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A new quantum mechanical formalism based on the
probability representation of quantum states. The EPRB
paradox resolution

Part I.Einstein’s 1927 gedanken experiment revisited.
Foukzon, J., Potapov, A., Men’kova, E.

Abstract. Using new quantum mechanical formalism based on the probability
representation of quantum states [14],[15],[16]-[18] the EPRB-paradox is considered.
We find that the EPRB-paradox can be resolved by nonprincipal and convenient
relaxing of the Einstein’s locality principle. In Part I Einstein’s 1927 gedanken
experiment by using the probability representation of quantum states explained
successfully.
Keywords.Probability representation of quantum states,EPRB-paradox,locality

principle.

I.Introduction

I.1. The EPR paradox
In 1935, Einstein, Podolsky and Rosen (EPR) originated the famous “EPR paradox”

[1]. This argument concerns two spatially separated particles which have both
perfectly correlated positions and momenta, as is predicted possible by quantum
mechanics. The EPR paper spurred investigations into the nonlocality of quantum
mechanics, leading to a direct challenge of the philosophies taken for granted by most
physicists.The EPR conclusion was based on the assumption of local realism, and
thus the EPR argument pinpoints a contradiction between local realism and the
completeness of quantum mechanics.

I.2. Einstein’s 1927 gedanken experiment
Einstein never accepted orthodox quantum mechanics because he did not believe

that its nonlocal collapse of the wavefunction could be real. When he first made this
argument in 1927 [2],he considered just a single particle. The particle’s wavefunction
was diffracted through a tiny hole so that it ‘dispersed’ over a large hemispherical area
before encountering a screen of that shape covered in photographic film. Since the
film only ever registers the particle at one point on the screen, orthodox quantum
mechanics must postulate a ‘peculiar mechanism of action at a distance, which
prevents the wave... from producing an action in two places on the screen. That is,
according to the theory, the detection at one point must instantaneously collapse the
wavefunction to nothing at all other points.
Remark 1.2.1. It was only in 2010, nearly a century after Einstein’s original



proposal, that a scheme to rigorously test Einstein’s ‘spooky action at a distance [2],[3]
using a single particle (a photon), as in his original conception, was conceived [4]. In
this scheme, Einstein’s 1927 gedankenexperiment is simplified so that the single
photon is split into just two wavepackets, one sent to a laboratory supervised by Alice
and the other to a distant laboratory supervised by Bob. However, there is a key
difference, which enables demonstration of the nonlocal collapse experimentally:
rather than simply detecting the presence or absence of the photon, homodyne
detection is used. This gives Alice the power to make different measurements, and
enables Bob to test (using tomography) whether Alice’s measurement choice affects
the way his conditioned state collapses, without having to trust anything outside his
own laboratory.

Рiс.Рiс.1.2.1.Simplified version of Einstein’s original

gedankenexperiment Adapted from [5].

Simplified version of Einstein’s original gedankenexperiment [5]. A single photon
is incident on a beam splitter of reflectivity R and then subjected to homodyne
measurements at two spatially separated locations. Alice is trying to convince Bob that
she can steer his portion of the single photon to different types of local quantum states
by performing various measurements on her side. She does this by using different
values of her LO phase θ, and extracting only the sign s ∈ ,− of the quadrature she
measures. Meanwhile, Bob scans his LO and performs full quantum-state tomography
to reconstruct his local quantum state. He reconstructs unconditional and conditional
local quantum states to test if his portion of the single photon has collapsed to different
states according to Alice’s LO setting θ, and result s see Рiс.1.2.1.
The key role of measurement choice by Alice in demonstrating ‘spooky action at a

distance’ was introduced in the famous Einstein–Podolsky–Rosen (EPR) paper [1] of
1935. In its most general form, this phenomenon has been called EPR-steering, to
acknowledge the contribution and terminology of Schrödinger [6], who talked of Alice
‘steering’ the state of Bob’s quantum system. From a quantum information
perspective, EPR-steering is equivalent to the task of entanglement verification when
Bob (and his detectors) can be trusted but Alice (or her detectors) cannot. This is



strictly harder than verifying entanglement with both parties trusted [7], but strictly
easier than violating a Bell inequality [8], where neither party is trusted [7].
Remark 1.2.2. A recent experimental test of entanglement for a single photon via an

entanglement witness has no efficiency loophole [9] however, it demonstrates a
weaker form on nonlocality than EPR-steering. In [5], it was demonstrated
experimentally that there exist Einstein’s elusive ‘spooky action at a distance’ for a
single particle without opening the efficiency loophole without claim to have closed the
separation loophole. That is the one-sided device-independent verification of
spatial-mode entanglement for a single photon.

I.3.The continuous variable EPR paradox.EPR-Reid’s
criteria
We remind that EPR treated the case of a non-factorizable pure state | which

describes the results for measurements performed on two spatially separated systems
at A and B (Fig.1.3.1). “Non-factorizable” means “entangled”, that is, we cannot
express | as a simple product |  |A ⊗ |B, where |A and |B are quantum
states for the results of measurements at A and B, respectively.

Fig.1.3.1.The original EPR gedanken experiment.Two particles move

from the source into spatially separated regions A and B, and yet

continue to have maximaly correlated positions: xA  x0  xB and

anti-correlated momenta: pA  −pB.Adapted from [10].

In the first part of their paper, EPR point out in a general way the problematic aspects
of such entangled states. The key issue is that one can expand | in terms of more
than one basis, that correspond to different experimental settings, which we
parametrize by . Let us consider the state

|  dx|x ,A ⊗ |ux ,B , 1.3.1

where the eigenvalue x could be continuous or discrete. The parameter setting  at the
detector B is used to define a particular orthogonal measurement basis |ux ,B. On

measurement at B, this projects out a wave-function |x ,A at A, the process



called “reduction of the wave packet”.
Remark 1.3.1. The locality assumption postulates no action-at-a-distance, so that

measurements at a location B cannot immediately “disturb” the system at a spatially
separated location A .
Remark 1.3.2. The problematic issue is that different choices of measurements  at

B will cause reduction of the wave packet at A in more than one possible way. EPR
state that, “as a consequence of two different measurements” at B, the “second
system may be left in states with two different wavefunctions”. Yet, “no real change
can take place in the second system in consequence of anything that may be done to
the first system”.
The problem was established by EPR by a specific example, shown in Fig.1.3.1.

EPR considered two spatially separated subsystems, at A and B, each with two
observables x̂ and p̂ where x̂ and p̂ are non-commuting quantum operators, with
commutator

x̂, p̂  x̂p̂ − p̂x̂  2C ≠ 0. 1.3.2

The results of the measurements x̂ and p̂ are denoted x and p respectively, and this
convention we follow throughout the paper. We note that EPR assumed a continuous
variable spectrum and considered wavefunction  defined in a position representation
by

x,xB   eip/x−xB−x0 dp , 1.3.3

where x0 is an constant implying space-like separation. Here the pairs x and p refer to
the results for position and momentum measurements at A, while xB and pB denote the
position and momentum measurements at B. We leave off the superscript for system
A, to emphasize the inherent asymmetry that exists in the EPR argument, where one
system A is steered by the other, B.
Remark 1.3.3. According to canonical quantum mechanics, one can “predict with

certainty” that a measurement x̂ will give result xB  x0, if a measurement x̂B, with result
xB, was already performed at B. One may also “predict with certainty” the result of
measurement p̂, for a different choice of measurement at B. If the momentum at B is
measured to be p, then the result for p̂ is −p. These predictions are made “without
disturbing the second system” at A, based on the assumption, implicit in the original
EPR paper, of “locality”.
Remark 1.3.4.The locality assumption can be strengthened if the measurement

events at A and B are causally separated (such that no signal can travel from one
event to the other, unless faster than the speed of light)
Remark 1.3.5.The remainder of the EPR argument may be summarized as follows.

Assuming local realism, one deduces that both the measurement outcomes, for x and
p at A, are predetermined. The perfect correlation of x with xB  x0 implies the
existence of an “element of reality” for the measurement x̂. Similarly, the correlation of
p with −pB implies an “element of reality” for p̂. Although not mentioned by EPR, it will



prove useful to mathematically represent the “elements of reality” for x̂ and p̂ by the
respective variables xA and pA , whose “possible values are the predicted results of
the measurement”
Remark 1.3.6.To continue the argument, local realism implies the existence of two

elements of reality, xA and pA, that simultaneously predetermine, with absolute
definiteness, the results for measurement x or p at A. These “elements of reality” for
the localized subsystem A are not themselves consistent with quantum mechanics.
Simultaneous determinacy for both the position and momentum is not possible for any
quantum state. Hence, assuming the validity of local realism, one concludes quantum
mechanics to be incomplete or even inconsistent!
Remark 1.3.7.We claim that any assumption of local realism is completely wrong.
Such claim meant as minimum the weak postulate of nonlocality.

The weak postulate of nonlocality for continuous
variables.
The Heisenberg uncertainty relations

ΔxAΔpA ≥ 1 1.3.4

cannot be violated in any cases:
(i) of course according to quantum mechanics, the Heisenberg uncertainty relations
(1.3.4) cannot be violated if the coordinate xA and momentum pA of the particle A

are
measured directly by measurements performed on the particle A,
(ii) the Heisenberg uncertainty relations (1.3.4) cannot be violated even if the

coordinate xA and momentum pA of the particle A are measured indirectly, i.e. by
using
measurement on particle B, as required in EPR gedanken experiment,
(iii) in any cases true coordinate xA and momentum pA of the particle A cannot be
predicted samultaneously with a sufficiently small uncertainty ΔxA and ΔpA such that

the
Reid’s inequality [13]:

ΔxAΔpA  1 1.3.5

based on local realism would be satisfied, i.e., alwais

ΔxAΔpA  1. 1.3.6

We claim strictly stronger assumptions of nonlocality than mentioned above.

The strong postulate of nonlocality for continuous
variables.
Let |tx A and |t

x B be a state vector in x-representation at instant t of the particle A



and
particle B correspondingly.
Let |t

p A and |t
p B be a state vector in p-representation at instant t of the particle A

and
particle B correspondingly.
Let tAx  〈x|tx A,t

Bx  〈x|tx B be a wave functions in x-representation of the
particle A and particle B correspondingly.
Let tAp  〈p|t

p A,t
Bp  〈p|t

p B be a wave functions in p-representation of the

particle A and particle B correspondingly.
Let t

A/BxA,xB be corresponding two-particle wave function in x-representation and
let
t
A/BpA,pB be corresponding two-particle wave function in p-representation.

We claim that:
(i) whenever a measurement of the coordinate x of a particle B is performed at

instant
t with result x̄B ∈ xB − ,xB  ,  1, then:
(a) according to quantum mechanics a state vector |tx B collapses at instant t to the

state
vector

t,,,xB
x

B
~

LxB
B
,|tx B 1.3.7

given by law (1.2.20), where

LxB
B
, is a norm-reducing, positive, self-adjoint, linear

operator in the 2-particle non projective Hilbert space H, representing the
localization of
particle B around the point xB, (see subsection II.2.),
(b) according postulate of nonlocality a state vector |tx A immediately collapses at

instant t
to the state vector

t,,,xA
x

A
~

LxBx0
A

,|tx A 1.3.8

given by law (1.2.20) and this is true independent of the distance in Minkovski
spacetime
M4  1,3 that separates the particles. Thus

|tx B
col lapse
 t,,,xB

x
B
 |tx A

col lapse
 t,,,xBx0

x
A

1.3.9

(ii) under conditions given by Eq.(1.3.7)-Eq.(1.3.9) two-particle wave function
t
A/BxA,xB collapses at instant t by law

t
A/BxA,xB

col lapse



LxBx0
A 

LxB
B
,t

A/BxA,xB 1.3.10

(iii) whenever a measurement of the momentum pB of a particle B is performed at
instant



t with result p̄B ∈ pB − ,pB  ,  1, then:
(a) according to quantum mechanics a state vector |t

p B collapses at instant t to the
state
vector

t,,,pB
p

B
~

LpB
B
,|t

p B, 1.3.11

where

LpB
B
, is a norm-reducing, positive, self-adjoint, linear operator in the

2-particle
non projective Hilbert space H, representing the localization of momentum of the

particle B around the value pB.The localization operators

LpB
B
, have been

chosen to have the
following form:


LpB
B
,  1



3/4

exp − 1
2 

p − pB2 1.3.12

where  ∈ 0,1 and lim→0   .
(b) according postulate of nonlocality a state vector |t

p A immediately collapses at
instant t to the state vector

t,,,xA
p

A
~

L−pB
A
,|t

p A 1.3.13

and this is true independent of the distance in Minkovski spacetime M4  1,3 that
separates the particles. Thus

|t
p B

col lapse
 t,,,pB

p

B
 |t

p A
col lapse
 t,,,−pB

p

A
1.3.14

(iv) under conditions given by Eq.(1.3.11)-Eq.(1.3.13) two-particle wave function
t
A/BpA,pB collapses at instant t by law

t
A/BpA,pB

col lapse



L−pB
A 
LpB
B
,t

A/BpA,pB. 1.3.15

Remark 1.3.8. Let ptA and ptB be the momentum at instant t of the particle A and
particle
B correspondingly. Note that whenever a measurement of the coordinate x of a

particle B
is performed at instant t with an accuracy xB  1 then:
(i) immediately after this measurement the momentum ptB at instant t changed

according
to quantum mechanics by the Heisenberg uncertainty relations (1.3.4);
(ii) immediately after this measurement the momentum ptA at instant t changed

according
to postulate of nonlocality by the Heisenberg uncertainty relations (1.3.4)
Remark 1.3.9.Let xtA and xtB be the coordinate at instant t of the particle A and



particle
B correspondingly. Note that whenever a measurement of the momentum p of a

particle B
is performed at instant t with an accuracy pB  1 then:

(i) immediately after this measurement the coordinate xtB at instant t changed

according
to quantum mechanics by the Heisenberg uncertainty relations (1.3.4);
Remark 1.3.10.Schrödinger [6] pointed out that the EPR two-particle wavefunction

in
Eq.(1.3.3) was verschränkten - which he later translated as entangled - i.e., not of

the
separable form AB. Schrödinger considered as a possible resolution of the

paradox that
this “entanglement” degrades as the particles separate spatially, so that EPR

correlations
would not be physically realizable.
Definition 1.3.1.Quantum inseparability (entanglement) for a general mixed

quantum state is defined as the failure of
  dP

A ⊗ 
B , 1.3.16

where dP  1 and  is the density operator. Here  is a discrete or continuous

label for component states, and 
A and 

B correspond to density operators that are
restricted to the Hilbert spaces A and B respectively.
Remark 1.3.11.The definition of inseparability extends beyond that of the EPR

situation, in that one considers a whole spectrum of measurement choices,
parametrized by  for those performed on system A, and by  for those performed on
B. We use canonical notation x̂A and x̂

B to describe all measurements at A and B.

Denoting the eigenstates of x̂A by |xA, we define PQxA|,  〈xA|

A|xA and

PQxB|,  〈xB|

B|x

B, which are the localized probabilities for observing results xA

and x
B respectively. The separability condition (1.3.9) then implies that joint

probabilities PxA,xB are given as [13]:

PxA,xB  dPPQxA|PQxB| . 1.3.17

Remark 1.3.12.We note the canonical restriction

Δ2xA|Δ2pA| ≥ 1 1.3.18

where Δ2xA| and Δ2pA| are the variances of PQxA|, for the choices 
corresponding to position x and momentum p, respectively. Thus

Δ2xA|Δ2pA|  1 1.3.19

is an EPR criterion, meaning that this would imply an EPR "paradox".



Remark 1.3.13.Note that the original EPR state of Eq. (1.3.3) is not separable.
Suppose that, based on a result xB for the measurement at B, an estimate xestxB is
made of the result x at A. We may define the average error Δinfx of this inference as

the
root mean square (RMS) of the deviation of the estimate from the actual value, so

that
[11]-[13]:

Δinf
2 x  dxdxBPtx,xBx − xestxB2 . 1.3.20

An inference variance Δinf
2 p is defined similarly,i.e.

Δinf
2 p  dpdpBPtp,pBp − pestpB2 . 1.3.21

Remark 1.3.14.Let t
A/BxA,xB be corresponding two-particle wave function in

x-representation and let t
A/BpA,pB be corresponding two-particle wave function in

p-representation.Note that:
(i) Ptx,xB is the joint probability of obtaining an outcome x at A and xB at B at

instant t is
of the form

Ptx,xB  t
A/BxA,xB

2
, 1.3.22

(ii) Ptp,pB is the joint probability of obtaining an outcome p at A and pB at B at
instant t is
of the form

Ptp,pB  t
A/BpA,pB

2
. 1.3.23

The best estimate, which minimizes Δinfx, is given by choosing xest for each xB to be
the
mean 〈x|xB of the conditional distribution Ptx|xB . This is seen upon noting that for

each
result xB, we can define the RMS error in each estimate as

Δinf
2 t,x|xB   dxPtx|xB x − xestxB2 . 1.3.24

The average error in each inference is minimized for xest  〈x|xB , when each
Δinf
2 t,x|xB  becomes the variance Δ2t,x|xB of Ptx|xB . We thus define the minimum

inference error Δinfx for position, averaged over all possible values of xB, as

VA|B
x  minΔinf

2 x  dxBPtxBΔ2t,x|xB  , 1.3.25

where PxB is the probability density for a result xB upon measurement of x̂B. This
minimized inference variance is the average of the individual variances for each

outcome at B. Similarly, we can define a minimum inference variance, VA|B
p , for

momentum,i.e.



VA|B
p  minΔinf

2 p  dpBPtpBΔ2t,p|pB  . 1.3.26

Remark 1.3.15.Let t
A/BxA,xB be corresponding two-particle wave function in

x-representation and let t
A/BpA,pB be corresponding two-particle wave function in

p-representation.Note that:
(i) according to local realism the conditional distributions densities P locx|xB  and

P locp|pB vare given by formulae

P locx|xB ~

LxB
B
,t

A/Bx,xB 1.3.27

and

P locp|pB  ~

LpB
B
,t

A/BpA,pB. 1.3.28

(ii) distributions densities Ploct,xB and P loct,pB are given by formulae

P loct,xB   dxPloct,x|xB 1.3.29

and

P loct,pB   dpP loct,p|pB . 1.3.30

Remark 1.3.16.Let t
A/BxA,xB be corresponding two-particle wave function in

x-representation and let t
A/BpA,pB be corresponding two-particle wave function in

p-representation.Note that:
(i) according to postulates of nonlocality the conditional distributions densities

Pn.loct,x|xB 
and Pn.loct,p|pB  are given by formulae

Pn.loct,x|xB 

LxBx0
A 

LxB
B
,t

A/Bx,xB 1.3.31

and

Pn.loct,p|pB  ~

L−pB
A 
LpB
B
,t

A/Bp,pB, 1.3.32

see Eq.(1.3.10) and Eq.(1.3.15) respectively.
(ii) distributions Pn.loct,xB and Pn.loct,pB are given by formulae

Pn.loct,xB   dxPn.loct,x|xB 1.3.33

and

Pn.loct,p|B    dpPn.loct,p|pB  1.3.34

Thus we can define corresponding RMS errors as



Δloc.inf
2 t,x|xB   dxPloct,x|xB x − xestxB2

Δloc.inf
2 t,p|pB   dxPloct,p|pB p − xestpB2

1.3.35

and

Δn.loc.inf
2 t,x|xB   dxPloct,x|xB x − xestxB2,

Δn.loc.inf
2 t,p|pB   dxPloct,p|pB p − xestpB2

1.3.36

respectively.We thus define the minimum inference error Δinfx for position, averaged
over all possible values of xB and pB as

minΔloc.inf
2 x  dxBP loct,xBΔloc.

2 t,x|xB  ,

minΔloc.inf
2 p  dpBP loct,pBΔloc.

2 t,p|pB 
1.3.37

and

minΔn.loc.inf
2 x  dxBPn.loct,xBΔn.loc.

2 t,x|xB  ,

minΔn.loc.inf
2 p  dpBPn.loct,pBΔn.loc.

2 t,p|pB .
1.3.38

respectively.From Eq.(1.3.37) and Eq.(1.3.38) we obtain the EPR-nonlocality criteria

min∆loc.inf.2 x − min ∆n.loc.inf.2 x 

dxBP loct,xBΔloc.
2 t,x|xB  − Pn.loct,xBΔn.loc.

2 t,x|xB   0,

min∆loc.inf.2 p − min∆n.loc.inf.2 p 

dpBP loct,pBΔloc.
2 t,p|pB  − Pn.loct,pBΔn.loc.

2 t,p|pB   0

1.3.39

and

min∆loc.inf.2 x min∆loc.inf.2 p − min ∆n.loc.inf.2 x Δn.loc.inf
2 p  0. 1.3.40

I.4.The EPR-Bohm paradox. Reid’s criteria for
EPR-Bohm paradox.
Bohm [26]-[27] considered two spatially-separated spin-1/2 particles at A and B

produced in an entangled singlet state (often referred to as the “EPR-Bohm state” or
the “Bell-state”):

|  1
2

1
2 A

− 1
2 B

− − 1
2 A

1
2 B

1.4.1 Here | 1
2 A are

eigenstates of the spin operator

J z
A
, and we use


J z
A
,

J x
A
,

J y
A
to define the

spin-components measured at location A. The spin-eigenstates and measurements at



B are defined similarly. By considering different quantization axes, one obtains
different but equivalent expansions of | in Eq. (1.4.1), just as EPR suggested.

Fig.1.4.1.The Bohm gedanken EPR experiment.Two

spin-1/2 partiles prepared in a singlet state from the

source into spatially separated regions A and B,and

give anti-correlated outomes for JA and JB,where θ is

x,y or z.Adapted from [13].

Bohm’s paradox is based on the existence, for Eq. (1.9.1), of a maximum

anti-correlation between not only

J z
A
and


J z
B
, but


J y
A
and


J y
B
, and also


J x
A
and


J x
B
. An

assumption of local realism would lead to the conclusion that the three spin
components of particle A were simultaneously predetermined, with absolute
definiteness. Since no such quantum description exists, this is the situation of an EPR
paradox.
Remark 1.4.1.Bohm’s paradox is based on the existence, for Eq. (1.4.1), of a

maximum

anti-correlation between not only

J z
A
and


J z
B
, but


J y
A
and


J y
B
, and also


J x
A
and


J x
B
.

Remark 1.4.2. Note that an assumption of local realism would lead to the conclusion
that
the three spin components of particle A were simultaneously predetermined, with

absolute
definiteness. Since no such quantum description exists, this is the situation of an

EPR
paradox.
Remark 1.4.3.Criteria sufficient to demonstrate Bohm’s EPR paradox can be

derived
using Reid’s canonical inferred uncertainty approach [13]. Using the Heisenberg

spin
uncertainty relation

ΔJxAΔJyA ≥ |〈JzA |/2, 1.4.2

one obtains the following canonical spin-EPR criterion that is useful for the Bell state



given by Eq. (1.4.1)

ΔinfJxAΔinfJyA  1
2 ∑JzB

PJzB 〈JzA JzB . 1.4.3

Here 〈JzA JzB is the mean of the conditional distribution PJz
A|JzB.Calculations for

Eq.(1.4.1) including the effect of detection efficiency  reveals this EPR criterion to be
satisfied for   0.62.The concept of spin-EPR has been experementally tested in the
continuum limit with purely optical systems for states with 〈JzA  ≠ 0. In this case the
EPR criterion linked closely to definition of spin squeesing

ΔinfJxAΔinfJyA  |〈JzA |. 1.4.4

Remark 1.4.4.We claim that any assumption of local realism is completely
wrong.The
three spin components of particle A were simultaneously predetermined, does not

with
absolute definiteness but only with uncertainties which requred by Heisenberg spin
uncertainty relations (1.4.5). Such claim meant as minimum the weak postulate of
nonlocality.

I.4.1.The weak postulate of nonlocality.
The Heisenberg spin uncertainty relations

ΔJxAΔJyA ≥ |〈JzA |/2,ΔJxAΔJzA ≥ |〈JyA |/2,ΔJzAΔJyA ≥ |〈JxA |/2 1.4.5

does not violated in any cases:
(i) if the three spin components of the particle A are measured directly by

measurements
performed on the particle A
(ii) and even if some spin components of the particle A are measured indirectly as
required in Bohm gedanken EPR experiment.
Think of the following situation: a particle with zero spin decays into two particles (A

and B), each with 1/2-spin. Due to the fact that spin angular momentum must be
conserved during the decay, if initially the total spin angular momentum was zero, then
after the decaying process it must still be zero. Therefore, particles A and B have
opposite spin.Take as an example the dissociation of an exited hydrogen molecule
into two hydrogen atoms. If the decaying mechanism does not change total angular
momentum, then the spins on the hydrogen atoms will be anti-correlated.
Remark 1.4.5.Whenever a measurement of the spin of A is found to be positive with

respect of the z-axis (we shall note this state as |↑z, then,under local realism,we could
infer that the spin of the B particle must be negative |↓z, and this is true independent
of the distance that separates the particles. The spin of these particles are then
entangled.
Remark 1.4.6. We claim again that any assumption of local realism is completely

wrong.



I.4.2.The strong postulate of nonlocality.
Let |t A and |t B a state at instant t of the particle A and particle B

correspondingly.
Let |↑z,A/B be eigenstates of the spin operator SA/B

z :

SA/B
z 

1 0

0 −1
1.4.6

We claim that:
(i) whenever a measurement of the spin of a particle A is performed at instant t1 ≥ t

and
particle A is found in the state |↑z, i.e., a state |t1 A collapses at instant t1 to the

state
|↑z,A with respect of the Heisenberg spin uncertainty relations (1.4.5), then a state

|t1 B
immediately collapses at instant t1 to the state |↓z,B with respect of the Heisenberg

spin
uncertainty relations (1.4.5), and this is true independent of the distance in

Minkovski
spacetime that separates the particles:

|t1 A
col lapse
 |↑z,A  |t1 B

col lapse
 |↓z,B 1.4.7

(ii) whenever a measurement of the spin of a particle A is performed at instant t1 ≥ t
and
particle A is found in the state |↓z, i.e., a state |t1 A collapses at instant t1 to the

state
|↓z,A with respect of the Heisenberg spin uncertainty relations (1.4.5), then a state

|t1 B
immediately |t B collapses at instant t1 to the state |↑z,B with respect of the

Heisenberg
spin uncertainty relations (1.4.5), and this is true independent of the distance in

Minkovski
spacetime that separates the particles:

|t1 A
col lapse
 |↓z,A  |t1 B

col lapse
 |↑z,B 1.4.8

Note that,we can not predict which spin will be positive (or negative) with respect of
the
z-axis, so the state that describes the spins of the particles could be for instance the

spin
singlet state



|  1
2
|↓↑ − |↑↓ 1.4.9

We have a probability of 50% for the spin of particle A to be positive (and the spin of B
negative) and a probability of 50% of it being the other way around.
Remark 1.4.7. So far we have assumed that we are performing a measurement

along the z-axis, but measurements are not restricted to this particular election, we
could measure for instance the spin of particle A along the a-axis and the spin of B
along the b-axis. Let’s see what happens if we decide to measure the spin along the
x-axis: a  b  x. As it known for 1/2-spins, the spin operator SA/Bx can be represented
by the 2  2 hermitian matrix

SA/B
x 

0 1

1 0
1.4.10

By performing a change of basis we can rewrite the state | in terms of the
eigenstates of the spin operator SA/B

x :

|u  1
2
|↓  |↑, |v  1

2
|↓ − |↑, 1.4.11

and using Eq. (1.4.10), we can rewrite the state | as

|  1
2
|vu − |uv. 1.4.12

The strong postulate of nonlocality in this case takes the form similarly mentioned
above.Just like before, by choosing to measure the spin of A along the x-axis we can

determine it’s value and infer the value of the spin of particle B B ≠ B in the state

|x,B  |ux,B ≠ |x,B without the need to measure it (and vice versa).
Furthermore, it turns out that this is the case independent of the election of the axis

we choose to measure! (Provided that a  b  v).
This is exactly the same situation such that a simple choice of the axis along which

to measure the spin A allow us to establish the value of the spin of B along this same
axis without the need to measure it. And this is also the case (as we already saw) for
physical properties described by non-commuting operators (Sx and Sz do not
commute).

II.A new quantum mechanical formalism based on the
probability representation of quantum states.
II.1.Generalized Postulates for Continuous Valued
Observables.
Suppose we have an n-dimensional physical quantum system.



I.Then we claim the following:
Q.I.1. Any given n-dimensional quantum system is identified by a set Q :

Q  〈H,ℑ,,ℒ2,1,ℑ∗H,G, |t 

where:
(i) H that is some infinite-dimensional complex Hilbert space,
(ii) ℑ  ,ℱ,P that is complete probability space,
(iii)   n, that is measurable space,
(iv) ℒ2,1 that is complete space of complex valued random variables X :  → ℂn

such
that



‖X‖dP  , 


‖X‖2dP   2.1.1

(v) G : C∗HH → ℒ2,1 that is one to one correspondence such that

〈|Q|  


G Q, |  dP  E G Q|  ,

G

1, |   1

2.1.2

for any | ∈ H and for any Hermitian adjoint operator Q : H → H such that

Q ∈ ℑ∗H  C∗H,where C∗H is C∗- algebra of the Hermitian adjoint operators
in H
and ℑ∗H is commutative subalgebra of C∗H.
(vi) |t  is an continuous vector function |t  :  → H which representedthe

evolution of the quantum system Q.

Q.I.2. For any |1 , |2  ∈ H and for any Hermitian operator Q : H → H such that

1 Q 2  2 Q 1  0 2.1.3

the equality holds

G Q|1   |2    G Q|1    G Q|2  . 2.1.4

Definition 2.1.1. A random variable X :  → E is a measurable function from the set
of
possible outcomes  to some set E.
Definition 2.1.2. Given a probability space ℑ  ,ℱ,P and a measurable space
  n,, any n-valued stochastic process that is a collection of n-valued

random
variables on , indexed by a totally ordered set T ("time"). That is, a stochastic

process
Xt is a collection Xt|t ∈ T,where each Xt is an n-valued random

variable on . The space n is then called the state space of the process.



Q.I.3. Suppose that the evolution of the quantum system is represented by
continuous vector function |t  :  → H.Then any process of continuous

measurements on measuring observable Q for the system in state |t  one can to
describe by an continuous n-valued stochastic process

Xt  Xt ; Qt  X
Qt



given on probability space ,ℱ,P and a measurable space n,.
Remark 2.1.1.We assume now for short but without loss of generality that n  1.
Remark 2.1.2. Let X be random variable X ∈ ℒ2,1 such that

X  G|,
then we denote such random variable by X |. The probability density of random
variable X | we denote by p |q,q ∈ .
Definition 2.1.3. The classical pure states correspond to vectors v ∈ H of norm

‖v‖≡1.
Thus the set of all classical pure states corresponds to the unit sphere S ⊂ H in a

Hilbert
space H.
Definition 2.1.4. The projective Hilbert space PH of a complex Hilbert space H is

the
set of equivalence classes v of vectors v in H, with v ≠ 0, for the equivalence

relation
given by v Pw  v w for some non-zero complex number  ∈ ℂ.The

equivalence
classes for the relation P are also called rays or projective rays.
Remark 2.1.3.The physical significance of the projective Hilbert space PH is that

in
canonical quantum theory, the states | and | represent the same physical state

of the
quantum system, for any  ≠ 0. It is conventional to choose a state | from the ray

|
so that it has unit norm 〈|  1.

Remark 2.1.4. In contrast with canonical quantum theory we have used instead
contrary
to P equivalence relation Q, a Hilbert space H, see Definition 2.1.7.
Definition 2.1.5.The non-classical pure states correspond to the vectors v ∈ H of a

norm
‖v‖≠1. Thus the set of all non-classical pure states corresponds to the set H\S ⊂ H

in
the Hilbert space H.
Suppose we have an observable Q of a quantum system that is found through an



exhaustive series of measurements, to have a set ℑ of values q ∈ ℑ such that
ℑ  i1m 1i ,2i ,m ≥ 2, 1i ,2i  ∩ 1

j ,2
j  , i ≠ j.Note that in practice any

observable Q is measured to an accuracy q determined by the measuring device. We
represent now by |q the idealized state of the system in the limit q → 0, for which the
observable definitely has the value q.
II.Then we claim the following:
Q.II.1.The states |q : q ∈ ℑ form a complete set of -function normalized basis

states
for the state space Hℑ of the system.That the states |q : q ∈ ℑ form a complete

set of
basis states means that any state |ℑ ∈ Hℑ of the system can be expressed as:

|ℑ  
ℑ
cℑqdq, 2.1.5

where suppcℑq ⊆ ℑ and while -function normalized means that 〈q|q′ 
 q − q′
from which follows cℑq  〈q|ℑ so that

|ℑ  
ℑ
|q〈q|ℑdq. 2.1.6

The completeness condition can then be written as


ℑ
|q〈q|dq 


1Hℑ . 2.1.7

Q.II.2.For the system in state |ℑ the probability Pq,q  dq; |ℑ of obtaining
the
result q ∈ ℑ lying in the range q,q  dq ⊂ ℑ on measuring observable Q is given by

Pq,q  dq; |ℑ  p |ℑqdq 2.1.8

for any |ℑ ∈ Hℑ.
Remark 2.1.5. Note that in general case p |ℑq ≠ |cℑq|

2.

Q.II.3.The observable Qℑ is represented by a Hermitian operator Qℑ : Hℑ→ Hℑ

whose eigenvalues are the possible results q : q ∈ ℑ, of a measurement of Qℑ, and

the associated eigenstates are the states |q : q ∈ ℑ, i.e. Qℑ|q  q|q,q ∈ ℑ.

Remark 2.1.6. Note that the spectral decomposition of the operator Qℑ is then

Qℑ  
ℑ
q|q〈q|dq. 2.1.9

Definition 2.1.6. A connected set in  is a set X ⊂  that cannot be partitioned into
two nonempty subsets which are open in the relative topology induced on the set.
Equivalently, it is a set which cannot be partitioned into two nonempty subsets such
that each subset has no points in common with the set closure of the other.
Definition 2.1.7. The well localized pure states |Θ with a support Θ  1,2

correspond to vectors of the norm 1 and such that: suppcΘq  Θ is a connected
set in  Thus the set of all well localized pure states corresponds to the unit sphere



SΘ
  S ⊂ H in the Hilbert space HΘ  H.
Suppose we have an observable QΘ of a system that is found through an exhaustive

series of measurements, to have a continuous range of values q : 1  q  2.
III.Then we claim the following:
Q.III.1.For the system in well localized pure statestate |Θ such that:
(i) |Θ ∈ SΘ and
(ii) suppcΘq  q|cΘq ≠ 0 is a connected set in , then the probability
Pq,q  dq; |Θ of obtaining the result q lying in the range q,q  dq on measuring
observable QΘ is given by

Pq,q  dq; |Θ  |〈q|Θ|2dq  |cΘq|
2dq. 2.1.10

Q.III.2. p |Θqdq  |〈q|Θ|2dq  |cΘq|
2dq.

Q.III.3.Let |Θ1  and |Θ2  be well localized pure states with Θ1  11,21 and
Θ2  12,22 correspondingly. Let X1  X |Θ1  and X2  X |Θ2 
correspondingly. Assume that Θ1 ∩ Θ2   (here the closure of Θi, i  1,2 is

denoted by
Θi, i  1,2) then random variables X1 and X2 are independent.
Q.III.4. If the system is in well localized pure state |Θ the state |Θ described

by a
wave function q,Θ  〈q||Θ and the value of observable QΘ is measured once

each
on many identically prepared system, the average value of all the measurements will

be

〈QΘ  


Θ

q|q,Θ|2dq


Θ

|q,Θ|2dq
.

2.1.11

The completeness condition can then be written as 
Θ
|q〈q|dq 


1HΘ . Completeness

means that for any state |Θ ∈ SΘ it must be the case that Θ |〈q|Θ|
2dq ≠ 0, i.e.

there must be a non-zero probability to get some result on measuring observable QΘ.
Q.III.5.(von Neumann measurement postulate) Assume that
(i) | ∈ SΘ and (ii) suppcq  Θ is a connected set in . Then if on performing a

measurement of QΘ with an accuracy q, the result is obtained in the range
q − 1

2 q,q 
1
2 q, then the system will end up in the state



Pq,q|Θ

〈|Pq,q|Θ


q−q′ ≤q/2

|q′ 〈q′ ||Θdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′
. 2.1.12

IV.We claim the following:

Q.IV.1 For the system in state |aΘ  a|Θ ∈ HΘ, where: (i)

|Θ ∈ SΘ, |a| ≠ 1,
(ii) suppcΘq is a connected set in  and (iii) |Θ  

1

2 cΘq|qdq

G QΘ|
aΘ  |a|2G QΘ|Θ . 2.1.13

Q.IV.2. Assume that the system in state |aΘ  a|Θ ∈ HΘ, where (i)
|Θ ∈ SΘ,
|a| ≠ 1, (ii) suppcΘq is a connected set in  and (iii) |Θ  

1

2 cΘq|qdq.

Then if the system is in state |aΘ described by a wave function
aq;Θ  〈q||aΘ and the value of observable QΘ is measured once each on many
identically prepared system, the average value of all the measurements will be

〈QΘ   
Θ

q|aq;Θ|2dq. 2.1.14

Q.IV.3. The probability Pq,q  dq; |aΘdq of obtaining the result q lying in the
range
q,q  dq on measuring QΘ is

Pq,q  dq; |aΘdq  |a|−2|cΘq|a|−2|
2dq.

2.1.15

Remark 2.1.7.Note that Q.IV.3 immediately folows from Q.IV.1 and Q.III.2.
Q.IV.4. (Generalized von Neumann measurement postulate) If on performing a

measurement of observable QΘ with an accuracy q, the result is obtained in the
range q − 1

2 q,q 
1
2 q, then the system immediately after measurement will end up

in the state



Pq,q|aΘ

〈|Pq,q|Θ


q−q′ ≤q/2

|q′ 〈q′ ||aΘdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′


a 
q−q′ ≤q/2

|q′ 〈q′ ||Θdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′
∈ HΘ.

2.1.16

Q.V.1. Let |a1,a2Θ1,Θ2   |1
a1Θ1   |2

a2Θ2  ∈ H1,2  HΘ1 ⊕ HΘ2  H, where
(i) |i

aiΘi   ai|iΘi  ∈ HΘi , |i   |iΘi  ∈ SΘi
 , |ai | ≠ 1, i  1,2;

(ii) suppciΘi q, i  1,2 is a connected sets in ;
(iii) suppc1Θ1 q ∩ suppc2Θ2 q   and

(iv) |iΘi   
1

2 ciΘi q|qdq, i  1,2.

Then if the system is in a state |a1,a2Θ1,Θ2  described by a wave function
a1,a2q;Θ1,Θ2  〈q||a1,a2Θ1,Θ2 ,q ∈ Θ1  Θ2 and the value of observable QΘ1,Θ2

is measured once each on many identically prepared system, the average value of all
the measurements will be

〈QΘ1,Θ2   
Θ1Θ2

q|a1,a2q;Θ1,Θ2|2dq. 2.1.17

Q.V. 2. The probability of getting a result q with an accuracy q such that
q − 1

2 q,q 
1
2 q ∈ suppc1q or q − 1

2 q,q 
1
2 q ∈ suppc2q given by


q−q′ ≤q/2

|〈q′ ||1
a1Θ1 |

2 ∗ |〈q′ ||2
a2Θ2 |

2 dq′. 2.1.18

Remark 2.1.8.Note that Q.IV.3 immediately folows from Q.III.3.
Q.V. 3. Assume that the system is initially in the state |a1,a2Θ1,Θ2 . If on

performing a measurement of QΘ1,Θ2 with an accuracy q, the result is obtained in the
range q − 1

2 q,q 
1
2 q, then the state of the system immediately after measurement

given by



Pqi,q|a1,a2Θ1,Θ2 

〈|Pqi,q|



qi−q′ ≤q/2

|q′ 〈q′ ||1
a1Θ1   |q′ 〈q′ ||2

a2Θ2 dq′


qi−q′ ≤q/2

|〈q′ ||1Θ1 |
2  |〈q′ ||2Θ2 |

2 dq′



qi−q′ ≤q/2

a1|q′ 〈q′ ||1Θ1   a2|q′ 〈q′ ||2Θ2 dq′


qi−q′ ≤q/2

|〈q′ ||1Θ1 |
2  |〈q′ ||2Θ2 |

2 dq′
∈ HΘi ,

qi ∈ Θi, i  1,2.

2.1.19

Definition 2.1.8. Let H1,2 be H1,2  HΘ1 ⊕ HΘ2 .
Definition 2.1.9. Let |a  be a state |a   a|, where | ∈ S, |a| ≠ 1 and

|  
1

2 cq|qdq.Let |a  be an state such that |a  ∈ S.States |a  and |a  is a

Q-equivalent: |a  Q |a  iff

Pq,q  dq; |a   |a|−2|cq|a|−2|
2dq  Pqq  dq; |a dq

2.1.20

Q.V.For any state |a   a|,where | ∈ S, |a| ≠ 1 and |  
1

2 cq|qdq there

exist an state |a  ∈ S such that: |a  Q |a .
Definition 2.1.10. Let |a  be a state |a   a|, where | ∈ S, |a| ≠ 1 and

|  
1

2 cq|qdq.Let |a  be an state such that |a  ∈ S.States |a  and |a  is a

Q-equivalent (|a  
Q
|a ) iff: 〈a | Q|a   〈a | Q|a .

Q.VI.For any state |a   a|,where | ∈ S, |a| ≠ 1 and |  
1

2 cq|qdq there

exist an state |a  ∈ S such that: |a  Q |a 

II.2.The nonclassical collapse models with spontaneous
localizations based on generalized measurement
postulates
The nonclassical collapse models attempt to overcome the difficulties that standard

quantum mechanics meets in accounting for the measurement (or
macro-objectification) problem, an attempt based on the consideration of nonlinear
and nonlocal stochastic modifications of the Schroedinger equation.The proposed new



nonlocal dynamics is characterized by the feature of not contradicting any known fact
about microsystems and of accounting, on the basis of a unique, universal dynamical
principle, for wavepacket reduction and for the classical behavior of macroscopic
systems.

II.2.1.Quantum Mechanics with Nonclassical
Spontaneous Localizations is based on the following
assumptions:
(1) Each particle of a system of n distinguishable particles experiences, with a mean

rate λi, a sudden spontaneous localization process.
(2) In the time interval between two successive spontaneous processes the system

evolves according to the usual Schrödinger equation.
(3) Let |cl be the classical pure state correspond to an vector |cl ∈ S

  H in a
non projective Hilbert space H, see Subsection II.1, Def 2.1.1-2.1.2. Then the sudden
spontaneous process is a localization given by:

|cl
,-localization


|,,x
i cl

‖|,,x
i cl‖

,x ∈ 3, ∈ 0,1,  1, 2.2.1

where

|,,x
i cl 


Lx
i
,|cl. 2.2.2

Here

Lx
i
, is a norm-reducing, positive, self-adjoint, linear operator with a symbol

Lxi , in the n-particle non projective Hilbert space H, representing the localization of
particle i around the point x.
Definition 2.2.1. Such localization as mentioned above is called ,-localization or

,-collapse of the state |cl.
(4) The probability density pix,, for the occurrence of a localization at point x is

assumed to be

pix,, 
‖|,,x

i cl‖
2


3

‖|,,x
i cl‖

2
d3x

. 2.2.3

(5) Let |n.cl be the nonclassical pure state correspond to an vector
|   | ∈ H\S,
where | ∈ S, || ≠ 1, see subsection II.1, Def.2.1.10. Then the sudden

spontaneous
process is a localization given by:

|n.cl
,−localization


|,,x

i n.cl
‖|,,x

i n.cl‖
,x ∈ 3, 2.2.4



where

|,,x
i n.cl 


Lx
i
,|n.cl. 2.2.5

Definition 2.2.2. Such localization as mentioned above is called ,-localization or
,-collapse of the state |n.cl.
(6) The probability density pix,,,,  for the occurrence of a localization at point

x ∈ 3

in acordance to postulate Q.IV.3 (see Subsection II.1, Eq.(2.1.15)) is assumed to be

pix,,,,  
||−6 ,,| |−2x

i

n.cl

2


3

‖|,,x
i cl‖

2
d3x

. 2.2.6

(7) The localization operators

Lx
i
, have been chosen to have the form:


Lx
i
, 

1


3/4

exp − 1
2 

q i − x
2 iff ‖qi − x‖ ≤   1,

0 iff ‖qi − x‖  .
2.2.7

Here  ∈ 0,1 d3xLxi ,2  1 and lim→0   .

Remark 2.2.1. In one dimension case it follows that


Lx
i
, 

1


1/4

exp − 1
2 

qi − x
2 iff |qi − x| ≤   1,

0 iff |qi − x|  .
2.2.8

Remark 2.2.2. Note that from Eq.(2.2.3) and Eq.(2.2.7) follows that a probability
density
pix,,,,  for the occurrence of a localization inside sphere Sx, 
qi ∈ 

3|‖qi − x‖ ≤  is given by

pix,, 
‖|,,x

i cl‖
2

,
,,  

3

‖|,,x
i cl‖

2
d3x,

‖|,,x
i cl‖

2  1


3/2


‖qi−x‖≤

d3qiiqiexp −
1
 

qi − x
2 ,

iqi  〈qi ||i cl,

2.2.9

and therefore



pix, 
→0
lim pix,, 

→0
lim −1, 1



3/2


‖qi−x‖≤

d3qiiqiexp −
1
 

qi − x
2  ix.

2.2.10

Remark 2.2.3. In one dimension case it follows that a probability density pix,,, 
for the occurrence of a localization inside interval x − ,x   is given by

pix,,  ‖|,,x
i cl‖

2  1


1/2


|qi−x|≤

d3qiiqiexp − 1 qi − x
2 ,

iqi  〈qi ||i cl,

2.2.11

and therefore

pix, 
→0
lim pix,, 


→0

lim−1, 1


1/2


|qi−x|≤

dqiiqiexp − 1 qi − x
2  ix.

2.2.12

II.2.2.The generalization of nonclassical collapse models
(1) Let |t cl, t ∈ 0,T be the classical pure states correspond to an vector-function

|t cl : 0,T  S
 → S such that |t cl∈ S

  H , t ∈ 0,T,where is a non
projective Hilbert space H, see Subsection II.1.1, Def. 2.1.1-2.1.2.Then the sudden
spontaneous process is a localization along classical trajectory xt : 0,T  3 → 3

given by:

|t cl
,,xt−localization

|t,,,xt
i cl

‖|t,,,xt
i cl‖

,

 ∈ 0,1,  1,xt ∈ 3, t ∈ 0,T,

2.2.13

where

|t,,,xt
i cl 


Lxt
i
,|t cl. 2.2.14

Here

Lxt
i
, is a norm-reducing, positive, self-adjoint, linear operator with a symbol

Lxt
i , in the n-particle non projective Hilbert space H, representing the localization of

particle i at each instant t ∈ 0,T around the point xt.
Definition 2.2.3. Such localization as mentioned above is called ,,xt-localization

or
,,xt-collapse of the state |t cl.
(2) The probability density pit,xt,, for the occurrence of a localization at point xt

at



instant t is assumed to be

pit,xt,, 
‖|t,,,xt

i cl‖
2

t,,
,t,,  

3

‖|,,xt
i cl‖

2
d3x. 2.2.15

(3) Let |t n.cl be the nonclassical pure state correspond to an vector-function
t
  |t  ∈ H\S,where |t  ∈ S, || ≠ 1, t ∈ 0,T see Subsection II.1,

Def.2.1.10.
Then the sudden spontaneous process is a localization along classical trajectory
xt : 0,T  3 → 3 given by:

|t n.cl
,,xt−localization

|t,,,xt
i n.cl

‖|t,,,xt
i n.cl‖

,

xt∈ 3, t ∈ 0,T

2.2.16

where

|t,,,xt
i n.cl 


Lxt
i
,|t n.cl. 2.2.17

Definition 2.2.4. Such localization as mentioned above is called ,,xt-localization
or ,,xt-collapse of the state |n.cl.
(4) The probability density pit,xt,,,,  for the occurrence of a localization at point
xt ∈ 3 at instant t ∈ 0,T in acordance to postulate Q.IV.3 (see Subsection II.1.,
Eq.(2.1.14)) is assumed to be

pit,xt,,,,  
||−6 t,,,| |−2xt

i

n.cl

2

t,,
,t,,  

3

‖|,,xt
i cl‖

2
d3x. 2.2.18

(12) The localization operators

Lxt
i
, have been chosen to have the form:


Lxt
i
, 

1


3/4

exp − 1
2 

q i − xt
2 iff ‖qi − xt‖ ≤   1,

0 iff ‖qi − xt‖  .
2.2.19

Here  ∈ 0,1 and lim→0   .
Remark 2.2.4. In one dimension case it follows that


Lxt
i
, 

1


1/4

exp − 1
2 

qi − xt
2 iff |qi − xt | ≤   1,

0 iff |qi − xt |  .
2.2.20

Remark 2.2.5. Note that from Eq.(2.2.18) and Eq.(2.2.19) follows that a probability
density pit,xt,,,,  for the occurrence of a localization at instant t inside
sphere Sxt,  qi ∈ 

3|‖qi − xt‖ ≤  is given by



pit,xt,, 
‖|t,,,xt

i cl‖
2

t,,

‖|t,,,xt
i cl‖

2  1


3/2


‖qi−xt‖≤

d3qitiqiexp −
1
 

qi − xt
2 ,

tiqi  〈qi ||ti cl,

2.2.21

and therefore

pit,x, 
→0
lim pit,x,, 


→0

lim−1t,, 1


1/2


|qi−x|≤

dqiiqiexp − 1 qi − xt
2  ixt.

2.2.22

III.Einstein’s 1927 gedanken experiment revisited.

III.1.Single-photon space-like antibunching.
During the famous 5th Solvay conference in 1927, Einstein [2] considered a single

particle which, after diffraction in a pin-hole encounters a “detection plate” (e.g. in the
case of photons, a photographic plate), see Fig 2.2.1. We simplify this thought
experiment, though keeping the essence, by replacing the “detection plate” by two
detectors. Einstein noted that there is no question that only one of them can detect the
particle, otherwise energy would not be conserved. However, he was deeply
concerned about the situation in which the two detectors are space-like separated, as
this prevents - according to relativity - any possible coordination among the detectors:
“It seems to me,” Einstein continued, “that this difficulty cannot be overcome unless
the description of the process in terms of the Schrödinger wave is supplemented by
some detailed specification of the localization of the particle during its propagation. I
think M. de Broglie is right in searching in this direction.”



Рiс.3.1.1.Einstein’s 1927 gedanken experiment.

A and B are points on the photographic plate,

for which the events of detection can be space-

like separated from each other.Adapted from [2].

But what happened to Einstein’s original “Gedanken experiment”? This simple - with
today’s technology - experiment had been done originally by T. Guerreiro, B.
Sanguinetti, H. Zbinden N. Gisin, and A. Suarez, see [19].This experiment consists in
verifying that when a single photon is thrown at a beam splitter, it is detected in only
one arm, i.e. the probability PA∧B of getting a coincidence between the two detectors A
and B is much smaller than the product of the probabilities of detection on each side
PA  PB, as would be expected in the case of uncorrelated events.The experimental
setup is shown in Fig. 3.1.2 and consists of a source of heralded single photons which
is coupled into a single mode fiber and injected into a fiber beamsplitter (BS). Each of
the two outputs of the beamsplitter goes to a single photon detector (IDQ ID200),
detector A being close to the source and detector B being separated by a distance of
approximately 10 meters.



Рiс.3.1.2.Experimental setup: photon pairs a regenerated by Spontaneous Parametric

Down Conversion at the wavelengths of 1550 nm and 810 nm. These pairs are split by

a dichroic mirror (DM), and the 810 nm photon is sent to detector D,used to herald

the presence of the1550 nm photon which follows to the beam splitter (BS). Arbitrary

electronic delays were applied beforeTDC to ensure the coincidence peak swould

remain on scale. Adapted from [19].

If we ensure that the fiber lengths before each detector are equal by inserting a 10
m (50ns) fiber delay loop before detector A, the detections will happen simultaneously
in some reference frame, thus being space-like separated (a signal would take 33 ns
to travel between the two detectors at the speed of light; simultaneity of detection is
guaranteed to within 1ns by the matched length of fiber both before and inside the
detectors). It is also possible to make the detections time-like separated by removing
the 10m delay line from detector A and adding it to detector B.

Рiс.3.1.3.[19]. Spacetime diagrams for

spacelike (i) and timelike (ii) configurations.

A and B represent the locations of the

detectors. Adapted from [19].

First one measure the probabilities of detecting a photon at detector A or at detector



B given that a heralding photon has been detected at H. We denote RHA the total
number of coincident counts at detector H and detector A during the time of
measurement, and RHA the total number of counts at detector H alone during the
same measurement; RHB and RHB denote similar quantities for the measurement with
H and B. Next we measure the probability of detectors A and B clicking at the same
time, again given a heralding signal. RHAB denotes the number of triple coincident
counts at the detectors H, A and B, and RHAB the total number of counts at detector H
alone during the same measurement. All these quantities are measured directly for
both a space-like configuration and a time-like configuration.
Next one measure the probability of detectors A and B clicking at the same time,

again given a heralding signal. RHAB denotes the number of triple coincident counts at
the detectors H, A and B, and RHAB the total number of counts at detector H alone
during the same measurement. All these quantities are measured directly for both a
space-like configuration and a time-like configuration.

Рiс.3.1.4.Coincidences between the

heralding detector and each of the

detectors A (red) and B (blue) with

spacelike separation,measured in a

window of 1ns during a time period

of 10 minutes. RHA  9.49  104/10 min,

RHB  6.39  104/10 min.The noise is on

average:RN  50/10 min. Adapted from [19].



Рiс.3.1.5.Coincidences between the

heralding detector and each of the

detectors A (red) and B (blue) with

timelike separation,measured in a

window of 1ns during a time period

of 10 minutes. RHA  9.90  104/10 min,

RHB  6.22  104/10 min. Adapted from [19].

The raw TDC data is shown in Figures 3.1.4-3.1.5 and the results are summarized
in Table 3.1.1.

Table 3.1.1.Summary of results.Values obtained for

the different counting rates and corresponding

probabilities defined inthetext,measured with

spacelike and timelike separation. Adapted from [19].

The number of counts given by detector noise and twophoton events can be
estimated by looking at the counts away from the peak. As an example, for the



space-like configuration (Figure 3.1.4.) in a window of 1ns the noise rate is on average
RHN  50/10 for a 10 minutes integration time [19]. This corresponds to a noise
probability PN  9ꞏ 10−6(1.3ꞏ10−6). From the values in Table 3.1.1 one derives the
following probability values for spacelike separation:

PA
SL  PBSL  1.86  0.01ꞏ10−4,

PA∧B
SL  0.002  0.001ꞏ10−4.

3.1.1

For timelike separation one derives the values:

PA
TLꞏPBTL  1.65  0.01ꞏ10−4,

PA∧B
TL  0.002  0.001ꞏ10−4.

3.1.2

For the probability PN
SL that A and B detect photons coming from different pairs (noise)

one derives the value:

PN
SL1,1  PN

SLꞏPA
SL  PNSLꞏPBSL ≈

0.0025  0.0026ꞏ10−4
3.1.3

III.2.The measure algebra of physical events in
Minkowski space-time.
Definition 3.2.1.[20].A measure algebra ℱ  B,P with a probability measure P, is

a
Boolean algebra B with a countably additive probability measure.
Definition 3.2.2.(i) A measure algebra of physical events ℱph  B,P with a
probability measure P, is an Boolean algebra of physical events B with an countably
additive probability measure.
(ii) A Boolean algebra of physical events can be formally defined as a set B of

elements
a,b, . . . with the following properties:
1. B has two binary operations, ∧ (logical AND, or "wedge") and ∨ (logical OR, or

"vee"),
which satisfy:
the idempotent laws:(1) a ∧ a  a ∨ a  a,
the commutative laws:(2) a ∧ b  b ∧ a, (3) a ∨ b  b ∨ a,
and the associative laws: (4) a ∧ b ∧ c  a ∧ b ∧ c, (5) a ∨ b ∨ c  a ∨ b ∨ c.
2. The operations satisfy the absorption law:
(6) a ∧ a ∨ b  a ∨ a ∧ b  a.
3. The operations are mutually distributive
(7) a ∧ b ∨ c  a ∧ b ∨ a ∧ c,
(8) a ∨ b ∧ c  a ∨ b ∧ a ∨ c.



4. B contains universal bounds 0 and 1 which satisfy
(9) 0 ∧ a  0
(10) 0 ∨ a  a
(11) 1 ∧ a  a
(12) 1 ∨ a  1.
5. B has a unary operation a (or a′) of complementation (logical negation), which
obeys the laws:
(13) a ∧ a  0
(14) a ∨ a  1
All properties of negation including the laws below follow from the above two laws

alone.
6. Double negation law: a  a
7.De Morgan’s laws: (i) a ∧ b  a ∨ b, (ii) a ∨ b  a ∧ b.
8.Operations composed from the basic operations include the following importent
examples:
The first operation, a → b (logical material implication):
(i) a → b  a ∨ b.
The second operation, a ⊕ b, is called exclusive. It excludes the possibility of both a

and b
(ii) a ⊕ b  a ∨ b ∧ a ∧ b.
The third operation, the complement of exclusive or, is equivalence or Boolean

equality:
(iii) a ≡ b  a ⊕ b
9. B has a unary predicate Occa, which meant that event a has occurred, and

which
obeys the laws:
(i) Occa ∧ b  Occa ∧ Occb,
(ii) Occa ∨ b  Occa ∨ Occb,
(iii) Occa  Occa.
Remark 3.2.1. A probability measure P on a measure space , gives a

probability
measure algebra ℱ  ,,P on the Boolean algebra of measurable sets modulo

null
sets.
Definition 3.2.3.(i) Let B be a Boolean algebra of physical events. A Boolean

algebra BM4

of physical events in Minkowski spacetime M4  1,3 that is cartesian product
BM4  B M4.
(ii) Let BM4 be a Boolean algebra of physical events in Minkowski spacetime. A

measure
algebra of physical events ℱM4

ph  BM4 ,P in Minkowski spacetime that is a Boolean



algebra BM4 with a probability measure P.
(iii) Let BM4 be Boolean algebra of the all physical events in Minkowski spacetime

and let
ℱM4

ph be an measure algebra ℱM4

ph  BM4 ,P with a probability measure P.We denote
such
physical events by Ax,Bx, . . . etc.,where x  t,x1,x2,x3 ∈ M4 or A,B, . . .etc.
(iv) We will be write for a short AOcx,BOcx, . . . etc., instead

OccAx,OccBx, . . .
etc.
Definition 3.2.4. Let AutPBM4  be a set of the all measure-preserving

automorphism of
BM4 .This is a group,being a subgroup of the group AutBM4  of all Boolean

automorphism
of BM4 .Let P ↑


be Poincaré group.

Remark 3.2.2. We assume now that: any element Θ  ,a ∈ P ↑

induced an

element

Θ ∈ AutPBM4  by formula Θ  ΘAx  Ax  a ∈ BM4 .
Definition 3.2.5. Given two events A and B from the algebra ℱM4

ph  BM4 ,P the
conditional probability of A given B is defined as the quotient of the probability of the

joint
of events A and B, and the probability of B :

PA|B 
PA ∧ B
PB

 PA∧B
PB

 PA|B, 3.2.1

where PB ≠ 0.
Definition 3.2.6. (i) Events A and B from the algebra ℱM4

ph  BM4 ,P are defined to
be statistically independent or uncorrelated iff

PA∧B  PA  PB, 3.2.2

where PB ≠ 0, then this is equivalent to the statement that PA|B  PA.Similarly, if PA is
not zero, then PB|A  PB is also equivalent.
(ii) Events A and B from the algebra ℱ  BM4 ,P are defined to be statistically

almost independent or almost uncorrelated iff

PA∧B ≈ PA  PB,

PA∧B  PA  PB − A,B, 0  A,B  PA  PB.
3.2.3

Remark 3.2.3. Note that

PA∨B  PA  PB − PA∧B. 3.2.4

Although mathematically equivalent, this may be preferred philosophically; under
major probability interpretations such as the subjective theory, conditional probability is



considered a primitive entity. Further, this "multiplication axiom" introduces a
symmetry with the summation axiom for mutually exclusive events, i.e.

PA∨B  PA  PB − P̸A∧B. 3.2.5

Definition 3.2.7. (i) Events A1,A2, . . . ,An ∈ ℱM4

ph  BM4 ,P are said to be exactly
mutually exclusive if the occurrence of any one of them implies the non-occurrence of
the remaining n − 1 events. Therefore, two mutually exclusive events cannot both
occur. Formally said, the conjunction of each two of them is 0 (the null event):
A ∧ B  0. In consequence, exactly mutually exclusive events A and B have the
property:

PA ∧ B  0. 3.2.6

(ii) Events A1,A2, . . . ,An ∈ ℱM4

ph  BM4 ,P are said to be almost mutually exclusive if
A1,A2, . . . ,An have the property:

PA1 ∧ A2 ∧. . .∧An ≈ 0,

PA1 ∧ A2 ∧. . .∧An  PA1  PA2    PAn.
3.2.7

In consequence, almost mutually exclusive events A and B have the property:

PA ∧ B ≈ 0,

PA ∧ B  PA  PB.
3.2.8

Remark 3.2.4. Let Aph,Bph be events such that detectors A,B detect photon at an
instants t1 and t2 correspondingly. Note that (3.1.1) and (3.1.2) show that whether the
separation between the detectors is timelike or spacelike, the number of coincidences
is three orders of magnitude smaller than what would be expected had the events
been statistically almost uncorrelated, i.e., PA∧B ≈ PA  PB, see Def.3.2.6 (ii).
Remark 3.2.5. Let Aph,Bph be events such that detectors A,B detect photon at an

instants
t1 and t2 correspondingly. Note that:
(i) from Eq.(3.1.1) follows probability value for spacelike separation:

PAph∧Bph
SL  0.002  0.001ꞏ10−4 ≠ 0, 3.2.9

(ii) from Eq.(3.1.2) follows probability value for timelike separation:

PAph∧Bph
TL  0.002  0.001ꞏ10−4 ≠ 0. 3.2.10

Therefore in both cases the property (3.2.6) are violated, i.e. PAph∧Bph ≠ 0 but however
in both cases the property (3.2.8) is satisfied

0.002  0.001ꞏ10−4  PAph∧Bph
SL  PAph

SL  PBph
SL  1.86  0.01ꞏ10−4,

0.002  0.001ꞏ10−4  PAph∧Bph
TL  PAph

TL  PBph
TL  1.65  0.01ꞏ10−4

3.2.11

and therefore in both cases the events Aph,Bph are almost mutually exclusive events.



Beamsplitter transformation.
A beamsplitter is the most simple way to mix two modes, see Figure 3.2.1. From

classical electrodynamics, one gets the following amplitudes for the outgoing modes:

a1

a2
in


A1

A2
out


t r

r′ t ′
a1

a2
in

. 3.2.12

Рiс.3.2.1.Mixing of two modes by a

beam splitter.

The recipe for quantization is now: ‘replace the classical amplitudes by annihilation
operators’. If the outgoing modes are still to be useful for the quantum theory, they
have to satisfy the commutation relations:

Aiout,Ajout   ij 3.2.13

These conditions give constraints on the reflection and transmission amplitudes, for
example |t ′|2  |r′|2  1. We are now looking for an unitary operator S [the S-matrix]
that implements this beamsplitter transformation in the following sense:

Ai  S†aiS, i  1,2. 3.2.14

Let us start from the general transformation (summation over double indices)

ai  Ai  Bijai, a  A  Ba 3.2.15

where we have introduced matrix and vector notation. Using this S-matrix one can
also compute the transformation of the states: |out  S|in.For the unitary
transformation, we make the ansatz

S  expiJkiak
†ai 3.2.16

with Jkl a hermitean matrix (ensuring unitarity). The action of this unitary on the photon
mode operators is now required to reduce to

ai  Ai  S†aiS Bijaj. 3.2.17

We compute this ‘operator conjugation’ by using a differential equation:



dAi
d

 iJkiAi. 3.2.18

This is a system of linear differential equations with constant coefficients, so that one
obtains a solution

A  expiθJ. 3.2.19

We thus conclude that the so-called generator J of the beam splitter matrix is fixed by
equatuon

B  expiθJ. 3.2.20

If the transformation B is part of a continuous group and depends on θ as a parameter,
we can expand it around unity. Doing the same for the matrix exponential, we get

B  1  iθJ . . . . 3.2.21

Equation (3.2.21) explains the name generator for the matrix J: it actually generates a
subgroup of matrices B  Bθ parametrized by the angle θ. The unitary
transformation we are looking for is thus determined via the same generator J. For the
two-mode beam splitter, an admissible transformation is given by

Bθ 
t r

r′ t ′


cos i sin

i sin cos
3.2.22

The factor i is just put for convenience so that the reflection amplitudes are the same
for both sides, r  r′, as expected by symmetry. Expanding for small θ, the generator
is

J 
0 1

1 0
 1 3.2.23

and so that the unitary operator for this beamsplitter is

S  expia1
†a2  a2

†a1. 3.2.24

Therefore, the effective Hamiltonian of the beam splitter is given by

Heff  a1
†a2  a2

†a1. 3.2.25

Splitting a two-photon state

Let us consider two single photon states |in  |1, 1 incident on the beam splitter
such that mentioned above.Then



|  |out  S|in  Sa1
†S†Sa2

†S†S|0, 0 

a1
† cosθ  ia2

† sinθa2
† cosθ  ia1

† sinθ|0, 0 

|2, 0 − |0, 2 sinθ
2

 |1, 1cosθ.
3.2.26

Let H be a complex Hilbert space such that

∀|cl ∈ H,

∀∀ ∈ 0,1∀ ∈ 0,1 |,,x
i cl ∈ H ,

|,,x
i cl  Lx

i ,|cl.

3.2.27

By postulate Q.I.1 (see section II.1) quantum system wih Hamiltonian given by

Eq.(3.2.25) is identified with a set   H,Heff,ℑ,,ℒ2,1,G, |t  , where

(i) H that is a complex Hilbert space defined above,
(ii) ℑ  ,ℱ,P that is complete probability space,
(iii)   n, that is measurable space ,

(iv) ℒ2,1 that is complete space of random variables X :  → n such that



‖X‖dP  , 


‖X‖2dP  , 3.2.28

(v) G : H → ℒ2,1 that is one to one correspondence such that

〈|Q|  


G Q|  dP  E G Q|  3.2.29

for any | ∈ H and for any Hermitian operator Q : H → H,
(vi) |t  is an continuous vector function |t  :  → H which representedthe

canonical evolution of the quantum system .
Remark 3.2.6. Note that ℑM4

ph  ℱ  M4  ,,P  M4,where ℱ is a probability
measure
algebra ℱ  ,,P on the Boolean algebra of measurable sets modulo null sets,

see
Remark 3.2.1.
Let BM4 be Boolean algebra of the all physical events in Minkowski spacetime M4

and let

ℱM4 be an measure algebra ℱM4  BM4 ,P with a probability measure P, see

Definition 3.2.2 (vii).

We assume now that there exist subalgebra ℱM4
#  ℱM4 and isomorphism

 : ℱM4
#  ℑM4

ph such that for any event Ax ∈ ℱM4
# ,x  t,x1,x2,x3 ∈ M4 (see

Definition 3.2.2):



Ax  Ax,

PAx  PAx  PAx.
3.2.30

Proposition 3.2.1.Suppose that A and B are events in measure algebra

ℱM4  BM4 ,P .

Then following properties is satisfied:

1.PA|B  PA  PB|A  PB  PA ∧ B  PAPB

2.PA|B  PA  PB|A  PB  PA ∧ B  PAPB

3.PA|B  PA  PB|A  PB  PA ∧ B  PAPB

3.2.31

Proposition 3.2.2.Suppose that A and B are events in measure algebra
ℑM4  ,ℱ,P.
Then following properties is satisfied:

1.PA|B  PA  PB|A  PB  PA ∩ B  PAPB

2.PA|B  PA  PB|A  PB  PA ∩ B  PAPB

3.PA|B  PA  PB|A  PB  PA ∩ B  PAPB

3.2.32

Definition 3.2.8.In case (1), A and B are said to be positively correlated.
Intuitively, the occurrence of either event means that the other event is more likely.
In case (2), A and B are said to be negatively correlated.
Intuitively, the occurrence of either event means that the other event is less likely.
In case (3), A and B are said to be uncorrelated or independent.
Intuitively, the occurrence of either event does not change the probability of the

other
event.
Remark 3.2.7. Suppose that A and B are events in measure algebra

ℑM4  ,ℱ,P.
Note from the result above that if A ⊆ B or B ⊆ A then A and B are positively

correlated. If
A and B are disjoint then A and B are negatively correlated.
Proposition 3.2.3.Suppose that A and B are events in measure algebra

ℱM4  BM4 ,P . Then:

(i) A and B have the same correlation (positive, negative, or zero) as A and B.
(ii) A and B have the opposite correlation as A and B (that is, positive-negative,
negative-positive, or zero-zero).
Proposition 3.2.4.Suppose that A and B are events in measure algebra

ℑM4  ,ℱ,P.
Then:
(i) A and B have the same correlation (positive, negative, or zero) as Ac and Bc.



(ii) A and B have the opposite correlation as A and Bc (that is, positive-negative,
negative-positive, or zero-zero).
Definition 3.2.9.Let Ax1  At1,r1 and Bx2  Bt2,r2 be an events
Ax1 ∈ ℱM4

# which occurs at instant t1 and Bx2 ∈ ℱM4
# at instant t2

correspondingly.
Let x1,2 be a vector: x1,2  ct1 − t2,r1 − r2  ct1,2,r1,2, t1,2  t1 − t2,r1,2  r1 − r2.
Vectors x1,2  ct1,2,r1,2 are classified according to the sign of c2t1,22 − r1,22 . A vector is
(i) timelike if c2t1,2

2  r1,22 , (ii) spacelike if c2t1,2
2  r1,22 , and null or lightlike if (iii) c2t1,2

2 
r1,2
2 .
Pairs of events At1,r1,Bt2,r2 ∈ ℱM4

# ℱM4
# are classified according to the sign

of
c2t1,2

2 − r1,22 :
(i) a pair At1,r1,Bt2,r2 is timelike separated if c2t1,22  r1,22 ,
and we denoted such pairs by At1,r1,Bt2,r2t.l.s.
(ii) a pair At1,r1,Bt2,r2 is spacelike separated if c2t1,22  r1,22 ,
and we denoted such pairs by At1,r1,Bt2,r2s.l.s.
(iii) a pair At1,r1,Bt2,r2 is null or lightlike separated if c2t1,22  r1,22 .
and we denoted such pairs by At1,r1,Bt2,r2l.l.s.
Definition 3.2.10.(i) Let ℱM4

# ,t1,r1, t2,r2t.l.s. be a set of the all timelike

separated
pairs At1,r1,Bt2,r2t.l.s. which are corresponding to a given vector
t1,r1, t2,r2 ∈ M4  M4, i.e.,

ℱM4
# ,t1,r1, t2,r2s.l.s. 

At1,r1,Bt2,r2 ∈ ℱM4
# ℱM4

# |c2t1,2
2  r1,2

2 .
3.2.33a

(ii) Let ℱM4
# ,t1,r1, t2,r2s.l.s. be a set of the all spacelike separated

pairs At1,r1,Bt2,r2s.l.s. which is corresponding to a given vector

t1,r1, t2,r2 ∈ M4  M4, i.e.,

ℱM4
# ,t1,r1, t2,r2s.l.s. 

At1,r1,Bt2,r2 ∈ ℱM4
# ℱM4

# |c2t1,2
2  r1,2

2 .
3.2.33b

Remark 3.2.8. Let ℱM4
# ,t,r1, t,r2s.l.s. be a set of the all pairs At,r1,Bt,r2

which is corresponding to a given vector t,r1, t,r2 ∈ M4  M4, r1 ≠ r2, i.e.,

ℱM4
# ,t,r1, t,r2s.l.s. 

At,r1,Bt,r2 ∈ ℱM4
# ℱM4

# |0  r1,2
2 ,

r1,2  r1 − r2.

3.2.34



Such pairs obviously is spacelike separated. Note that

∀t∀r1∀r2r1 ≠ r2 ℱM4
# ,t,r1, t,r2s.l.s. ≠  . 3.2.35

Definition 3.2.11. Let At1  Ax1  At1,xA and Bt2  Bx2  Bt2,xB be a
symbols such that At1 and Bt2 represent there is detection events Ax1 ∈ ℱM4

# at
instant t1 and Bx2 ∈ ℱM4

# at instant t2 correspondingly, where symbols xA and xB
represent the locations of the detectors A and B correspondingly (see Рiс.3.1.3). We
assume that

At1 ,Bt2 ∈ ℱM4
# ,t1,xA, t2,xBs.l.s.. 3.2.36

Remark 3.2.9. We assume now without loss of generality that t1  t2  t,note that
such assuption valid by properties: Ax1 ∈ ℱM4

# and Bx2 ∈ ℱM4
# , required

above,see Remark 3.2.2.

III.3.Einstein’s 1927 gedanken experiment explained.
In classical case considered by A. Einstein in his 1927 gedanken experiment, by

postulates of canonical QM, both events At ∈ ℱM4
# and Bt ∈ ℱM4

# cannot occur
simultaneously, i.e. that is mutually exclusive events with a probability  1,and
therefore At ∧ Bt  0.Such exactly mutually exclusive events have the property:

PAt ∧ Bt  0, 3.3.1

see Definition 3.2.6.
We remind that the probability density pphx,, for the occurrence of a photon

localization at point x is assumed to be

pphx,,  ,,x
ph 

cl

2
,

 ∈ 0,1, ∈ 0,1,
3.3.2

where

,,x
ph

cl
 Lx,|phcl. 3.3.3

and where the localization operators Lx, have been chosen to have the form:


Lx

q,, 
1


1/4

exp − 1
2 

q − x2 iff |q − x| ≤   1,

0 iff |q − x|  .
3.3.4

see subsection II.2.1.
Remark 3.3.1. Note that: (i) from (3.2.27) follows that ,,x

ph 
cl
∈ H,

(ii) from (3.3.3) and (3.3.4) where   1 follows that



pphx,,  ,,x
ph 

cl

2
  dq ,,x

ph  |q〈q| ,,x
ph  

 dq 
Lx

q,,ph |q〈q|

Lx

q,,ph 

 dqLx2q,,〈ph||q〈q||ph  ‖〈x||phcl‖
2
 O 

 ‖〈x||phcl‖
2
,

  1, ∈ 0,1,

3.3.5

From postulate Q.I.3 follows that there exist unique random variable X ; |phcl
given on a probability space ,ℱ,P and a measurable space n, by formula

X ; |phcl  X ph  G |phcl 3.3.6

The probability density of random variable X ph we denote by p phq,q ∈ .
Remark 3.3.2. From postulate Q.II.2 (see subsection II.1) follows that for the system

in state |phcl the probability P q,q  dq; |phcl of obtaining the result q

lying in the range q,q  dq on measuring observable q given by

P q,q  dq; |phcl  p ph
cl
qdq  c phcl 

q
2
 〈q|phcl

2
3.3.7

Now we go to explain Einstein’s 1927 gedanken experiment. Let Apht,xA and
Bpht,xA be events such that detectors A,B detect photon at an instant t
correspondingly. By properties (3.2.31) we obtain

P A
pht,xA  PAph t,xA  PApht,xA,

P B
pht,xB  PBph t,xB  PBpht,xB.

3.3.8

Note that

At  A
pht,xA  |xA −  ≤ X ph ≤ xA −  ,

Bt  B
pht,xB  |xB −  ≤ X ph ≤ xB −  ,

 ∈ 0,,  1,

3.3.9

where a small parameter   |xA − xB | dependent on measuring device. Thus by
general definition of random variable one obtains directly

A
pht,xA ∩ B

pht,xB   3.3.10

and therefore

P A
pht,xA ∩ B

pht,xB  0 3.3.11

The property (3.3.11) follows directly from (3.3.8).



Рiс.3.3.1.The plot of the random variable X ph.

At  A
pht,xA,Bt  B

pht,xB,At ∩ Bt  .

Remark 3.3.3. Let ℱM4
# ,t,xA, t,xBs.l.s. be a set of the all pairs At,xA,Bt,xB

which is corresponding to a given vector t,xA, 0, 0, t,xB, 0, 0 ∈ M4  M4,
xA ≠ xB, i.e.,

ℱM4
# ,t,xA, t,xBs.l.s. 

At,xA,Bt,xB ∈ ℱM4
# ℱM4

# |0  xA − xB2.
3.3.12

Such pairs obviously is spacelike separated. Note that

∀t∀xA∀xBxA ≠ xB ℱM4
# ,t,xA, t,xBs.l.s. ≠  . 3.3.13

Now we go to explain non zero result PAt ∧ Bt ≠ 0 given above by (3.1.1) and
(3.1.2):

PAt∧Bt
TL

 0.002  0.001ꞏ10−4,PAt
TLꞏPBt

TL  1.65  0.01ꞏ10−4,

PAt∧Bt
SL

 0.002  0.001ꞏ10−4.PAt∧Bt
SL  0.002  0.001ꞏ10−4.

3.3.14

We consider this problem in general case.
Remark 3.3.4. Note that: (i) a probability density px,A,,  for the occurrence of a

localization inside interval x − ,x   in arm with detector A (see Рiс.3.1.2) is given
by formula

px,A, 
‖|A,,x cl‖

2

ΔA,
, 3.3.15

where



‖|A,,x cl‖
2  1

AA

1/2


|q−x|≤

dq|q|2 exp − 1
A

q − x2 ,

q  〈q||,

ΔA,  
−



‖|A,,x cl‖
2dx,

3.3.16

and where parametr A depend on arm with detector A.
(ii) a probability density px,B,,  for the occurrence of a localization inside interval
x − ,x   in arm with detector B (see Рiс.3.1.2) is given by formula

px,B, 
‖|B,,x cl‖

2

ΔB,
, 3.3.17

where

‖|B,,x cl‖
2  1

BB

1/2


|q−x|≤

dq|q|2 exp − 1
B

q − x2 ,

q  〈q||,

ΔB,  
−



‖|B,,x cl‖
2dx,

3.3.18

and where parametr B depend on arm with detector B.
Remark 3.3.5.Note that parametr  in formula (3.3.18) of course depend on

measurement device and there no exist two equivalet devices such that A  B.
We assume now that

A ≃ B  1,

0  |A − B |,


−


x|x|2dx  ,


−


x |x|2

′′
dx  .

3.3.19

From Eq.(3.3.16) and (3.3.19) by using laplace approximation, we obtain:



‖|A,,x cl‖
2  1

AA

1/2


|q−x|≤

dq|q|2 exp − 1
A

q − x2 ≈

≈ |x|2  AO |x|2
′′

 |x|2  Ac1A |x|2
′′
,

ΔA,  
−



‖|A,,x cl‖
2dx  1  c2AA,c2A  O −


|x|2

′′
dx .

3.3.20

From Eq.(3.3.18) and (3.3.19) by using laplace approximation, we obtain:

‖|B,,x cl‖
2  1

BB

1/2


|q−x|≤

dq|q|2 exp − 1
B

q − x2 ≈

|x|2  BO |x|2
′′

 |x|2  Bc1B |x|2
′′
,

ΔB,  
−



‖|B,,x cl‖
2dx  1  c2BB,c2B  O −


|x|2

′′
dx .

3.3.21

From Eq.(3.3.15) and Eq.(3.3.17) we obtain

px,A, 
‖|A,,x cl‖

2

ΔA,


|x|2  Ac1A |x|2
′′

1  c2AA,
. 3.3.22.a

From Eq.(2.2.54) and Eq.(2.2.57) we obtain

px,B, 
‖|B,,x cl‖

2

ΔB,


|x|2  Bc1B |x|2
′′

1  c2BB,
. 3.3.22.b

Definition 3.3.1.We define now signed measures P A,,x
At and P B,,x

At by

formulae

P A,,x
At  

At

xpx,A,dx,

P B,,x
At  

At

xpx,B,dx,
3.3.23

where At ∈ a,b and dx is the Lebesgue measure and a,b  Ba,b is the Borel
algebra on a set a,b.
Definition 3.3.2.Let P be a probability measure on a measurable space

a,b,Ba,b.We assume now that P
A,,x

 P and P
B,,x

 P, i.e. P | is

absolutely continuous with respect to P.By Radon-Nicodym theorem we obtain for any
At ∈ a,b :



P A,,x
At  

At

X
A,,x

dP,

X
A,,x

 
dP

A,,x

dP
,

P A,,x
At  

At

X
A,,x

dP,

X
A,,x

 
dP

A,,x

dP
.

3.3.24

We write below for a short

X 1  X
A,,x

,X 2  X
B,,x

. 3.3.25

Remark 3.3.6.We assume now without loss of generality that

X 2 − X 1 ≥ 0 a.s. 3.3.26

see Рiс.3.3.1.
Let us consider now the quantity

1,2  


|X1 − X2|dP 


X 2 − X 1dP. 3.3.27

We assume now that


−


x|x|2dx  , 

−


x|x|2

′′
dx  , 3.3.28

From Eq.(3.3.27) by using Eq.(3.3.21) and Eq.(3.3.22) we obtain



1,2 




px,B,dx − 


px,A,dx  1
1  c2BB




x|x|2  Bc1B x|x|
2 ′′

dx −

− 1
1  c2AA




x|x|2  Ac1A x|x|
2 ′′

dx ≃

1 − c2BB 


x|x|2  Bc1B x|x|
2 ′′

dx −

−1 − c2AA 


x|x|2  Ac1A x|x|
2 ′′

dx 

Bc1B 


x|x|2
′′
dx − c2BB 



x|x|2dx − B2c1Bc2B 


x|x|2
′′
dx −

−Ac1A 


x|x|2
′′
dx  c2AA 



x|x|2dx  A2c1Ac2A 


x|x|2
′′
dx 

Bc1B − Ac1A − B2c1Bc2B  A2c1Ac2A 


|x|2
′′
dx  c2AA − c2BB 



|x|2dx ≃

1c2AA − c2BB  2Bc1B − Ac1A,

3.3.29

where

1  


x|x|2dx,2  


x|x|2
′′
dx. 3.3.30

Lemma 3.3.1. Let ,Σ,P be a measure space, and let f be an real-valued
measurable function defined on . Then for any real number t  0 :

P ∈ ||f| ≥ t ≤ 1
t 

|f |≥t

f  dP. 3.3.31

From inequality (3.3.31) and Eq.(3.3.29) we obtain

P  ∈  : |X 1 − X 2| ≥ t ≤ 1
t 

X1−X2 ≥t

|X 1 − X 2|dP

 1
t 



X 1 − X 2dP 
1,2
t ≃

1c2AA − c2BB  2Bc1B − Ac1A
t .

3.3.32

We define now

At  A
pht,xA  |xA −  ≤ X 1 ≤ xA − ,

Bt  B
pht,xB  |xB −  ≤ X 2 ≤ xB − ,

3.3.33

and chose in (3.3.31) number t  xB − xA  1.



Рiс.3.3.1.The plot of the random variables X 1 and X 2.

At  A
pht,xA,Bt  B

pht,xB,At ∩ Bt ⊆ Ct.

Note that

PAt ∩ Bt ≤ PCt, 3.3.34

see Рiс.3.3.1. From Eq.(3.3.32)-Eq.(3.3.34) follows that

PAt ∩ Bt 
1c2AA − c2BB  2Bc1B − Ac1A

xB − xA  1. 3.3.35

IV.Conclusions
Einstein’s 1927 gedanken experiment revised and by using the probability

representation of quantum states explained successfully.
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