) we obtain

I+1 (ϵ) = 2
([

R−
ϵ

]1
1

)
ϵ
Φ(x) d3x = I+2 (ϵ) = 2

([
R−

ϵ

]0
0

)
ϵ
Φ(x) d3x

=
2m∫
0

(
r2
(
h−′′
ϵ

)
ϵ
+ 2r

(
h−′
ϵ

)
ϵ

)
Φ̃(r)dr =

=
0∫

−2m

{
u+ 2m

(u2 + ϵ2)1/2
− u2 (u+ 2m)

(u2 + ϵ2)3/2

}
Φ̃(u+ 2m)du.

(3.31)

By replacement u = ϵη, from (3.31) we obtain

2K
([

R−
ϵ

]1
1

)
ϵ
Φ(x) d3x = 2K

([
R−

ϵ

]0
0

)
ϵ
Φ(x) d3x =

0∫
− 2m

ϵ

(
r2
(
h−′′
ϵ

)
ϵ
+ 2r

(
h−′
ϵ

)
ϵ

)
Φ̃(r)dr =

= ϵ
0∫

− 2m
ϵ

{
ϵη + 2m

(ϵ2η2 + ϵ2)1/2
− ϵ2η2 (ϵη + 2m)

(ϵ2η2 + ϵ2)3/2

}
Φ̃(ϵη + 2m)dη =

0∫
− 2m

ϵ

ϵ2ηΦ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)1/2
+ 2m0

− 2m
ϵ

ϵΦ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)1/2
−

−
0∫

− 2m
ϵ

ϵ4η3Φ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)3/2
− 2m0

− 2m
ϵ

ϵ3η2Φ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)3/2
=

ϵ
0∫

− 2m
ϵ

ηΦ̃(ϵη + 2m)dη

(η2 + 1)1/2
−

0∫
− 2m

ϵ

η3Φ̃(ϵη + 2m)dη

(η2 + 1)3/2
+

+2m

 0∫
− 2m

ϵ

Φ̃(ϵη + 2m)dη

(η2 + 1)1/2
−

0∫
− 2m

ϵ

η2Φ̃(ϵη + 2m)dη

(η2 + 1)3/2

 .

(3.32)
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which is calculated to give

I−0 (ϵ) = I−1 (ϵ) = 2m
Φ̃(2m)

0!
ϵl

0∫
− 2m

ϵ

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
dη+

+
ϵ

1!

2m
ϵ∫
0

Φ̃(1)(ξ)

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
ηdη +O

(
ϵ2
)
.

(3.33)

where we have expressed the function Φ̃(ϵη + 2m) as

Φ̃(ϵη + 2m) =
∑n−1

l=0

Φαβ(l)(2m)

l!
(ϵη)l +

1

n!
(ϵη)nΦαβ(n)(ξ) ,

ξ , θϵη + 2m , 1 > θ > 0 , n = 1
(3.34)

with Φ̃(l)(ξ) , dlΦ̃/dξl.Equation (3.34) gives

lim
ϵ→0

I−0 (ϵ) = lim
ϵ→0

I−1 (ϵ) =

2mlim
ϵ→0

 Φ̃(2m)

0!

0∫
− 2m

ϵ

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
dη

 =

2mΦ̃(2m)lim
s→0

[∫ 0

−s

dη

(η2 + 1)1/2
−
∫ 0

−s

η2dη

(η2 + 1)3/2

]
=

= 2mΦ̃(2m).

(3.35)

where use is made of the relation

lim
s→∞

[
0∫

−s

dη

(u2 + 1)1/2
−

0∫
−s

η2dη

(η2 + 1)3/2

]
= 1. (3.36)

Thus in S ′ (B− (0, 2m)
)
⊂ S ′(R3) we obtain

w -lim
ϵ→0

[
R−

ϵ

]1
1
= w -lim

ϵ→0

[
R−

ϵ

]0
0
= mΦ̃(2m). (3.37)

Using Egs. (3.12),(3.20),(3.29),(3.37) we obtain

∫ [(
T+r

r +T+θ
θ +T+ϕ

ϕ +T+t
t

)
+
(
T−r

r +T−θ
θ +T−ϕ

ϕ +T−t
t

)]√
−gd3x = 0 (3.38)

Thus the Tolman formula [3],[4] for the total energy of a static and asymptotically flat spacetime
with g the determinant of the four dimensional metric and d3x the coordinate volume element, gives

ET =
∫ (

Tr
r +Tθ

θ +Tϕ
ϕ +Tt

t

)√
−gd3x = m, (3.39)

We revrite now the Schwarzschild metric (3.3) in the form
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{ (
ds±2

ϵ

)
ϵ
=
(
h±
ϵ (r)dt

2
)
ϵ
−
((
1 + C±

ϵ (r)
)
dr2
)
ϵ
+ r2dΩ2

C±
ϵ (r) = −1 +

[
h±
ϵ (r)

]−1
.

(3.40)

Using Eq.(A.5) from Eq.(3.40) one obtains for r ≍ 2m(
R±µν (ϵ)R±

µν (ϵ)
)
ϵ
=((

1

2

(
h±
ϵ

)′′
+

1

r

(
h±
ϵ

)′)2
)

ϵ

+ 2

([
−
(
h±
ϵ

)′
r

+
1

r2

]2)
ϵ

+

([
1

2

(
h±
ϵ

)′′
+

(
h±
ϵ

)′
r

]2)
ϵ

≍

≍ 1

4
[
(r − 2m)2 + ϵ2

] + 2

(2m)4
,

(3.41)

and

(3.40) (Rρσµν (ϵ)Rρσµν (ϵ))ϵ =(((
h±
ϵ

)′′)2
+ 2

((
h±
ϵ

)′
r

)2

+ 4
1

r4
+ 2

((
h±
ϵ

)′
r

)2 )
ϵ

≍

≍ 1[
(r − 2m)2 + ϵ2

] + 4

(2m)4
.

(3.42)

3.2 Examples of Distributional Geometries. Calculation of the
Distributional Quadratic Scalars by Using Nonsmooth Regula-
rization via Horizon

Let us consider again the Schwarzschild metric (3.1)
ds2 = h(r)dt2 − h(r)−1dr2 + r2dΩ2,

h(r) = −1 +
2m

r
= −r − 2m

r
,

h−1(r) = − r

r − 2m
.

(3.43)

We revrite now the Schwarzschild metric (3.43) above Horizon (r ≥ 2m) in the form
ds+2 = −A+(r)dt2 +

(
A+(r)

)−1
(r)dr2 + r2dΩ2,

A+(r) =
r − 2m

r
,(

A+(r)
)−1

=
r

r − 2m
.

(3.44)

Following the above discussion we consider the singular metric coefficient A−1(r) as an element of
D′(R3) and embed it into (G(R3)) by replacement

r − 2m 7−→
√
r2 + ϵ2 − 2m. (3.45)

Thus above Horizon (r ≥ 2m) the corresponding distributional metric
(
d̃s+2

ϵ

)
ϵ
takes the form



(
d̃s+2

ϵ

)
ϵ
=
(
−A+

ϵ (r)dt
2 +

(
A+

ϵ (r)
)−1

dr2
)
ϵ
+ r2dΩ2,(

A+
ϵ (r)

)
ϵ
=

(√
r2 + ϵ2 − 2m

r

)
ϵ

,((
A+

ϵ (r)
)−1
)
ϵ
=

(
r√

r2 + ϵ2 − 2m

)
ϵ

.

(3.46)

We revrite now the Schwarzschild metric (3.43) below Horizon (r < 2m) in the form
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 ds−2 = A−(r)dt2 −
(
A−(r)

)−1
dr2 + r2dΩ2,

A−(r) =
2m− r

r
,
(
A−(r)

)−1
=

r

2m− r
.

(3.47)

Following the above discussion we consider the singular metric coefficient A−1(r) as an element of
D′(R3) and embed it into (G(R3)) by replacement

2m− r 7−→ 2m−
√
r2 + ϵ2. (3.48)

Thus belov Horizon (r < 2m) the corresponding distributional metric
(
d̃s−2

ϵ

)
ϵ
takes the form


(
ds̃−2

ϵ

)
ϵ
=
(
A−

ϵ (r)dt
2 −

(
A−

ϵ (r)
)−1

dr2
)
ϵ
+ r2dΩ2,(

A−
ϵ (r)

)
ϵ
=

(
2m−

√
r2 + ϵ2

r

)
ϵ

,
((
A−

ϵ (r)
)−1
)
ϵ
=

(
r

2m−
√
r2 + ϵ2

)
ϵ

.
(3.49)

From Eq.(3.46) one obtains
(
A+

ϵ

)′
=

(
−
√
r2 + ϵ2 − 2m

r

)′

= − 1√
r2 + ϵ2

+

√
r2 + ϵ2 − 2m

r2(
A+

ϵ

)′′
=

r

(r2 + ϵ2)3/2
− 2

√
r2 + ϵ2 − 2m

r3
+

1

r
√
r2 + ϵ2

(3.50)

From Eq.(3.46) using Eq.(A.5) one obtains

(R (ϵ))ϵ =

(
−4A′

ϵ

r
+

2AϵCϵ

r2
−A′′

ϵ

)
ϵ

=

−4

r

(
− 1√

r2 + ϵ2
+

√
r2 + ϵ2 − 2m

r2

)
ϵ

+
2

r2
−

−

(
r

(r2 + ϵ2)3/2
− 2

√
r2 + ϵ2 − 2m

r3
+

1

r
√
r2 + ϵ2

)
ϵ

.

(3.51)

From Eq.(3.51) for r = 2m one obtains

(R (ϵ))ϵ =
6

(2m)2
− 1

(2m)2
+

1

(2m)3
=

1

(2m)3
+

5

(2m)2
(3.52)

Remark 3.2.1. Note that curvature scalar (R (ϵ))ϵ again nonzero but nonsingular.

Let us introduce now the general metric which has the form [11]:{
ds2 = −A (r) (dx0)2 − 2D (r) dx0dr + (B (r) + C (r) (dr)2

+B (r) r2
[
(dθ)2 + sin2 θ(dϕ)2

]
,

(3.53)

Where

A (r) = Ω2

(
1− a

K (r)

)
, B (r) =

K2 (r)

ρ2 (r)
,

C (r) =

(
1− a

K (r)

)−1

(K′ (r))2 − K2 (r)

ρ2 (r)
−
(
1− a

K (r)

)
(f ′)2 ,

D (r) = Ω

(
1− a

K (r)

)
f ′,K′ (r) , dK (r) /dr, f ′ (r) , df (r) /dr,

K (r) = ρ (r)− |a| ,
a < 0.

(3.54)
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Remark 3.2.2. Note that the coordinates t = x0/c and r are time and space coordinates,
respectively, only if

1− a

K
> 0 ,

(
1− a

K

)−1

(K′)2 −
(
1− a

K

)
(f ′)2 > 0 . (3.55)

In the Cartesian coordinate system {xµ;µ = 0, 1, 2, 3} with

x1 = r cosϕ sin θ, x2 = r sinϕ sin θ, x3 = r cos θ, (3.56)

The metric (3.53)-(3.55) takes the form

ds2 = gµνdx
µdxν (3.57)

With gµν given by

g00 = −A , g0α = −Dxα

r
, gαβ = Bδαβ + C

xαxβ

r2
. (3.58)

From Eq.(3.54) one obtain

A (r) = Ω2

(
ρ (r)

ρ (r)− |a|

)
, B =

(ρ (r)− |a|)2

ρ2 (r)
,

C (r) =

(
ρ (r)− |a|
ρ (r)

)
− (ρ (r)− |a|)2

ρ2 (r)
−
(

ρ (r)

ρ (r)− |a|

)
(f ′ (r))2 ,

D (r) = Ω

(
ρ (r)

ρ (r)− |a|

)
f ′ (r) , f ′ (r) , df (r) /dr.

(3.59)

Regularizing the function (ρ (r)− |a|)−1 above gorizon (under condition ρ (r)− |a| ≥ 0) such as

ρ (r)− |a| ≥ 0 :

( ρ (r)− |a|)−1 7→ (ρϵ (r)− |a|)−1 =
(√

ρ2 (r) + ϵ2 − |a|
)−1 (3.60)

with ϵ ∈ (0, 1] from Eq.(3.59)-Eq.(3.60) one obtains

A+
ϵ (r) = Ω2

(
ρϵ (r)

ρϵ (r)− |a|

)
, B+

ϵ (r) =
(ρϵ (r)− |a|)2

ρ2ϵ (r)
,

C+
ϵ (r) =

(
ρϵ (r)− |a|
ρϵ (r)

)
− (ρϵ (r)− |a|)2

ρ2ϵ (r)
−
(

ρϵ (r)

ρϵ (r)− |a|

)
(f ′ (r))2 ,

D+
ϵ (r) = Ω

(
ρϵ (r)

ρϵ (r)− |a|

)
f ′ (r) , f ′ (r) , df (r) /dr.

(3.61)

Regularizing the function (|a| − ρ (r))−1 below gorizon (under condition |a| − ρ (r) ≥ 0) such as

|a| − ρ (r) ≥ 0 :

(|a| − ρ (r))−1 7→ (|a| − ρϵ (r)) =
(
|a| −

√
r2 + ϵ2

)−1 (3.62)

with ϵ ∈ (0, 1] from Eq.(3.59),Eq.(3.62) one obtains

A−
ϵ (r) = −Ω2

(
ρϵ (r)

|a| − ρϵ (r)

)
, B−

ϵ (r) =
(|a| − ρϵ (r))

2

ρ2ϵ (r)
,

C−
ϵ (r) = −

(
|a| − ρϵ (r)

ρϵ (r)

)
− (|a| − ρϵ (r))

2

ρ2ϵ (r)
+

(
ρϵ (r)

|a| − ρϵ (r)

)
(f ′ (r))2,

D−
ϵ (r) = −Ω

(
ρϵ (r)

|a| − ρϵ (r)

)
f ′ (r) , f ′ (r) , df (r) /dr.

(3.63)
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Remark 3.2.3. Finally the metric (3.57) becomes the Colombeau object of the form(
ds2ϵ
)
ϵ
=
(
g±µν (ϵ) dx

µdxν
)
ϵ

(3.64)

with gµν (ϵ) given by

g±00 (ϵ) = −A±
ϵ (r) , g±0α (ϵ) = −D±

ϵ (r)
xα

r
,

g±αβ (ϵ) = B±
ϵ (r) δαβ + C±

ϵ (r)
xαxβ

r2
.

(3.65)

Using now Eq. A2 one obtains that the Colombeau curvature scalars
(
R± (ϵ)

)
ϵ
in terms of

Colombeau generalized functions
(
A±

ϵ (r)
)
ϵ
,
(
B±

ϵ (r)
)
ϵ
,
(
C±

ϵ (r)
)
ϵ
,
(
D±

ϵ (r)
)
ϵ
is expressed as

(
R+ (ϵ)

)
ϵ
=

(
r2 + ϵ2(√

r2 + ϵ2 − |a|
)2
[

9aϵ2

(r2 + ϵ2)
5
2

− 2aϵ2

r2 (r2 + ϵ2)
3
2

])
ϵ(

R− (ϵ)
)
ϵ
= −

(
r2 + ϵ2(√

r2 + ϵ2 − |a|
)2
[

9aϵ2

(r2 + ϵ2)
5
2

− 2aϵ2

r2 (r2 + ϵ2)
3
2

])
ϵ

(3.66)

Remark 3.2.4. Note that (i) on horizon r = a Colombeau scalars
(
R± (ϵ)

)
ϵ
well defined and

becomes to infinite large Colombeau generalized numbers

(
R+ (ϵ)

)
ϵ
=(

a2 + ϵ2(√
a2 + ϵ2 − |a|

)2
[

9aϵ2

(a2 + ϵ2)
5
2

− 2aϵ2

a2 (a2 + ϵ2)
3
2

])
ϵ

= 7a−2
(
ϵ−2
)
ϵ
∈ R̃,(

R− (ϵ)
)
ϵ
=

−

(
a2 + ϵ2(√

a2 + ϵ2 − |a|
)2
[

9aϵ2

(a2 + ϵ2)
5
2

− 2aϵ2

r2 (r2 + ϵ2)
3
2

])
ϵ

= −7a−2
(
ϵ−2
)
ϵ
∈ R̃

(3.67)

(ii) for r ̸= a Colombeau scalars
(
R± (ϵ)

)
ϵ
well defined and becomes to infinite small Colombeau

generalized numbers
(
R± (ϵ)

)
ϵ
≈ ±

(
ϵ2
)
ϵ
.

Using now Eq. A2 one obtains that the Colombeau scalars
(
R±µν (ϵ)R±

µν (ϵ)
)
ϵ
in terms of Colombeau

generalized functions
(
A±

ϵ (r)
)
ϵ
,
(
B±

ϵ (r)
)
ϵ
,
(
C±

ϵ (r)
)
ϵ
,
(
D±

ϵ (r)
)
ϵ
is expressed as

(
R±µν (ϵ)R±

µν (ϵ)
)
ϵ
=

±

( (
r2 + ϵ2

)2(√
r2 + ϵ2 − |a|

)4
{[

5

2

[
3aϵ2

(r2 + ϵ2)
5
2

]2
− 2aϵ2

r2 (r2 + ϵ2)
3
2

]
+

2

[
3aϵ2

(r2 + ϵ2)
5
2

+
aϵ2

r2 (r2 + ϵ2)
3
2

]2})
ϵ

(3.68)

Remark 3.2.5. Note that (i) on horizon r = a Colombeau scalars
(
R±µν (ϵ)R±

µν (ϵ)
)
ϵ
well

defined and becomes to infinite large Colombeau generalized numbers, (ii) for r ̸= a Colombeau
scalars

(
R± (ϵ)

)
ϵ
well defined and becomes to infinite small Colombeau generalized numbers.

Using now Eq. A2 one obtains that the Colombeau scalars
(
R±ρσµν (ϵ)R±

ρσµν (ϵ)
)
ϵ
in terms of

Colombeau generalized functions
(
A±

ϵ (r)
)
ϵ
,
(
B±

ϵ (r)
)
ϵ
,
(
C±

ϵ (r)
)
ϵ
,
(
D±

ϵ (r)
)
ϵ
is expressed as
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(
R±ρσµν (ϵ)R±

ρσµν (ϵ)
)
ϵ
=

(
12a2(√

r2 + ϵ2 − |a|
)6
[
1 +

aϵ2

(r2 + ϵ2)
3
2

]2
∓

∓ 4a2(√
r2 + ϵ2 − |a|

)5
[
1 +

aϵ2

(r2 + ϵ2)
3
2

]2 [
2ϵ2

r2 (r2 + ϵ2)
+

9ϵ2

(r2 + ϵ2)
5
2

]
+

a2(√
r2 + ϵ2 − |a|

)4 [ 4ϵ4

r4 (r2 + ϵ2)
+

81ϵ4

(r2 + ϵ2)3

]
.

(3.69)

Remark 3.2.6. Note that (i) on horizon r = a Colombeau scalars
(
R±ρσµν (ϵ)R±

ρσµν (ϵ)
)
ϵ
well

defined and becomes to infinite large Colombeau generalized numbers, (ii) for r ̸= a Colombeau
scalars finite(

R±ρσµν (ϵ)R±
ρσµν (ϵ)

)
ϵ
=

12a2

(r2 − |a|)6
(3.70)

and tends to zero in the limit r → ∞.

Remark 3.2.7. Note that under generalized transformatios such as

dt =

(
d

[√
r2 + ϵ2 − 2m

r

]
v+ϵ

)
ϵ

+

(√
r2 + ϵ2 − 2m

r
dv+ϵ

)
ϵ

, (3.71)

and

dt =

(
d

[
2m−

√
r2 + ϵ2

r

]
v−ϵ

)
ϵ

+

(
2m−

√
r2 + ϵ2

r
dv−ϵ

)
ϵ

, (3.72)

The metric given by Eq.(3.61)-Eq.(3.64) becomes to Colombeau metric of the form{
ds±2

ε = ∓A± (r, ε) (dv±ϵ )2 − 2v±ϵ D
±
2 (r, ε) dv±ϵ dr +

[
B± (r, ε) + C±

1

(
v±ϵ , r, ε

)]
(dr)2+

+B± (r, ε) r2
[
(dθ)2 + sin2 θ(dϕ)2

]
.

(3.73)

4 Quantum Scalar Field in Curved Distributional
Space-time

4.1 Canonical Quantization in Curved Distributional Space-time

Much of formalism can be explained with Colombeau generalized scalar field.The basic concepts
and methods extend straightforwardly to distributional tensor and distributional spinor fields. To
being with let’s take a spacetime of arbitrary dimension D, with a metric gµν of signature(+− ...−).
The action for the Colombeau generalized scalar field (φε)ε ∈ G(M) is

(Sε)ε =

(∫
M

dDx
1

2

√
|gε| (gµν

ε ∂µφε∂νφε)−
(
m2 +Rε

)
φ2

ε

)
ε

. (4.1)

The corresponding equation of motion is([
�ε +m2 + ξRε

]
φε

)
ε
, ε ∈ (0, 1] . (4.2)

Here

(�εφε)ε =
(
|gε|−1/2 ∂µ |gε|1/2 gµν

ε ∂µφε

)
ε
. (4.3)
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With } explicit, the mass m should be replaced by m/}.Separating out a time coordinate x0,
xµ = (x0, xi), i = 1, 2, 3 we can write the action as

(Sε)ε =
(∫
dx0Lε

)
ε
, (Lε)ε =

(∫
dD−1xε

)
ε
. (4.4)

The canonical momentum at a time x0 is given by

(πε (x))ε = (δLε/ δ (∂0φε (x)))ε =
(
|hε|1/2 nµ∂µφε (x)

)
ε
, (4.5)

where x labels a point on a surface of constant x0, the x0 argument of (φε)ε is suppressed, nµ is the
unit normal to the surface, and (|hε|)ε is the determinant of the induced spatial metric (hij (ε))ε.
To quantize, the Colombeau generalized field (φε)ε and its conjugate momentum (πε (x))ε are now
promoted to hermitian operators and required to satisfy the canonical commutation relation,([

φε (x) , πε

(
y
)])

ε
= i~δD−1

(
x, y
)
, ε ∈ (0, 1] . (4.6)

Here
∫
dD−1yδD−1

(
x, y
)
f
(
y
)
= f (x) for any scalar function f ∈ D

(
R3
)
, without the use of a

metric volume element. We form now a conserved bracket from two complex Colombeau solutions
to the scalar wave equation (4.2) by

(⟨φε, ϕε⟩)ε =

(∫
Σ

dΣµj
µ
ε

)
ε

, ε ∈ [0, 1] , (4.7)

where

(jµε (φε, ϕε))ε = (i/~)
(
|gε|1/2 gµν

ε

(
φε∂νϕε − φε∂νϕε

))
ε
. (4.8)

This bracket is called the generalized Klein-Gordon inner product, and (⟨ϕε, ϕε⟩)ε the generalized
Klein Gordon norm of (φε)ε . The generalized current density (jµε (φε, ϕε))ε is divergenceless,i.e.
(∂µj

µ
ε (φε, ϕε))ε = 0 when the Colombeau generalized functions (φε)ε and (ϕε)ε satisfy the KG

equation (4.2), hence the value of the integral in (4.7) is independent of the space-like surface Σ
over which it is evaluated, provided the functions vanish at spatial infinity. The generalized KG
inner product satisfies the relations(

⟨φε, ϕε⟩
)
ε
= −

(⟨
φε, ϕε

⟩)
ε
= (⟨ϕε, φε⟩)ε , ε ∈ [0, 1] . (4.9)

We define now the annihilation operator associated with a complex Colombeau solution (ϕε)ε by
the bracket of (ϕε)ε with the generalized field operator (φε)ε :

(a (ϕε))ε = (⟨ϕε, φε⟩)ε . (4.10)

It follows from the hermiticity of (φε)ε that the hermitian conjugate of (a (ϕε))ε is given by(
a† (ϕε)

)
ε
= −

(
a
(
ϕε

))
ε
. (4.11)

From Eq.(4.5) and CCR (4.6) one obtains([
a (φε) , a

† (ϕε)
])

ε
= (⟨φε, ϕε⟩)ε . (4.12)

Note that from Eq.(4.11) it follows

([a (φε) , a (ϕε)])ε = −
(⟨
φε, ϕε

⟩)
ε
,
([
a† (φε) , a

† (ϕε)
])

ε
= − (⟨φε, ϕε⟩) (4.13)

Note that if (ϕε)ε is a positive norm solution with unit norm and with, then (a (φε))ε and a† (φε)
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satisfy the commutation relation
([
a† (φε) , a (ϕε)

])
ε
= 1. Suppose now that |Ψ⟩ is a normalized

quantum state satisfying (a (ϕε) |Ψ⟩)ε = 1, then for each n, the state |n,Ψ⟩ = ((1/
√
n!)(a (ϕε))

n |Ψ⟩)ε
is a normalized eigenstate of the number operator (N [(ϕε)])ε =

(
a† (φε) a (φε)

)
ε
with eigenvalue n.

The span of all these states defines a Fock space of the distributional (φε)ε- wavepacket “n-particle
excitations” above the state |Ψ⟩ .If we want to construct the full Hilbert space of the field theory in
curved distributional spacetime,how can we proceed? We should find a decomposition of the space
of complex Colombeau solutions to the wave equation (4.2) S into a direct sum of a positive norm
subspace Sp and its complex conjugate Sp, such that all brackets between solutions from the two
subspaces vanish. That is, we must find a direct sum decomposition:

S = Sp⊕Sp (4.14)

Such that

(⟨φε, φε⟩)ε > 0,∀ (φε)ε ∈ Sp (4.15)

and

(⟨φε, ϕε⟩)ε > 0, ∀ (φε)ε , (ϕε)ε ∈ Sp. (4.16)

The condition (4.15) implies that each (φε)ε in Sp can be scaled to define its own harmonic oscillator
sub-albegra. The second condition implies, according to (4.13), that the annihilators and creators
for (φε)ε and (ϕε)ε in the subspace Sp commute amongst themselves:

([a (φε) , a (ϕε)])ε =
([
a† (φε) , a

† (ϕε)
])

ε
= 0. (4.17)

Given such a decompostion a total Hilbert space H for the field theory can be defined as the space
of finite norm sums of possibly infinitely many states of the form(
a† (ϕ1,ε) ...a

† (ϕn,ε) |0⟩
)
ε
, (4.18)

Where |0⟩ is a state such that (a (ϕn,ε) |0⟩)ε = 0 for all (ϕε)ε in Sp. The state |0⟩ , as in classical
case, is called a Fock vacuum and Hilbert space H is called a Fock space. The representation of the
field operator on this Fock space is hermitian and satisfies the canonical commutation relations in
sense of Colombeau generalized function.

4.2 Defining Distributional Outgoing Modes

For illustration we consider the non-rotating, uncharged d-dimensional SAdS BH with a distributional
line element(
ds2ε
)
ε
=
(
−fεdt2 + f −1

ε dr2
)
ε
+ r2dΩ2

d−2, ε ∈ (0, 1] , (4.19)

Where fε ̸= 0, ε ∈ (0, 1] ,

fε=0 = 1 +
r2

L2
− rd−3

0

rd−3
,

(4.20)

Where dΩ2
d−2 is the metric of the (d − 2)-sphere, and the AdS curvature radius squared L2 is

related to the cosmological constant by L2 = −(d− 2)(d− 1)/2Λ. The parameter r0 is proportional
to the mass M of the spacetime: M = (d− 2)Ad−2r

d−3
0 /16π, where Ad−2 = 2π(d−1)/2/Γ[(d− 1)/2].

The distributional Schwarzschild geometry corresponds to L → ∞.The corresponding equation of
motion (4.2) for massless case are
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(∇µ∇µφε)ε =
(d− 2) γ

4 (d− 1)
(Rε)ε ,

(Gε,µν)ε + Λ(gε,µν)ε = 8πG (Tε,µν)ε ,
(Tε,µν)ε ˜δ (x) .

(4.21)

The time-independence and the spherical symmetry of the metric imply the canonical decomposition

(φε (t, r, θ))ε = e−iωt

(
Ψlm,ε (r)Ylm (θ)

r(d−2)/2 + ε

)
ε

, (4.22)

Where Ylm (θ) denotes the d-dimensional scalar spherical harmonics, satisfying

∆Ωd−2Ylm (θ) = −l (l + d− 3)Ylm (θ) , (4.23)

Where∆Ωd−2 the Laplace-Beltrami operator.Substituting the decomposition (4.22) into Eq. (6)
one get a radial wave equation(
f2
ε
d2Ψlm,ε (r)

dr2
+ fεf

′
ε
dΨlm,ε (r)

dr
+
(
ω2 − Vlm,ε (r)

)
Ψlm,ε (r)

)
ε

= 0. (4.24)

We define now a “tortoise” distributional coordinate (r∗ε)ε = (r∗ε (r))ε by the relation(
dr∗ε
dr

)
ε

=
(
f −1
ε (r)

)
ε
. (4.25)

By using a “tortoise” distributional coordinate the Eq.(4.24) can be written in the form of a
Schrödinger equation with the potential Vlm,ε (r)(

dΨε (r
∗
ε)

dr∗ε

)
ε

+
((
ω2 − Vε (r

∗
ε)
)
Ψε (r

∗
ε)
)
ε
= 0. (4.26)

Note that the tortoise distributional coordinate (r∗ε (r))ε becomes to infinite Colombeau constant[
(r∗ε (r+))ε

]
=
[
(ln ε)ε

]
at the horizon, i.e. as r → r+, but its behavior at infinity is strongly

dependent on the cosmological constant:
[
(r∗ε (r+))ε

]
= +∞ for asymptotically-flat spacetimes,

and
[
(r∗ε (r+))ε

]
= finite Colombeau constant for the SAdSd geometry.

4.2.1 Boundary Conditions at the Horizon of the Distributional SAdS
BH Geometry

For most spacetimes of interest the potential (Vε (r
∗
ε (r)))ε = 0 as r = r+, i.e.

(|r∗ε (r)|)ε = +∞, and in this limit solutions to the wave equation (4.26) behave as

(Ψε (t, r
∗
ε))ε ˜ (exp [−iω (t± r∗ε (r))])ε , as r˜r+. (4.27)

Note that classically nothing should leave the horizon and thus classically only ingoing modes
(corresponding to a plus sign) should be present,i.e.

(Ψε (t, r
∗
ε))ε ˜ (exp [−iω (t+ r∗ε (r))])ε , as r˜r+. (4.28)

Note that for non-extremal spacetimes, the tortoise coordinate tends to

(r∗ε (r))ε =
(∫
f −1
ε (r) dr

)
ε
˜
[
(f ′

ε (r+))ε
]−1

(ln (|r − r+|+ ε))ε as r˜r+, (4.29)
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Where (f ′
ε (r+))ε > 0. Therefore near the horizon, outgoing modes behave as

{
(exp [−iω (t− r∗ε (r))])ε =

{
(exp [−iωυ∗

ε (t, r)])ε
}
(exp [−2iωr∗ε (r)])ε =

=
{
(exp [−iωυ∗

ε (t, r)])ε
}{(

[|r − r+|+ ε]2iω/f ′
ε (r+)

)
ε

}
,

(4.30)

Where (υ∗
ε (t, r))ε = t + (r∗ε (r))ε . Now Eq. (4.30) shows that outgoing modes is Colombeau

generalized function of class G(R).

5 Energy-Momentum Tensor Calculation by using
Colombeau Distributional Modes

We shall assume now any distributional spacetime which is conformally static in both the asymptotic
past and future. We will be considered distributional spacetime which is conformally flat in the
asymptotic past,i.e.

{
ds2ε ∼

(
f2
ε,in(−dt2 + dx⃗2)

)
ε

asymp. past

ds2ε ∼
(
f2
ε,out(−dt2 + hε,ijdx

idxj)
)
ε
, asymp. future

(5.1)

Where ε ∈ (0, 1] (fε,J)ε = (fε,J(t, x⃗))ε > 0,J ∈ {in, out}, are smooth functions and hε,ij =
hε,ij(x⃗), i, j = 1, 2, 3, are the components of an arbitrary distributional spatial metric. Note that
we use the same labels t and x⃗ = (x1, x2, x3) for coordinates in the asymptotic past and future only
for simplicity; they are obviously defined on non-intersecting regions of the spacetime.) In each of

these asymptotic regions the distributional field (Φε)ε can be written as (Φε)ε =
(
Φ̃ε/fε,J

)
ε
, where(

Φ̃ε

)
ε
satisfies

−
(
∂2

∂t2
Φ̃

)
ε

= −
(
∆ε,JΦ̃ε

)
ε
+
(
Vε,JΦ̃ε

)
ε
, (5.2)

Where (∆ε,in)ε is the flat Laplace operator, (∆ε,out)ε is the Laplace operator associated with the
spatial metric (hεij)ε, and the effective potential VJ is given by


(Vε,J)ε =

(
∆εJfε,J
fε,J

)
ε

+
(
f 2
ε,J(m

2 + ξRε)
)
ε
=

(1− 6ξ)

(
∆εJfε,J
fε,J

)
ε

+m2
(
f 2
ε,J

)
ε
+ ξ (Kε,J)ε ,

(5.3)

With (Kε,in)ε = 0, Kε,out = Kε,out(x⃗) the scalar curvature associated with the spatial distributional
metric (hε,ij)ε.

We assume now this condition: (i) the massless (m = 0) field with arbitrary coupling ξ in spacetimes
which are asymptotically flat in the past and asymptotically static in the future,i.e. fin = 1 and
fε,out = fε,out(x⃗), as those describing the formation of a static BH from matter initially scattered
throughout space, and (ii) the massless, conformally coupled field (m = 0 and ξ = 1/6). With this

assumptions for the potential, two different sets of positive-norm distributional modes,
(
u
(+)

ε,k⃗

)
ε
and
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(
v
(+)
ε,α

)
ε
, can be naturally defined by the requirement that they are the solutions of Eq.(5.2) which

satisfy the asymptotic conditions:

(
u
(+)

ε,k⃗

)
ε

≍
past
(16π3ωk⃗)

−1/2 e−i(ω
k⃗
t−k⃗·x⃗) (f −1

ε,in

)
ε

(5.4)

and(
v
(+)
ε,α

)
ε

≍
future

(2ϖα)
−1/2e−iϖαt

(
f −1
ε,out Fε,α(x⃗)

)
ε
, (5.5)

Where k⃗ ∈ R3, ωk⃗ := ∥k⃗∥, ϖα > 0, and (Fε,α(x⃗))ε are Colombeau solutions of

([−∆ε,out + Vε,out(x⃗)]Fε,α(x⃗))ε = ϖ2
α (Fε,α(x⃗))ε ,

(Fε,α(x⃗))ε
∣∣
ε=0

∈ C∞ (R3
) (5.6)

Satisfying the normalization

(∫
Σout

d3x
√
h Fε,α(x⃗)

∗Fε,β(x⃗)
)
ε
= δα,β (5.7)

On a Cauchy surface Σout in the asymptotic future. Note that each Fε,α, ε ∈ [0, 1] can be chosen to
be real without loss of generality. There are reasonable situations where the distributional modes(
v
(+)
ε,α

)
ε
, given in Eq. (5.5), together with distributional modes

(
v
(−)
ε,α

)
ε
fail to form a complete

set of distributional normal modes. This happens whenever the operator ([−∆ε,out + Vε,out(x⃗)])ε
in Eq. (5.2) happens to possess normalizable i.e., satisfying Eq. (5.7) eigenfunctions with negative

eigenvalues, ϖ2
α = −Ω2

α < 0. In this case, additional positive-norm modes
(
w

(+)
ε,α

)
ε
with the

asymptotic behavior

(
w

(+)
ε,α

)
ε

≍
future

(
eΩαt−iπ/12 + e−Ωαt+iπ/12

)( Fε,α(x⃗)√
2Ωα fε,out(x⃗)

)
ε

(5.8)

and their complex conjugates
(
w

(−)
ε,α

)
ε
are necessary in order to expand an arbitrary Colombeau

solution of Eq.(5.1) As a direct consequence, at least some of the in-modes
(
u
(±)

ε,k⃗

)
ε
(typically those

with low ωk⃗) eventually undergo an exponential growth.This asymptotic divergence is reflected on
the unbounded increase of the vacuum fluctuations,

(⟨
Φ2

ε(x⃗)
⟩)

ε
≍

future

κ e2Ω̄t

2Ω̄

[(
F̄ε(x⃗)

fε,out(x⃗)

)
ε

]2 [
1 +O(e−ϵt)

]
, (5.9)

Where F̄ (x⃗) is the eigenfunction of Eq. (5.6) associated with the lowest negative eigenvalue allowed,
ϖ2

α = −Ω̄2, ϵ is some positive constant, and κ is a dimensionless constant (typically of order unity)
whose exact value depends globally on the spacetime structure (since it crucially depends on the

projection of each
(
u
(±)

ε,k⃗

)
ε
on the mode

(
w

(±)
ε,α

)
ε
whose ϖ2

α = −Ω̄2; κ also depends on the initial

state, here assumed to be the vacuum |0⟩in). As one would expect, these wild quantum fluctuations
give an important contribution to the vacuum energy stored in the field. In fact, the expectation
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value of its distributional energy-momentum tensor, (⟨Tε,µν(x⃗)⟩)ε , ε ∈ (0, 1] , in the asymptotic
future is found to be dominated by this exponential growth:


(⟨Tε,00(x⃗)⟩)ε ≍

future

{(⟨
Φ2

ε(x⃗)
⟩)

ε

}{ (1− 4ξ)

2

(
Ω̄2 +

(DF̄ε)
2

F̄ 2
+m2f 2

ε + ξKε

)
ε

+(1− 6ξ)

(
2ξD2fε
fε

+
(Dfε)

2

2f 2
ε

− DifεD
iF̄ε

fεF̄ε

)
ε

+O(e−ϵt)

}
,

(5.10)


(⟨Tε,0i(x⃗)⟩)ε ≍

future{(⟨
Φ2

ε(x⃗)
⟩)

ε

}{
(1− 4ξ)

(
Ω̄DiF̄ε

F̄ε

)
ε

− (1− 6ξ)

(
Ω̄Difε
fε

)
ε

+O(e−ϵt)

}
,

(5.11)

(⟨Tε,ij(x⃗)⟩)ε ≍
future{(⟨

Φ2
ε(x⃗)

⟩)
ε

}{
(1− 2ξ)

(
DiF̄εDjF̄ε

F̄ 2
ε

)
ε

− 2ξ

(
DiDjF̄ε

Fε

)
ε

+ ξ
(
R̃ε,ij

)
ε

+
(1− 4ξ)hij

2

(
Ω̄2 −

(
(DF̄ε)

2

F̄ 2
ε

−m2f2
ε − ξKε

)
ε

)
+(1− 6ξ)

[(
DifεDjfε

f2
ε

− DifDjF̄

fεF̄ε
− DjfεDiF̄ε

fεF̄ε

)
ε

+

+(hε,ij)ε

(
2ξD2fε
fε

− (Dfε)
2

2f2
ε

+
DkfεD

kF̄ε

fεF̄ε

)
ε

]
+O(e−ϵt),

(5.12)

Where Di is the derivative operator compatible with the distributional metric (hε,ij)ε (so that

∆out = D2),
(
R̃ε,ij

)
ε
is the associated distributional Ricci tensor so that (Kε,out)ε =

(
hij
ε R̃ε,ij

)
ε
,

and we have omitted the subscript out in (fε,out)ε and (Kε,out)ε for simplicity. The Eqs. (5.10-5.12),
together with Eq.(5.9), imply that on time scales determined by Ω̄−1, the vacuum fluctuations of the
field should overcome any other classical source of energy, therefore taking control over the evolution
of the background geometry through the semiclassical Einstein equations (in which (⟨Tε,µν⟩)ε is
included as a source term for the distributional Einstein tensor). We are then confronted with a
startling situation where the quantum fluctuations of a field, whose energy is usually negligible in
comparison with classical energy components, are forced by the distributional background spacetime
to play a dominant role. We are still left with the task of showing that there exist indeed
well-behaved distributional background spacetimes in which the operator

[
(−∆ε,out + Vε,out(x⃗))ε

]
possesses negative eigenvalues ϖ2

α < 0,condition on which depends Eq(5.9). Experience from
quantum mechanics tells us that this typically occurs when (Vε,out)ε gets sufficiently negative over a
sufficiently large region. It is easy to see from Eq. (5.3) that, except for very special geometries (as
the flat one), one can generally find appropriate values of ξ ∈ R which make (Vε,out)ε as negative as
would be necessary in order to guarantee the existence of negative eigenvalues. For distributional
BH spacetime using Eq.(5.9)-Eq.(5.12) one obtains

(⟨
Φ2

ε(r)
⟩)

ε
≍

future

κ e2Ω̄t

2Ω̄

( r1/2F̄ε(r)(
(r − r+)

2 + ε2
)1/4

)
ε

2

, r → r+ (5.13)
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(⟨Tε,00(r⟩)ε ≍
future{(⟨

Φ2
ε(r)

⟩)
ε

}{ (1− 4ξ)

2

(
Ω̄2 +

(DF̄ε (r+))
2

F̄ 2 (r+)
+m2

(
(r − r+)

2 + ε2
)1/2

+ ξKε

)
ε

+(1− 6ξ)

(
− 2ξD2fε (r)(

(r − r+)
2 + ε2

)1/4 +
(Dfε (r))

2(
(r − r+)

2 + ε2
)1/4 − Difε (r)D

iF̄ε(
(r − r+)

2 + ε2
)1/4

F̄ε

)
ε

 ,

r → r+, fε (r) =
(
(r − r+)

2 + ε2
)1/4

(5.14)



(⟨Tε,0i(r)⟩)ε ≍
future{(⟨

Φ2
ε(r)

⟩)
ε

}(1− 4ξ)

(
Ω̄DiF̄ε (r+)

F̄ε (r+)

)
ε

− (1− 6ξ)

(
Ω̄Difε (r)(

(r − r+)
2 + ε2

)1/4
)

ε

 ,

r → r+, fε (r) =
(
(r − r+)

2 + ε2
)1/4

(5.15)

(⟨
Tε,ij(r)

⟩)
ε

≍
future{(⟨

Φ2
ε(r)

⟩)
ε

}{
(1 − 2ξ)

(
DiF̄εDj F̄ε

F̄2
ε

)
ε

− 2ξ

(
DiDj F̄ε

Fε

)
ε

+ ξ
(
R̃ε,ij

)
ε

+
(1 − 4ξ)hij

2

(
Ω̄2 −

(
(DF̄ε

(
r+
)
)2

F̄2
ε

(
r+
) − m2

((
r − r+

)2 + ε2
)1/2

− ξKε

)
ε

)

+(1 − 6ξ)


 DifεDjfε((

r − r+
)2 + ε2

)1/2 −
DifDj F̄((

r − r+
)2 + ε2

)1/4
F̄ε

−
DjfεDiF̄ε((

r − r+
)2 + ε2

)1/2
F̄ε


ε

+

+
(
hε,ij

)
ε

 2ξD2fε((
r − r+

)2 + ε2
)1/4 −

(Dfε)
2

2
((

r − r+
)2 + ε2

)1/2 +
DkfεD

kF̄ε((
r − r+

)2 + ε2
)1/4

F̄ε


ε

 ,

r → r+.

(5.16)

Remark 5.1. Note that in spite of the unbounded growth at r → r+ in Eq.(5.13)-Eq.(5.16),
(⟨Tε,µν⟩)ε is covariantly conserved:

(
∇µ

⟨
Tµ
ε,ν

⟩)
ε
= 0. In the static case (fε,out)ε = (fε,out(x⃗))ε, for

instance for distributional BH geometry, this implies that the total vacuum energy is kept constant,
although it continuously flows from spatial regions where its density is negative to spatial regions
where it is positive.

Remark 5.2. Note that the singular behavior at r → r+ appearing in Eq.(5.13)-Eq.(5.16) leads
only to asymptotic divergences, i.e. all the quantities remain finite everywhere except horizon.

6 Distributional SAdS BH Space-time-induced Vacuum
Dominance

6.1 Adiabatic Expansion of Green Functions

Using equation of motion Eq.(5.2) one can obtain corresponding distributional generalization of the
canonical Green functions equations. In particular for the distributional propagator

iG±
ε (x, x′) =

⟨
0
∣∣T (φ±

ε (x)φ±
ε (x′)

)∣∣ 0⟩ , ε ∈ (0, 1] (6.1)

One obtains directly([
�ε,x +m2 + ξR± (x, ε)

]
G±

ε (x, x′)
)
ε
= −

[
−g± (x, ε)

]−1/2
δn (x− x′) . (6.2)

Special interest attaches to the short distance behaviour of the Green functions, such as
(
G±

ε (x, x′)
)
ε

in the limit ∥x− x′∥ → 0 with a fixed ε ∈ (0, 1] . We obtan now an adiabatic expansion of
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(
G±

ε (x, x′)
)
ε
.Introducing Riemann normal coordinates yµ for the point x, with origin at the point

x′ we have expanding(
g±µυ (x, ε)

)
ε
= ηµυ +

1

3

[(
R±

µαυβ (ε)
)
ε

]
yαyβ − 1

6

[(
R±

µαυβ;γ (ε)
)
ε

]
yαyβyγ+

+

[
1

20

(
R±

µαυβ;γδ (ε)
)
ε
+

2

45

[(
R±

αµβλ (ε)
)
ε

] (
R±λ

γvδ (ε)
)
ε

]
yαyβyγyδ + ...

(6.3)

Where ηµυ is the Minkowski metric tensor, and the coefficients are all evaluated at y = 0. Defining
now(

L ±
ε (x, x′)

)
ε
=
[((

−g±µυ (x, ε)
)1/4)

ε

] (
G±

ε (x, x′)
)
ε

(6.4)

and its Colombeau-Fourier transform by(
L ±

ε (x, x′)
)
ε
= (2π)−n (∫ dnke−ikyL ±

ε (k)
)
ε

(6.5)

Where ky = ηαβkαyβ , one can work in a sort of localized momentum space. Expanding (6.2) in
normal coordinates and converting to k-space,

(
L ±

ε (k)
)
ε
can readily be solved by iteration to any

adiabatic order. The result to adiabatic order four (i.e., four derivatives of the metric) is

(
L±

ε (k)
)
ε

=
(
k2 − m2

)−1
−
(

1

6
− ξ

)(
k2 − m2

)−2 (
R± (ε)

)
ε
+

+
i

2

(
1

6
− ξ

)
∂α
(
k2 − m2

)−2 (
R±

;α (ε)
)
ε
−

−
1

3

[(
a±
αβ

(ε)
)
ε

]
∂α∂β

(
k2 − m2

)−2
+

[(
1

6
− ξ

)2 (
R±2 (ε)

)
ε
+

2

3

(
a±λ

λ
(ε)
)
ε

] (
k2 − m2

)−3

(6.6)

Where ∂α = ∂/∂kα,(
a±αβ (ε)

)
ε
≍
(
1

2
− ξ

)(
R±

;αβ (ε)
)
ε
+

1

120

(
R±

;αβ (ε)
)
ε
− 1

140

(
R± λ

αβ;λ (ε)
)
ε
−

− 1

30

[(
R± λ

α (ε)
)
ε

] (
R±

λβ (ε)
)
ε
+

1

60

[(
R±κ λ

α β (ε)
)
ε

] (
R±

κλ (ε)
)
ε
+

+
1

60

[(
R± λµκ

α (ε)
)
ε

] (
R±

λµκβ (ε)
)
ε
,

(6.7)

and we are using the symbol ≍ to indicate that this is an asymptotic expansion. One ensures that
Eq.(6.5) represents a time-ordered product by performing the k0 integral along the appropriate
contour in Fig.4. This is equivalent to replacing m2 by m2 − iϵ. Similarly, the adiabatic expansions
of other Green functions can be obtained by using the other contours in Fig.3. Substituting Eq.(6.6)
into Eq.(6.5) gives


(

L±
ε

(
x, x′))

ε
= (2π)−n ×(∫

dnke−iky

[
a±
0

(
x, x′; ε

)
+ a±

1

(
x, x′; ε

) (
−

∂

∂m2

)
+ a±

2

(
x, x′; ε

) ( ∂

∂m2

)2
] (

k2 − m2
)−1

)
ε

(6.8)

where(
a±0 (x, x′; ε)

)
ε
= 1 (6.9)

and, to adiabatic order 4,

(
a±1 (x, x′; ε)

)
ε
=(

1

6
− ξ

)(
R± (ε)

)
ε
− i

2

(
1

6
− ξ

)[(
R±

;α (ε)
)
ε

]
yα − 1

3

[(
a±αβ (ε)

)
ε

]
yαyβ(

a±2 (x, x′; ε)
)
ε
=

1

2

(
1

6
− ξ

)(
R±2 (ε)

)
ε
+

1

3

(
a±λ

λ (ε)
)
ε

(6.10)
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Fig. 4. The contour in the complex k0plane C
to be used in the evaluation of the integral

giving L +. The cross indicates the pole at k0 =
(
|k|2 +m2

)1/2
.

With all geometric quantities on the right-hand side of Eq.(6.10) evaluated at x′.

(
k2 −m2 + iϵ

)−1
= −i

∞∫
0

dseis(k
2−m2+iϵ) (6.11)

in Eq.(6.8), then the dnk integration may be interchanged with the ds integration, and performed
explicitly to yield (dropping the iϵ)

(
L ±

ε (x, x′)
)
ε
= −i (4π)−n/2

(
∞∫
0

ids (is)−n/2 exp

[
−im2s+

σ (x, x′)

2is

]±
ε

(x, x′; is)

)
ε

σ (x, x′) =
1

2
yαy

α.

(6.12)

The function σ (x, x′) which is one-half of the square of the proper distance between x and x′, while
the function (Lε (x, x

′; is))ε has the following asymptotic adiabatic expansion(
L ±

ε (x, x′; is)
)
ε
≍
(
a±0 (x, x′; ε)

)
ε
+ is

(
a±1 (x, x′; ε)

)
ε
+ (is)2

(
a±2 (x, x′; ε)

)
ε
+ ... (6.13)

Using Eq.(6.4), equation (6.12) gives a representation of
(
G±

ε (x, x′)
)
ε
:


(
G±

ε

(
x, x′))

ε
=

−i (4π)−n/2

([(
∆

1/2
±

(
x, x′; ε

))
ε

]∞∫
0

ids (is)−n/2 exp

[
−im2s +

σ
(
x, x′)
2is

]
Fε

(
x, x′; is

))
ε

(6.14)

Where (∆± (x, x′; ε))ε is the distributional Van Vleck determinant

(∆± (x, x′; ε))ε = −det [∂µ∂νσ (x, x′)]
([
g± (x, ε) g± (x′, ε)

]−1/2
)
ε

(6.15)

In the normal coordinates about x′ that we are currently using, (∆± (x, x′; ε))ε reduces to
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([
−g± (x, ε)

]−1/2
)
ε
.The full asymptotic expansion of

(
F±

ε (x, x′; is)
)
ε
to all adiabatic orders are

(
F±

ε (x, x′; is)
)
ε
≍∞

j=0 (is)j
(
a±2 (x, x′; ε)

)
ε

(6.16)

With
(
a±0 (x, x′; ε)

)
ε
= 1, the other

(
a±j (x, x′; ε)

)
ε
being given by canonical recursion relations

which enable their adiabatic expansions to be obtained. The expansions (6.13) and (6.16) are,
however, only asymptotic approximations in the limit of large adiabatic parameter T.

If (6.16) is substituted into (6.14) the integral can be performed to give the adiabatic expansion of
the Feynman propagator in coordinate space:

(
G±

ε (x, x′)
)
ε
≍ − (4πi)−n/2

(
∆

1/2
± (x, x′; ε)

∞
j=0 a

±
j (x, x′; ε)

(
− ∂

∂m2

)j

×

×

[(
−2m2

σ

)n−2
4

H
(2)

(n−2)/2

((
2m2σ

) 1
2

)])
ε

(6.17)

In which, strictly, a small imaginary part iϵ should be subtracted from σ. Since we have not imposed
global boundary conditions on the distributional Green function Colombeau solution of (6.2), the
expansion (6.17) does not determine the particular vacuum state in (6.1). In particular, the ”iϵ” in
the expansion of

(
G±

ε (x, x′)
)
ε
only ensures that (6.17) represents the expectation value, in some set

of states, of a time-ordered product of fields. Under some circumstances the use of ”iϵ” in the exact
representation (6.14) may give additional information concerning the global nature of the states

6.2 Effective Action for the Quantum Matter Fields in Curved
Distributional Space-time

As in classical case one can obtain Colombeau generalized quantity (Wε)ε , called the effective
action for the quantum matter fields in curved distributional spcetime, which, when functionally
differentiated, yields(

2

(−g (ε))
1
2

δWε

δgµν (ε)

)
ε

= (⟨Tµν (ε)⟩)ε (6.18)

To discover the structure of (Wε)ε, let us return to first principles, recalling the Colombeau path-
integral quantization procedure such as developed in []. Our notation will imply a treatment for
the scalar field, but the formal manipulations are identical for fields of higher spins. Note that the
generating functional

(Zε [Jε])ε =
(∫
D [φε] exp

{
iSm (ε) + i

∫
Jε (x)φε (x) d

nx
})

ε
(6.19)

was interpreted physically as the vacuum persistence amplitude (⟨outε, 0|0, inε⟩)ε . The presence of
the external distributional current density (Jε)ε can cause the initial vacuum state ( |0, inε⟩)ε to be
unstable, i.e., it can bring about the production of particles. In flat space, in the limit (Jε)ε = 0,
no particles are produced, and one have the normalization condition

(Zε [0])ε =
(∫
D [φε] exp

{
iSm (ε) + i

∫
Jε (x)φε (x) d

nx
})

ε

∣∣
J=0

= (⟨0ε|0ε⟩)ε = 1. (6.20)

However, when distributional spacetime is curved, we have seen that, in general,

(|0,outε⟩)ε ̸= (|0, inε⟩)ε , (6.21)

even in the absence of source currents J. Hence (6.19) will no longer apply. Path-integral quantization
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still works in curved distributional spacetime; one simply treats (Sm (ε))ε in (6.19) as the curved
distributional spacetime matter action, and (Jε (x))ε as a current density (a scalar density in the
case of scalar fields). One can thus set Jε = 0 in (6.19) and examine the variation of (Zε[0])ε :

(δZε[0])ε = i
∫
D [φε] δSm (ε) exp [iSm (φε; ε)] = i (⟨outε, 0|δSm (ε) |0, inε⟩)ε . (6.22)

Note that(
2

(−g (ε))
1
2

δSm (ε)

δgµν (ε)

)
ε

= (Tµν (ε))ε . (6.23)

From (6.22) and (6.23) one obtains directly(
2

(−g (ε))
1
2

δZε[0]

δgµν (ε)

)
ε

= i (⟨outε, 0|Tµν (ε) |0, inε⟩)ε (6.24)

Noting that the matter action Sm (ε) appears exponentiated in (6.19), one obtains directly

Zε[0] = (exp (iWε))ε (6.25)

and

(exp (Wε))ε = −i (ln ⟨outε, 0|0, inε⟩)ε . (6.26)

Following canonical calculation one obtains(
Z±

ε [0]
)
ε
∝
([

det
(
−G±

ε (x, x′)
)] 1

2

)
ε

(6.27)

Where the proportionality constant is metric-independent and can be ignored. Thus we obtain(
W±

ε

)
ε
= −i

(
lnZ±

ε [0]
)
ε
= − i

2

(
tr
[
ln
(
−Ĝ±

ε

)])
ε
. (6.28)

In(6.28)
(
Ĝ±

ε

)
ε
is to be interpreted as an Colombeau generalized operator which acts on an linear

space ℑ of generalized vectors |x⟩ ,normalized by

(⟨x |x′⟩)ε = δ (x− x′)
([

−g± (x, ε)
]− 1

2

)
ε

(6.29)

in such a way that(
G±

ε (x, x′)
)
ε
=
(
⟨x| Ĝ±

ε |x′⟩
)
ε
. (6.30)

Remark 6.1. Note that the trace tr [] of an Colombeau generalized operator (ℜε)ε which acts on
a linear space ℑ, is defined by

(tr [ℜε])ε =
(∫

dnx
[
−g± (x, ε)

] 1
2 ℜxx;ε

)
ε
=
(∫

dnx
[
−g± (x, ε)

] 1
2 ⟨x| ℜxx;ε |x′⟩

)
ε
. (6.31)

Writing now the Colombeau generalized operator
(
Ĝ±

ε

)
ε
as

(
Ĝ±

ε

)
ε
= −

(±−1
ε

)
ε
= −i

(∞∫
0

ds exp
[
−s±ε

])
ε

, (6.32)
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By Eq.(6.14) one obtains
(
⟨x| exp

[
−s±ε

]
|x′⟩
)
=

i (4π)−n/2
[(

∆
1/2
± (x, x′; ε)

)
ε

]
exp

[
−im2s+

σ (x, x′)

2is

]±
ε

(x, x′; is) (is)−n/2 (6.33)

Now, assuming (ε)ε to have a small negative imaginary part, we obtains(∞∫
Λ

ds (is)−1 i exp
[
−s±ε

])
ε

=
(
Ei
(
−iΛ±

ε

))
ε

(6.34)

Where Ei (x) is the exponential integral function.

Remark 6.2. Note that for x→ 0

Ei (x) = γ + ln (−x) +O (x) (6.35)

Where γ is the Euler’s constant. Substituting now (6.35) into (6.34) and letting Λ → 0 we obtain(
ln
(
−Ĝ±

ε

))
ε
= − (ln (ε))ε =

(∞∫
0

ds exp
[
−s±ε

]
(is)−1

)
ε

, (6.36)

Which is correct up to the addition of a metric-independent infinite large Colombeau constant Ω ∈ R̃
that can be ignored in what follows. Thus, in the generalized De Witt-Schwinger representation
(6.33) or (6.14) we have

(
⟨x| ln

(
−Ĝ±

ε

)
|x′⟩
)
ε
=

(
∞∫

m2

G±
ε

(
x, x′;m2

)
dm2

)
ε

, (6.37)

Where the integral with respect to m2 brings down the extra power of (is)−1 that appears in
Eq.(6.36). Returning now to the expression (6.28) for

(
W±

ε

)
ε
using Eq.(6.37) and Eq.(6.31) we get

(
W±

ε

)
ε
=
i

2

[(∫
dnx

[
−g± (x, ε)

] 1
2

)
ε

](
lim
x→x′

∞∫
m2

G±
ε

(
x, x′;m2

)
dm2

)
ε

(6.38)

Interchanging the order of integration and taking the limit x→ x′ one obtains

(
W±

ε

)
ε
=
i

2

(
∞∫

m2

dm2
∫
dnx

[
−g± (x, ε)

] 1
2 G±

ε

(
x, x;m2

))
ε

. (6.39)

Colombeau quantity
(
W±

ε

)
ε
is colled as the one-loop effective action. In the case of fermion effective

actions, there would be a remaining trace over spinorial indices. From Eq.(6.39) we may define an

effective Lagrangian density
(
L±

ε;eff (x)
)
ε
by

(
W±

ε

)
ε
=
(∫

dnx
[
−g± (x, ε)

] 1
2 L±

ε;eff (x)
)
ε

(6.40)

Whence one get

(
L±

ε (x)
)
ε
=
[
−g± (x, ε)

] 1
2

ε;eff
± (x) =

i

2

(
lim
x→x′

∞∫
m2

dm2G±
ε

(
x, x′;m2

))
ε

. (6.41)
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6.3 Stress-tensor Renormalization

Note that
(
L±

ε (x)
)
ε
diverges at the lower end of the s integral because the σ/2s damping factor

in the exponent vanishes in the limit x → x′. (Convergence at the upper end is guaranteed by the
−iϵ that is implicitly added to m2 in the De Witt-Schwinger representation of

(
L±

ε (x)
)
ε
. In four

dimensions, the potentially divergent terms in the DeWitt- Schwinger expansion of
(
L±

ε (x)
)
ε
are


(
L±

ε;div (x)
)
ε
=

−
(
32π2

)−1
(

lim
x→x′

[(
∆

1/2
± (x, x′; ε)

)
ε

] ∞∫
0

ds

s3
exp

[
−im2s+

σ (x, x′)

2is

]
×

×
[
a±0 (x, x′; ε) + isa±1 (x, x′; ε) + (is)2 a±2 (x, x′; ε)

])
ε

(6.42)

Where the coefficients a±0 , a
±
1 and a±2 are given by Eq.(6.9)-Eq.(6.10). The remaining terms in this

asymptotic expansion, involving a±3 and higher, are finite in the limit x→ x′.

Let us determine now the precise form of the geometrical
(
L±

ε;div (x)
)
ε
terms, to compare them

with the conventional gravitational Lagrangian that appears in (2.38). This is a delicate matter
because (6.48) is, of course, infinite. What we require is to display the divergent terms in the form
∞× [geometrical object]. This can be done in a variety of ways. For example, in n dimensions, the

asymptotic (adiabatic) expansion of
(
L±

ε;eff (x)
)
ε
is

(
L±

ε;eff (x)
)
ε
≍

2−1 (4π)−n/2

(
lim
x→x′

[(
∆

1/2
± (x, x′; ε)

)
ε

]∞
j=0

aj (x, x
′; ε)×

×
∞∫
0

ids (is)j−1−n/2 exp

[
−im2s+

σ (x, x′)

2is

])
ε

(6.43)

of which the first n/2 + 1 terms are divergent as σ → 0. If n is treated as a variable which can be
analytically continued throughout the complex plane, then we may take the x→ x′ limit

(
L±

ε;eff (x)
)
ε
≍ 2−1 (4π)−n/2

(
∞
j=0aj (x; ε)

∞∫
0

ids (is)j−1−n/2 exp
[
−im2s

])
ε

=

2−1 (4π)−n/2
j=0

∞aj (x; ε)
(
m2
)n/2−j

Γ
(
j − n

2

)
,

aj (x; ε) = aj (x, x; ε) .

(6.44)

From Eq.(6.44) follows we shall wish to retain the units of L±
ε;eff (x) as (length)−4, even when n ̸= 4.

It is therefore necessary to introduce an arbitrary mass scale µ and to rewrite Eq.(6.44) as(
L±

ε;eff (x)
)
ε
≍ 2−1 (4π)−n/2

(
m

µ

)n−4 (
∞
j=0aj (x; ε)

(
m2
)4−2j

Γ
(
j − n

2

))
ε
. (6.45)

If n→ 4, the first three terms of Eq.(6.45) diverge because of poles in the Γ- functions:
Γ
(
−n
4

)
=

4

n (n− 2)

(
2

4− n
− γ

)
+O (n− 4) ,

Γ
(
1− n

2

)
=

4

(2− n)

(
2

4− n
− γ

)
+O (n− 4) ,

Γ
(
2− n

2

)
=

2

4− n
− γ +O (n− 4) .

(6.46)
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Denoting these first three terms by
(
L±

ε;div (x)
)
ε
, we have(

L±
ε;div (x)

)
ε
=

(4π)−n/2

{
1

n− 4
+

1

2

[
γ + ln

(
m2

µ2

)]}([
4m4a0 (x; ε)

n (n− 2)
− 2m2a1 (x; ε)

n− 2
+ a2 (x; ε)

])
ε

.
(6.47)

The functions a0 (x; ε) , a1 (x; ε) and a2 (x; ε) are given by taking the coincidence limits of (6.9)-
(6.10)

(
a±0 (x; ε)

)
ε
= 1,(

a±1 (x; ε)
)
ε
=

(
1

6
− ξ

)(
R± (ε)

)
ε
,(

a±2 (x; ε)
)
ε
=

1

180

(
R±

αβγδ (x, ε)R
±αβγδ (x, ε)

)
ε
− 1

180

(
R±αβ (x, ε)R±

αβ (x, ε)
)
ε
−

−1

6

(
1

5
− ξ

)(
�R± (x, ε)

)
ε
+

1

2

(
1

6
− ξ

)(
R±2 (x, ε)

)
ε
.

(6.48)

Finally one obtains

(
L±

ε;ren (x)
)
ε
≍ − 1

64π2

(∞∫
0

ids ln (is)
∂3

∂ (is)3

[
±
ε (x, x; is) e−ism2

])
ε

. (6.49)

Special interest attaches to field theories in distributional spasetime in which the classical action
(Sε)ε is invariant under distributional conformal transformations,i.e.,

(gµν (x, ε))ε →
(
Ω2

ε (x) gµν (x, ε)
)
ε
,
(
ḡ±µν (x, ε)

)
ε
. (6.50)

From the definitions one has

(
Sε

[
ḡ±µν (x, ε)

])
ε
=
(
Sε

[
g±µν (x, ε)

])
ε
+

(∫
dnx

(
δSε

[
ḡ±µν (x, ε)

]
δḡ±ρσ (x, ε)

)
δḡ±ρσ (x, ε)

)
ε

. (6.51)

From Eq.(6.51) one obtains

T± ρ
ρ

[
g±µν (x, ε) , ε

]
= −

(
Ω2

ε (x)

[−g (x, ε)]
1
2

δSε

[
ḡ±µν (x, ε)

]
δΩε (x)

)
ε

∣∣∣∣∣
Ωε=1

, (6.52)

and it is clear that if the classical action is invariant under the conformal transformations (6.50), then
the classical stress-tensor is traceless.Because conformal transformations are essentially a rescaling
of lengths at each spacetime point x, the presence of a mass and hence a fixed length scale in the
theory will always break the conformal invariance. Therefore we are led to the massless limit of
the regularization and renormalization procedures used in the previous section. Although all the
higher order (j > 2) terms in the DeWitt-Schwinger expansion of the effective Lagrangian (6.45)
are infrared divergent at n = 4 as m → 0, we can still use this expansion to yield the ultraviolet
divergent terms arising from j = 0, 1, and 2 in the four-dimensional case. We may put m = 0
immediately in the j = 0 and 1 terms in the expansion, because they are of positive power for
n ∼ 4. These terms therefore vanish. The only nonvanishing potentially ultraviolet divergent term
is therefore j = 2 :

2−1 (4π)−n/2

(
m

µ

)n−4

a2 (x, ε) Γ
(
2− n

2

)
, (6.53)

Which must be handled carefully. Substituting for a2(x) with ξ = ξ(n) from (6.48), and rearranging
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terms, we may write the divergent term in the effective action arising from (6.53) as follows

(
W±

ε,div

)
ε

= 2−1 (4π)−n/2
(

m

µ

)n−4
Γ

(
2 −

n

2

)(∫
dnx

[
−g± (x, ε)

] 1
2 a2 (x, ε)

)
ε

=

2−1 (4π)−n/2
(

m

µ

)n−4
Γ

(
2 −

n

2

)(∫
dnx

[
−g± (x, ε)

] 1
2
[
αz±

ε (x) + βG±
ε (x)

])
ε

+ O (n − 4)

(6.54)

where

(zε (x))ε =
(
R±αβγδ (x, ε)R±

αβγδ
(x, ε)

)
ε
− 2

(
R±αβ (x, ε)R±

αβ
(x, ε)

)
ε
+

1

3

(
R±2 (x, ε)

)
ε
,(

G±
ε (x)

)
ε

=
(
R±αβγδ (x, ε)R±

αβγδ
(x, ε)

)
ε

(6.55)

and

α =
1

120
, β = − 1

360
. (6.56)

Finally one obtains

⟨
Tµ
µ (x, ε)

⟩
ren

= −
(
1/2880π2

) [
α
(
zε (x) − 2

3
�R± (x, ε)

)
ε
+ β

(
G±

ε (x)
)
ε

]
=

−
(
1/2880π2

) [(
R±

αβγδ
(x, ε)R±αβγδ (x, ε)

)
ε
−
(
R±

αβ
(x, ε)R±αβ (x, ε)

)
ε
− �R± (x, ε)

]
.

(6.57)

Note that from Eq.(3.42) for r → 2m follows that

(Rρσµν (ε)Rρσµν (ε))ϵ ≍
([

(r − 2m)2 + ε2
]−1
)
ε
+ 4 (2m)4 . (6.58)

Thus for the case of the distributional Schwarzchild spesetime given by the distributional metric
(3.40) using Eq.(6.57) and Eq.(6.58) for r → 2m one obtains⟨
Tµ
µ (x, ε)

⟩
ren

≍ −
(
2880π2

)−1
[([

(r − 2m)2 + ε2
]−1
)
ε
+ 4 (2m)4

]
. (6.59)

This result in a good agreement with Eq.(5.14)-Eq.(5.16).

7 Novel Explanation of the Active Galactic Nuclei. The
Power Source of Quasars as a Result of Vacuum
Polarization by the Gravitational Singularities on BHs
Horizon

7.1 The Current Paradigm for Active Galactic Nuclei. High Energy
Emission from Galactic Jets

Accretion of gas onto the supermassive Kerr black holes lurking at the center of active galactic
nuclei (AGN) gives rise to powerful relativistic jets.

We remind that in the standard theory of an accretion disk around a black hole it is assumed that
there is no coupling between the disk and the central black hole [51]. However, in the presence of
a magnetic field, a magnetic coupling between the disk and the black hole could exist and play an
important role in the balance and transportation of energy and angular momentum.In the absence
of the magnetic coupling, the energy source for the radiation of the disk is the gravitational energy
of the disk (i.e., the gravitational binding energy between the disk and the black hole). But, if
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the magnetic coupling exists and the black hole is rotating, the rotational energy of the black hole
provides an additional energy source for the radiation of the disk.With the magnetic coupling, the
black hole exerts a torque on the disk, which transfers energy and angular momentum between
the black hole and the disk. If the black hole rotates faster than the disk, energy and angular
momentum are extracted from the black hole and transfered to the disk. The energy deposited
into the disk is eventually radiated away by the disk,which will increase the efficiency of the disk
and make the disk brighter than usual. If the black hole rotates slower than the disk, energy and
angular momentum are transfered from the disk to the black hole, which will lower the efficiency
of the disk and make the disk dimmer than usual. Therefore, the magnetic coupling between the
black hole and the disk has important effects on the radiation properties of the disk [52]-[53].

Fig. 5. Jet from Black Hole in a Galaxy Pictor A. The active galaxy Pictor A lies
nearly 500 million light-years from Earth and contains a supermassive black hole at

its centre. This is a composite radio and X-ray image.

Fig. 6. Fourier coverage (uv-coverage) of the fringe fitted data (i.e.,reliable fringe
detections) of the Radio Astron observations of BL Lac on 2013 November 10-11at
22 GHz. Color marks the lower limit of observed brightness temperature obtained

from visibility amplitudes. Adapted from [54].
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The current paradigm for AGN is that their radio emission is explained by synchrotron radiation
from relativistic electrons that are Doppler boosted through bulk motion. In this model, the intrinsic
brightness temperatures cannot exceed 1011 to 1012 K [55]. Typical Doppler boosting is expected
to be able to raise this temperature by a factor of 10.

The observed brightness temperature of the most compact structures in BL Lac, constrained by
baselines longer than 5.3Gλ, must indeed exceed 2 × 1013K and can reach as high as ˜ 3 × 1014K
[55]. As follows from Fig. 7.2, these visibilities correspond to the structural scales of 30 − 40 µas
oriented along position angles of 25◦−30◦.These values are indeed close to the width of the inner jet
and the normal to its direction.The observed, Tb,obs, and intrinsic, Tb,int, brightness temperatures
are related by

Tb,obs = δ(1 + z)−1Tb,int (7.1.1)

With δ = 7.2.The estimeted by (4.1.1) a lower limit of the intrinsic brightness temperature in the
core component of our Radio Astron observations of Tb,int > 2.91012 K. It is commonly considered
that inverse Compton losses limit the intrinsic brightness temperature for incoherent synchrotron
sources, such as AGN, to about 1012K [53].In case of a strong flare, the ”Compton catastrophe”
is calculated to take about one day to drive the brightness temperature below 1012K [53]. The
estimated lower limit for the intrinsic brightness temperature of the core in the Radio Astron image
of Tb,int > 2.91012K is therefore more than an order of magnitude larger than the equipartition
brightness temperature limit established in [55] and at least several times larger than the limit
established by inverse Compton cooling.

Remark 4.1.1. Note that if the estimate of the maximum brightness temperature given in [53],
is closer to actual values, it would imply Tb;int5× 1013K. This is difficult to reconcile with current
incoherent synchrotron emission models from relativistic electrons, requiring alternative models
such as emission from relativistic protons.

Remark 4.1.2. However the proton, as we know, is 1836 times heavier than an electron and
absolutely huge energy is required to accelerated it to sublight speed.

Remark 4.1.3.These alternative models such as emission from relativistic protons can be suported
by semiclassical gravity effect finds its roots in the singular behavior of quantum fields on curved
distributional spacetimes presented by rotating gravitational singularities.

7.2 The Colombeau Distributional Kerr Space-time in
Boyer- Lindquist form

The classical Kerr metric in Boyer-Lindquist form reads

ds2 = −Ξ (r, θ) dt2 − 4mra sin2 θ

ρ2
dtdϕ+

ρ2

∆a
dr2 + ρ2dθ2+(

r2 + a2 +
2mra2 sin2 θ

ρ2

)
sin2 θdϕ2,

(7.2.1)

Where
ρ2 = r2 + a2 cos2 θ,∆a = r2 − 2mr + a2,

Ξ (r, θ) = 1− 2mr

ρ2
=
r2 − 2mr + a2 cos2 θ

ρ2
.

(7.2.2)

Remark 7.2.1. Note that For small values of the parameter a, where we may neglect terms of the
order of a2, we get from (7.2.1) the Lense-Thirring metric with Jz = ma
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ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
− 4ma sin2 θ

r
dtdϕ. (7.2.3)

I. Slow Kerr gravitational singularity: a < m.

Note that

Ξ (r, θ) =
r2 − 2mr + a2 cos2 θ

ρ2
=

(
r − rE+ (θ)

)
(r − rE (θ))

ρ2
, (7.2.4)

Where rE± (θ) = m ±
√
m2 − a2 cos2 θ and ∆a = r2 − 2mr + a2 = (r − r+) (r − r−) , where

r± = m±
√
m2 − a2.

Remark 7.2.2. Let Ξ (θ) be a submanifold given by equation ϕ = const, then metric (7.2.1)
restricted on submanifold ∪θΞ (θ) reads

ds2 = −Ξ (r, θ) dt2 +
ρ2

∆a
dr2 + ρ2dθ2. (7.2.5)

Note that: (i) the metric (7.2.5) is degenerate on outer ergosurfaces r = rE+ (θ) and inner
ergosurfaces r − rE (θ) ,(ii) the metric (7.2.5) is singular on horizon r = r+,(iii) the metric (7.2.5)
is singular on submanifold given by equation r = r−.

Remark 7.2.3. Note that we will be consider the distributional Kerr spacetime not as full
distributionel BH with Colombeau generalized metric (7.2.7), but only as gravitational singularity
located on submanifold ∪θΞ (θ) which coincide with outer ergosurface of classical Kerr spacetime. In
accordance with Eq.(7.2.11), Eq.(7.2.19) and Eq.(7.2.20) submanifold ∪θΞ (θ) presented the singular
boundary of distributional spacetime presented by Colombeau generalized metric (7.2.7).

We introduce now the following regularized (above ergosurface r = rE+ (θ)) quantity

Ξ+
ε (rε, θ) =

(rε − rE (θ))
√(

rε − rE+ (θ)
)2

+ ε2

ρ2ε (rε)
,

∆a,ε = r2ε − 2mrε + a2,

(7.2.6)

Where ρ2ε = ρ2ε (rε) = r2ε + a2 cos2 θ, ε ∈ (0, δ] , rε ≥ rE+ (θ) ≥ r+.Thus Colombeau generalized
metric (above ergosurface r = rE+ (θ)) corresponding to classical Kerr metric (7.2.1) reads

(
ds+2

ε

)
ε
= −

[
(Ξε (rε, θ))ε

]
dt2 −

[(
4mrεa sin

2 θ

ρ2ε

)
ε

]
dtdϕ+[(

ρ2ε
∆a,ε

)
ε

] [(
dr2ε
)
ε

]
+
(
ρ2ε
)
ε
dθ2+(

r2ε + a2 +
2mra2 sin2 θ

ρ2ε

)
ε

sin2 θdϕ2.

(7.2.7)

Remark 7.2.4. Let Ξ (θ) be a submanifold given by equation ϕ = const, then Colombeau
generalized metric (7.2.7) restricted on Ξ (θ) reads

(
ds+2

ε

)
ε
= −

[
(Ξε (rε, θ))ε

]
dt2 +

[(
ρ2ε

∆a,ε

)
ε

] [(
dr2ε
)
ε

]
+
[(
ρ2ε
)
ε

]
dθ2. (7.2.8)

Note that Colombeau generalized metric (7.2.7) nondegenerate on outer ergosurfaces (rε)ε =
rE+ (θ) ,see Pic.7.1.
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Remark 7.2.4. Note that for small values of the parameter a, where we may neglect terms of the
order of a2, we get from (7.2.7) effectively the following Colombeau generalized metric

(
ds+2

ε

)
ε
= −

(
1−

rE+ (θ)

(rε)ε

)
dt2 +

(
1−

rE+ (θ)

(rε)ε

)−1 [(
dr2ε
)
ε

]
+[(

r2ε
)
ε

] (
dθ2 + sin2 θdϕ2

)
− 4ma sin2 θ

(rε)ε
dtdϕ,

(7.2.9)

Where rE+ (θ) = m+
√
m2 − a2 cos2 θ.

Remark 7.2.5. Note that Colombeau generalized metric (7.2.9) restricted on Ξ (θ) reads

(
ds+2

ε

)
ε
= −

(
1−

rE+ (θ)

(rε)ε

)
dt2 +

(
1−

rE+ (θ)

(rε)ε

)−1 [(
dr2ε
)
ε

]
+
[(
r2ε
)
ε

]
dθ2 (7.2.10)

(I) Let
(
Ra≪1 (rε, ε)

)
ε
be Colombeau generalized curvature scalar

(R (rε, ε))ε corresponding to the metric (7.2.10) with a≪ 1. Main singular part sing
[(
Ra≪1 (rε, ε)

)
ε

]
of the Colombeau generalized curvature scalar

(
Ra≪1 (rε, ε)

)
ε
corresponding to the metric (7.2.10)

reads

sing
[(
Ra≪1 (rε, ε)

)
ε

]
=R̃

 ε2

rE+ (θ)
[(
rε − rE+ (θ)

)2
+ ε2

]3/2


ε

, (7.2.11)

Where cl
[
(rε)ε

]
≈R̃ rE+ (θ) ,see Appendix Eq.(A.12).

(II) Let
(
Rµν(a≪1) (rε, ε)R

(a≪1)
µν (rε, ε)

)
ε
be Colombeau generalized quadratic scalar

(Rµν (rε, ε)Rµν (rε, ε))ε corresponding to the metric (7.2.10) with a ≪ 1. From Eq.(7.2.10) and
Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing
[(

Rµν(a≪1) (rε, ε)R
(a≪1)
µν (rε, ε)

)
ε

]
of the quadratic scalar

(
Rµν(a≪1) (rε, ε)R

(a≪1)
µν (rε, ε)

)
ε
reads:

sing
[(

Rµν(a≪1) (rε, ε)R
(a≪1)
µν (rε, ε)

)
ε

]
=R̃

(
ε4

4
(
rE+ (θ)

)4 [
ε2 + (rε − 2m)2

]3
)

ε

. (7.2.12)

(III) Let
(
Rρσµν(a≪1) (rε, ε)R

(a≪1)
ρσµν (rε, ε)

)
ε
be Colombeau generalized quadratic scalar

(Rρσµν (rε, ε)Rρσµν (rε, ε))ε corresponding to the metric (7.2.10) with a ≪ 1. From Eq.(7.2.10)
and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing
[(

Rρσµν(a≪1) (rε, ε)R
(a≪1)
ρσµν (rε, ε)

)
ε

]
of the Colombeau generalized quadratic scalar(
Rρσµν(a≪1) (rε, ε)R

(a≪1)
ρσµν (rε, ε)

)
ε
reads

sing
[(

Rρσµν(a≪1) (rε, ε)R
(a≪1)
ρσµν (rε, ε)

)
ε

]
=R̃

(
ε4

4
(
rE+ (θ)

)4 [
ε2 + (rε − 2m)2

]3
)

ε

. (7.2.13)
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Remark 7.2.6. Note that from Eq.(7.2.11)-Eq.(7.2.13) at outer ergosurfaces (rε)ε = rE+ (θ) ,(see
Pic.7.1) follows that

sing
[(
Ra≪1 (rε, ε)

)
ε

]∣∣
(rε)ε=rE+

(θ)
=R̃ r

−1
E+

(θ)
(
ε−1
)
ε
≈R̃ ∞. (7.2.14)

and

sing
[(

Rµν(a≪1) (rε, ε)R
(a≪1)
µν (rε, ε)

)
ε

]∣∣∣
(rε)ε=rE+

(θ)
=R̃ r

−4
E+

(θ)
(
ε−2
)
ε
≈R̃ ∞,

sing
[(

Rρσµν(a≪1) (rε, ε)R
(a≪1)
ρσµν (rε, ε)

)
ε

]∣∣∣
(rε)ε=rE+

(θ)
=R̃ r

−4
E+

(θ)
(
ε−2
)
ε
≈R̃ ∞.

(7.2.15)

Let
(
Ra<m (rε, ε)

)
ε
be Colombeau generalized curvature scalar

(
Ra<m (rε, ε)

)
ε
corresponding to

the metric (7.2.8) with a < m. We let now that

∆ε = Aε (Bε + Cε) = Aερ
2
ε∆

−1
a,ε, Bεr

2
ε = ρ2ε, Bε + Cε = ρ2ε∆

−1
a,ε, Aε = Ξ+

ε (r, θ) , Dε = 0. (7.2.16)

From Eq.(7.2.8),Eq.(7.2.16) and Eq.(A.1)-Eq.(A.2) we obtain

(
Ra<m (rε, ε)

)
ε
=

(
Aε

∆ε

[
2

rε

(
−2

A′
ε

Aε
− 3

B′
ε

Bε
+

∆′
ε

∆ε

)
+

2

r2
Cε

Bε
− A′′

ε

Aε
− 2

B′′
ε

Bε

+
1

2

(
B′

ε

Bε

)2

− 2
A′

εB
′
ε

AεBε
+

(
1

2

A′
ε

Aε
+
B′

ε

Bε

)
∆′

ε

∆ε

])
ε

=(
∆a,ε

ρ2ε

[
2

rε

(
−2

A′
ε

Aε
− 3

B′
ε

Bε
+

∆′
ε

∆ε

)
+

2

r2
Cε

Bε
− A′′

ε

Aε
− 2

B′′
ε

Bε

+
1

2

(
B′

ε

Bε

)2

− 2
A′

εB
′
ε

AεBε
+

(
1

2

A′
ε

Aε
+
B′

ε

Bε

)
∆′

ε

∆ε

])
ε

.

(7.2.17)

Note that

∂

∂rε

√(
rε − rE+ (θ)

)2
+ ε2 =

rε − rE+ (θ)√(
rε − rE+ (θ)

)2
+ ε2

∂2

∂r2ε

√(
rε − rE+

)2
+ ε2 =

ε2[(
rε − rE+

)2
+ ε2

] 3
2

.
(7.2.18)

From Eq.(7.2.17) and Eq.(7.2.18) one obtains that main singular part sing
[(
Ra<m (rε, ε)

)
ε

]
of the

Colombeau generalized curvature scalar
(
Ra<m (rε, ε)

)
ε
corresponding to the metric (7.2.8) (mod

nonsingular multiplier) reads

sing
[(
Ra<m (rε, ε)

)
ε

]
=R̃

 ε2[(
rε − rE+ (θ)

)2
+ ε2

]2


ε

. (7.2.19)

Remark 7.2.7. (I) Let
(
Rµν(a<m) (rε, ε)R

(a<m)
µν (rε, ε)

)
ε
be Colombeau generalized quadratic

scalar
(Rµν (rε, ε)Rµν (rε, ε))ε corresponding to the metric (7.2.8) with a < m. From Eq.(7.2.8)-Eq.(7.2.16)
and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing
[(

Rµν(a<m) (rε, ε)R
(a<m)
µν (rε, ε)

)
ε

]
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of the Colombeau generalized quadratic scalar
(
Rµν(a<m) (rε, ε)R

(a<m)
µν (rε, ε)

)
ε
reads

sing
[(

Rµν(a<m) (rε, ε)R
(a<m)
µν (rε, ε)

)
ε

]
=R̃

(
ε4

4
(
rE+ (θ)

)4 [
ε2 + (rε − 2m)2

]3
)

ε

. (7.2.20)

(II) Let
(
Rρσµν(a<m) (rε, ε)R

(a<m)
ρσµν (rε, ε)

)
ε
be Colombeau generalized quadratic scalar

(Rρσµν (rε, ε)Rρσµν (rε, ε))ε corresponding to the metric (7.2.8) with a < m. From Eq.(7.2.8),
Eq.(7.2.16) and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing
[(

Rρσµν(a<m) (rε, ε)R
(a<m)
ρσµν (rε, ε)

)
ε

]
of the Colombeau generalized quadratic scalar

(
Rρσµν(a<m) (rε, ε)R

(a<m)
ρσµν (rε, ε)

)
ε
reads

sing
[(

Rρσµν(a<m) (rε, ε)R
(a<m)
ρσµν (rε, ε)

)
ε

]
=R̃

(
ε4

4
(
rE+ (θ)

)4 [
ε2 + (rε − 2m)2

]3
)

ε

. (7.2.21)

II. Critical Kerr gravitational singularity: a=m.

Note that in contrast with full distributional Kerr spacetime the case of the critical Kerr gravitational
singularity considered in this subsection (see Remark 7.2.3) not principal different in comparison
with a case of the slow Kerr gravitational singularity considered above. In particular the Eqs.(7.2.19)-
(7.2.21) holds with rE+ (θ) given by Eq.(7.2.22)

rE+ (θ) = m+
√
m2 − a2 cos2 θ = m

(
1 + sin2 θ

)
. (7.2.22)

III. Fast Kerr gravitational singularity: a > m.

LetΞη (θ) be a submanifold given by equations (i) ϕ = const and (ii) m2 − a2 cos2 θ ≥ 0,i.e.

cos2 θ ≤ m2

a2
= η. (7.2.23)

Let Θη be a set Θη =
{
θ| cos2 θ ≤ η

}
and let χ (θ, η) be the indicator function of the set Θη,i.e.

χ (θ, η) is the function defined to be identically 1 on Θη, and is 0 elsewhere.

We introduce now the following regularized (above ergosurface r = rE+ (θ) , θ ∈ Θη) quantity

Ξ+
ε (rε, θ, η) =

χ (θ, η) (rε − rE (θ))
√(

rε − rE+ (θ)
)2

+ ε2

ρ2ε (rε)
, (7.2.25)

where ρ2ε = ρ2ε (rε) = r2ε + a2 cos2 θ, ε ∈ (0, δ] , rε ≥ rE+ (θ) > 0.Thus Colombeau generalized metric
(above ergosurface r = rE+ (θ)) corresponding to classical Kerr metric (7.2.1) reads

(
ds+2

ε

)
ε
= −χ (θ, η)

[
(Ξε (rε, θ, η))ε

]
dt2 −

[(
4mrεa sin

2 θ

ρ2ε

)
ε

]
dtdϕ+[(

ρ2ε
∆a,ε

)
ε

] [(
dr2ε
)
ε

]
+
(
ρ2ε
)
ε
dθ2+(

r2ε + a2 +
2mra2 sin2 θ

ρ2ε

)
ε

sin2 θdϕ2.

(7.2.26)
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Remark 7.2.8. Note that we will be consider the distributional Kerr spacetime not as full
distributionel BH with Colombeau generalized metric (7.2.7), but only as gravitational singularity
located on submanifold ∪θ∈ΘηΞη (θ) which coincide with an part of the outer ergosurface of classical
Kerr spacetime. In accordance with Eq.(7.2.11),Eq.(7.2.19) and Eq.(7.2.20) submanifold ∪θ∈ΘηΞη (θ)
presented the singular boundary of distributional spacetime with Colombeau generalized metric
(7.2.26).

Fig. 7. Ergosurface, horizon and singularity for slow Kerr black hole.

Fig. 8.Ergosurface,horizon,and singularity for critical Kerr black hole.
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Fig. 9. Ergosurface, horizon and singularity for fast Kerr black hole.

Remark 7.2.9. Let Ξ̃η (θ) be a submanifold given by equations (i) ϕ = const and (ii) cos2 θ ≤
η,then Colombeau generalized metric (7.2.26) restricted on submanifold ∪θ∈Θη Ξ̃η (θ) reads

(
ds+2

ε

)
ε
= −χ (θ, η)

[
(Ξε (rε, θ, η))ε

]
dt2 +

[(
ρ2ε

∆a,ε

)
ε

] [(
dr2ε
)
ε

]
+
[(
ρ2ε
)
ε

]
dθ2. (7.2.27)

Note that Colombeau generalized metric (7.2.27) nondegenerate on outer ergosurfaces (rε)ε =
rE+ (θ) ,see Pic.7.3. From Eq.(7.2.27) and and Eq.(A.1)-Eq.(A.2) one obtains that main singular
part sing

[(
Ra>m (rε, ε)

)
ε

]
of the Colombeau generalized curvature scalar

(
Ra>m (rε, ε)

)
ε
corresponding

to the metric (7.2.27) (mod nonsingular multiplier) reads

sing
[(
Ra>m (rε, ε)

)
ε

]
=R̃

 χ (θ, η) ε2[(
rε − rE+ (θ)

)2
+ ε2

]2


ε

. (7.2.28)

Remark 7.2.10. (I) Let
(
Rµν(a>m) (rε, ε)R

(a>m)
µν (rε, ε)

)
ε
be Colombeau generalized quadratic

scalar (Rµν (rε, ε)Rµν (rε, ε))ε corresponding to the metric (7.2.27) with a > m.

From Eq.(7.2.27) and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing
[(

Rµν(a>m) (rε, ε)R
(a>m)
µν (rε, ε)

)
ε

]
of the Colombeau generalized quadratic scalar

(
Rµν(a>m) (rε, ε)R

(a>m)
µν (rε, ε)

)
ε
reads

sing
[(

Rµν(a>m) (rε, ε)R
(a>m)
µν (rε, ε)

)
ε

]
=R̃

(
χ (θ, η) ε4

4
(
rE+ (θ)

)4 [
ε2 + (rε − 2m)2

]3
)

ε

. (7.2.29)

(II) Let
(
Rρσµν(a>m) (rε, ε)R

(a>m)
ρσµν (rε, ε)

)
ε
be Colombeau generalized quadratic scalar
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(Rρσµν (rε, ε)Rρσµν (rε, ε))ε corresponding to the metric (7.2.27) with a > m. From Eq.(7.2.27)
and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing
[(

Rρσµν(a>m) (rε, ε)R
(a>m)
ρσµν (rε, ε)

)
ε

]
of the Colombeau generalized quadratic scalar

(
Rρσµν(a>m) (rε, ε)R

(a>m)
ρσµν (rε, ε)

)
ε
reads

sing
[(

Rρσµν(a>m) (rε, ε)R
(a>m)
ρσµν (rε, ε)

)
ε

]
=R̃

(
χ (θ, η) ε4

4
(
rE+ (θ)

)4 [
ε2 + (rε − 2m)2

]3
)

ε

. (7.2.30)

8 Conclusions and Remarks

This book dealing with an extension of the Einstein field equations using apparatus of contemporary
generalization of the classical Lorentzian geometry named in literature Colombeau distributional
geometry,see for example [1]-[2],[5]-[7] and [14]-[15].The regularizations of singularities present in
some solutions of the Einstein equations is an important part of this approach. Any singularities
present in some solutions of the Einstein equations recognized only in the sense of Colombeau
generalized functions [1]-[2] and not classically.

In this book essentially new class Colombeau solutions to Einstein field equations is obtained. We
have shown that a succesfull approach for dealing with curvature tensor valued distribution is to first
impose admisible the nondegeneracy conditions on the metric tensor, and then take its derivatives
in the sense of classical distributions in space S ′

2m(R3).

The distributional meaning is then equivalent to the junction condition formalism. Afterwards,
through appropiate limiting procedures, it is then possible to obtain well behaved distributional
tensors with support on submanifolds of d ≤ 3, as we have shown for the energy-momentum
tensors associated with the Schwarzschild spacetimes. The above procedure provides us with what is
expected on physical grounds. However, it should be mentioned that the use of new supergeneralized
functions (supergeneralized Colombeau algebras G̃(R3,Σ)). in order to obtain superdistributional
curvatures, may renders a more rigorous setting for discussing situations like the ones considered
in this paper.

The vacuum energy density of free scalar quantum field Φ with a distributional background spacetime
also is considered.It have been widely believed that, except in very extreme situations, the influence
of gravity on quantum fields should amount to just small, sub-dominant contributions. Here we
argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the
vacuum energy density of free quantum fields is forced, by the very same background distributional
spacetime such BHs, to become dominant over any classical energy density component. This
semiclassical gravity effect finds its roots in the singular behavior of quantum fields on curved
spacetimes. In particular we obtain that the vacuum fluctuations

⟨
Φ2
⟩
has a singular behavior on

BHs horizon r+:
⟨
Φ2 (r)

⟩
˜ |r − r+|−2 .We argue that this vacuum dominance may bear important

astrophysical implications.
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Appendix A

Expressions for the Colombeau quantities (R({}, (ϵ)))ϵ , (R
µν({}, (ϵ))Rµν({}, (ϵ)))ϵ and

(Rρσµν({}, (ϵ))Rρσµν({}, (ϵ)) )ϵ in terms of (Aϵ)ϵ , (Bϵ)ϵ , (Cϵ)ϵ and (Dϵ)ϵ , ϵ ∈ (0, 1]:

Let us introduce now Colombeau generalized metric which has the form{ (
ds2
)
ϵ
= −

(
Aϵ (r) (dx

0)2
)
ϵ
− 2

(
Dϵ (r) dx

0dr
)
ϵ
+
(
(Bϵ (r) + Cϵ (r))(dr)

2
)
ϵ

+
(
Bϵ (r) r

2
[
(dθ)2 + sin2 θ(dϕ)2

])
ϵ
r = cl

[
(rϵ)ϵ

]
∈ R̃. (A.1)

The Colombeau scalars (R (ϵ))ϵ , (R
µν (ϵ)Rµν (ϵ))ϵ and (Rρσµν (ϵ)Rρσµν (ϵ))ϵ , in terms of Colombeau

generalized functions (Aϵ (r))ϵ , (Bϵ (r))ϵ , (Cϵ (r))ϵ , (Dϵ (r))ϵ is expressed as

(R (ϵ))ϵ =

(
Aϵ

∆ϵ

[
2

r

(
−2

A′
ϵ

Aϵ
− 3

B′
ϵ

Bϵ
+

∆′
ϵ

∆ϵ

)
+

2

r2
AϵCϵ +D2

ϵ

AϵBϵ
− A′′

ϵ

Aϵ
− 2

B′′
ϵ

Bϵ

+
1

2

(
B′

ϵ

Bϵ

)2

− 2
A′

ϵB
′
ϵ

AϵBϵ
+

(
1

2

A′
ϵ

Aϵ
+
B′

ϵ

Bϵ

)
∆′

ϵ

∆ϵ

])
ϵ

,

(Rµν (ϵ)Rµν (ϵ))ϵ =

(
A2

ϵ

∆2
ϵ

(
1

2

A′′
ϵ

Aϵ
− 1

4

A′
ϵ∆

′
ϵ

Aϵ∆ϵ
+

1

2

A′
ϵB

′
ϵ

AϵBϵ
+

1

r

A′
ϵ

Aϵ

)2
)

ϵ

+

+2

(
A2

ϵ

∆2
ϵ

[
1

r

(
1

2

∆′
ϵ

∆ϵ
− A′

ϵ

Aϵ
− 2

B′
ϵ

Bϵ

)
+

1

r2
AϵCϵ +D2

ϵ

AϵBϵ
− 1

2

A′
ϵB

′
ϵ

AϵBϵ
−

−1

2

B′′
ϵ

Bϵ
+

1

4

B′
ϵ∆

′
ϵ

Bϵ∆ϵ

]2)
ϵ

+(
A2

ϵ

∆2
ϵ

[
1

2

A′′
ϵ

Aϵ
− 1

4

A′
ϵ∆

′
ϵ

Aϵ∆ϵ
+

1

2

A′
ϵB

′
ϵ

AϵBϵ
+
B′′

ϵ

Bϵ
− 1

2

(
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ϵ

Bϵ
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−1

2
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ϵ∆

′
ϵ

Bϵ∆ϵ
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1

r
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A′

ϵ

Aϵ
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ϵ

∆ϵ
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B′
ϵ

Bϵ

)]2)
ϵ
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(Rρσµν (ϵ)Rρσµν (ϵ))ϵ =(
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ϵ
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ϵ
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A′′

ϵ
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− 1

2

A′
ϵ∆
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1
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1
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.

(A.2)

Here

(∆ϵ)ϵ = (Aϵ (r) (Bϵ (r) + Cϵ (r)))ϵ +
(
D2

ϵ (r)
)
ϵ
. (A.3)

Assume that

(∆ϵ (r))ϵ = 1, (Bϵ (r))ϵ = 1, (Dϵ (r))ϵ = 0. (A.4)

From Eq.(A.2)-Eq.(A.4) one obtains
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(R (ϵ))ϵ =

(
−4A′

ϵ

r
+

2AϵCϵ

r2
−A′′

ϵ

)
ϵ

,

(Rµν (ϵ)Rµν (ϵ))ϵ =((
1

2
A′′

ϵ +
1

r
A′

ϵ

)2
)

ϵ

+ 2

([
−A

′
ϵ

r
+
AϵCϵ

r2

]2)
ϵ

+

([
1

2
A′′

ϵ +
1

r
A′

ϵ

]2)
ϵ

,

(Rρσµν (ϵ)Rρσµν (ϵ))ϵ =(
(A′′

ϵ )
2
+ 2

(
A′

ϵ

r

)2

+ 4
(AϵCϵ)

2

r4
+ 2

(
A′

ϵ

r

)2
)

ϵ

.

(A.5)

We choose now

Bε (rε) = 1, Cε (rε) = −1 +A−1
ε (rε) , Dε (rε) = 0, (A.6)

and rewrite Colombeau generalized object corresponding to Schwarzschild metric above horizon in
the following form(
ds2ε
)
ε
= −

(
Aε (rε) dt

2
)
ε
+
(
A−1

ε (rε) dr
2
ε

)
ε
+ r2εdΩ

2, (A.7)

Where Aε (r)

Aε (rε) = −r−1
ε

√
(rε − 2m)2 + ε2, rε ≥ 2m. (A.8)

By differentiation we obtain

∆ε = Aε (Bε + Cε) = 1,∆′
ε = 0,

A′
ε (rε) =

−2m (rε − 2m)

r2ε

√
(rε − 2m)2 + ε2

,

A′′
ε (r) =

2m
(
−16m3 + 24m2rε − 12mr2ε − 4mε2 + 2r3ε + rεε

2
)

r3ε
[
(rε − 2m)2 + ε2

]3/2 =

4m (rε − 2m)3 + (rε − 4m) ε2

r3ε
[
(rε − 2m)2 + ε2

]3/2 .

(A.9)

From Eqs.(A.2)-(A.5) and Eq.(A.9) we obtain

(R (r, ε))ε =
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Aε

∆ε
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2
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− 3
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− 2
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2
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ε
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[
2

rε

(
−2
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ε
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)
−

2Aε
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ε
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ε
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ε
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−4A′

ε
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+

2
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ε
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ε
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r3ε
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ε

+ 2r−3
ε

(√
(rε − 2m)2 + ε2

)
ε

− 2

(r2ε)ε
−

−

(
2m
(
−16m3 + 24m2rε − 12mr2ε − 4mε2 + 2r3ε + rεε

2
)

r3ε
[
(rε − 2m)2 + ε2

]3/2
)

ε

.

(A.10)

Finally from Eq.(A.10) one obtains the following expression for the distributional Colombeau scalar
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(R (r, ε))ε

(R (rε, ε))ε =

 8m (rε − 2m)

r3ε

√
(r − 2m)2 + ε2


ε

+

2
[(
r−3
ε

)
ε

](√
(rε − 2m)2 + ε2

)
ε

− 2

(r2ε)ε
−

(
4m (rε − 2m)3 + (rε − 4m) ε2

r3ε
[
(rε − 2m)2 + ε2

]3/2
)

ε

.

(A.11)

Remark A.1. Note that from Eq.(A.11) follows that: if st
(
(rε)ε

)
̸= 0,i.e.(rε)ε ̸≈R̃ 2m then

(rε)ε ̸≈R̃ 2m =⇒ (R (rε, ε))ε ∼
(
ε2
)
ε
≈R̃ 0.

We assume now that cl
[
(rε)ε

]
≈R̃ 2m and therefore from Eq.(A.11) we obtain

(R (rε, ε))ε ≈R̃

(
4m2ε2

8m3
[
(rε − 2m)2 + ε2

]3/2
)

ε

. (A.12)

Remark A.2. Note that from Eq.(A.12) at horizon r =R̃ 2m follows that:

(R (r, ε))ε =

(
4m2ε2

8m3 [ε2]3/2

)
ε

= (4m)−1 (ε−1
)
ε
≈R̃ ∞. (A.13)

Remark A.3. Note that from Eq.(A.11) follows that:

w-lim
ε→0

R (r, ε) ˜ δ (r − 2m) . (A.14)

Remark A.4. Let
[
(rε − 2m)ε

]
≈R̃ 0, then from Eq.(A.13) we obtain

[
(R (rε, ε))ε

]
≈R̃

( ε2

2m
[
(rε − 2m)2 + ε2

]3/2
)

ε

 . (A.15)

From Eqs.(A.2) and Eq.(A.9) we obtain

(Rµν (rε, ε)Rµν (rε, ε))ε =

+2

([
1

rε
A′

ε +
−Aε + 1

r2ε

]2)
ε

+ 2

([
1

2
A′′

ε +
1

rε
A′

ε

]2)
ε

=

2

( 1

r3ε

√
ε2 + (rε − 2m)2 +

1

r2ε

)
ε

− 2
m

r3ε

rε − 2m√
ε2 + (rε − 2m)2

2
ε

+

2

([
4m (rε − 2m)3 + (rε − 4m) ε2

r3ε
[
(rε − 2m)2 + ε2

]3/2
−2

m

r3ε

rε − 2m√
ε2 + (rε − 2m)2

2
ε

.

(A.16)

Remark A.5. Note that from Eq.(A.16) follows that:if st
(
(rε)ε

)
̸= 0,i.e.(rε)ε ̸≈R̃ 2m then

r ̸≈R̃ 2m =⇒ (Rµν (r, ε)Rµν (r, ε))ε ≈R̃ K (r) ,

K (r) = 12
r2s
r6
, rs = 2m.

(A.17)
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We assume now that (rε)ε ≈R̃ 2m and therefore from Eq.(A.16) we obtain

(Rµν (rε, ε)Rµν (rε, ε))ε ≈R̃ K (rs) +

(
ε4

4m4
[
ε2 + (rε − 2m)2

]3
)

ε

(A.18)

Remark A.6. Note that from Eq.(A.18) at horizon r =R̃ 2m follows that:

(Rµν (rε, ε)Rµν (rε, ε))ε =

(
1

4m4ε2

)
ε

≈R̃ ∞, (A.19)

Remark C.6. Let
[
(rε − 2m)ε

]
≈R̃ 0, then from Eq.(A1.3) and Eq.(C.12) we obtain

[
(Rµν (rε, ε)Rµν (rε, ε))ε

]
≈R̃ K (rs) +

[(
ε4

4m4
(
ε2 + (rε − 2m)2

)3
)

ε

]
(A.20)

From Eqs.(A.2) and Eq.(C.3) we obtain

(Rρσµν (r, ε)Rρσµν (r, ε))ε =(
(A′′

ε )
2
+ 2

(
A′

ε

r

)2
)

ε

+ 4

([
1

r2
(1−Aε)

]2)
ε

+ 2

([
A′

ε

r

]2 )
ε

=

(
A′′2

ε + 4
A′2

ε

r2

)
ε

+ 4

(
1

r4
(1−Aε)

2

)
ε

=([
4m (r − 2m)3 + (r − 4m) ε2

r3
[
(r − 2m)2 + ε2

]3/2
]2)

ε

− 8m2 (r − 2m)2

r6
[
(r − 2m)2 + ε2

]+
4

r4

(
1 + r−1

√
(r − 2m)2 + ε2

)2

.

(A.21)

Remark C.7. Note that from Eq.(C.15) follows that:

r ̸≈R̃ 2m =⇒ (Rρσµν (r, ε)Rρσµν (r, ε))ε ≈R̃ K (r) , (A.22)

see Definition 1.5.2.(i).

We assume now that (rε)ε ≈R̃ 2m and therefore from Eq.(C.10) we obtain

(Rρσµν (rε, ε)Rρσµν (rε, ε))ε ≈R̃ K (rs) +

(
ε4

4m4
[
ε2 + (rε − 2m)2

]3
)

ε

. (A.23)

Remark C.8. Let
[
(rε − 2m)ε

]
≈R̃ 0, then from Eq.(A1.3) and Eq.(C.12) we obtain

[
(Rρσµν (r, ε)Rρσµν (r, ε))ε

]
= K (rs) +

(
ε4

4m4
[
ε2 + (rε − 2m)2

]3
)

ε

. (A.24)

Remark C.9. Note that from Eq.(C.15) at horizon r = 2m follows that:

(Rρσµν (r, ε)Rρσµν (r, ε))ε ≈R̃ ∞, (A.25)

see Definition 1.5.2.(ii).

Remark A2.6. We assume now there exist an fundamental generalized lengh (lε)ε
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(lε)ε∈(0,η] = a (ε)ε∈(0,η] , η ≪ 1,

(lε)ε∈(η,1] = a,
(A.26)

such that
∣∣(rε − ρ)ε

∣∣ ≥ (lε)ε = a (ε)ε It meant there exist a thickness thhor = (lε)ε of BH horizon.
We introduce a norm ∥thhor∥ of a thickness thhor by formula

∥thhor∥ = supε∈(0,η] |lε| = η, (A.27)

By using (A.20) we get the estimate

(Rρσµν (rε, ε)Rρσµν (rε, ε))ε ≈R̃ K (rs) +

(
ε4

4m4
[
(rε − 2m)2 + ε2

]3
)

ε∈(0,η]

=

K (rs) +

(
1

4m4
[
(rε − 2m)2 + ε2

])
ε∈(0,η]

×

(
ε2[

(rε − 2m)2 + ε2
])

ε∈(0,η]

×

×

(
ε2[

(rε − 2m)2 + ε2
])

ε∈(0,η]

≤

K (rs) +
1

4m4 [a2 + 1]2

(
1[

(rε − 2m)2 + ε2
])

ε∈(0,η]

≤

K (rs) +
1

4m4 [a2 + 1]2

(
1

(r − 2m)2

)
r−2m∈(0,η]

.

(A.28)
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