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Abstract

This paper dealing with extension of the Einstein field equations using apparatus of contemporary
generalization of the classical Lorentzian geometry named in literature Colombeau distributional
geometry, see for example [1], [2], [3], [4], [5], [6], [7] and [32]. The regularizations of singularities
presented in some solutions of the Einstein equations is an important part of this approach. Any
singularities present in some solutions of the Einstein equations recognized only in the sense
of Colombeau generalized functions [1], [2] and not classically. In this paper essentially new
class Colombeau solutions to Einstein field equations is obtained. We leave the neighborhood
of the singularity at the origin and turn to the singularity at the horizon. Using nonlinear
distributional geometry and Colombeau generalized functions it seems possible to show that the
horizon singularity is not only a coordinate singularity without leaving Schwarzschild coordinates.
However the Tolman formula for the total energy ET of a static and asymptotically flat spacetime,
gives ET = m, as it should be. The vacuum energy density of free scalar quantum field Φ with a
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distributional background spacetime also is considered. It has been widely believed that, except
in very extreme situations, the influence of gravity on quantum fields should amount to just small,
sub-dominant contributions. Here we argue that this belief is false by showing that there exist
well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is
forced, by the very same background distributional spacetime such distributional BHs, to become
dominant over any classical energy density component. This semiclassical gravity effect finds its
roots in the singular behavior of quantum fields on curved spacetimes. In particular we obtain that
the vacuum fluctuations

〈
Φ2
〉

have a singular behavior on BHs horizon r+:
〈
Φ2 (r)

〉
˜ |r − r+|−2 .

Keywords: Colombeau nonlinear generalized functions; distributional riemannian geometry; distribu-
tional schwarzshild geometry; schwarzchild singularity; schwarzschild horizon; smooth
regularization; nonsmooth regularization; quantum fields on curved spacetime; vacuum
fluctuations; vacuum dominance.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction

1.1 The breakdown of canonical formalism of riemann geometry
for the singular solutions of the einstein field equations

Einstein field equations were originally derived by Einstein in 1915 in respect with canonical
formalism of Riemann geometry, i.e. by using the classical sufficiently smooth metric tensor,
smooth Riemann curvature tensor, smooth Ricci tensor, smooth scalar curvature, etc. However
singular solutions of the Einstein field equations with singular metric tensor and singular Riemann
curvature tensor have soon been found. These singular solutions are formally accepted beyond
rigorous canonical formalism of Riemannian geometry.

Remark 1.1 Note that if some components of the Riemann curvature tensorRiklm (x̂)become infinite
at point x̂0one obtains the breakdown of canonical formalism of Riemann geometry in a sufficiently
small neighborhood Ωof the point x̂0 ∈ Ω, i.e. in such neighborhood ΩRiemann curvature tensor
Riklm (x̂)will be changed by formula (1.7) see remark 1.2.

Remark 1.2 Let Γbe infinitesimal closed contour and let ΣΓ be the corresponding surface spanning
by Γ,see Pic. 1. We assume now that: (i) Christoffel symbol Γikl (x̂)becomes infinite at singular
point x̂0 by formulae{

Γikl (x̂) � Ξkl (x̂)
(
xi − x0

i

)−δ
, δ ≥ 1

Ξkl (x̂) ∈ C∞ (ΣΓ)
(1.1)

and (ii) x̂0 ∈ ΣΓ.Let us derive now to similarly canonical calculation [8], [9] the general formula for

the regularized change ˜DeltaAk in a vector Ai (x̂) after parallel displacement around infinitesimal

closed contour Γ.This regularized change ∆̃Ak can clearly be written in the form

∆̃Ak =
∫

Γ
Φ
(
x̂− x̂0

)
δAk, (1.2)

where Φ
(
x̂− x̂0

)
=4
i=0

(
xi − x0

i

)2δ
, δ ≥ 1 and where the integral is taken over the given contour Γ.

Substituting in place of δAk the canonical expression δAk = Γikl (x̂)Akdx
l (see [9], Eq. (85.5)) we

obtain

∆̃Ak =
∫

Γ
Φ
(
x̂− x̂0

)
δAk =

∫
Γ

Φ
(
x̂− x̂0

)
Γikl (x̂)Akdx

l , (1.3)

where
∂Ai
∂xl

= Γikl (x̂)Ak. (1.4)
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Pic. 1. Infinitesimal closed contour Γand corresponding singular surface ΣΓ 3
x̂0 spanning by Γ.

Due to the degeneracy of the metric (1.12) at point r=0, the Levi-Civita’ connection Γ+l
kj ({}) =

=
1

2

[
glm ({})

]
[(gmk,j ({}) + gmj,k ({})− gkj,m ({})]

is not available on R 3
+ ∪ {0} in canonical sense but only in an distributional sense.

Now applying Stokes’ theorem (see [9], Eq. (6.19)) to the integral (1.3) and considering that
the area enclosed by the contour has the infinitesimal value ∆f lm, we get

∆̃Ak =
∫

Γ
Φ
(
x̂− x̂0

)
Γikl (x̂)Akdx

l =

=
1

2

∫
Σ Γ

[
∂
(
Γikm (x̂)AiΦ

(
x̂− x̂0

))
∂xl

−
∂
(
Γikl (x̂)AiΦ

(
x̂− x̂0

))
∂xm

]
df lm ≈

≈

[
∂
(
Γikm (x̂)AiΦ

(
x̂− x̂0

))
∂xl

−
∂
(
Γikl (x̂)AiΦ

(
x̂− x̂0

))
∂xm

]
∆f lm

2
=[

Φ
(
x̂− x̂0

) ∂ (Γikm (x̂− x̂0
)
Ai
)

∂xl
+
(
Γikm (x̂)Ai

) ∂Φ
(
x̂− x̂0

)
∂xl

−

−Φ
(
x̂− x̂0

) ∂ (Γikl (x̂)Ai
)

∂xm
−
(
Γikl (x̂)Ai

) ∂Φ
(
x̂− x̂0

)
∂xm

]
∆f lm

2
=[

Φ
(
x̂− x̂0

) ∂ (Γikm (x̂)Ai
)

∂xl
− Φ

(
x̂− x̂0

) ∂ (Γikl (x̂)Ai
)

∂xm
−

Ai (x̂) Φ
(
x̂− x̂0

) 2δΓikm (x̂)

xl − x0
l

−Ai (x̂) Φ
(
x̂− x̂0

) 2δΓikl (x̂)

xm − x0
m

]
∆f lm

2
.

(1.5)

Substituting the values of the derivatives (1.4) into Eq. (1.5) we get finally:

∆̃Ak = R̃iklm
Ai (x̂) Φ

(
x̂− x̂0

)
∆f lm

2
, (1.6)

where R̃iklm, is a tensor of the fourth rank

R̃iklm = Riklm + 2δ

[
Γikm (x̂)

xl − x0
l

− Γikl (x̂)

xm − x0
m

]
. (1.7)
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Pic. 2. Infinitesimal closed contour Γ with a singularity at point x̂0

on Horizon and corresponding singular surface ΣΓ 3 x̂0 spanning by Γ.
Due to the deheneracy of the metric (1.12) at r=2m,

the Levi-Civita’ connection Γ+l
kj ({}) =

=
1

2

[
glm ({})

]
[(gmk,j ({}) + gmj,k ({})− gkj,m ({})]

is not available on horizon in canonical sense but only in an distributional sense.

Pic. 3. The contour in the complex k0plane C
to be used in the evaluation of the integral

giving L +. The cross indicates the pole at k0 =
(
|k|2 + m2

)1/2
.
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Here Riklm is the classical Riemann curvature tensor. That R̃iklm is a tensor is clear from the fact

that in (1.6) the left side is a vector - the difference ∆̃Ak between the values of vectors at one and
the same point. Note that an similar results were obtained by many authors [3], [4], [5], [6], [7],
[10], [11], [12], [13], [14], [15], [16], [17] by using Colombeau nonlinear generalized functions [1]-[2], .

Definition 1.1. The tensor R̃iklm is called the generalized curvature tensor or the generalized
Riemann tensor.

Definition 1.2. The generalized Ricci curvature tensor R̃km is defined as

R̃km = R̃ikim. (1.8)

Definition 1.3. The generalized Ricci scalar R̃ is defined as

R̃ = gkm R̃km. (1.9)

Definition 1.4. The generalized Einstein tensor G̃km is defined as

G̃km = R̃km −
1

2
gkmR̃. (1.10)

Remark 1.3 (I) Note that the Schwarzschild spacetime is well defined only for r > 2m.The
boundary of the mainfold {r > 2m}in R3 × R is the submainfold {r = 2m}of R3 × R, diffeomorfic
to a product S2 × R.

This submainfold is colled the event horizon, or simply the horizon [18], [19].

(II) The Schwarzschild metric (1.12) in canonical coordinates (x0, r, θ, φ),with m > 0,ceases to be
a smooth Lorentzian metric for r = 2m,because for such a value of rthe coefficient g00 becomes zero
while g11 becomes infinite. For 0 < r < 2mthe metric (1.12) is again a smooth Lorentzian metric
but tis a space coordinate while ris a time coordinate. Hence the metric cannot be said to be either
spherically symmetric or static for r < 2m. [18] (III) From consideration above obviously follows
that on Schwarzschild spacetime

Sh =
(
S2 × {r > 2m} ∪ {0 < r < 2m}

)
× R the Levi-Civita connection{

Γ+l
kj ({}) ==

1

2

[
glm ({})

]
[(gmk,j ({}) + gmj,k ({})− gkj,m ({})] (1.11)

is not available in classical sence and that is well-known many years from mathematical literature,
see for example [20] section 6 and Remark 1.1 - Remark 1.2 above.

(IV) Note that [19]: (i) The determinant det (glm({})) = −r4 sin2 θ of the metric (1.12) is reqular
on horizon, i. e., smooth and non-vanishing for r = 2m. In addition:
(ii) The curvature scalar R({}) = gµνRµν({}) is zero for r = 2m.
(iii) The none of higher-order scalars such as Rµν({})Rµν({}),etc. blows up. For example the
quadratic scalar Rρσµν({})Rρσµν({}) = 48m2/r6 is reqular on horizon, i. e., smooth and non-
vanishing for r = 2m.

(V) Note that: (i) In physical literature (see for example [9], [18] and [21]. It was wrongly assumed
that properties (i)-(iii) are enough to convince us that r = 2m represent an non honest physical
singularity but only coordinate singularity.

(VI) Such assumption based only on formal extensions R̂({}), R̂µν({})R̂µν({}), ...,
R̂ρσµν({})R̂ρσµν({}) of the curvature scalar R({}) and higher-order scalars such as
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Rµν({})Rµν({}), ...,Rρσµν({})Rρσµν({}) on horizon r = 2m and on origin r = 0 by formulae

R̂(r)
∣∣∣
r=2m

= lim
r→2m

R(r) = 0, R̂(r)
∣∣∣
r=0

= lim
r→0

R(r) = 0

............................

R̂ρσµν(r)R̂ρσµν(r)
∣∣∣
r=2m

= lim
r→2m

(Rρσµν(r)Rρσµν(r)) = lim
r→2m

48m2

r6
=

48m2

r6

∣∣∣∣
r=2m

,

R̂ρσµν(r)R̂ρσµν(r)
∣∣∣
r=0

= lim
r→0

(Rρσµν(r)Rρσµν(r)) = lim
r→0

48m2

r6
=∞.

However in the limit r→ 2m the Levi-Civita connection Γ+l
kj ({}) becomes infinite:

Γ1
00 (r)

∣∣
r=2m

= lim
r→2m

m (r − 2m)

r3
= 0, Γ1

11 (r)
∣∣
r=2m

= lim
r→2m

−m
r (r − 2m)

=∞,

Γ0
01 (r)

∣∣
r=2m

= lim
r→2m

m

r (r − 2m)
=∞,

Γ2
12 (r)

∣∣
r=2m

= lim
r→2m

1

r
= 2−1m−1, Γ1

22

∣∣
r=2m

= − lim
r→2m

(r − 2m) = 0,

Γ3
13

∣∣
r=2m

= lim
r→2m

1

r
= 2−1m−1, Γ1

33

∣∣
r=2m

= − lim
r→2m

(r − 2m) sin2 θ = 0,

Γ1
00 (r)

∣∣
r=0

= lim
r→0

m (r − 2m)

r3
=∞ Γ1

11 (r)
∣∣
r=0

= lim
r→0

−m
r (r − 2m)

=∞,

....................................................................

Γ2
33 = − sin θ cos θ,Γ3

23 =
cos θ

sin θ
.

Thus obviously by consideration above (see Remark 1.1 - Remark 1.2) this extension given by Eq.
(1.15) has no any sense in respect of the canonical Riemannian geometry.

(VII) From consideration above (see Remark 1.1 - Remark 1.2) obviously follows that the scalars

such as R̂({}), R̂µν({})R̃µν({}), ..., R̂ρσµν({})R̂ρσµν({}) have no any sense in respect of the canonical
Levi-Civita connection (1.11) and therefore cannot be said to be either honest physical singularity
or only coordinate singularity in respect of the canonical Riemannian geometry.

Remark 1.4 Note that in physical literature the spacetime singularity usually is defined as location
where the quantities that are used to measure the gravitational field become infinite in a way that
does not depend on the coordinate system. These quantities are the classical scalar invariant
curvatures of singular spacetime, which includes a measure of the density of matter.

Remark 1.5 In general relativity, many investigations have been derived with regard to singular
exact vacuum solutions of the Einstein equation and the singilarity structure of space-time. Such
solutions have been formally derived under condition Tν

µ(x) = 0,where Tν
µ(x) represent the energy-

momentum densities of the gravity source. This for example is the case for the well-known Schwarzs-
child solution, which is given by, in the Schwarzschild coordinates (x0, r, θ, φ),

ds2 = −h (r) (dx0)2 + h−1 (r) (dr)2 + r2
[
(dθ)2 + sin2 θ(dφ)2

]
, h (r) = 1− rs

r
, (1.12)

where rs is the Schwarzschild radius rs = 2GM/c2 with G,M and c being the Newton gravitational
constant, mass of the source, and the light velocity in vacuum Minkowsky space-time, respectively.
The metric (1.12) describes the gravitational field produced by a point-like particle located at r = 0.

textbf Remark 1.6 Note that when we say, on the basis of the canonical expression of the curvature
square

Rρσµν(r)Rρσµν(r) =
12r2

s

r6
(1.13)

fomally obtained from the metric (1.12), that r = 0 is a singularity of the Schwarzschild space-time,
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the source is considered to be point-like and this metric is regarded as meaningful everywhere
in space-time.

Remark 1.7 From the metric (1.12), the calculation of the canonical Einstein tensor proceeds in

a straightforward manner gives for r 6= 0 Gtt (r) = Grr (r) = −h
′ (r)

r̂
− 1 + h (r)

r̂2
≡ 0 , Gθθ (r) =

Gϕϕ (r) = −h
′′ (r)

2
− h (r)

r̂2
≡ 0, (1.14) where h (r) = −1 + rs/r. Using Eq. (1.14) one formally

obtains a boundary conditions{
Gtt (0) , lim

r→0
Gtt (r) = 0, Grr (0) , lim

r→0
Grr (r) = 0,

Gθθ (0) , lim
r→0

Gθθ (r) = 0, Gϕϕ (0) , lim
r→0

Gϕϕ (r) = 0.
(1.15)

However as pointed out above the canonical expression of the Einstein tensor in a sufficiently
small neighborhood Ω of the point r = 0 and must be replaced by the generalized Einstein tensor
G̃km (1.10). By simple calculation easy to see that G̃tt (0) , lim

r→0
G̃tt (r) = −∞, G̃rr (0) , lim

r→0
G̃rr (r) = −∞,

G̃θθ (0) , lim
r→0

G̃θθ (r) = −∞, G̃ϕϕ (0) , lim
r→0

G̃ϕϕ (r) = −∞.
(1.16)

and therefore the boundary conditions (1.15) are completely wrong. But on the other hand as
pointed out by many authors [3], [4], [5], [6], [7], [10], [11], [12], [13], [14], [15], [16], [17] that the
canonical representation of the Einstein tensor, valid only in a weak (distributional) sense:

Gab (x̂) = −8πmδa0δ
0
bδ

3 (x̂) (1.17)

and therefore we obtain again Gab (0) = −∞ ×
(
δa0δ

0
b

)
.Thus canonical definition of the Einstein

tensor is breakdown in rigorous mathematical sense for the Schwarzschild solution at origin r = 0.

1.2 The distributional schwarzschild geometry

General relativity as a physical theory is governed by particular physical equations; the focus of
interest is the breakdown of physics which need not coincide with the breakdown of geometry. It has
been suggested to describe singularity at the origin as internal point of the Schwarzschild spacetime,
where the Einstein field equations are satisfied in a weak (distributional) sense [3], [4], [5], [6], [7],
[10], [11], [12], [13], [14], [15], [16], [17], [20], [22], [23], [24], [25].

1.2.1 The smooth regularization of the singularity at the origin

The two singular functions we will work with throughout this paper (namely the singular components

of the Schwarzschild metric) are
1

r
and

1

r − rs
, rs ≥ 0.Since

1

r
∈ L1

loc(R3),it obviously gives the

regular distribution
1

r
∈ D′(R3). By convolution with a mollifier 3c1 (x) adapted to the symmetry

of the spacetime, (i.e. chosen radially symmetric) we embed it into the Colombeau algebra G
(
R3
)

[20]:

1

r

ι→ ι

(
1

r

)
,

(
1

r

)
∗ ρε ,

(
1

r

)
ε

, ρε =
1

ε3
3c1

(r
ε

)
, ε ∈ (0, 1] . (1.18)

Inserting (1.18) into (1.12) we obtain a generalized Colombeau object modeling the singular Schwarzs-
child spacetime:

(
ds2
ε

)
ε

=
(
hε (r) (dt)2

)
ε
−
(
h−1
ε (r) (dr)2

)
ε

+ r2
[
(dθ)2 + sin2 θ(dφ)2

]
,

hε (r) = −1 + rs

(
1

r

)
ε

, ε ∈ (0, 1] .
(1.19)
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Remark 1.8

Note that under regularization (1.18) for any εin (0, 1] themetric

ds2
ε = hε (r) (dt)2 − h−1

ε (r) (dr)2 + r2
[
(dθ)2 + sin2 θ(dφ)2

]
obviously is a classical Riemannian object and there is no exist the breakdown of canonical formalism
of Riemannian geometry for these metrics, even at origin r = 0. It has been suggested by many
authors to describe singularity at the origin as an internal point, where the Einstein field equations
are satisfied in a distributional sense [3], [4], [5], [6], [7], [10], [11], [12], [13], [14], [15], [16], [17],
[20], [22], [23], [24], [25]. From the Colombeau metric (1.19) one obtains in a distributional sense
[20]:(

R2
2 (r, ε)

)
ε

=
(
R3

3

)
ε

=

(
h′ε (r)

r
+

1 + hε (r)

r2

)
ε

= 8πm
δ (r)

r2
,(

R0
0 (r, ε)

)
ε

=
(
R1

1

)
ε

=
1

2

(
h′′ε (r)

2
+
h′ε (r)

r

)
ε

= −4πmδ
δ (r)

r2
.

(1.20)

Hence, the distributional Ricci tensor and the distributional curvature scalar (Rε (r))
ε

are of

δ−type, i.e. (Rε (r))
ε

= πm
δ (r)

r2
.

Remark 1.9
Note that the formulae (1.20) should be contrasted with what is the expected result Gab (x) =
−8πmδa0δ

0
bδ

3 (x) given by Eq.(1.17). However equations (1.20) are obviously given in spherical

coordinates and therefore strictly speaking this is not correct, because the basis fields

{
∂

∂r
,
∂

∂ϕ
,
∂

∂θ

}
are not globally defined. Representing distributions concentrated at the origin require a basis regular
at the origin. Transforming the formulae for (Rij (ε))3b5 into Cartesian coordinates associated with
the spherical ones, i.e., {r, θ, ϕ} ↔ {xi}, we obtain, e.g., for the Einstein tensor the expected result
Gab (x) = −8πmδa0δ

0
bδ

3 (x) given by Eq.(1.17) see [20].

1.2.2 The nonsmooth regularization of the singularity at the origin

The nonsmooth regularization of the Schwarzschild singularity at the origin r = 0 is considered by
N. R. Pantoja and H. H. Rago in [14 ]paper Pantoja nonsmooth regularization of the Schwarzschild
singularity is

(hε (r))ε = −1 +
(rs
r

Θ (r − ε)
)
ε
, ε ∈ (0, 1] , r < rs. (1.21)

Here Θ (u) is the Heaviside function and the limit ε → 0 is understood in a distributional sense.
Equation (1.19) with hε as given in (1.21) can be considered as an regularized version of the
Schwarzschild line element in cirvature coordinates From equation (1.21), the calculation of the
distributional Einstein tensor proceeds in a straightforward manner. By simple calculation it gives
[14]:

(
Gtt (r, ε)

)
ε

= (Grr (r, ε))ε = −
(
h′ε (r)

r

)
ε

−
(

1 + hε (r)

r2

)
ε

=

= −rs
(
δ (r − ε)

r2

)
ε

= −rs
δ (r)

r2

(1.22)

and

8
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(
Gθθ (r, ε)

)
ε

=
(
Gϕϕ (r, ε)

)
ε

= −
(
h′′ε (r)

2

)
ε

−
(
hε (r)

r2

)
ε

=

rs

(
δ (r − ε)

r2

)
ε

− rs
(
ε

r2

d

dr
δ (r − ε)

)
ε

= −rs
δ (r)

r2
.

(1.23)

which is exactly the result obtained in [11] using smoothed versions of the Heaviside function
Θ(r−ε). Transforming now the formulae for (Gab (r, ε))ε into Cartesian coordinates associated with
the spherical ones, i.e., {r, θ, φ} ↔ {xi}, we obtain for the generalized Einstein tensor the expected
result given by Eq. (1.17).

Gab (x) = −8πmδa0δ
0
bδ

3 (x) , (1.24)

see Remark 1.9.

1.2.3 The smooth regularization via horizon

The smooth regularization via Horizon is considered by J. M. Heinzle and R. Steinbauer in [20]

paper. Note that
1

r − rs
/∈ L1

loc(R3).An canonical regularization is the principal value vp

(
1

r − rs

)
∈

D′(R3) which can be embedded into G
(
R3
)

[20]:

1

r − rs
vp→ vp

(
1

r − rs

)
ι→ ι

[
ρε ∗ vp

(
1

r − rs

)]
,

(
1

r − rs

)
ε

∈ G
(
R3
)
. (1.25)

Inserting now (1.25) into (1.12) we obtain a generalized Colombeau object modeling the singular
Schwarzschild spacetime [20]:

(
ds2
ε

)
ε

=
(
h (r) (dt)2

)
ε
−
(
h−1
ε (r) (dr)2

)
ε

+ r2
[
(dθ)2 + sin2 θ(dφ)2

]
,

h (r) = −1 +
rs
r
, h−1
ε (r) = −1− rs

(
1

r − rs

)
ε

, ε ∈ (0, 1] .
(1.26)

Remark 1.10 Note that obviously Colombeau object, (1.26) is degenerated at r = rs, because h(r)
is zero at the horizon. However, this does not come as a surprise. Both h(r) and h−1(r) are positive
outside of the black hole and negative in the interior. As a consequence any smooth regularization
of h(r) (or h−1) must pass through zero somewhere and, additionally, this zero must converge to
r = rs as the regularization parameter goes to zero.

Remark 1.11 Note that due to the degeneracy of Colombeau object (1.26), even the distributional
Levi-Civitá connection obviously is not available by using the smooth regularization via horizon
[20].

1.2.4 The nonsmooth regularization via horizon

In this paper we leave the neighborhood of the singularity at the origin and turn to the singularity
at the horizon. The question we are aiming at is the following: using distributional geometry (thus
without leaving Schwarzschild coordinates), is it possible to show that the horizon singularity of
the Schwarzschild metric is not merely a coordimate singularity. In order to investigate this issue
we calculate the distributional curvature at the horizon in Schwarzschild coordinates.

The main focus of this work is a (nonlinear) superdistributional description of the Schwarzschild
spacetime. Although the nature of the Schwarzschild singularity is much ”worse” than the quasi-
regular conical singularity, there are several distributional treatments in the literature [6], [7], [10],
[11], [12], [13], [14], [15], [16], [17], [20], [22], [23], [24], [25], [26], [27], [28], [29], [30], mailnly
motivated by the following considerations: the physical interpretation of the Schwarzschild metric
is clear as long as we consider it merely as an exterior (vacuum) solution of an extended (sufficiently
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large) massive spherically symmetric body. Together with the interior solution it describes the
entire spacetime. The concept of point particles – well understood in the context of linear field
theories – suggests a mathematical idealization of the underlying physics: one would like to view
the Schwarzschild solution as defined on the entire spacetime and regard it as generated by a point
mass located at the origin and acting as the gravitational source.

This of course amounts to the question of whether one can reasonably ascribe distributional
curvature quantities to the Schwarzschild singularity at the horizon.

The emphasis of the present work lies on mathematical rigor. We derive the ”physically expected”
result for the distributional energy momentum tensor of the Schwarzschild geometry, i. e.,T 0

0 =
8πmδ(3)(~x),in a conceptually satisfactory way. Additionally, we set up a unified language to
comment on the respective merits of some of the approaches taken so far. In particular, we
discuss questions of differentiable structure as well as smoothness and degeneracy problems of the
regularized metrics, and present possible refinements and workarounds. These aims are accomplished
using the framework of nonlinear supergeneralized functions (supergeneralized Colombeau algebras

G̃(R3,Σ)). Examining the Schwarzschild metric (1.12) in a neighborhood of the horizon, we see that,
whereas h(r) is smooth, h−1(r) is not even L1

loc (note that the origin is now always excluded from
our considerations; the space we are working on is R3\{0}). Thus, regularizing the Schwarzschild

metric amounts to embedding h−1 into G̃(R3,Σ) (as done in (3.2)). Obviously, (3.1) is degenerate
at r = 2m, because h(r) is zero at the horizon. However, this does not come as a surprise. Both
h(r) and h−1(r) are positive outside of the black hole and negative in the interior. As a consequence
any (smooth) regularization h+

ε (r)(h−ε (r)) [above (below) horizon] of h(r) must pass through small
enough vicinity

O+
ε (2m) =

{
~x ∈ R3| ‖~x‖ > 2m, ‖~x− 2m‖ 6 ε

}
(O−ε (2m) =

{
~x ∈ R3| ‖~x‖ < 2m, ‖~x− 2m‖ 6 ε

}
) (1.27)

of zeroz set O0 (2m) =
{
~y ∈ R3| ‖~y‖ = 2m

}
somewhere and, additionally, this vicinity O+

ε (2m)
(O−ε (2m)) must converge to O0 (2m) as the regularization parameter ε goes to zero. Due to
the degeneracy of (1.12), the Levi-Civita connection is not available. By appropriate nonsmooth
regularization (see section 3) we obtain a Colombeau generalized object modeling the singular
Schwarzschild metric above and below horizon, i. e.,

(
ds+2
ε

)
ε

=
(
h+
ε (r)dt2

)
ε
−
([
h+
ε (r)

]−1
dr2
)
ε

+ r2dΩ2 ,(
ds−2
ε

)
ε

=
(
h−ε (r)dt2

)
ε
−
([
h−ε (r)

]−1
dr2
)
ε

+ r2dΩ2,

ε ∈ (0, 1] .

(1.28)

Consider corresponding distributional connections(
Γ+l
kj (ε)

)
ε

=
(

Γ+l
kj

[
h+
ε

])
ε
∈ G̃(R3,Σ)and

(
Γ−lkj (ε)

)
ε

=
(

Γ−lkj
[
h+
ε

])
ε
∈ G̃(R3,Σ) :

(
Γ+l
kj (ε)

)
ε

=
1

2

((
g+lm
ε

)
[(g+

ε )mk,j + (g+
ε )mj,k − (g+

ε )kj,m]
)
ε
,(

Γ−lkj (ε)
)
ε

=
1

2

(
(g− lmε )[(g−ε )mk,j + (g−ε )mj,k − (g−ε )kj,m]

)
ε
.

(1.29)

Obviously
(

Γ+l
kj

[
h+
ε

])
ε
,
(

Γ−lkj
[
h+
ε

])
ε

coincides with the corresponding Levi-Civita connection on

R3\{(r = 0) ∪ (r = 2m)}, as (h+
ε )ε = h+

0 , (h
−
ε )ε = h−0 , and

(
g+lm
ε

)
ε

= g+lm
0 ,

(
g−lmε

)
ε

= g−lm0

there. Clearly, connections Γ+l
kj (ε) ,Γ−lkj (ε) , ε ∈ (0, 1] are in respect of the regularized metric

g±ε , ε ∈ (0, 1] ,i.e.,(g±ε )ij;k = 0. Proceeding in this manner, we obtain the nonstandard result
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([

R+
ε

]1
1

)
ε

=
([

R+
ε

]0
0

)
ε
≈ −mΦ̃(2m),([

R−ε
]1
1

)
ε

=
([

R−ε
]0
0

)
ε
' mΦ̃(2m).

(1.30)

Investigating the weak limit of the angular components of the generalized Ricci tensor using the
abbreviation

Φ̃(r) =π
0 sin θdθ2π

0 dφΦ(x)

and letΦ(x) be the function Φ(x) ∈ S+
2m(R3) (Φ(x) ∈ S−2m(R3)), where by S+

2m(R3) (S−2m(R3) we
denote the class of all functions Φ(x) with compact support such that

(i) supp(Φ(x)) ⊂ {x| ‖x‖ ≥ 2m} (supp(Φ(x)) ⊂ {x| ‖x‖ ≤ 2m}) (ii) Φ̃(r) ∈ C∞ (R) . Then for any
function Φ(x) ∈ S±2m(R3) we get: w -lim

ε→0

[
R+
ε

]1
1

= w -lim
ε→0

[
R+
ε

]0
0

= m
〈
δ̃|Φ
〉

= −mΦ̃(2m),

w -lim
ε→0

[
R−ε
]1
1

= w -lim
ε→0

[
R−ε
]0
0

= m
〈
δ̃|Φ
〉

= mΦ̃(2m),
(1.31)

i. e., the Schwarzschild spacetime is weakly Ricii-nonflat (the origin was excluded from our
considerations). Furthermore, the Tolman formula for the total energy of a static and asymptotically
flat spacetime with g the determinant of the four-dimensional metric and d3x the coordinate volume
element gives

ET =
∫ (

Tr
r + Tθ

θ + Tφ
φ + Tt

t

)√
−gd3x = m, (1.32)

as it should be.

The paper is organized in the following way: in section II we discuss the conceptual as well as
the mathematical prerequisites. In particular we comment on geometrical matters (differentiable
structure, coordinate invariance) and recall the basic facts of nonlinear superdistributional geometry

in the context of algebras G̃(M,Σ) of supergeneralized functions Moreover, we derive sensible
nonsmooth regularizations of the singular functions to be used throughout the paper. Section
III is devoted to these approaches to the problem. We present a new conceptually satisfactiry
method to derive the main result. In this final section III we investigate the horizon and describe
its distributional curvature. Using nonlinear superdistributional geometry and supergeneralized
functions it semms possible to show that the horizon singularity is not only a coordinate singularity
with out leaving Schwarzschild coordinates.

1.2.5 Distributional eddington-finkelstein spacetime

In physical literature for many years the belief that the Schwarzschild spacetime
(
S2 × {r > 2m}

)
×

R is extendible exists, in the sense that it can be immersed in a larger spaetime whose manifold
is not covered by the canonical Schwarzschild coordinate with r > 2m. In physical literature [9],
[18],[19],[21] One considers the formal change of coordinates obtained by replacing the canonical
Schwarzschild time by ”retarded time” above horizon ν+ given when r > 2m by

ν+ = t+ r + 2m ln
( r

2m
− 1
)
. (1.33)

From (1.31) it follows for r > 2m

dt = − dr

1− 2m

r

+ dv+. (1.34)

The Schwarzschild metric (1.12) above horizon ds+2 (see section 3) in this coordinate obviously
takes the form

11
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ds+2 = −
(

1− 2m

r

)
dv+2 + 2drdv− + r2

[
(dθ)2 + sin2 θ(dφ)2

]
. (1.35)

When r < 2m we replace (1.33) below horizon by

ν− = t+ r + 2m ln
(

1− r

2m

)
(1.36)

From (1.36) it follows for r < 2m

dt =
dr

2m

r
− 1

+ dv−. (1.37)

The Schwarzschild metric (1.12) below horizon ds2
− (see section 3) in this coordinate obviously

takes the form

ds−2 =

(
2m

r
− 1

)
dv−2 − 2drdv− + r2

[
(dθ)2 + sin2 θ(dφ)2

]
. (1.38)

Remark 1.12 (i) Note that the metric (1.33) is defined on the manifold S2 × (r > 0) × R and
obviously it is regular Lorentzian metric: its coefficients are smooth.
(ii) The term 2drdv ensures its non-degeneracy for r = 2m.
(iii) Due to the nondegeneracy of the metric (1.32) the Levi-Civita connection{

Γ+l
kj ({}) ==

1

2

[
glm ({})

]
[(gmk,j ({}) + gmj,k ({})− gkj,m ({})] (1.39)

is obviously now available and therefore nonsingular on horizon in contrast Schwarzschild metric
(1.12) one obtains:

Γννν =
rs
2r2

,Γrνν =
rs (r − rs)

2r3
,Γrνr = − rs

2r2
,Γθrθ =

1

r
,

Γϕrϕ =
1

r
,Γνθθ = −r,Γrθθ = −r (r − rs) ,Γϕθϕ = cot θ,

Γνϕϕ = −r sin2 θ,Γrϕϕ = −r (r − rs) sin2 θ,Γθϕϕ = − sin θ cos θ.

(1.40)

(iv) In physical literature [9], [18], [19], [21] by using properties (i) - (iii) this spacetime wrongly
convicted as an rigorous mathematical extension of the Schwarzschild spacetime.

Remark 1.13. Let us consider now the coordinates: (i) v+, r′ = r, θ′ = θ, ϕ′ = ϕ and (ii)
v−, r′ = r, θ′ = θ, ϕ′ = ϕ. Obviously both transformations given by Eq.(1.33) and Eq.(1.36 ) are
singular because the both Jacobian of these transformations are singular at r = 2m :∂v

+

∂t

∂v+

∂r
∂r′

∂t

∂r′

∂r

 =

(
1

r

r − 2m
0 1

)
(1.41)

and∂v
−

∂t

∂v−

∂r
∂r′

∂t

∂r′

∂r

 =

(
1 − r

2m− r
0 1

)
. (1.42)

Remark 1.14 Note first (i) such singular transformations are not allowed in conventional Lorentzian
geometry and second (ii) both Eddington-Finkelstein metrics given by Eq.(1.35) and by Eq.(1.38 )
again are not well defined in any rigorous mathematical sense at r = 2m.

Remark 1.15 From consideration above it follows that Schwarzschild spacetime
(
S2 × {r > 2m}

)
×

Ris not extendible, in the sense that it can be immersed in a larger spacetime whose manifold is

12
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not covered by the canonical Schwarzschild coordinate with r > 2m. Thus Eddington-Finkelstein
spacetime cannot be considered as an extension of the Schwarzschild spacetime in any rigorous
mathematical sense in respect conventional Lorentzian geometry. Such ”extension” is the extension
by abnormal definition and nothing more.

Remark 1.16. From consideration above it follows that it is necessary an regularization of the
Eq.(1.34) and Eq.(1.37) on horizon. However obviously only nonsmooth regularization via horizon
r = 2m is possible. Under nonsmooth regularization( see section 3) Eq.(1.34) and Eq.(1.37) take
the form

dt = − dr
1

r

√
(r − 2m)2 + ε2

+ dv+
ε ,

ε ∈ (0, 1]

(1.43)

and

dt =
dr

1

r

√
(2m− r)2 + ε2

+ dv−ε ,

ε ∈ (0, 1]

(1.44)

correspondingly. Therefore Eq.(1.41)− Eq.(1.42) take the form∂v
+
ε

∂t

∂v+
ε

∂r
∂r′

∂t

∂r′

∂r

 =

1
r√

(r − 2m)2 + ε2

0 1

 (1.45)

and∂v
−
ε

∂t

∂v−ε
∂r

∂r′

∂t

∂r′

∂r

 =

1 − r√
(2m− r)2 + ε2

0 1

 . (1.46)

From Eq. (1.43) - Eq. (1.44) one obtains generalized Eddington-Finkelstein transformations such
as

dt = − rdr(√
(r − 2m)2 + ε2

)
ε

+
(
dv+
ε

)
ε
,

ε ∈ (0, 1]

(1.47)

and

dt =
rdr(√

(2m− r)2 + ε2
)
ε

+ dv−ε ,

ε ∈ (0, 1] .

(1.48)

Therefore Eq.(1.45)-Eq.(1.46) take the form
(
∂v+

ε

∂t

)
ε

(
∂v+

ε

∂r

)
ε

∂r′

∂t

∂r′

∂r

 =

1
r(√

(r − 2m)2 + ε2
)
ε

0 1

 (1.49)

and
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(
∂v−ε
∂t

)
ε

(
∂v−ε
∂r

)
ε

∂r′

∂t

∂r′

∂r

 =

1 − r(√
(2m− r)2 + ε2

)
ε

0 1

 . (1.50)

At point r = 2m one obtains
(
∂v+

ε

∂t

)
ε

(
∂v+

ε

∂r

)
ε

∂r′

∂t

∂r′

∂r


∣∣∣∣∣∣∣
r=2m

=

(
1 r

(
ε−1
)
ε

0 1

)
(1.51)

and
(
∂v−ε
∂t

)
ε

(
∂v−ε
∂r

)
ε

∂r′

∂t

∂r′

∂r


∣∣∣∣∣∣∣
r=2m

=

(
1 −r

(
ε−1
)
ε

0 1

)
, (1.52)

where
(
ε−1
)
ε
∈ R̃. Thus generalized Eddington-Finkelstein transformations (1.47)-(1.48) are well

defined in sense of Colombeau generalized functions. Therefore Colombeau generalized object
modeling the classical Eddington-Finkelstein metric (1.35)-(1.36) above and below gorizon takes
the form(

ds+2
ε

)
ε

= −1

r

√
(r − 2m)2 + ε2dv+2

ε + 2drdv+
ε + r2

[
(dθ)2 + sin2 θ(dφ)2

]
.(

ds−2
ε

)
ε

= −1

r

√
(2m− r)2 + ε2dv−2

ε + 2drdv−ε + r2
[
(dθ)2 + sin2 θ(dφ)2

]
.

(1.53)

It easily to verify by using formula A.2 (see appendix) that the distributional curvature scalar
(R (ε))ε is singular at r = 2m as in the case of the distributional Schwarzschild spacetime given by
Eq.(1.28). However this is not surprising because the classical Eddington-Finkelstein spacetime and
generalized Eddington-Finkelstein specetime given by Eq.(1.53) are essentially different geometrical
objects.

2 Generalized Colombeau Calculus

2.1 Notation and basic notions from standard Colombeau theory

We use [1], [2] and [5] as standard references for the foundations and various applications of standard
Colombeau theory. We briefly recall the basic Colombeau construction. Throughout the paper Ω
will denote an open subset of Rn. Standard Colombeau generalized functions on Ω are defined as
equivalence classes u = [(uε)ε] of nets of smooth functionsuε ∈ C∞(Ω) (regularizations) subjected
to asymptotic norm conditions with respect toε ∈ (0, 1] for their derivatives on compact sets.

The basic idea of classical Colombeau’s theory of nonlinear generalized functions is regularization by
sequences (nets) of smooth functions and the use of asymptotic estimates in terms of a regularization
parameter ε. Let (uε)ε∈(0,1] with (uε)ε ∈ C

∞(M) for all ε ∈ R+,where M is a separable, smooth
orientable HausdorfF mainfold of dimensionn.

Definition 2.1. The classical Colombeau’s algebra of generalized functions on M is defined as the
quotient:

G(M) , EM (M)/N (M) (2.1)

ofthespaceEM (M) of sequences of moderate growth modulo the spaceN (M) of negligible sequences.
More precisely the notions of moderateness resp. negligibility are defined by the following asymptotic
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estimates (where X(M) denoting the space of smooth vector fields on M
EM (M) , {(uε)ε| ∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))

[
sup
p∈K
|Lξ1 . . . Lξk uε(p)| = O(ε−N ) as ε→ 0

]}
,

(2.2)


N (M) , {(uε)ε| ∀K (K $M) , ∀k (k ∈ N0) ∀q (q ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))

[
sup
p∈K
|Lξ1 . . . Lξk uε(p)| = O(εq) as ε→ 0

]}
.

(2.3)

Remark 2.1 In the definition the Landau symbol aε = O (ψ (ε)) appears, having the following
meaning: ∃C (C > 0)∃ε0 (ε0 ∈ (0, 1])∀ε (ε < ε0) [aε ≤ Cψ (ε)] .

Definition 2.2. Elements of calG(M) are denoted by:

u = cl[(uε)ε] , (uε)ε +N (M). (2.4)

Remark 2.2. With componentwise operations (·,± ) G(M) is a fine sheaf of differential algebras
with respect to the Lie derivative defined by Lξu , cl[(Lξuε)ε].

The spaces of moderate resp. negligible sequences and hence the algebra itself may be characterized
locally, i.e.,u ∈ G(M) iff u ◦ ψα ∈ G(ψα(Vα)) for all charts (Vα, ψα), where on the open set
ψα(Vα) ⊂ Rn in the respective estimates Lie derivatives are replaced by partial derivatives.

Remark 2.3 Smooth functions f ∈ C∞(M)are embedded into G(M)simply by the “constant”
embedding σ, i.e., σ(f) = cl[(f)ε], hence C∞(M) is a faithful subalgebra of G(M).

2.1.1 Point values of a generalized functions on M . generalized numbers

Within the classical distribution theory, distributions cannot be characterized by their point values
in any way similar to classical functions. On the other hand, there is a very natural and direct way
of obtaining the point values of the elements of Colombeau’s algebra: points are simply inserted
into representatives. The objects so obtained are sequences of numbers, and as such are not the
elements in the field R or C. Instead, they are the representatives of Colombeau’s generalized
numbers. We give the exact definition of these ”numbers”.

Definition 2.3. Inserting p ∈ M into u ∈ G(M) yields a well defined element of the ring of
constants (also called generalized numbers) K (corresponding to K = R resp. C), defined as the
set of moderate nets of numbers ((rε)ε ∈ K(0,1]with |rε| = O(ε−N ) for some N) modulo negligible
nets ( |rε| = O(εm) for each m);componentwise insertion of points of M into elements of G(M)yields
well-defined generalized numbers, i.e.,elements of the ring of constants:

K = Ec (M) /Nc (M) (2.5)

(with K=R̃ or K = C̃ for K = R or K = C), where
Ec (M) =

{
(rε)ε ∈ KI |∃n (n ∈ N)

[
|rε| = O

(
ε−n
)

as ε→ 0
]}

Nc (M) =
{

(rε)ε ∈ KI |∀m (m ∈ N) [|rε| = O (εm) as ε→ 0]
}

I = (0, 1].
(2.6)

Generalized functions on Mare characterized by their generalized point values, i.e., by their values
on points in M̃c, the space of equivalence classes of compactly supported nets (pε)ε ∈ M (0,1] with
respect to the relation pε ∼ p′ε :⇔ dh(pε, p

′
ε) = O(εm) for all m, where dhdenotes the distance on

M induced by any Riemannian metric.

Definition 2.4. For u ∈ G(M) and x0 ∈ M,the point value of u at the point x0, u(x0),is defined
as the class of (uε(x0))εin K.
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Definition 2.5. We say that an element r ∈ K is strictly nonzero if there exists a representative
(rε)εand a q ∈ Nsuch that |rε| > εq for ε sufficiently small. If r is strictly nonzero,then it is also
invertible with the inverse [(1/rε)ε]. The converse is true as well. Treating the elements of Colombeau
algebras as a generalization of classical functions, the question arises whether the definition of point
values can be extended in such a way that each element is characterized by its values. Such an
extension is indeed possible.

Definition 2.6. Let Ωbe an open subset of Rn.On a set Ω̂ :{
Ω̂ =

{
(xε)ε ∈ ΩI |∃p (p > 0) [|xε| = O (εp)]

}
={

(xε)ε ∈ ΩI |∃p (p > 0)∃ε0 (ε0 > 0) [|xε| ≤ εp, for 0 < ε < ε0]
} (2.7)

we introduce an equivalence relation:

(xε)ε ∼ (yε)ε ⇐⇒ ∀q (q > 0)∀ε (ε > 0) [|xε − yε| ≤ εq, for 0 < ε < ε0] (2.8)

and denote by Ω̃ = Ω̂/ ∼ the set of generalized points. The set of points with compact support is

Ω̃c =
{
x̃ = cl[(xε)ε] ∈ Ω̃|∃K (K ⊂ Ω)∃ε0 (ε0 > 0) [xε ∈ K for 0 < ε < ε0]

}
(2.9)

Definition 2.7. A generalized function u ∈ G(M) is called associated to zero, u ≈ 0 on Ω ⊆ M
in L.Schwartz sense if one (hence any) representative (uε)ε converges to zero weakly,i.e.

w - limε→0 uε = 0 (2.10)

We shall often write:

u ≈
Sch

0. (2.11)

The G(M)-module of generalized sections in vector bundles-especially the space of generalized tensor
fields T r

s (M) -is defined along the same lines using analogous asymptotic estimates with respect to
the norm induced by any Riemannian metric on the respective fibers. However, it is more convenient
to use the following algebraic description of generalized tensor fields

Grs(M) = G(M)⊗ T r
s (M) , (2.12)

where T r
s (M) denotes the space of smooth tensor fields and the tensor product is taken over the

module C∞(M). Hence generalized tensor fields are just given by classical ones with generalized
coefficient functions. Many concepts of classical tensor analysis carry over to the generalized setting
[1],[2] in particular Lie derivatives with respect to both classical and generalized vector fields, Lie
brackets, exterior algebra, etc. Moreover, generalized tensor fields may also be viewed as G(M)-
multilinear maps taking generalized vector and covector fields to generalized functions, i.e., as
G(M)-modules we have

Grs(M) ∼= L(M)(G0
1(M)r,G1

0(M)s;G(M)). (2.13)

In particular a generalized metric is defined to be a symmetric, generalized (0, 2)-tensor field gab =
[((gε)ab )ε](with its index independent of εand) whose determinant det(gab)is invertible in G(M).The
latter condition is equivalent to the following notion called strictly nonzero on compact sets: for any
representative det((gε)ab )εof det(gab) we have ∀K ⊂ M ∃m ∈ N [infp∈K |det(gab (ε))| ≥ εm]for all
εsmall enough. This notion captures the intuitive idea of a generalized metric to be a sequence of
classical metrics approaching a singular limit in the following sense: gabis a generalized metric iff
(on every relatively compact open subset V of M) there exists a representative ((gε)ab )ε of gabsuch
that for fixed ε(small enough) (gε)ab = gab (ε)(resp. (gε)ab |V ) is a classical pseudo-Riemannian
metric and det(gab) is invertible in the algebra of generalized functions. A generalized metric
induces a G(M)-linear isomorphism from G1

0(M) toG0
1(M)and the inverse metric gab , [(g−1

ab (ε))ε]
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is a well defined element of G2
0(M) (i.e., independent of the representative ((gε)ab )ε). Also

the generalized Levi-Civita connection as well as the generalized Riemann-, Ricci- and Einstein
tensor of a generalized metric are defined simply by the usual coordinate formulae on the level of
representatives.

2.2 Generalized Colombeau Calculus

We briefly recall the basic generalized Colombeau construction. Colombeau supergeneralized functions
on Ω ⊆ Rn, where dim (Ω) = nare defined as equivalence classes u = [(uε)ε] of nets of smooth
functions uε ∈ C∞(Ω\Σ),where dim (Σ) < n (regularizations) subjected to asymptotic norm
conditions with respect to ε ∈ (0, 1] for their derivatives on compact sets.

The basic idea of generalized Colombeau’s theory of nonlinear supergeneralized functions [1],[2, is
regularization by sequences (nets) of smooth functions and the use of asymptotic estimates in terms
of a regularization parameter ε. Let (uε)εin(0,1]with uεsuch that: (i) uε ∈ C∞(M\Σ) and (ii)
uε ∈ D′(M), for all ε ∈ (0, 1] ,where M is a separable, smooth orientable Hausdorff manifold of
dimension n.

Definition 2.8. The supergeneralized Colombeau’s algebra G̃ = G̃(M,Σ) of supergeneralized func-
tions on M,where ΣsubsetM,dim (M) = n,dim (Σ) < n,is defined as the quotient:

G̃(M,Σ) , EM (M,Σ)/N (M,Σ) (2.14)

of the space EM (M,Σ) of sequences of moderate growth modulo the space N (M,Σ) of negligible
sequences More precisely the notions of moderateness resp. negligibility are defined by the following
asymptotic estimates (where X(M\Σ) denoting the space of smooth vector fields on M\Σ

EM (M,Σ) , {(uε)ε| ∀K (K $M\Σ) ∀k (k ∈ N) ∃N (N ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M\Σ))

[
sup
p∈K
|Lξ1 . . . Lξk uε(p)| = O(ε−N ), ε→ 0

]
&

∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N)∀ (f ∈ C∞(M))∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))[∥∥Lwξ1 . . . Lwξk uε∥∥ =

(
sup

f∈C∞(M)

∣∣Lwξ1 . . . Lwξkuε(f)
∣∣) = O(ε−N ), ε→ 0

]}
,

(2.15)

N (M,Σ) , {(uε)ε| ∀K (K $M\Σ) , ∀k (k ∈ N0) ∀q (q ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M\Σ))

[
sup
p∈K
|Lξ1 . . . Lξk uε(p)| = O(εq), ε→ 0

]}
&

∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N) ∀ (f ∈ C∞(M))∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))[∥∥Lwξ1 . . . Lwξk uε∥∥ =

(
sup

f∈C∞(M)

∣∣Lwξ1 . . . Lwξkuε(f)
∣∣) = O(εq), ε→ 0

]}
,

(2.16)

where Lwξk denoting the weak Lie derivative in L. Schwartz sense. In the definition the Landau
symbol aε = O (ψ (ε)) appears, having the following meaning :

∃C (C > 0)∃ε0 (ε0 ∈ (0, 1])∀ε (ε < ε0) [aε ≤ Cψ (ε)] .

Definition 2.9. Elements of G̃(M,Σ) are denoted by:

u = cl[(uε)ε] , (uε)ε +N (M,Σ). (2.17)

Remark 2.4 With componentwise operations (·,± ) G̃(M,Σ) is a fine sheaf of differential algebras
with respect to the Lie derivative defined by Lξu , cl[(Lξuε)ε].

The spaces of moderate resp. negligible sequences and hence the algebra itself may be characterized
locally, i.e., u ∈ G̃(M,Σ)iff u ◦ ψα ∈ G̃(ψα(Vα)) for all charts (Vα, ψα), where on the open set
ψα(Vα) ⊂ Rn in the respective estimates Lie derivatives are replaced by partial derivatives.
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Remark 2.5 Smooth functions f∈ C∞(M\Σ) are embedded into G̃(M,Σ) simply by the “constant”

embedding σ, i.e.,σ(f) = cl[(f)ε], hence C∞(M\Σ) is a faithful subalgebra of G̃(M,Σ).

2.2.1 Point values of a supergeneralized functions on M . supergenera-
lized numbers

Within the classical distribution theory, distributions cannot be characterized by their point values
in any way similar to classical functions. On the other hand, there is a very natural and direct way
of obtaining the point values of the elements of Colombeau’s algebra: points are simply inserted into
representatives. The objects so obtained are sequences of numbers, and as such are not the elements
in the field R or C. Instead, they are the representatives of Colombeau’s generalized numbers. We
give the exact definition of these ”numbers”.

Definition 2.10. Inserting p∈ M into u ∈ G̃(M,Σ) yields a well defined element of the ring of

constants (also called generalized numbers) K̃(corresponding to K = R resp. C), defined as the set
of moderate nets of numbers ( (rε)ε ∈ K(0,1]with |rε| = O(ε−N )for some N) modulo negligible nets

( |rε| = O(εm)for each m); componentwise insertion of points of M into elements of G̃(M,Σ)yields
well-defined generalized numbers, i.e.,elements of the ring of constants:

K̃Σ= Ec (M,Σ) /Nc (M,Σ) (2.18)

(with K̃Σ = R̃Σ or K = C̃Σ for K = R or K = C), where
Ec (M,Σ) =

{
(rε)ε ∈ KI |∃n (n ∈ N)

[
|rε| = O

(
ε−n

)
as ε→ 0

]}
,

Nc (M,Σ) =
{

(rε)ε ∈ KI |∀m (m ∈ N) [|rε| = O (εm) as ε→ 0]
}

I = (0, 1].
(2.19)

Supergeneralized functions on M are characterized by their generalized point values, i.e., by their
values on points in M̃c,the space of equivalence classes of compactly supported nets (pε)ε ∈
(M\Σ)(0,1] with respect to the relation pε ∼ p′ε :⇔ dh(pε, p

′
ε) = O(εm) for all m, where dh

denotes the distance on M\Σ induced by any Riemannian metric.

Definition 2.11. For u∈ G̃(M,Σ)and x0 ∈M,the point value of u at the point x0, u(x0),is defined

as the class of (uε(x0))εin K̃.

Definition 2.12. We say that an element r∈ K̃ is strictly nonzero if there exists a representative
(rε)ε and a q ∈ N such that—rε| > εq for εsufficiently small. If r is strictly nonzero, then it
is also invertible with the inverse [(1/rε)ε]. The converse is true as well. Treating the elements
of Colombeau algebras as a generalization of classical functions, the question arises whether the
definition of point values can be extended in such a way that each element is characterized by its
values. Such an extension is indeed possible.

Definition 2.13. Let Ω be an open subset of Rn\Σ. On a set Ω̂Σ :

 Ω̂Σ =
{

(xε)ε ∈ (Ω\Σ)I |∃p (p > 0) [|xε| = O (εp)]
}

={
(xε)ε ∈ (Ω\Σ)I |∃p (p > 0) ∃ε0 (ε0 > 0) [|xε| ≤ εp, for 0 < ε < ε0]

} (2.20)

we introduce an equivalence relation:
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(xε)ε ∼ (yε)ε ⇐⇒ ∀q (q > 0) ∀ε (ε > 0) [|xε − yε| ≤ εq, for 0 < ε < ε0] (2.21)

and denote by Ω̃Σ = Ω̂Σ/ ∼ the set of supergeneralized points. The set of points with compact
support is

Ω̃Σ,c =
{
x̃ = cl[(xε)ε] ∈ Ω̃Σ|∃K (K ⊂ Ω\Σ)∃ε0 (ε0 > 0) [xε ∈ K for 0 < ε < ε0]

}
(2.22)

Definition 2.14. A supergeneralized function u∈ G̃(M,Σ)is called associated to zero, u ≈ 0 on
Ω ⊆M in L. Schwartz’s sense if one (hence any) representative (uε)ε converges to zero weakly,i.e.

w - limε→0 uε = 0 (2.23)

We shall often write :

u ≈
Sch

0. (2.24)

Definition 2.15. The G̃(M,Σ)-module of supergeneralized sections in vector bundles- especially
the space of generalized tensor fields T r

s (M\Σ)-is defined along the same lines using analogous
asymptotic estimates with respect to the norm induced by any Riemannian metric on the respective
fibers. However, it is more convenient to use the following algebraic description of generalized tensor
fields

G̃rs(M,Σ) = G̃(M,Σ)⊗ T r
s (M\Σ) , (2.25)

where T r
s (M\Σ) denotes the space of smooth tensor fields and the tensor product is taken over the

module C∞(M\Σ). Hence generalized tensor fields are just given by classical ones with generalized
coefficient functions. Many concepts of classical tensor analysis carry over to the generalized setting,
in particular Lie derivatives with respect to both classical and generalized vector fields, Lie brackets,
exterior algebra, etc. Moreover, generalized tensor fields may also be viewed as G̃(M,Σ)-multilinear

maps taking generalized vector and covector fields to generalized functions, i.e., as G̃(M,Σ)-modules
we have

G̃rs(M,Σ) ∼= L(M)(G̃0
1(M,Σ)r, G̃1

0(M,Σ)s; G̃(M,Σ)). (2.26)

In particular a supergeneralized metric is defined to be a symmetric, supergeneralized (0, 2)-tensor
field gab = [((gε)ab )ε] (with its index independent of ε and) whose determinant det(gab) is

invertible in G̃(M\Σ). The latter condition is equivalent to the following notion called strictly
nonzero on compact sets: for any representative det((gε)ab )εof det(gab) we have ∀K ⊂M\Σ ∃m ∈
N [infp∈K |det(gab (ε))| ≥ εq] for all ε small enough. This notion captures the intuitive idea of a
generalized metric to be a sequence of classical metrics approaching a singular limit in the following
sense: gab is a generalized metric iff (on every relatively compact open subset V of M) there
exists a representative ((gε)ab )εof gabsuch that for fixed ε (small enough) (gε)ab = gab (ε)(resp.
(gε)ab |V ) is a classical pseudo-Riemannian metric and det(gab) is invertible in the algebra of

generalized functions. A generalized metric induces a G̃(M,Σ)-linear isomorphism from G̃1
0(M,Σ)to

G̃0
1(M,Σ)and the inverse metric gab , [(g−1

ab (ε))ε]is a well defined element of G̃2
0(M,Σ) (i.e.,

independent of the representative ((gε)ab )ε). Also the supergeneralized Levi-Civita connection as
well as the supergeneralized Riemann, Ricci and Einstein tensor of a supergeneralized metric are
defined simply by the usual coordinate formulae on the level of representatives.

2.3 Distributional general relativity

We briefly summarize the basics of distributional general relativity, as a preliminary to latter
discussion. In the classical theory of gravitation one is led to consider the Einstein field equations
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which are, in general, quasilinear partial differential equations involving second order derivatives
for the metric tensor. Hence, continuity of the first fundamental form is expected and at most,
discontinuities in the second fundamental form, the coordinate independent statements appropriate
to consider 3-surfaces of discontinuity in the spacetime manifolfd of General Relativity.

In standard general relativity, the space-time is assumed to be a four-dimensional differentiable
manifold M endowed with the Lorentzian metric ds2 = gµνdx

µdxν (µ, ν = 0, 1, 2, 3). At
each point p of space-time M , the metric can be diagonalized as ds2

p = ηµν(dXµ)p(dX
ν)p with

ηµν , (−1, 1, 1, 1), by choosing the coordinate system {Xµ;µ = 0, 1, 2, 3} appropriately.

In superdistributional general relativity the space-time is assumed to be a four-dimensional differen-
tiable manifoldM\Σ, where dim (M) = 4,dim (Σ) 6 3 endowed with the Lorentzian supergeneralized
metric(

ds2
ε

)
ε

= (gµν (ε) dxµdxν)ε ;µ, ν = 0, 1, 2, 3). (2.27)

At each point p∈M\Σ, the metric can be diagonalized as(
ds2
p (ε)

)
ε

= (ηµν(dXµ
ε )p(dX

ν
ε )p)ε with ηµν , (−1, 1, 1, 1), (2.28)

by choosing the generalized coordinate system {(Xµ
ε )ε ;µ = 0, 1, 2, 3} appropriately.The classical

smooth curvature tensor is given by

Rρσµν , ∂µ
{

ρ
σ ν

}
− ∂ν

{
ρ
σ µ

}
+
{

ρ
λ µ

}{
λ
σ ν

}
−
{

ρ
λ ν

}{
λ
σ µ

}
(2.29)

with
{

ρ
σ ν

}
being the smooth Christoffel symbol. The supergeneralized nonsmooth curvature tensor

is given by (Rρσµν (ε))ε , ∂µ
({

ρ
σ ν

}
ε

)
ε
− ∂ν

({
ρ
σ µ

}
ε

)
ε

+
({

ρ
λ µ

}
ε

)
ε

({
λ
σ ν

}
ε

)
ε
−

−
({

ρ
λ ν

}
ε

)
ε

({
λ
σ µ

}
ε

)
ε

(2.30)

with
({

ρ
σ ν

}
ε

)
ε

being the supergeneralized Christoffel symbol. The fundamental classical action
integral I is

I =
1

c
(L̄G + LM )d4x, (2.31)

where LM is the Lagrangian density of a gravitational source and L̄G is the gravitational Lagrangian
density given by

L̄G =
1

2κ
G . (2.32)

Here κ is the Einstein gravitational constant κ = 8πG/c4 and G is defined by

G =
√
−ggµν

({
λ
µ ρ

}{
ρ
ν λ

}
−
{

λ
µ ν

}{
ρ
λ ρ

})
(2.33)

with g = det(gµν). There exists the relation
√
−gR = G + ∂µDµ , (2.34)

with

Dµ = −
√
−g
(
gµν

{
λ
ν λ

}
− gνλ

{
µ
ν λ

})
. (2.35)

Thus the supergeneralized fundamental action integral (Iε)ε is

(Iε)ε =
1

c

∫
(
(
L̄G (ε)

)
ε

+ (LM (ε))ε)d
4x , (2.36)

where (LM (ε))ε is the supergeneralized Lagrangian density of a gravitational source and
(
L̄G (ε)

)
ε
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is the supergeneralized gravitational Lagrangian density given by(
L̄G (ε)

)
ε

=
1

2κ
(Gε)ε . (2.37)

Here κ is the Einstein gravitational constant κ = 8πG/c4 and (Gε)ε is defined by

(Gε)ε =
√
− (gε)ε (gµνε )ε

(({
λ
µ ρ

}
ε

) ({
ρ
ν λ

}
ε

)
−
({

λ
µ ν

}
ε

)({
ρ
λ ρ

}
ε

))
(2.38)

with gε = det [(gµν (ε))ε]. There exists the relation√
− (gε)ε (Rε)ε = (Gε)ε + ∂µ (Dµε )ε , (2.39)

with

(Dµε )ε = −
√
− (gε)ε

(
(gµνε )ε

({
λ
ν λ

}
ε

)
ε
−
(
gνλε
)
ε

({
µ
ν λ

}
ε

)
ε

)
. (2.40)

Also, we have defined the classical scalar curvature by

R = Rµµ (2.41)

with the smooth Ricci tensor

Rµν = Rλµλν . (2.42)

From the action I, the classical Einstein equation

Gµ
ν = Rµ

ν − 1

2
δµ
νR = κTµ

ν , (2.43)

follows, where Tµ
ν is defined by

Tµ
ν =

T̃µ
ν

√
−g

(2.44)

with

T̃ ν
µ , 2gµλ

δLM
δgλν

(2.45)

being the energy-momentum density of the classical gravity source. Thus we have defined the
supergeneralized scalar curvature by

(Rε)ε = (Rµµ (ε))ε (2.46)

with the supergeneralized Ricci tensor

(Rµν (ε))ε =
(
Rλµλν (ε)

)
ε
. (2.47)

From the action (Iε)ε , the supergeneralized Einstein equation

(Gµ
ν (ε))ε = (Rµ

ν (ε))ε −
1

2
δµ
ν (Rε)ε = κ (Tµ

ν (ε))ε , (2.48)

follows, where (Tµ
ν (ε))ε is defined by

(Tµ
ν (ε))ε =

(
T̃µ

ν (ε)
)
ε√

− (gε)ε
(2.49)

with(
T̃ ν
µ (ε)

)
ε
, 2 (gµλ (ε))ε

δ (LM (ε))ε
δ (gλν (ε))ε

(2.50)
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being the supergeneralized energy-momentum density of the supergeneralized gravity source.The
classical energy-momentum pseudo-tensor density t̃ ν

µ of the gravitational field is defined by

t̃ ν
µ = δµ

ν L̄G −
∂L̄G
∂gστ,ν

gστ,µ (2.51)

with gστ,ν = ∂gστ/∂x
ν . The supergeneralized energy-momentum pseudo-tensor density t̃ ν

µ of the
gravitational field is defined by

(
t̃ ν
µ (ε)

)
ε

= δµ
ν
(
L̄G (ε)

)
ε
−
(
∂L̄G (ε)

∂gστ,ν (ε)

)
ε

(gστ,µ (ε))ε (2.52)

with (gστ,ν (ε))ε = (∂gστ (ε) /∂xν)ε.

3 Distributional Schwarzschild Geometry from Non-
smooth Regularization via Horizon

3.1 Calculation of the stress-tensor by using nonsmooth regulariza-
tion via horizon

In this section we leave the neighborhood of the singularity at the origin and turn to the singularity
at the horizon. The question we are aiming at is the following: using distributional geometry (thus
without leaving Schwarzschild coordinates), is it possible to show that the horizon singularity of
the Schwarzschild metric is not merely only a coordinate singularity.

In order to investigate this issue we calculate the distributional curvature at horizon in Schwarzschild
coordinates. In the usual Schwarzschild coordinates (t, r, θ, φ), r 6= 2m the Schwarzschild metric
(1.12) takes the form above horizon r > 2m and below horizon r < 2m correspondingly



above horizon r > 2m :

ds+2 = h+(r)dt2 −
[
h+(r)

]−1
dr2 + r2dΩ2,

h+(r) = −1 +
2m

r
= −r − 2m

r
below horizon r < 2m :

ds−2 = h−(r)dt2 − h−(r)−1dr2 + r2dΩ2,

h−(r) = −1 +
2m

r
=

2m− r
r

(3.1)

Remark 3.1 Following the above discussion we consider the metric coefficients h+ (r) ,
[
h+(r)

]−1

h− (r) , and
[
h−(r)

]−1
as an element of D′(R3) and embed it into(G(R3)) by replacements above

horizon r > 2m and below horizon r 6 2m correspondingly
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Remark 3.2 Note that, accordingly, we have fixed the differentiable structure of the manifold: the
usual Scharzschild coordinates and the Cartesian coordinates associated with the spherical Schwarzs-
child coordinates in (3.1) are extended on r = 2m through the horizon. Therefore we have above
horizon r > 2m and below horizon r 6 2m correspondingly

h(r) =

{
−r − 2m

r
if r > 2m

0 if r 6 2m

}
7−→

(
h+
ε (r)

)
ε

=

−
√

(r − 2m)2 + ε2

r


ε

,

where
(
h+
ε (r)

)
ε
∈ G̃(R3, B+ (2m,R)), B+ (2m,R) =

{
x ∈ R3|2m 6 ‖x‖ 6 R

}
.

h−1(r) =

{
− r

r − 2m
, r > 2m

∞, r = 2m

}
7−→

(
h+
ε

)−1
(r) =

h−(r) =

{
−r − 2m

r
if r 6 2m

0 if r ≥ 2m

}
7−→ h−ε (r) =

=


√

(2m− r)2 + ε2

r


ε

∈ G̃(R3, B− (0, 2m)) ,

where B− (0, 2m) =
{
x ∈ R3|0 < ‖x‖ 6 2m

}{
− r

r − 2m
, r < 2m

∞, r = 2m

}
7−→

(
h−ε
)−1

(r) =

=

 r√
(r − 2m)2 + ε2


ε

∈ G̃(R3, B− (0, 2m))

(3.2)

Inserting (3.2) into (3.1) we obtain a generalized object modeling the singular Schwarzschild metric
above (below) gorizon, i.e.,


(
ds+2
ε

)
ε

=
(
h+
ε (r)dt2

)
ε
−
([
h+
ε (r)

]−1
dr2
)
ε

+ r2dΩ2 ,(
ds−2
ε

)
ε

=
(
h−ε (r)dt2

)
ε
−
([
h−ε (r)

]−1
dr2
)
ε

+ r2dΩ2
(3.3)

The generalized Ricci tensor above horizon
[
R+
]β
α

may now be calculated componentwise using the
classical formulae


([

R+
ε

]0
0

)
ε

=
([

R+
ε

]1
1

)
ε

=
1

2

((
h+′′
ε

)
ε

+
2

r

(
h+′
ε

)
ε

)
([

R+
ε

]2
2

)
ε

=
([

R+
ε

]3
3

)
ε

=

(
h+′
ε

)
ε

r
+

1 +
(
h+
ε

)
ε

r2
.

(3.4)

From (3.2) we obtain
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h+′
ε (r) = − r − 2m

r
[
(r − 2m)2 + ε2

]1/2 +

[
(r − 2m)2 + ε2

]1/2
r2

,

r
(
h+′
ε

)
ε

+ 1 +
(
h+
ε

)
ε

=

r

{
− r − 2m

r
[
(r − 2m)2 + ε2

]1/2 +

[
(r − 2m)2 + ε2

]1/2
r2

}
+ 1−

√
(r − 2m)2 + ε2

r
=

− r − 2m[
(r − 2m)2 + ε2

]1/2 +

[
(r − 2m)2 + ε2

]1/2
r

+ 1−

√
(r − 2m)2 + ε2

r
=

− r − 2m[
(r − 2m)2 + ε2

]1/2 + 1.

h′′ε (r) = −

(
r − 2m

r
[
(r − 2m)2 + ε2

]1/2
)′

+

([
(r − 2m)2 + ε2

]1/2
r2

)′
=

= − 1

r
[
(r − 2m)2 + ε2

]1/2 +
(r − 2m)2

r
[
(r − 2m)2 + ε2

]3/2 +
r − 2m

r2
[
(r − 2m)2 + ε2

]1/2 +

+
r − 2m

r2
[
(r − 2m)2 + ε2

]1/2 − 2
[
(r − 2m)2 + ε2

]1/2
r3

.

r2
(
h+′′
ε

)
ε

+ 2r
(
h+′
ε

)
ε

=

r2

{
− 1

r
[
(r − 2m)2 + ε2

]1/2 +
(r − 2m)2

r
[
(r − 2m)2 + ε2

]3/2 +
r − 2m

r2
[
(r − 2m)2 + ε2

]1/2 +

+
r − 2m

r2
[
(r − 2m)2 + ε2

]1/2 − 2
[
(r − 2m)2 + ε2

]1/2
r3

}
+

+2r

{
− r − 2m

r
[
(r − 2m)2 + ε2

]1/2 +

[
(r − 2m)2 + ε2

]1/2
r2

}
=

− r[
(r − 2m)2 + ε2

]1/2 +
r (r − 2m)2[

(r − 2m)2 + ε2
]3/2 +

r − 2m[
(r − 2m)2 + ε2

]1/2 +

+
r − 2m[

(r − 2m)2 + ε2
]1/2 − 2

[
(r − 2m)2 + ε2

]1/2
r

+

− 2 (r − 2m)[
(r − 2m)2 + ε2

]1/2 +
2
[
(r − 2m)2 + ε2

]1/2
r

=

− r[
(r − 2m)2 + ε2

]1/2 +
r (r − 2m)2[

(r − 2m)2 + ε2
]3/2 .

(3.5)

Investigating the weak limit of the angular components of the Ricci tensor using the abbreviation

Φ̃(r) =
π∫
0

sin θdθ
2π∫
0

dφΦ(x)

and let Φ(x) be the function Φ(x) ∈ S+
2m(R3), where by S+

2m(R3) we denote the class of all functions
Φ(x) with compact support such that:
(i) supp(Φ(x)) ⊂ {x| ‖x‖ ≥ 2m} (ii) Φ̃(r) ∈ C∞ (R) . Then for any function Φ(x) ∈ S2m(R3) we
get:
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∫
K

([
R+
ε

]2
2

)
ε

Φ (~x) d3x =
∫
K

([
R+
ε

]3
3

)
ε

Φ (~x) d3x =

R∫
2m

(
r
(
h+′
ε

)
ε

+ 1 +
(
h+
ε

)
ε

)
Φ̃(r)dr =

R∫
2m

{
− r − 2m[

(r − 2m)2 + ε2
]1/2

}
Φ̃(r)dr +

R∫
2m

Φ̃(r)dr.

(3.6)

By replacement r-2m=u,from (3.6)we obtain∫
K

([
R+
ε

]2
2

)
ε

Φ (x) d3x =∫
K

([
R+
ε

]3
3

)
ε

Φ (x) d3x =

−
R−2m∫

0

uΦ̃(u+ 2m)du

(u2 + ε2)1/2
+

R−2m∫
0

Φ̃(u+ 2m)du.

(3.7)

By replacement u=εη, from (3.7) we obtain the expression
I+
3 (ε) =

∫
K

([
R+
ε

]3
3

)
ε

Φ (x) d3x = I+
2 (ε) =

∫
K

([
R+
ε

]2
2

)
ε

Φ (~x) d3x =

−ε×

 R−2m
ε∫
0

ηΦ̃(εη + 2m)dη

(η2 + 1)1/2
−

R−2m
ε∫
0

Φ̃(εη + 2m)dη

 .
(3.8)

From Eq. (3.8) we obtain

I+
3 (ε) = I+

2 (ε) = −ε Φ̃(2m)

0!

R−2m
ε∫
0

[
η

(η2 + 1)1/2
− 1

]
dη−

− ε
2

1!

R−2m
ε∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη =

−εΦ̃(2m)

√(R− 2m

ε

)2

+ 1−
(
R− 2m

ε
− 1

)−
− ε

2

1

R−2m
ε∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη,

(3.9)

where we have expressed the function Φ̃(εη + 2m) as Φ̃(εη + 2m) =
∑n−1
l=0

Φ(l)(2m)

l!
(εη)l +

1

n!
(εη)nΦ(n)(ξ) ,

ξ , θεη + 2m , 1 > θ > 0 , n = 1
(3.10)

with Φ̃(l)(ξ) , dlΦ̃/dξl. Equations (3.9)-(3.10 give

lim
ε→0

I+
3 (ε) = lim

ε→0
I+
2 (ε) =

lim
ε→0

−εΦ̃(2m)

√(R− 2m

ε

)2

+ 1 + 1− R− 2m

ε

+

+lim
ε→0

− ε21
R−2m
ε∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη

 = 0

(3.11)

Thus in S ′2m
(
B+
R (2m)

)
⊂ S ′2m

(
R3
)
⊂ D′(R3), where B+ (2m,R) =

{
x ∈ R3|2m 6 ‖x‖ 6 R

}
from

Eq. (3.11) we obtain
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 w − lim
ε→0

[
R+
ε

]3
3

= lim
ε→0

I+
3 (ε) = 0,

w − lim
ε→0

[
R+
ε

]2
2

= lim
ε→0

I+
2 (ε) = 0.

(3.12)

For
([

R+
ε

]1
1

)
ε
,
([

R+
ε

]0
0

)
ε

we get:

2
∫
K

([
R+
ε

]1
1

)
ε

Φ (x) d3x = 2
∫
K

([
R+
ε

]0
0

)
ε

Φ (x) d3x =

R∫
2m

(
r2
(
h+′′
ε

)
ε

+ 2r
(
h+′
ε

)
ε

)
Φ̃(r)dr =

=
R∫

2m

{
− r[

(r − 2m)2 + ε2
]1/2 +

r (r − 2m)2[
(r − 2m)2 + ε2

]3/2
}

Φ̃(r)dr.

(3.13)

By replacement r − 2m = u, from (3.13) we obtain

I+
1 (ε) = 2

∫
K

([
R+
ε

]1
1

)
ε

Φ (x) d3x = I+
2 (ε) = 2

∫
K

([
R+
ε

]0
0

)
ε

Φ (x) d3x

=
R∫

2m

(
r2
(
h+′′
ε

)
ε

+ 2r
(
h+′
ε

)
ε

)
Φ̃(r)dr =

=
R−2m∫

0

{
− u+ 2m

(u2 + ε2)1/2
+
u2 (u+ 2m)

(u2 + ε2)3/2

}
Φ̃(u+ 2m)du.

(3.14)

By replacement u = εη, from (3.14) we obtain

2
∫
K

([
R+
ε

]1
1

)
ε

Φ (x) d3x = 2
∫
K

([
R+
ε

]0
0

)
ε

Φ (x) d3x =

=
R∫

2m

(
r2
(
h+′′
ε

)
ε

+ 2r
(
h+′
ε

)
ε

)
Φ̃(r)dr =

= ε

R−2m
ε∫
0

{
− εη + 2m

(ε2η2 + ε2)1/2
+
ε2η2 (εη + 2m)

(ε2η2 + ε2)3/2

}
Φ̃(εη + 2m)dη =

−
R−2m
ε∫
0

ε2ηΦ̃(εη + 2m)dη

(ε2η2 + ε2)1/2
− 2m

R−2m
ε∫
0

εΦ̃(εη + 2m)dη

(ε2η2 + ε2)1/2
+

R−2m
ε∫
0

ε4η3Φ̃(εη + 2m)dη

(ε2η2 + ε2)3/2
+ 2m

R−2m
ε∫
0

ε3η2Φ̃(εη + 2m)dη

(ε2η2 + ε2)3/2
=

ε

− R−2m
ε∫
0

ηΦ̃(εη + 2m)dη

(η2 + 1)1/2
+

R−2m
ε∫
0

η3Φ̃(εη + 2m)dη

(η2 + 1)3/2

+

2m

− R−2m
ε∫
0

Φ̃(εη + 2m)dη

(η2 + 1)1/2
+

R−2m
ε∫
0

η2Φ̃(εη + 2m)dη

(η2 + 1)3/2

 .

(3.15)

From Eq. (3.15) we obtain

I+
0 (ε) = I+

1 (ε) = 2m
Φ̃(2m)

0!

R−2m
ε∫
0

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη+

+
ε

1!

R−2m
ε∫
0

Φ̃(1)(ξ)

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
ηdη+

+
εΦ̃(2m)

0!

R−2m
ε∫

−2m
ε

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη+

+
ε2

1!

R−2m
ε∫
0

Φ̃(1)(ξ)

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
ηdη,

(3.16)
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we have expressed the function Φ̃(εη + 2m) as Φ̃(εη + 2m) =
∑n−1
l=0

Φαβ(l)(2m)

l!
(εη)l +

1

n!
(εη)nΦαβ(n)(ξ) ,

ξ , θεη + 2m , 1 > θ > 0 , n = 1
(3.17)

with(l)(ξ) , dlΦ̃/dξl. Equation (3.17) gives

w -lim
ε→0

I+
0 (ε) = w -lim

ε→0
I+
1 (ε) =

2mΦ̃(2m)lim
ε→0


R−2m
ε∫
0

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη

 =

2mΦ̃(2m) lim
s→∞

[∫ s
0

η2dη

(η2 + 1)3/2
−
∫ s

0

dη

(η2 + 1)1/2

]
=

= −2mΦ̃(2m).

(3.18)

where use is made of the relation

lim
s→∞

[
s∫
0

η2dη

(η2 + 1)3/2
−

s∫
0

dη

(u2 + 1)1/2

]
= −1 (3.19)

Thus in S ′2m
(
B+ (2m,R)

)
⊂ S ′2m(R3) we obtain

w -lim
ε→0

[
R+
ε

]1
1

= w -lim
ε→0

[
R+
ε

]0
0

= −mΦ̃(2m). (3.20)

The supergeneralized Ricci tensor below horizon
[
R−ε
]β
α

=
[
R−ε
]β
α

may now be calculated componentwise
using the classical formulae

([
R−ε
]0
0

)
ε

=
([

R−ε
]1
1

)
ε

=
1

2

((
h−′′ε

)
ε

+
2

r

(
h−′ε
)
ε

)
,([

R−ε
]2
2

)
ε

=
([

R−ε
]3
3

)
ε

=

(
h−′ε
)
ε

r
+

1 +
(
h−ε
)
ε

r2
.

(3.21)

From Eq. (3.21) we obtain

h−ε (r) = −r − 2m

r
7−→ h−ε (r) =


√

(2m− r)2 + ε2

r

 = −h+
ε (r), r < 2m.

h−′ε (r) = −h+′
ε (r) =

r − 2m

r
[
(r − 2m)2 + ε2

]1/2 −
[
(r − 2m)2 + ε2

]1/2
r2

,

r
(
h−′ε
)
ε

+ 1 +
(
h−ε
)
ε

= −r
(
h+′
ε

)
ε

+ 1−
(
h+
ε

)
ε

=
r − 2m[

(r − 2m)2 + ε2
]1/2 + 1.

h−′′ε (r) = −h+′′
ε (r) =

− r − 2m

r2
[
(r − 2m)2 + ε2

]1/2 +
2
[
(r − 2m)2 + ε2

]1/2
r3

.

r2
(
h−′′ε

)
ε

+ 2r
(
h−′ε
)
ε

= −r2
(
h+′′
ε

)
ε
− 2r

(
h+′
ε

)
ε

=

r[
(r − 2m)2 + ε2

]1/2 − r (r − 2m)2[
(r − 2m)2 + ε2

]3/2 .

(3.22)
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Investigating the weak limit of the angular components of the Ricci tensor (using the abbreviation

Φ̃(r) =π
0 sin θdθ

2π∫
0

dφΦ(x) where Φ(~x) ∈ C∞
(
R3
)
, Φ(x) is a function with compact support K

such that K ⊆ B− (0, 2m) =
{
x ∈ R3|0 6 ‖x‖ 6 2m

}
we get:∫

K

([
R−ε
]2
2

)
ε

Φ (~x) d3x =
∫
K

([
R−ε
]3
3

)
ε

Φ (~x) d3x =
2m∫
0

(
r
(
h−′ε
)
ε

+ 1 +
(
h−ε
)
ε

)
Φ̃(r)dr =

2m∫
0

{
r − 2m[

(r − 2m)2 + ε2
]1/2

}
Φ̃(r)dr +

2m∫
0

Φ̃(r)dr.

(3.23)

By replacement r − 2m = u, from Eq. (3.23) we obtain
∫
K

([
R−ε
]2
2

)
ε

Φ (x) d3x =
∫
K

([
R−ε
]3
3

)
ε

Φ (x) d3x =

0∫
−2m

uΦ̃(u+ 2m)du

(u2 + ε2)1/2
+

0∫
−2m

Φ̃(u+ 2m)du.
(3.24)

By replacement u=εη, from (3.23) we obtain

I−3 (ε) =
∫
K

([
R−ε
]3
3

)
ε

Φ (x) d3x = I−2 (ε) =
∫
K

([
R−ε
]2
2

)
ε

Φ (~x) d3x =

ε×

 0∫
− 2m

ε

ηΦ̃(εη + 2m)dη

(η2 + 1)1/2
+

0∫
− 2m

ε

Φ̃(εη + 2m)dη

 ,
(3.25)

which is calculated to give

I−3 (ε) = I−2 (ε) = ε
Φ̃(2m)

0!

0∫
− 2m

ε

[
η

(η2 + 1)1/2
+ 1

]
dη+

+
ε2

1!

0∫
− 2m

ε

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη =

εΦ̃(2m)

1−

√(
2m

ε

)2

+ 1 +
2m

ε

+

+
ε2

1

0∫
− 2m

ε

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη,

(3.26)

where we have expressed the function Φ̃(εη + 2m) as Φ̃(εη + 2m) =
∑n−1
l=0

Φ(l)(2m)

l!
(εη)l +

1

n!
(εη)nΦ(n)(ξ) ,

ξ , θεη + 2m , 1 > θ > 0 , n = 1
(3.27)

with Φ̃(l) , dlΦ̃/drl. Equation (3.27) gives
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lim
ε→0

I−3 (ε) = lim
ε→0

I−2 (ε) =

lim
ε→0

εΦ̃(2m)

1−

√(
2m

ε

)2

+ 1 +
2m

ε

+

+lim
ε→0

 ε2

2

0∫
− 2m

ε

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη

 = 0.

(3.28)

Thus in S ′2m
(
B−R (2m)

)
⊂ S ′2m(R3), where B− (0, 2m) =

{
x ∈ R3|0 6 ‖x‖ 6 2m

}
from Eq. (3.28)

we obtain w − lim
ε→0

[
R−ε
]3
3

= lim
ε→0

I−3 (ε) = 0.

w − lim
ε→0

[
R−ε
]2
2

= lim
ε→0

I−2 (ε) = 0.
(3.29)

For
([

R−ε
]1
1

)
ε
,
([

R−ε
]0
0

)
ε

we get:

2
∫
K

([
R−ε
]1
1

)
ε

Φ (x) d3x = 2
∫
K

([
R−ε
]0
0

)
ε

Φ (x) d3x =
2m∫
0

(
r2
(
h−′′ε

)
ε

+ 2r
(
h−′ε
)
ε

)
Φ̃(r)dr =

=
2m∫
0

{
r[

(r − 2m)2 + ε2
]1/2 − r (r − 2m)2[

(r − 2m)2 + ε2
]3/2

}
Φ̃(r)dr.

(3.30)

By replacement r − 2m = u, from (3.30) we obtain

I+
1 (ε) = 2

∫ ([
R−ε
]1
1

)
ε

Φ (x) d3x = I+
2 (ε) = 2

∫ ([
R−ε
]0
0

)
ε

Φ (x) d3x

=
2m∫
0

(
r2
(
h−′′ε

)
ε

+ 2r
(
h−′ε
)
ε

)
Φ̃(r)dr =

=
0∫

−2m

{
u+ 2m

(u2 + ε2)1/2
− u2 (u+ 2m)

(u2 + ε2)3/2

}
Φ̃(u+ 2m)du.

(3.31)

By replacement u = εη, from (3.31) we obtain

2
∫
K

([
R−ε
]1
1

)
ε

Φ (x) d3x = 2
∫
K

([
R−ε
]0
0

)
ε

Φ (x) d3x =
0∫

− 2m
ε

(
r2
(
h−′′ε

)
ε

+ 2r
(
h−′ε
)
ε

)
Φ̃(r)dr =

= ε
0∫

− 2m
ε

{
εη + 2m

(ε2η2 + ε2)1/2
− ε2η2 (εη + 2m)

(ε2η2 + ε2)3/2

}
Φ̃(εη + 2m)dη =

0∫
− 2m

ε

ε2ηΦ̃(εη + 2m)dη

(ε2η2 + ε2)1/2
+ 2m

0∫
− 2m

ε

εΦ̃(εη + 2m)dη

(ε2η2 + ε2)1/2
−

−
0∫

− 2m
ε

ε4η3Φ̃(εη + 2m)dη

(ε2η2 + ε2)3/2
− 2m

0∫
− 2m

ε

ε3η2Φ̃(εη + 2m)dη

(ε2η2 + ε2)3/2
=

ε
0∫

− 2m
ε

ηΦ̃(εη + 2m)dη

(η2 + 1)1/2
−

0∫
− 2m

ε

η3Φ̃(εη + 2m)dη

(η2 + 1)3/2
+

+2m

 0∫
− 2m

ε

Φ̃(εη + 2m)dη

(η2 + 1)1/2
−

0∫
− 2m

ε

η2Φ̃(εη + 2m)dη

(η2 + 1)3/2

 .

(3.32)
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which is calculated to give

I−0 (ε) = I−1 (ε) = 2m
Φ̃(2m)

0!
εl

0∫
− 2m

ε

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
dη+

+
ε

1!

2m
ε∫
0

Φ̃(1)(ξ)

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
ηdη +O

(
ε2
)
.

(3.33)

where we have expressed the function Φ̃(εη + 2m) as

Φ̃(εη + 2m) =
∑n−1
l=0

Φαβ(l)(2m)

l!
(εη)l +

1

n!
(εη)nΦαβ(n)(ξ) ,

ξ , θεη + 2m , 1 > θ > 0 , n = 1
(3.34)

with(l)(ξ) , dlΦ̃/dξl. Equation (3.34) gives

lim
ε→0

I−0 (ε) = lim
ε→0

I−1 (ε) =

2mlim
ε→0

 Φ̃(2m)

0!

0∫
− 2m

ε

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
dη

 =

2mΦ̃(2m)lim
s→0

[∫ 0

−s
dη

(η2 + 1)1/2
−
∫ 0

−s
η2dη

(η2 + 1)3/2

]
=

= 2mΦ̃(2m).

(3.35)

where use is made of the relation

lim
s→∞

[
0∫
−s

dη

(u2 + 1)1/2
−

0∫
−s

η2dη

(η2 + 1)3/2

]
= 1. (3.36)

Thus in S ′
(
B− (0, 2m)

)
⊂ S ′(R3) we obtain

w -lim
ε→0

[
R−ε
]1
1

= w -lim
ε→0

[
R−ε
]0
0

= mΦ̃(2m). (3.37)

Using Eqs. (3.12), (3.20), (3.29), (3.37) we obtain∫ [(
T+r
r + T+θ

θ + T+φ
φ + T+t

t

)
+
(
T−rr + T−θθ + T−φφ + T−tt

)]√
−gd3x = 0 (3.38)

Thus the Tolman formula [8], [9] for the total energy of a static and asymptotically flat spacetime
with g the determinant of the four-dimensional metric and d3x the coordinate volume element, gives

ET =
∫ (

Tr
r + Tθ

θ + Tφ
φ + Tt

t

)√
−gd3x = m, (3.39)

We rewrite now the Schwarzschild metric (3.3) in the form{ (
ds±2
ε

)
ε

=
(
h±ε (r)dt2

)
ε
−
((

1 + C±ε (r)
)
dr2
)
ε

+ r2dΩ2

C±ε (r) = −1 +
[
h±ε (r)

]−1
.

(3.40)

Using Eq. (A.5) from Eq. (3.40) one obtains for r � 2m(
R±µν (ε) R±µν (ε)

)
ε

=((
1

2

(
h±ε
)′′

+
1

r

(
h±ε
)′)2

)
ε

+ 2

([
−
(
h±ε
)′

r
+

1

r2

]2)
ε

+

+

([
1

2

(
h±ε
)′′

+

(
h±ε
)′

r

]2)
ε

� 1

4
[
(r − 2m)2 + ε2

] +
2

(2m)4 ,

(3.41)
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and

(Rρσµν (ε) Rρσµν (ε))ε =(((
h±ε
)′′)2

+ 2

((
h±ε
)′

r

)2

+ 4
1

r4
+ 2

((
h±ε
)′

r

)2 )
ε

�

� 1[
(r − 2m)2 + ε2

] +
4

(2m)4 .

(3.42)

3.2 Examples of distributional geometries calculation of the distribu-
tional quadratic scalars by using nonsmooth regularization via
horizon

Let us consider again the Schwarzschild metric (3.1)
ds2 = h(r)dt2 − h(r)−1dr2 + r2dΩ2,

h(r) = −1 +
2m

r
= −r − 2m

r
,

h−1(r) = − r

r − 2m
.

(3.43)

We rewrite now the Schwarzschild metric (3.43) above Horizon (r ≥ 2m) in the form
ds+2 = −A+(r)dt2 +

(
A+(r)

)−1
(r)dr2 + r2dΩ2,

A+(r) =
r − 2m

r
,(

A+(r)
)−1

=
r

r − 2m
.

(3.44)

Following the above discussion we consider the singular metric coefficient A−1(r) as an element of
D′(R3) and embed it into (G(R3)) by replacement

r − 2m 7−→
√
r2 + ε2 − 2m. (3.45)

Thus above Horizon (r ≥ 2m) the corresponding distributional metric d̃s+2
εε takes the form

(
d̃s+2
ε

)
ε

=
(
−A+

ε (r)dt2 +
(
A+
ε (r)

)−1
dr2
)
ε

+ r2dΩ2,(
A+
ε (r)

)
ε

=

(√
r2 + ε2 − 2m

r

)
ε

,((
A+
ε (r)

)−1
)
ε

=

(
r√

r2 + ε2 − 2m

)
ε

.

(3.46)

We revrite now the Schwarzschild metric (3.43) below Horizon (r < 2m) in the form ds−2 = A−(r)dt2 −
(
A−(r)

)−1
dr2 + r2dΩ2,

A−(r) =
2m− r
r

,
(
A−(r)

)−1
=

r

2m− r .
(3.47)

Following the above discussion we consider the singular metric coefficient A−1(r) as an element of
D′(R3) and embed it into (G(R3)) by replacement

2m− r 7−→ 2m−
√
r2 + ε2. (3.48)

Thus below Horizon ( r < 2m) the corresponding distributional metric
(
d̃s−2
ε

)
ε

takes the form
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(
ds̃−2
ε

)
ε

=
(
A−ε (r)dt2 −

(
A−ε (r)

)−1
dr2
)
ε

+ r2dΩ2,(
A−ε (r)

)
ε

=

(
2m−

√
r2 + ε2

r

)
ε

,
((
A−ε (r)

)−1
)
ε

=

(
r

2m−
√
r2 + ε2

)
ε

.
(3.49)

From Eq. (3.46) one obtains
(
A+
ε

)′
=

(
−
√
r2 + ε2 − 2m

r

)′
= − 1√

r2 + ε2
+

√
r2 + ε2 − 2m

r2(
A+
ε

)′′
=

r

(r2 + ε2)3/2
− 2

√
r2 + ε2 − 2m

r3
+

1

r
√
r2 + ε2

(3.50)

From Eq. (3.46) using Eq. (A.5) one obtains

(R (ε))ε =

(
−4A′ε

r
+

2AεCε
r2

−A′′ε
)
ε

=

−4

r

(
− 1√

r2 + ε2
+

√
r2 + ε2 − 2m

r2

)
ε

+
2

r2
−

−

(
r

(r2 + ε2)3/2
− 2

√
r2 + ε2 − 2m

r3
+

1

r
√
r2 + ε2

)
ε

.

(3.51)

From Eq. (3.51) for r = 2m one obtains

(R (ε))ε =
6

(2m)2 −
1

(2m)2 +
1

(2m)3 =
1

(2m)3 +
5

(2m)2 (3.52)

Remark 3.3 Note that curvature scalar (R (ε))ε again nonzero but nonsingular. Let us introduce
now the general metric which has the form:{

ds2 = −A (r) (dx0)2 − 2D (r) dx0dr + (B (r) + C (r) (dr)2

+B (r) r2
[
(dθ)2 + sin2 θ(dφ)2

]
,

(3.53)

where

A (r) = Ω2

(
1− a

K (r)

)
, B (r) =

K2 (r)

ρ2 (r)
,

C (r) =

(
1− a

K (r)

)−1

(K′ (r))2 − K2 (r)

ρ2 (r)
−
(

1− a

K (r)

)
(f ′)2 ,

D (r) = Ω

(
1− a

K (r)

)
f ′,K′ (r) , dK (r) /dr, f ′ (r) , df (r) /dr,

K (r) = ρ (r)− |a| ,
a < 0.

(3.54)

Remark 3.4 Note that the coordinates t = x0/cand r are time and space coordinates, respectively,
only if

1− a

K
> 0 ,

(
1− a

K

)−1

(K′)2 −
(

1− a

K

)
(f ′)2 > 0 . (3.55)

In the Cartesian coordinate system {xµ;µ = 0, 1, 2, 3} with

x1 = r cosφ sin θ, x2 = r sinφ sin θ, x3 = r cos θ, (3.56)

the metric (3.53)-(3.55) takes the form
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ds2 = gµνdx
µdxν (3.57)

with gµν given by

g00 = −A , g0α = −Dxα

r
, gαβ = Bδαβ + C

xαxβ

r2
. (3.58)

From Eq. (3.54) one obtains

A (r) = Ω2

(
ρ (r)

ρ (r)− |a|

)
, B =

(ρ (r)− |a|)2

ρ2 (r)
,

C (r) =

(
ρ (r)− |a|
ρ (r)

)
− (ρ (r)− |a|)2

ρ2 (r)
−
(

ρ (r)

ρ (r)− |a|

)
(f ′ (r))2 ,

D (r) = Ω

(
ρ (r)

ρ (r)− |a|

)
f ′ (r) , f ′ (r) , df (r) /dr.

(3.59)

Regularizing the function (ρ (r)− |a|)−1 above horizon (under condition ρ (r)− |a| ≥ 0C) such as

ρ (r)− |a| ≥ 0 :

( ρ (r)− |a|)−1 7→ (ρε (r)− |a|)−1 =
(√

ρ2 (r) + ε2 − |a|
)−1 (3.60)

with ε ∈ (0, 1] from Eq. (3.59)-Eq. (3.60) one obtains

A+
ε (r) = Ω2

(
ρε (r)

ρε (r)− |a|

)
, B+

ε (r) =
(ρε (r)− |a|)2

ρ2
ε (r)

,

C+
ε (r) =

(
ρε (r)− |a|
ρε (r)

)
− (ρε (r)− |a|)2

ρ2
ε (r)

−
(

ρε (r)

ρε (r)− |a|

)
(f ′ (r))2 ,

D+
ε (r) = Ω

(
ρε (r)

ρε (r)− |a|

)
f ′ (r) , f ′ (r) , df (r) /dr.

(3.61)

Regularizing the function (|a| − ρ (r))−1 below horizon (under condition |a| − ρ (r) ≥ 0) such as

|a| − ρ (r) ≥ 0 :

(|a| − ρ (r))−1 7→ (|a| − ρε (r)) =
(
|a| −

√
r2 + ε2

)−1 (3.62)

with ε ∈ (0, 1] from Eq. (3.59)-Eq. (3.62) one obtains

A−ε (r) = −Ω2

(
ρε (r)

|a| − ρε (r)

)
, B−ε (r) =

(|a| − ρε (r))2

ρ2
ε (r)

,

C−ε (r) = −
(
|a| − ρε (r)

ρε (r)

)
− (|a| − ρε (r))2

ρ2
ε (r)

+

(
ρε (r)

|a| − ρε (r)

)
(f ′ (r))2,

D−ε (r) = −Ω

(
ρε (r)

|a| − ρε (r)

)
f ′ (r) , f ′ (r) , df (r) /dr.

(3.63)

Remark 3.5 Finally the metric (3.57) becomes the Colombeau object of the form(
ds2
ε

)
ε

=
(
g±µν (ε) dxµdxν

)
ε

(3.64)

with gµν (ε) given by

g±00 (ε) = −A±ε (r) , g±0α (ε) = −D±ε (r)
xα

r
,

g±αβ (ε) = B±ε (r) δαβ + C±ε (r)
xαxβ

r2
.

(3.65)
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Using now Eq. A2 one obtains that the Colombeau curvature scalars
(
R± (ε)

)
ε

in terms of

Colombeau generalized functions
(
A±ε (r)

)
ε
,
(
B±ε (r)

)
ε
,
(
C±ε (r)

)
ε
,
(
D±ε (r)

)
ε

is expressed as

(
R+ (ε)

)
ε

=

(
r2 + ε2(√

r2 + ε2 − |a|
)2
[

9aε2

(r2 + ε2)
5
2

− 2aε2

r2 (r2 + ε2)
3
2

])
ε(

R− (ε)
)
ε

= −

(
r2 + ε2(√

r2 + ε2 − |a|
)2
[

9aε2

(r2 + ε2)
5
2

− 2aε2

r2 (r2 + ε2)
3
2

])
ε

(3.66)

Remark 3.6 Note that (i) on horizon r = a Colombeau scalars
(
R± (ε)

)
ε
well defined and becomes

to infinite large Colombeau generalized numbers

(
R+ (ε)

)
ε

=

(
a2 + ε2(√

a2 + ε2 − |a|
)2
[

9aε2

(a2 + ε2)
5
2

− 2aε2

a2 (a2 + ε2)
3
2

])
ε

= 7a−2
(
ε−2
)
ε
∈ R̃,(

R− (ε)
)
ε

=

−

(
a2 + ε2(√

a2 + ε2 − |a|
)2
[

9aε2

(a2 + ε2)
5
2

− 2aε2

r2 (r2 + ε2)
3
2

])
ε

= −7a−2
(
ε−2
)
ε
∈ R̃

(3.67)

(ii) for r 6= a Colombeau scalars
(
R± (ε)

)
ε

well defined and becomes to infinite small Colombeau

generalized numbers
(
R± (ε)

)
ε
≈ ±

(
ε2
)
ε
.

Using now Eq. A2 one obtains that the Colombeau scalars
(
R±µν (ε) R±µν (ε)

)
ε

in terms of Colombeau

generalized functions
(
A±ε (r)

)
ε
,
(
B±ε (r)

)
ε
,
(
C±ε (r)

)
ε
,
(
D±ε (r)

)
ε

are expressed as

(
R±µν (ε) R±µν (ε)

)
ε

=

±

( (
r2 + ε2

)2(√
r2 + ε2 − |a|

)4
{[

5

2

[
3aε2

(r2 + ε2)
5
2

]2

− 2aε2

r2 (r2 + ε2)
3
2

]
+

2

[
3aε2

(r2 + ε2)
5
2

+
aε2

r2 (r2 + ε2)
3
2

]2})
ε

(3.68)

Remark 3.7 Note that (i) on horizon r=a Colombeau scalars
(
R±µν (ε) R±µν (ε)

)
ε
well defined and

becomes to infinite large Colombeau generalized numbers, (ii) for r 6= a Colombeau scalars(
R± (ε)

)
ε

well defined and becomes to infinite small Colombeau generalized numbers.

Using now Eq. A2 one obtains that the Colombeau scalars
(
R±ρσµν (ε) R±ρσµν (ε)

)
ε
in terms of

Colombeau generalized functions
(
A±ε (r)

)
ε
,
(
B±ε (r)

)
ε
,
(
C±ε (r)

)
ε
,
(
D±ε (r)

)
ε

are expressed as

(
R±ρσµν (ε) R±ρσµν (ε)

)
ε

=

(
12a2(√

r2 + ε2 − |a|
)6
[

1 +
aε2

(r2 + ε2)
3
2

]2

∓

∓ 4a2(√
r2 + ε2 − |a|

)5
[

1 +
aε2

(r2 + ε2)
3
2

]2 [
2ε2

r2 (r2 + ε2)
+

9ε2

(r2 + ε2)
5
2

]
+

a2(√
r2 + ε2 − |a|

)4 [ 4ε4

r4 (r2 + ε2)
+

81ε4

(r2 + ε2)3

]
.

(3.69)

Remark 3.8 Note that (i) on horizon r=a Colombeau scalars
(
R±ρσµν (ε) R±ρσµν (ε)

)
ε
well defined

and becomes to infinite large Colombeau generalized numbers, (ii) for r 6= a Colombeau scalars are
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finite

(
R±ρσµν (ε) R±ρσµν (ε)

)
ε

=
12a2

(r2 − |a|)6 (3.70)

and tend to zero in the limit r →∞.

Remark 3.9 Note that under generalized transformatios such as

dt =

(
d

[√
r2 + ε2 − 2m

r

]
v+
ε

)
ε

+

(√
r2 + ε2 − 2m

r
dv+
ε

)
ε

, (3.71)

and

dt =

(
d

[
2m−

√
r2 + ε2

r

]
v−ε

)
ε

+

(
2m−

√
r2 + ε2

r
dv−ε

)
ε

, (3.72)

the metric given by Eq.(3.61)-Eq.(3.64) becomes to Colombeau metric of the form{
ds±2
ε = ∓A± (r, ε) (dv±ε )2 − 2v±ε D

±
2 (r, ε) dv±ε dr +

[
B± (r, ε) + C±1

(
v±ε , r, ε

)]
(dr)2+

+B± (r, ε) r2
[
(dθ)2 + sin2 θ(dφ)2

]
.

(3.73)

4 Quantum Scalar Field Curved Distributional
Spacetime

4.1 Canonical quantization in curved distributional spacetime

Much of formalism can be explained with Colombeau generalized scalar field. The basic concepts and
methods extend straightforwardly to distributional tensor and distributional spinor fields. To being
with let’s take a spacetime of arbitrary dimension D, with a metric gµ3bd of signature (+−...−). The
action for the Colombeau generalized scalar field (ϕε)ε ∈ G(M)is

(Sε)ε =

(∫
M

dDx
1

2

√
|gε| (gµνε ∂µϕε∂νϕε)−

(
m2 +Rε

)
ϕ2
ε

)
ε

. (4.1)

The corresponding equation of motion is([
�ε +m2 + ξRε

]
ϕε
)
ε

= 0, ε ∈ (0, 1] . (4.2)

Here (�εϕε)ε =
(
|gε|−1/2 ∂µ |gε|1/2 gµνε ∂µϕε

)
ε
. (4.3)

With } explicit, the mass m should be replaced by m/}. Separating out a time coordinate x0,
xµ = (x0, xi), i = 1, 2, 3 we can write the action as

(Sε)ε =
(∫
dx0Lε

)
ε
, (Lε)ε =

(∫
dD−1xε

)
ε
. (4.4)

The canonical momentum at a time x0 is given by

(πε (x))ε = (δLε/ δ (∂0ϕε (x)))ε =
(
|hε|1/2 nµ∂µϕε (x)

)
ε
, (4.5)

where x lables a point on a surface of constant x0, the x0 argument of (ϕε)ε is suppressed, nµ is the
unit normal to the surface, and (|hε|)ε is the determinant of the induced spatial metric (hij (ε))ε.
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To quantize, the Colombeau generalized field (ϕε)ε and its conjugate momentum (πε (x))ε are now
promoted to hermitian operators and required to satisfy the canonical commutation relation,([

ϕε (x) , πε
(
y
)])

ε
= i~δD−1

(
x, y
)
, ε ∈ (0, 1] . (4.6)

Here
∫
dD−1yδD−1

(
x, y
)
f
(
y
)

= f (x) for any scalar function f ∈ D
(
R3
)
, without the use of a

metric volume element. We form now a conserved bracket from two complex Colombeau solutions
to the scalar wave equation (4.2) by

(〈ϕε, φε〉)ε =

(∫
Σ

dΣµj
µ
ε

)
ε

, ε ∈ (0, 1] . (4.7)

where

(jµε (ϕε, φε))ε = (i/~)
(
|gε|1/2 gµνε

(
ϕε∂νφε − ϕε∂νφε

))
ε
. (4.8)

This bracket is called the generalized Klein-Gordon inner product, and (〈φε, φε〉)ε the generalized
Klein Gordon norm of (ϕε)ε . The generalized current density (jµε (ϕε, φε))ε is divergenceless,i.e.
(∂µj

µ
ε (ϕε, φε))ε = 0 when the Colombeau generalized functions (ϕε)ε and (φε)ε satisfy the KG

equation (4.2), hence the value of the integral in (4.7) is independent of the spacelike surface 3a3
over which it is evaluated, provided the functions vanish at spatial infinity. The generalized KG
inner product satisfies the relations(
〈ϕε, φε〉

)
ε

= −
(〈
ϕε, φε

〉)
ε

= (〈φε, ϕε〉)ε , ε ∈ (0, 1] . (4.9)

We define now the annihilation operator associated with a complex Colombeau solution (φε)ε by
the bracket of (φε)ε with the generalized field operator (ϕε)ε :

(a (φε))ε = (〈φε, ϕε〉)ε . (4.10)

It follows from the hermiticity of (ϕε)ε that the hermitian conjugate of (a (φε))ε is given by(
a† (φε)

)
ε

= −
(
a
(
φε
))
ε
. (4.11)

From Eq. (4.5) and CCR (4.6) one obtains([
a (ϕε) , a

† (φε)
])
ε

= (〈ϕε, φε〉)ε . (4.12)

Note that from Eq. (4.11) follows

([a (ϕε) , a (φε)])ε = −
(〈
ϕε, φε

〉)
ε
,
([
a† (ϕε) , a

† (φε)
])
ε

= − (〈ϕε, φε〉) . (4.13)

Note that if (φε)ε is a positive norm solution with unit norm hf with, then (a (ϕε))ε and a† (ϕε)
satisfy the commutation relation

([
a† (ϕε) , a (φε)

])
ε

= 1. Suppose now that |Ψ〉 is a normalized
quantum state satisfying (a (φε) |Ψ〉)ε = 1, then for each n, the state |n,Ψ〉 = ((1/

√
n!)(a (φε))

n |Ψ〉)ε
is a normalized eigenstate of the number operator (N [(φε)])ε =

(
a† (ϕε) a (ϕε)

)
ε

with eigenvalue n.
The span of all these states defines a Fock space of the distributional (ϕε)ε- wavepacket “n-particle
excitations” above the state |Ψ〉 .If we want to construct the full Hilbert space of the field theory in
curved distributional spacetime, how can we proceed? We should find a decomposition of the space
of complex Colombeau solutions to the wave equation (4.2) S into a direct sum of a positive norm
subspace Sp and its complex conjugate Sp, such that all brackets between solutions from the two
subspaces vanish. That is, we must find a direct sum decomposition:
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S = Sp⊕Sp (4.14)

such that

(〈ϕε, ϕε〉)ε > 0, ∀ (ϕε)ε ∈ Sp (4.15)

and

(〈ϕε, φε〉)ε > 0, ∀ (ϕε)ε , (φε)ε ∈ Sp. (4.16)

The condition (4.15) implies that each (ϕε)ε in Sp can be scaled to define its own harmonic oscillator
sub-albegra. The second condition implies, according to (4.13), that the annihilators and creators
for (ϕε)ε and (φε)ε in the subspace Sp commute amongst themselves:

([a (ϕε) , a (φε)])ε =
([
a† (ϕε) , a

† (φε)
])
ε

= 0. (4.17)

Given such a decompostion a total Hilbert space H for the field theory can be defined as the space
of finite norm sums of possibly infinitely many states of the form(
a† (φ1,ε) ...a

† (φn,ε) |0〉
)
ε
, (4.18)

where |0〉 is a state such that (a (φn,ε) |0〉)ε = 0 for all (φε)ε in Sp. The state |0〉 , as in classical
case, is called a Fock vacuum and Hilbert space H is called a Fock space. The representation of the
field operator on this Fock space is hermitian and satisfies the canonical commutation relations in
sense of Colombeau generalized function.

4.2 Defining distributional outgoing modes

For illustration we consider the non-rotating,uncharged d-dimensional SAdS BH with a distributional
line element(
ds2
ε

)
ε

=
(
−fεdt2 + f −1

ε dr2
)
ε

+ r2dΩ2
d−2, ε ∈ (0, 1] , (4.19)

where fε 6= 0, ε ∈ (0, 1] ,

fε=0 = 1 +
r2

L2
− rd−3

0

rd−3
,

(4.20)

where dΩ2
d−2 is the metric of the (d−2)-sphere, and the AdS curvature radius squared L2 is related

to the cosmological constant by L2 = −(d − 2)(d − 1)/2Λ. The parameter r0 is proportional to
the mass M of the spacetime: M = (d − 2)Ad−2r

d−3
0 /16π, where Ad−2 = 2π(d−1)/2/Γ[(d − 1)/2].

The distributional Schwarzschild geometry corresponds to L→∞.The corresponding equations of
motion (4.2) for massless case are

(∇µ∇µϕε)ε =
(d− 2) γ

4 (d− 1)
(Rε)ε ,

(Gε,µν)ε + Λ (gε,µν)ε = 8πG (Tε,µν)ε ,
(Tε,µν)ε ∼ δ (x) .

(4.21)

The time-independence and the spherical symmetry of the metric imply the canonical decomposition

(ϕε (t, r, θ))ε = e−iωt
(

Ψlm,ε (r)Ylm (θ)

r(d−2)/2 + ε

)
ε

, (4.22)

where Ylm (θ) denotes the d-dimensional scalar spherical harmonics, satisfying
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∆Ωd−2Ylm (θ) = −l (l + d− 3)Ylm (θ) , (4.23)

where ∆Ωd−2 is the Laplace-Beltrami operator. Substituting the decomposition (4.22) into Eq. (6)
one gets a radial wave equation(
f2
ε
d2Ψlm,ε (r)

dr2
+ fεf

′
ε
dΨlm,ε (r)

dr
+
(
ω2 − Vlm,ε (r)

)
Ψlm,ε (r)

)
ε

= 0.

We define now a “tortoise” distributional coordinate (r∗ε)ε = (r∗ε (r))ε by the relation(
dr∗ε
dr

)
ε

=
(
f −1
ε (r)

)
ε
. (4.25)

By using a “tortoise” distributional coordinate the Eq.(4.24) can be written in the form of a
Schrödinger equation with the potential Vlm,ε (r)(

dΨε (r∗ε)

dr∗ε

)
ε

+
((
ω2 − Vε (r∗ε)

)
Ψε (r∗ε)

)
ε

= 0. (4.26)

Note that the tortoise distributional coordinate (r∗ε (r))ε becomes to infinite Colombeau constant[
(r∗ε (r+))ε

]
=
[
(ln ε)ε

]
at the horizon, i.e. as r → r+, but its behavior at infinity is strongly

dependent on the cosmological constant:
[
(r∗ε (r+))ε

]
= +∞ for asymptotically-flat spacetimes,

and
[
(r∗ε (r+))ε

]
= finite Colombeau constant for the SAdSd geometry.

4.2.1 Boundary conditions at the horizon of the distributional SAdS BH
geometry

For most spacetimes of interest the potential (Vε (r∗ε (r)))ε = 0 as r = r+, i.e. (|r∗ε (r)|)ε = +∞,
and in this limit solutions to the wave equation (4.26) behave as

(Ψε (t, r∗ε))ε ∼ (exp [−iω (t± r∗ε (r))])ε , as r˜r+. (4.27)

Note that classically nothing should leave the horizon and thus classically only ingoing modes
(corresponding to a plus sign) should be present, i.e.

(Ψε (t, r∗ε))ε ∼ (exp [−iω (t+ r∗ε (r))])ε , as r˜r+. (4.28)

Note that for non-extremal spacetimes, the tortoise coordinate tends to

(r∗ε (r))ε =
(
f −1
ε (r) dr

)
ε
∼
[
(f ′ε (r+))ε

]−1
(ln (|r − r+|+ ε))ε as r˜r+, (4.29)

where (f ′ε (r+))ε > 0. Therefore near the horizon, outgoing modes behave as{
(exp [−iω (t− r∗ε (r))])ε =

{
(exp [−iωυ∗ε (t, r)])ε

}
(exp [−2iωr∗ε (r)])ε =

=
{

(exp [−iωυ∗ε (t, r)])ε
}{(

[|r − r+|+ ε]2iω/f
′
ε (r+)

)
ε

}
,

(4.30)

where (υ∗ε (t, r))ε = t + (r∗ε (r))ε . Now Eq. (4.30) shows that outgoing modes is Colombeau
generalized functions of class G(R).

5 Energy-momentum Tensor Calculation by Using
Colombeau Distributional Modes

We shall assume now any distributional spacetime which is conformally static in both the asymptotic
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past and future. We will consider distributional spacetime which is conformally flat in the asymptotic
past,i.e.{

ds2
ε ∼

(
f2
ε,in(−dt2 + d~x2)

)
ε

asymp.past

ds2
ε ∼

(
f2
ε,out(−dt2 + hε,ijdx

idxj)
)
ε
, asymp.future

(5.1)

where ε ∈ (0, 1] (fε,J)ε = (fε,J(t, ~x))ε > 0,J ∈ {in, out}, are smooth functions and hε,ij =
hε,ij(~x), i, j = 1, 2, 3, are the the components of an arbitrary distributional spatial metric. (Note
that we use the same labels t and ~x = (x1, x2, x3) for coordinates in the asymptotic past and future
only for simplicity; they are obviously defined on non-intersecting regions of the spacetime.) In each

of these asymptotic regions the distributional field (Φε)ε can be written as (Φε)ε =
(

Φ̃ε/fε,J
)
ε
,

where
(

Φ̃ε
)
ε

satisfies

−
(
∂2

∂t2
Φ̃

)
ε

= −
(

∆ε,JΦ̃ε
)
ε

+
(
Vε,JΦ̃ε

)
ε
, (5.2)

where (∆ε,in)ε is the flat Laplace operator, (∆ε,out)ε is the Laplace operator associated with the
spatial metric (hεij)ε, and the effective potential VJ is given by

(Vε,J)ε =

(
∆εJfε,J
fε,J

)
ε

+
(
f 2
ε,J(m2 + ξRε)

)
ε

=

(1− 6ξ)

(
∆εJfε,J
fε,J

)
ε

+m2
(
f 2
ε,J

)
ε

+ ξ (Kε,J)ε ,
(5.3)

with (Kε,in)ε = 0, Kε,out = Kε,out(~x) the scalar curvature associated with the spatial distributional
metric (hε,ij)ε.

We assume now this condition : (i) the massless(m=0 ) field with arbitrary coupling ξ in space-
times
which are asymptotically flat in the past and asymptotically static in the future, i.e. fin = 1 and
fε,out = fε,out(~x), as those describing the formation of a static BH from matter initially scattered
throughout space, and (ii) the massless, conformally coupled field (m = 0 and ξ = 1/6). With this

assumptions for the potential, two different sets of positive-norm distributional modes,
(
u

(+)

ε,~k

)
ε

and(
v

(+)
ε,α

)
ε
, can be naturally defined by the requirement that they are the solutions of Eq. (5.2) which

satisfy the asymptotic conditions:(
u

(+)

ε,~k

)
ε
�

past
(16π3ω~k)−1/2 e−i(ω~kt−

~k·~x)
(
f −1
ε,in

)
ε

(5.4)

and(
v

(+)
ε,α

)
ε
�

future
(2$α)−1/2e−i$αt

(
f −1
ε,out Fε,α(~x)

)
ε
, (5.5)

where ~k ∈ R3, ω~k := ‖~k‖, $α > 0, and (Fε,α(~x))ε are Colombeau solutions of

([−∆ε,out + Vε,out(~x)]Fε,α(~x))ε = $2
α (Fε,α(~x))ε ,

(Fε,α(~x))ε
∣∣
ε=0
∈ C∞

(
R3
) (5.6)

satisfying the normalization(∫
Σout

d3x
√
h Fε,α(~x)∗Fε,β(~x)

)
ε

= δα,β (5.7)
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on a Cauchy surface Σout in the asymptotic future. Note that each Fε,α, ε ∈ [0, 1] can be chosen to
be real without loss of generality. There are reasonable situations where the distributional modes(
v

(+)
ε,α

)
ε
, given in Eq. (5.5), together with distributional modes

(
v

(−)
ε,α

)
ε

fail to form a complete

set of distributional normal modes. This happens whenever the operator ([−∆ε,out + Vε,out(~x)])ε
in Eq. (5.2) happens to possess normalizable, i.e., satisfying Eq. (5.7) eigenfunctions with negative

eigenvalues, $2
α = −Ω2

α < 0. In this case, additional positive-norm modes
(
w

(+)
ε,α

)
ε

with the

asymptotic behavior(
w

(+)
ε,α

)
ε
�

future

(
eΩαt−iπ/12 + e−Ωαt+iπ/12

)( Fε,α(~x)√
2Ωα fε,out(~x)

)
ε

(5.8)

and their complex conjugates
(
w

(−)
ε,α

)
ε

are necessary in order to expand an arbitrary Colombeau

solution of Eq. (5.1) As a direct consequence, at least some of the in-modes
(
u

(±)

ε,~k

)
ε

(typically

those with lown ω~k) eventually undergo an exponential growth. This asymptotic divergence is
reflected on the unbounded increase of the vacuum fluctuations,

(〈
Φ2
ε(~x)

〉)
ε
�

future

κ e2Ω̄t

2Ω̄

[(
F̄ε(~x)

fε,out(~x)

)
ε

]2 [
1 +O(e−εt)

]
, (5.9)

where F̄ (~x) is the eigenfunction of Eq. (5.6) associated with the lowest negative eigenvalue allowed,
$2
α = −Ω̄2, ε is some positive constant, and κ is a dimensionless constant (typically of order unity)

whose exact value depends globally on the spacetime structure (since it crucially depends on the

projection of each
(
u

(±)

ε,~k

)
ε

on the mode
(
w

(±)
ε,α

)
ε

whose $2
α = −Ω̄2; κ also depends on the initial

state, here assumed to be the vacuum |0〉in). As one would expect, these wild quantum fluctuations
give an important contribution to the vacuum energy stored in the field. In fact, the expectation
value of its distributional energy-momentum tensor, (〈Tε,µν(~x)〉)ε , ε ∈ (0, 1] , in the asymptotic
future is found to be dominated by this exponential growth:

(〈Tε,00(~x)〉)ε �future

{(〈
Φ2
ε(~x)

〉)
ε

}{ (1− 4ξ)

2

(
Ω̄2 +

(DF̄ε)
2

F̄ 2
+m2f 2

ε + ξKε

)
ε

+(1− 6ξ)

(
2ξD2fε
fε

+
(Dfε)

2

2f 2
ε

− DifεD
iF̄ε

fεF̄ε

)
ε

+O(e−εt)

}
,

(5.10)


(〈Tε,0i(~x)〉)ε �future{(〈

Φ2
ε(~x)

〉)
ε

}{
(1− 4ξ)

(
Ω̄DiF̄ε

F̄ε

)
ε

− (1− 6ξ)

(
Ω̄Difε
fε

)
ε

+O(e−εt)

}
,

(5.11)

(〈Tε,ij(~x)〉)ε �future{(〈
Φ2
ε(~x)

〉)
ε

}{
(1− 2ξ)

(
DiF̄εDjF̄ε

F̄ 2
ε

)
ε

− 2ξ

(
DiDjF̄ε
Fε

)
ε

+ ξ
(
R̃ε,ij

)
ε

+
(1− 4ξ)hij

2

(
Ω̄2 −

(
(DF̄ε)

2

F̄ 2
ε

−m2f2
ε − ξKε

)
ε

)
+(1− 6ξ)

[(
DifεDjfε

f2
ε

− DifDjF̄

fεF̄ε
− DjfεDiF̄ε

fεF̄ε

)
ε

+

+ (hε,ij)ε

(
2ξD2fε
fε

− (Dfε)
2

2f2
ε

+
DkfεD

kF̄ε

fεF̄ε

)
ε

]
+O(e−εt),

(5.12)

where Di is the derivative operator compatible with the distributional metric (hε,ij)ε (so that

∆out = D2),
(
R̃ε,ij

)
ε

is the associated distributional Ricci tensor so that (Kε,out)ε =
(
hijε R̃ε,ij

)
ε
,
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and we have omitted the subscript out in (fε,out)ε and (Kε,out)ε for simplicity. The Eqs. (5.10-5.12),
together with Eq. (5.9), imply that on time scales determined by Ω̄−1, the vacuum fluctuations of the
field should overcome any other classical source of energy, therefore taking control over the evolution
of the background geometry through the semiclassical Einstein equations (in which (〈Tε,µν〉)ε is
included as a source term for the distributional Einstein tensor). We are then confronted with a
startling situation where the quantum fluctuations of a field, whose energy is usually negligible in
comparison with classical energy components, are forced by the distributional background spacetime
to play a dominant role. We are still left with the task of showing that there exist indeed well-
behaved distributional background spacetimes in which the operator

[
(−∆ε,out + Vε,out(~x))ε

]
possesses negative eigenvalues $2

α < 0,condition on which depends Eq. (5.9). Experience from
quantum mechanics tells us that this typically occurs when (Vε,out)ε gets sufficiently negative over
a sufficiently large region. It is easy to see from Eq. (5.3) that, except for very special geometries (as
the flat one), one can generally find appropriate values of ξ ∈ R which make (Vε,out)ε as negative
as would be necessary in order to guarantee the existence of negative eigenvalues. For distributional
BH spacetime using Eq. (5.9)-Eq. (5.12) one obtains

(〈
Φ2
ε(r)

〉)
ε
�

future

κ e2Ω̄t

2Ω̄

( r1/2F̄ε(r)(
(r − r+)2 + ε2

)1/4
)
ε

2

, r → r+ (5.13)

(〈Tε,00(r〉)ε �future

{(〈
Φ2
ε(r)

〉)
ε

}{
(1− 4ξ)

2

(
Ω̄2 +

(DF̄ε (r+))2

F̄ 2 (r+)
+m2

(
(r − r+)2 + ε2

)1/2
+ ξKε

)
ε

+ (1− 6ξ)(
− 2ξD2fε (r)(

(r − r+)2 + ε2
)1/4 +

(Dfε (r))2(
(r − r+)2 + ε2

)1/4 − Difε (r)DiF̄ε(
(r − r+)2 + ε2

)1/4
F̄ε

)
ε

 ,

r → r+, fε (r) =
(
(r − r+)2 + ε2

)1/4
(5.14)



(〈Tε,0i(r)〉)ε �future

{(〈
Φ2
ε(r)

〉)
ε

}(1− 4ξ)

(
Ω̄DiF̄ε (r+)

F̄ε (r+)

)
ε

− (1− 6ξ)

(
Ω̄Difε (r)(

(r − r+)2 + ε2
)1/4

)
ε

 ,

r → r+, fε (r) =
(
(r − r+)2 + ε2

)1/4
(5.15)

(〈Tε,ij(r)〉)ε �future{(〈
Φ2
ε(r)

〉)
ε

}{
(1− 2ξ)

(
DiF̄εDjF̄ε

F̄ 2
ε

)
ε

− 2ξ

(
DiDjF̄ε
Fε

)
ε

+ ξ
(
R̃ε,ij

)
ε

+

(1− 4ξ)hij
2

(
Ω̄2 −

(
(DF̄ε (r+))2

F̄ 2
ε (r+)

−m2
(
(r − r+)2 + ε2

)1/2 − ξKε

)
ε

)
+ (1− 6ξ)( DifεDjfε(

(r − r+)2 + ε2
)1/2 − DifDjF̄(

(r − r+)2 + ε2
)1/4

F̄ε
− DjfεDiF̄ε(

(r − r+)2 + ε2
)1/2

F̄ε

)
ε

+

(hε,ij)ε

(
2ξD2fε(

(r − r+)2 + ε2
)1/4 − (Dfε)

2

2
(
(r − r+)2 + ε2

)1/2 +
DkfεD

kF̄ε(
(r − r+)2 + ε2

)1/4
F̄ε

)
ε

 ,
r → r+.

(5.16)

Remark 5.1 Note that in spite of the unbounded growth atr → r+in Eq. (5.13)-Eq. (5.16),

(〈Tε,µν〉)εis covariantly conserved:
(
∇µ
〈
Tµε,ν

〉)
ε

= 0. In the static case (fε,out)ε = (fε,out(~x))ε, for
instance for distributional BH geometry, this implies that the total vacuum energy is kept constant,
although it continuously flows from spatial regions where its density is negative to spatial regions
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where it is positive.

Remark 5.2 Note that the singular behavior at r → r+ appearing in Eq. (5.13)-Eq. (5.16) leads
only to asymptotic divergences, i.e. all the quantities remain finite everywhere except horizon.

6 Distributional SAdS BH Spacetime-induced Vacuum
Dominance

6.1 Adiabatic expansion of green finctions

Using equation of motion Eq. (5.2) one can obtain corresponding distributional generalization of
the canonical Green functions equations. In particular for the distributional propagator

iG±ε (x, x′) =
〈
0
∣∣T (ϕ±ε (x)ϕ±ε (x′)

)∣∣ 0〉 , ε ∈ (0, 1] (6.1)
one obtains directly([
�ε,x +m2 + ξR± (x, ε)

]
G±ε (x, x′)

)
ε

= −
[
−g± (x, ε)

]−1/2
δn (x− x′) . (6.2)

Special interest attaches to the short distance behaviour of the Green functions, such as
(
G±ε (x, x′)

)
ε

in the limit ‖x− x′‖ → 0 with a fixed ε ∈ (0, 1] . We obtan now an adiabatic expansion of(
G±ε (x, x′)

)
ε
.Introducing Riemann normal coordinates yµ for the point x, with origin at the point

x′we have expanding

(
g±µυ (x, ε)

)
ε

= ηµυ +
1

3

[(
R±µαυβ (ε)

)
ε

]
yαyβ − 1

6

[(
R±µαυβ;γ (ε)

)
ε

]
yαyβyγ+

+

[
1

20

(
R±µαυβ;γδ (ε)

)
ε

+
2

45

[(
R±αµβλ (ε)

)
ε

] (
R±λγvδ (ε)

)
ε

]
yαyβyγyδ + ...,

(6.3)

where ηµυ is the Minkowski metric tensor, and the coefficients are all evaluated at y = 0. Defining
now(±
ε (x, x′)

)
ε

=
[((
−g±µυ (x, ε)

)1/4)
ε

] (
G±ε (x, x′)

)
ε

(6.4)

and its Colombeau-Fourier transform by(±
ε (x, x′)

)
ε

= (2π)−n
(
dnke−ikyε

± (k)
)
ε
, (6.5)

where ky=ηαβkαyβ , one can work in a sort of localized momentum space. Expanding (6.2) in
normal coordinates and converting to k-space,

(±
ε (k)

)
ε

can readily be solved by iteration to any
adiabatic order. The result to adiabatic order four (i.e., four derivatives of the metric) is

(±
ε (k)

)
ε

=
(
k2 −m2

)−1 −
(

1

6
− ξ
)(

k2 −m2
)−2 (

R± (ε)
)
ε

+

i

2

(
1

6
− ξ
)
∂α
(
k2 −m2

)−2 (
R±;α (ε)

)
ε
− 1

3

[(
a±αβ (ε)

)
ε

]
∂α∂β

(
k2 −m2

)−2

+

[(
1

6
− ξ
)2 (

R±2 (ε)
)
ε

+
2

3

(
a±λλ (ε)

)
ε

] (
k2 −m2

)−3
,

(6.6)

where ∂α = ∂/∂kα,
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(
a±αβ (ε)

)
ε
�
(

1

2
− ξ
)(

R±;αβ (ε)
)
ε

+
1

120

(
R±;αβ (ε)

)
ε
− 1

140

(
R± λ
αβ;λ (ε)

)
ε
−

− 1

30

[(
R± λ
α (ε)

)
ε

] (
R±λβ (ε)

)
ε

+
1

60

[(
R±κ λα β (ε)

)
ε

] (
R±κλ (ε)

)
ε

+

+
1

60

[(
R± λµκ

α (ε)
)
ε

] (
R±λµκβ (ε)

)
ε
,

(6.7)

and we are using the symbol � to indicate that this is an asymptotic expansion. One ensures that
Eq. (6.5) represents a time-ordered product by performing the k0 integral along the appropriate
contour in Pic. 3. This is equivalent to replacing m2 by m2−iε. Similarly, the adiabatic expansions
of other Green functions can be obtained by using the other contours in Pic. 3. Substituting Eq.
(6.6) into Eq.(6.5) gives

(
L±ε (x, x′)

)
ε

= (2π)−n×(∫
dnke−iky

[
a±0 (x, x′; ε) + a±1 (x, x′; ε)

(
− ∂

∂m2

)
+ a±2 (x, x′; ε)

(
∂

∂m2

)2
] (
k2 −m2

)−1

)
ε

where(
a±0 (x, x′; ε)

)
ε

= 1 (6.9)

and, to adiabatic order 4,

(
a±1 (x, x′; ε)

)
ε

=(
1

6
− ξ
)(

R± (ε)
)
ε
− i

2

(
1

6
− ξ
)[(

R±;α (ε)
)
ε

]
yα − 1

3

[(
a±αβ (ε)

)
ε

]
yαyβ(

a±2 (x, x′; ε)
)
ε

=
1

2

(
1

6
− ξ
)(

R±2 (ε)
)
ε

+
1

3

(
a±λλ (ε)

)
ε

(6.10)

with all geometric quantities on the right-hand side of Eq. (6.10) evaluated at x′.

If one uses the canonical integral representation(
k2 −m2 + iε

)−1
= −i

∞∫
0

dseis(k
2−m2+iε) (6.11)

in Eq.(6.8), then the dnk integration may be interchanged with the ds integration, and performed
explicitly to yield (dropping the iε)

(
L±ε (x, x′)

)
ε

= −i (4π)−n/2
(∞∫

0

ids (is)−n/2 exp

[
−im2s+

σ (x, x′)

2is

]
F±ε (x, x′; is)

)
ε

σ (x, x′) =
1

2
yαy

α.

(6.12)

The function σ (x, x′) which is one-half of the square of the proper distance between x and x′, while
the function (ε (x, x′; is))ε has the following asymptotic adiabatic expansion(±
ε (x, x′; is)

)
ε
�
(
a±0 (x, x′; ε)

)
ε

+ is
(
a±1 (x, x′; ε)

)
ε

+ (is)2 (a±2 (x, x′; ε)
)
ε

+ ... (6.13)

Using Eq. (6.4), equation (6.12) gives a representation of
(
G±ε (x, x′)

)
ε

:
(
G±ε (x, x′)

)
ε

=

−i (4π)−n/2
([(

∆
1/2
± (x, x′; ε)

)
ε

] ∞∫
0

ids (is)−n/2 exp

[
−im2s+

σ (x, x′)

2is

]
Fε (x, x′; is)

)
ε

(6.14)

where (∆± (x, x′; ε))ε is the distributional Van Vleck determinant
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(∆± (x, x′; ε))ε = −det [∂µ∂νσ (x, x′)]
([
g± (x, ε) g± (x′, ε)

]−1/2
)
ε
. (6.15)

In the normal coordinates about x′ that we are currently using, (∆± (x, x′; ε))ε reduces to([
−g± (x, ε)

]−1/2
)
ε
.

The full asymptotic expansion of
(±
ε (x, x′; is)

)
ε

to all adiabatic orders is

(±
ε (x, x′; is)

)
ε
�
∞∑
j=0

(is)j
(
a±2 (x, x′; ε)

)
ε

(6.16)

with
(
a±0 (x, x′; ε)

)
ε

= 1, the other
(
a±j (x, x′; ε)

)
ε

being given by canonical recursion relations which
enable their adiabatic expansions to be obtained. The expansions (6.13) and (6.16) are, however,
only asymptotic approximations in the limit of large adiabatic parameter T.

If (6.16) is substituted into (6.14) the integral can be performed to give the adiabatic expansion of
the Feynman propagator in coordinate space:

(
G±ε (x, x′)

)
ε
� − (4πi)−n/2

(
∆

1/2
± (x, x′; ε)

∞∑
j=0

a±j (x, x′; ε)

(
− ∂

∂m2

)j
×

×

[(
−2m2

σ

)n−2
4

H
(2)

(n−2)/2

((
2m2σ

) 1
2

)])
ε

,

(6.17)

in which, strictly, a small imaginary part iε should be subtracted from σ. Since we have not imposed
global boundary conditions on the distributional Green function Colombeau solution of (6.2), the
expansion (6.17) does not determine the particular vacuum state in (6.1). In particular, the ” iε”
in the expansion of

(
G±ε (x, x′)

)
ε

only ensures that (6.17) represents the expectation value, in some
set of states, of a time-ordered product of fields. Under some circumstances the use of ” iε” in
the exact representation (6.14) may give additional information concerning the global nature of the
states

6.2 Effective action for the quantum matter fields in curved distribu-
tional spacetime

As in classical case one can obtain Colombeau generalized quantity (Wε)ε , called the effective
action for the quantum matter fields in curved distributional spcetime, which, when functionally
differentiated, yields(

2

(−g (ε))
1
2

δWε

δgµν (ε)

)
ε

= (〈Tµν (ε)〉)ε (6.18)

To discover the structure of (Wε)ε, let us return to first principles, recalling the Colombeau path-
integral quantization procedure such as developed in [1], [2]. Our notation will imply a treatment
for the scalar field, but the formal manipulations are identical for fields of higher spins. Note that
the generating functional

(Zε [Jε])ε = (D [ϕε] exp {iSm (ε) + iJε (x)ϕε (x) dnx})ε (6.19)

was interpreted physically as the vacuum persistence amplitude (〈outε, 0|0, inε〉)ε . The presence
of the external distributional current density (Jε)ε can cause the initial vacuum state ( |0, inε〉)ε to
be unstable, i.e., it can bring about the production of particles. In flat space, in the limit (Jε)ε = 0,
no particles are produced, and one have the normalization condition
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(Zε [0])ε = (D [ϕε] exp {iSm (ε) + iJε (x)ϕε (x) dnx})ε
∣∣
J=0

= (〈0ε|0ε〉)ε = 1. (6.20)

However, when distributional spacetime is curved, we have seen that, in general,

(|0,outε〉)ε 6= (|0, inε〉)ε , (6.21)

even in the absence of source currents J. Hence (6.19) will no longer apply. Path-integral quantization
still works in curved distributional spacetime; one simply treats (Sm (ε))ε in (6.19) as the curved
distributional spacetime matter action, and (Jε (x))ε as a current density (a scalar density in the
case of scalar fields). One can thus set Jε = 0 in (6.19) and examine the variation of (Zε[0])ε :

(δZε[0])ε = iD [ϕε] δSm (ε) exp [iSm (ϕε; ε)] = i (〈outε, 0|δSm (ε) |0, inε〉)ε . (6.22)

Note that(
2

(−g (ε))
1
2

δSm (ε)

δgµν (ε)

)
ε

= (Tµν (ε))ε . (6.23)

From (6.22) and (6.23) one obtains directly(
2

(−g (ε))
1
2

δZε[0]

δgµν (ε)

)
ε

= i (〈outε, 0|Tµν (ε) |0, inε〉)ε (6.24)

Noting that the matter action Sm (ε) appears exponentiated in (6.19), one obtains directly

Zε[0] = (exp (iWε))ε (6.25)

and

(exp (Wε))ε = −i (ln 〈outε, 0|0, inε〉)ε . (6.26)

Following canonical calculation one obtains(
Z±ε [0]

)
ε
∝
([

det
(
−G±ε (x, x′)

)] 1
2

)
ε
, (6.27)

where the proportionality constant is metric-independent and can be ignored. Thus we obtain(
W±ε

)
ε

= −i
(
lnZ±ε [0]

)
ε

= − i
2

(
tr
[
ln
(
−Ĝ±ε

)])
ε
. (6.28)

In (6.28)
(
Ĝ±ε

)
ε

is to be interpreted as an Colombeau generalized operator which acts on an linear

space = of generalized vectors |x〉 ,normalized by

(〈x |x′〉)ε = δ (x− x′)
([
−g± (x, ε)

]− 1
2

)
ε

(6.29)

in such a way that(
G±ε (x, x′)

)
ε

=
(
〈x| Ĝ±ε |x′〉

)
ε
. (6.30)

Remark 6.1 Note that the trace tr[] of an Colombeau generalized operator (<ε)ε which acts on a
linear space =, is defined by

(tr [<ε])ε =
(∫

dnx
[
−g± (x, ε)

] 1
2 <xx;ε

)
ε

=
(∫

dnx
[
−g± (x, ε)

] 1
2 〈x| <xx;ε |x′〉

)
ε
. (6.31)
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Writing now the Colombeau generalized operator
(
Ĝ±ε

)
ε

as

(
Ĝ±ε

)
ε

= −
(
F±−1
ε

)
ε

= −i
(∞∫

0

ds exp
[
−sF±ε

])
ε

, (6.32)

by Eq.(6.14) one obtains
(
〈x| exp

[
−sF±ε

]
|x′〉
)

=

i (4π)−n/2
[(

∆
1/2
± (x, x′; ε)

)
ε

]
exp

[
−im2s+

σ (x, x′)

2is

]
F±ε (x, x′; is) (is)−n/2

. (6.33)

Now, assuming(ε)ε to have a small negative imaginary part, we obtain(∞∫
Λ

ds (is)−1 i exp
[
−sF±ε

])
ε

=
(
Ei
(
−iΛF±ε

))
ε
, (6.34)

where Ei (x) is the exponential integral function.

Remark 6.2 Note that for x→ 0

Ei (x) = γ + ln (−x) +O (x) , (6.35)

where γ is the Euler’s constant. Substituting now (6.35) into (6.34) and letting Λ→ 0 we obtain(
ln
(
−Ĝ±ε

))
ε

= − (ln (Fε))ε =

(∞∫
0

ds exp
[
−sF±ε

]
(is)−1

)
ε

, (6.36)

which is correct up to the addition of a metric-independent infinite large Colombeau constant Ω ∈ R̃
that can be ignored in what follows. Thus, in the generalized De Witt-Schwinger representation
(6.33) or (6.14) we have(
〈x| ln

(
−Ĝ±ε

)
|x′〉
)
ε

=

(
∞∫
m2

G±ε
(
x, x′;m2

)
dm2

)
ε

, (6.37)

where the integral with respect to m2 brings down the extra power of (is)−1 that appears in Eq.
(6.36). Returning now to the expression (6.28) for

(
W±ε

)
ε

using Eq. (6.37) and Eq. (6.31) we
get.

(
W±ε

)
ε

=
i

2

[(∫
dnx

[
−g± (x, ε)

] 1
2

)
ε

](
lim
x→x′

∞∫
m2

G±ε
(
x, x′;m2

)
dm2

)
ε

. (6.38)

Interchanging the order of integration and taking the limit x→ x′ one obtains

(
W±ε

)
ε

=
i

2

(
∞∫
m2

dm2dnx
[
−g± (x, ε)

] 1
2 G±ε

(
x, x;m2

))
ε

. (6.39)

Colombeau quantity
(
W±ε

)
ε

is called as the one-loop effective action. In the case of fermion effective
actions, there would be a remaining trace over spinorial indices. From Eq. (6.39) we may define

an effective Lagrangian density
(
L±ε;eff (x)

)
ε
by(

W±ε
)
ε

=
(∫

dnx
[
−g± (x, ε)

] 1
2 L±ε;eff (x)

)
ε
, (6.40)

whence one gets
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(
L±ε (x)

)
ε

=
[
−g± (x, ε)

] 1
2 L±ε;eff (x) =

i

2

(
lim
x→x′

∞∫
m2

dm2G±ε
(
x, x′;m2

))
ε

. (6.41)

6.3 Stress-tensor renormalization

Note that
(
L±ε (x)

)
ε

diverges at the lower end of the s integral because the σ/2s damping factor
in the exponent vanishes in the limit x→ x′. (Convergence at the upper end is guaranteed by the
−iε that is implicitly added to m2 in the De Witt-Schwinger representation of

(
L±ε (x)

)
ε
. In four

dimensions, the potentially divergent terms in the DeWitt- Schwinger expansion of
(
L±ε (x)

)
ε

are
(
L±ε;div (x)

)
ε

=

−
(
32π2

)−1
(

lim
x→x′

[(
∆

1/2
± (x, x′; ε)

)
ε

] ∞∫
0

ds

s3
exp

[
−im2s+

σ (x, x′)

2is

]
×

×
[
a±0 (x, x′; ε) + isa±1 (x, x′; ε) + (is)2 a±2 (x, x′; ε)

])
ε
,

(6.42)

where the coefficients a±0 , a±1 and a±2 are given by Eq. (6.9)-Eq. (6.10). The remaining terms in
this asymptotic expansion, involving a±3 and higher, are finite in the limit x→ x′.

Let us determine now the precise form of the geometrical
(
L±ε;div (x)

)
ε

terms, to compare them

with the conventional gravitational Lagrangian that appears in (2.38). This is a delicate matter
because (6.48) is, of course, infinite. What we require is to display the divergent terms in the form
∞× [geometrical object ]. This can be done in a variety of ways. For example, in n dimensions,

the asymptotic (adiabatic) expansion of
(
L±ε;eff (x)

)
ε

is

(
L±ε;eff (x)

)
ε
�

2−1 (4π)−n/2
(

lim
x→x′

[(
∆

1/2
± (x, x′; ε)

)
ε

] ∞∑
j=0

aj (x, x′; ε)×

×
∞∫
0

ids (is)j−1−n/2 exp

[
−im2s+

σ (x, x′)

2is

])
ε

(6.43)

of which the first n/2 + 1 terms are divergent as σ → 0. If n is treated as a variable which can be
analytically continued throughout the complex plane, then we may take the x→ x′ limit

(
L±ε;eff (x)

)
ε
� 2−1 (4π)−n/2

(
∞∑
j=0

aj (x; ε)
∞∫
0

ids (is)j−1−n/2 exp
[
−im2s

])
ε

=

2−1 (4π)−n/2
∞∑
j=0

aj (x; ε)
(
m2
)n/2−j

Γ
(
j − n

2

)
,

aj (x; ε) = aj (x, x; ε) .

(6.44)

From Eq. (6.44) it follows we shall wish to retain the units of L±ε;eff (x) as (length) −4, even when
n 6= 4. It is therefore necessary to introduce an arbitrary mass scale µ and to rewrite Eq.(6.44) as

(
L±ε;eff (x)

)
ε
� 2−1 (4π)−n/2

(
m

µ

)n−4
(
∞∑
j=0

aj (x; ε)
(
m2
)4−2j

Γ
(
j − n

2

))
ε

. (6.45)

If n→ 4, the first three terms of Eq.(6.45) diverge because of poles in the Γ - functions:
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Γ
(
−n

4

)
=

4

n (n− 2)

(
2

4− n − γ
)

+O (n− 4) ,

Γ
(

1− n

2

)
=

4

(2− n)

(
2

4− n − γ
)

+O (n− 4) ,

Γ
(

2− n

2

)
=

2

4− n − γ +O (n− 4) .

. (6.46)

Denoting these first three terms by
(
L±ε;div (x)

)
ε
, we have(

L±ε;div (x)
)
ε

= (4π)−n/2{
1

n− 4
+

1

2

[
γ + ln

(
m2

µ2

)]}([
4m4a0 (x; ε)

n (n− 2)
− 2m2a1 (x; ε)

n− 2
+ a2 (x; ε)

])
ε

.
(6.47)

The functions a0 (x; ε) , a1 (x; ε) and a2 (x; ε) are given by taking the coincidence limits of (6.9)-(6.10)

(
a±0 (x; ε)

)
ε

= 1,(
a±1 (x; ε)

)
ε

=

(
1

6
− ξ
)(

R± (ε)
)
ε
,(

a±2 (x; ε)
)
ε

=
1

180

(
R±αβγδ (x, ε) R±αβγδ (x, ε)

)
ε
− 1

180

(
R±αβ (x, ε) R±αβ (x, ε)

)
ε
−

−1

6

(
1

5
− ξ
)(
�R± (x, ε)

)
ε

+
1

2

(
1

6
− ξ
)(

R±2 (x, ε)
)
ε
.

(6.48)

Finally one obtains

(
L±ε;ren (x)

)
ε
� − 1

64π2

(∞∫
0

ids ln (is)
∂3

∂ (is)3

[
F±ε (x, x; is) e−ism

2
])

ε

. (6.49)

Special interest attaches to field theories in distributional spacetime in which the classical action
(Sε)ε is invariant under distributional conformal transformations,i.e.,

(gµν (x, ε))ε →
(
Ω2
ε (x) gµν (x, ε)

)
ε
,
(
ḡ±µν (x, ε)

)
ε
. (6.50)

From the definitions one has

(
Sε
[
ḡ±µν (x, ε)

])
ε

=
(
Sε
[
g±µν (x, ε)

])
ε

+

(∫
dnx

(
δSε

[
ḡ±µν (x, ε)

]
δḡ±ρσ (x, ε)

)
δḡ±ρσ (x, ε)

)
ε

. (6.51)

From Eq.(6.51) one obtains

T± ρ
ρ

[
g±µν (x, ε) , ε

]
= −

(
Ω2
ε (x)

[−g (x, ε)]
1
2

δSε
[
ḡ±µν (x, ε)

]
δΩε (x)

)
ε

∣∣∣∣∣
Ωε=1

, (6.52)

and it is clear that if the classical action is invariant under the conformal transformations (6.50),
then the classical stress-tensor is traceless. Because conformal transformations are essentially a
rescaling of lengths at each spacetime point x, the presence of a mass and hence a fixed length scale
in the theory will always break the conformal invariance. Therefore we are led to the massless limit
of the regularization and renormalization procedures used in the previous section. Although all the
higher order (j > 2) terms in the DeWitt-Schwinger expansion of the effective Lagrangian (6.45)
are infrared divergent at n = 4 as m → 0, we can still use this expansion to yield the ultraviolet
divergent terms arising from j == 0, 1, and 2 in the four-dimensional case. We may put m = 0
immediately in the j = 0 and 1 terms in the expansion, because they are of positive power for
n ∼ 4. These terms therefore vanish. The only nonvanishing potentially ultraviolet divergent term

48



Foukzon et al.; BJMCS, 13(6): 1-54, 2016; Article no.BJMCS.19235

is therefore j = 2 :

2−1 (4π)−n/2
(
m

µ

)n−4

a2 (x, ε) Γ
(

2− n

2

)
, (6.53)

which must be handled carefully. Substituting for a2(x) with ξ = ξ(n) from (6.48), and rearranging
terms, we may write the divergent term in the effective action arising from (6.53) as follows(

W±ε,div

)
ε

= 2−1 (4π)−n/2
(
m

µ

)n−4

Γ
(

2− n

2

)(∫
dnx

[
−g± (x, ε)

] 1
2 a2 (x, ε)

)
ε

=

2−1 (4π)−n/2
(
m

µ

)n−4

Γ
(

2− n

2

)(∫
dnx

[
−g± (x, ε)

] 1
2
[
αz±ε (x) + βG±ε (x)

])
ε

+O (n− 4) ,

(6.54)

where

(zε (x))ε =
(
R±αβγδ (x, ε) R±αβγδ (x, ε)

)
ε
− 2

(
R±αβ (x, ε) R±αβ (x, ε)

)
ε

+
1

3

(
R±2 (x, ε)

)
ε
,(

G±ε (x)
)
ε

=
(
R±αβγδ (x, ε) R±αβγδ (x, ε)

)
ε

(6.55)

and

α =
1

120
, β = − 1

360
. (6.56)

Finally one obtains〈
Tµµ (x, ε)

〉
ren

= −
(
1/2880π2

) [
α
(
zε (x)− 2

3
�R± (x, ε)

)
ε

+ β
(
G±ε (x)

)
ε

]
=

−
(
1/2880π2

) [(
R±αβγδ (x, ε) R±αβγδ (x, ε)

)
ε
−
(
R±αβ (x, ε) R±αβ (x, ε)

)
ε
−�R± (x, ε)

]
.

(6.57)

Note that from Eq.(3.42)for r→ 2m it follows that

(Rρσµν (ε) Rρσµν (ε))ε �
([

(r − 2m)2 + ε2
]−1
)
ε

+ 4 (2m)4 . (6.58)

Thus for the case of the distributional Schwarzchild spacetime given by the distributional metric
(3.40) using Eq. (6.57) and Eq. (6.58) for r → 2m one obtains〈
Tµµ (x, ε)

〉
ren
� −

(
2880π2

)−1
[([

(r − 2m)2 + ε2
]−1
)
ε

+ 4 (2m)4
]
. (6.59)

This result in a good agreement with Eq.(5.14)− Eq. (5.16).

7 Conclusions and Remarks

This paper dealing with an extension of the Einstein field equations using apparatus of contemporary
generalization of the classical Lorentzian geometry named in literature Colombeau distributional
geometry, see for example [1], [2], [3], [4], [5], [6], [7]. The regularizations of singularities present in
some solutions of the Einstein equations is an important part of this approach. Any singularities
present in some solutions of the Einstein equations recognized only in the sense of Colombeau
generalized functions [1], [2] and not classically.

In this paper essentially new class Colombeau solutions to Einstein field equations is obtained. We
have shown that a succesfull approach for dealing with curvature tensor valued distribution is to first
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impose admisible the nondegeneracy conditions on the metric tensor, and then take its derivatives
in the sense of classical distributions in S ′2m(R3) space.

The distributional meaning is then equivalent to the junction condition formalism. Afterwards,
through appropiate limiting procedures, it is then possible to obtain well behaved distributional
tensors with support on submanifolds of d ≤ 3, as we have shown for the energy-momentum
tensors associated with the Schwarzschild spacetimes. The above procedure provides us with what is
expected on physical grounds. However, it should be mentioned that the use of new supergeneralized
functions (supergeneralized Colombeau algebras G̃(R3,Σ)) in order to obtain superdistributional
curvatures, may render a more rigorous setting for discussing situations like the ones considered in
this paper.

The vacuum energy density of free scalar quantum field Φ with a distributional background spacetime
also is considered. It has been widely believed that, except in very extreme situations, the influence
of gravity on quantum fields should amount to just small, sub-dominant contributions. Here we
argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the
vacuum energy density of free quantum fields is forced, by the very same background distributional
spacetime such BHs, to become dominant over any classical energy density component. This
semiclassical gravity effect finds its roots in the singular behavior of quantum fields on curved
spacetimes. In particular we obtain that the vacuum fluctuations

〈
Φ2
〉

have a singular behavior on

BHs horizon r+:
〈
Φ2 (r)

〉
˜ |r − r+|−2 .We argue that this vacuum dominance may bear important

astrophysical implications.
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Appendix A

Expressions for the Colombeau quantities
(R({}, (ε)))ε , (R

µν({}, (ε))Rµν({}, (ε)))ε and (Rρσµν({}, (ε))Rρσµν({}, (ε)) )ε in terms of (Aε)ε , (Bε)ε ,
(Cε)ε and (Dε)ε , ε ∈ (0, 1].

Let us introduce now Colombeau generalized metric which has the form{ (
ds2
)
ε

= −
(
Aε (r) (dx0)2

)
ε
− 2

(
Dε (r) dx0dr

)
ε

+
(
(Bε (r) + Cε (r))(dr)2

)
ε

+
(
Bε (r) r2

[
(dθ)2 + sin2 θ(dφ)2

])
ε
.

(A.1)

The Colombeau scalars (R (ε))ε , (R
µν (ε) Rµν (ε))εand (Rρσµν (ε)Rρσµν (ε))ε , in terms of Colombeau

generalized functions (Aε (r))ε , (Bε (r))ε , (Cε (r))ε , (Dε (r))ε are expressed as

(R (ε))ε =

(
Aε
∆ε

[
2

r

(
−2

A′ε
Aε
− 3

B′ε
Bε

+
∆′ε
∆ε
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2

r2
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AεBε
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1

2

(
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(A.2)

Here

(∆ε)ε = (Aε (r) (Bε (r) + Cε (r)))ε +
(
D2
ε (r)

)
ε
. (A.3)

Assume that

(∆ε (r))ε = 1, (Bε (r))ε = 1, (Dε (r))ε = 0. (A.4)

From Eq. (A.2)-Eq. (A.4) one obtains
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(R (ε))ε =

(
−4A′ε

r
+

2AεCε
r2

−A′′ε
)
ε

,

(Rµν (ε) Rµν (ε))ε =((
1

2
A′′ε +

1

r
A′ε

)2
)
ε

+ 2

([
−A

′
ε

r
+
AεCε
r2

]2
)
ε

+

([
1

2
A′′ε +

1

r
A′ε

]2
)
ε

,

(Rρσµν (ε) Rρσµν (ε))ε =(
(A′′ε )

2
+ 2

(
A′ε
r

)2

+ 4
(AεCε)

2

r4
+ 2

(
A′ε
r

)2
)
ε

.

(A.5)
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