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PREFACE 

 
This book is devoted to the presentation of the new quantum 

mechanical formalism based on the probability representation of 

quantum states. 

In the 20s and 30s it became evident that some properties in 

quantum mechanics can be assigned only to the quantum 

mechanical system, but not necessarily to its constituents. This led 

Einstein, Podolsky and Rosen (EPR) to their remarkable 1935 paper 

where they concluded that quantum mechanics is not a complete 

theory of nature (EPR paradox). 

In order to avoid the contradiction which arises from instantaneous 

action at a distance mentioned above we introduce an extension of 

the canonical relativity by using measure algebra of physical events 

in Minkowski space-time. The canonical QM formalism is extended 

by additional new postulate of EPRB nonlocality for continuous and 

discrete observables, chapter I. The postulate of EPRB nonlocality is 

supported by new quantum mechanical formalism based on the 

probability representation of quantum states. Chapter II is devoted to 

the new quantum mechanical formalism based on the probability 

representation of quantum states. Chapter III is devoted to the 

Einstein's 1927 gedanken experiment resolution. Chapter IV is 

devoted to the EPR paradox resolution. Chapter V is devoted to the 

EPR-B paradox resolution. Chapter VI is devoted to the 

Schrödinger's cat (measured spin) paradox resolution. Chapter VII is 

devoted to the Bell inequalities revisited. 

Remind that the canonical arguments which were presented by 

many authors, namely, that violations of Bell type inequalities signal 

us that the classical Kolmogorovian model of probability is 

inapplicable to quantum phenomena. We claimed that the canonical 

assumption, under which Bell type inequalities were derived, is not 

supported by real physical nature of the EPRB experiments. The 

fundamental physical nature violations of the canonical Bell type 

inequalities explained by Postulate of EPR-Nonlocality and 

Heisenberg noise-disturbance uncertainty relations.  
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INTRODUCTION 

 
I.1. Bell's type inequalities violations 

 

The canonical argument which were presented by many authors, 

namely, that violations of Bell type inequalities [1], [2] signal us that 

the classical model of probability [3] (Kolmogorov, 1933) is 

inapplicable to quantum phenomena. It well known that any attempt 

to explain to these violations by some additional value e.g., to 

philosophize about (non)locality and (un)reality, is not helpful [4], [5], 

[6]. 

 

Remind that one of the Bell's assumptions in the original derivation 

of his inequalities was the hypothesis of locality, i.e., of the absence 

of the influence of two remote measuring instruments on one 

another. That is why violations of these inequalities observed in 

experiments are often interpreted as a manifestation of the nonlocal 

nature of quantum mechanics, or a refutation of local realism. 

Let   ,,P  be a Kolmogorov probability space. For two random 

variables A,  B :     we set 

 

EAB  


ABdP 1.1

 

Theorem I.1.1. (CHSH-inequality). Let Ai,Bj, i; j  1,2 , be random 

variables with values in 1,1 . Then the corresponding combination 

of correlation satisfies the CHSH-inequality: 

 

S  EA1B1   EA1B2   EA2B1   EA2B2   2. 1.2

 

Theorem I.1.2. (Bell's no-go theorem [2]). Bell's no-go theorem says 

that Bell type inequalities, e.g., the CHSH-inequality (1.2), which are 

derived in Kolmogorovian model of probability are violated for 

correlations calculated in the quantum probability model. 
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Remark I.1.1. By using Bell's no-go theorem many authors were 

concluded that the Kolmogorovian model of probability has to be 

rejected in general as inapplicable to these correlations in any 

cases, see for example [4]-[8]. 

In papers [7]-[9] authors claimed that the fair sampling assumption is 

not supported by real EPRB experiments. In papers [8]-[9] complete, 

probability spaces consistent with EPR-Bohm-Bell experimental data 

by taking into account random choice of settings, were obtained. 

 

 

 

Fig. I.1.1. Timing-experiment with optical switches(C 1  and C 2 ). 

Adopted from [10] 

 

The switch C 1  followed by the two polarizers in orientations a and a' 

is equivalent to a single polarizer switched between the orientations 

a  and a .  A switching occurs approximatively each 10 ns. A similar 

setup, independently driven, is implemented on the second side. In 

experiment, the distance L  between the switches was large enough 

(13 m) that the time of travel of a signal between the switches at the 

velocity of light (43 ns) was significantly larger than the delay 

between two switchings (about 10 ns) and the delay between the 

emission between the two photons (5 ns average). 

Let us consider now an experiment taking into account random 

choice of settings [9]. 

(a) There is a source of entangled photons. 
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(b) There are 4 PBSs and corresponding pairs of detectors for each 

PBS, totally 8 detectors. PBSs are labeled as i  1,2  (at the left-hand 

side, LHS) and j  1,2  (at the right-hand side, RHS). 

(c) Directly after source there are 2 distribution devices, one at LHS 

and one at RHS. At each instance of time, t  0,,2. . .  each device 

opens the port to only one (of two) optical fibers going to the 

corresponding two PBSs. For simplicity, we suppose that each pair 

of ports i, j,1,1,1,2,2,1,2,2,  can be opened with equal 

probabilities Pi, j  1/4.  

We introduce the observables measured in this experiment. 

They are modifications of the polarization observables ai , i  1,2,  

and bj
 , j  1,2,   

We define the "LHS-observables": 

(1) Ai  1, i  1,2  if the corresponding (up or down) detector is 

coupled to i-th PBS (at LHS) fires and the i-th channel is open, 

(2) A i  0  if the i-th channel (at LHS) is blocked, 

(3) in the same way we define the "RHS-observables": Bj  0,1,  

corresponding to PBSs j  1,2.  

Remark I.1.2. [9]. Thus unification of 4 incompatible experiments of 

the CHSH-test into a single experiment modifies the range of values 

of polarization observables for each of 4 experiments; the new 

value, zero, is added to reflect the random choice of experimental 

settings. We emphasize that this value has no relation to the 

efficiency of detectors. In this model we assume that detectors have 

100% efficiency. The observables take the value zero when the 

optical bers going to the corresponding PBSs are blocked. 

Let ,,P  be an arbitrary probability space and let 

0  ,0  ,P0   0  and   let be arbitrary random variable 

 :   .  Then the conditional expectation of the random variable 

  conditioned to the event 0  is defined as follows: 

 

E|0    dP0
, 1.3
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where the conditional probability P0
 is defined by Bayes formula 

 

P0
X  PX|0  

PX 0 
P0 

1.4

 

Let us now consider the sample space of points  : 

 

  1 , 0,1
 ,0,1 , 0,0,2

 ,0,2 ,1
 ,0,0,2 ,0,2

 , 1.5

 

where ,  1,1.  

We define the following probability measure on  : 

 

P1 , 0,1
 , 0  1

4
p111 ,1

 ,P1 , 0,0,2
   1

4
p121 ,2

 

P0,2 ,1
 , 0  1

4
p212 ,1

 ,P0,2 , 0,2
   1

4
p222 ,2

 
1.6

 

where p ij  is any collection of probabilities, i.e., 

 

pij  0,,
pij,  1,,  1,1. 1.7

 

We define random variables Ai,Bj : 

 

A11 , 0,1
 , 0  A11 , 0,0,2

   1 ,A20,2 ,1
 , 0  A20,2 , 0,2

   2 ,

B11 , 0,1
 , 0  B11 , 0,0,2

   1
 ,B20,2 ,1

 , 0  B20,2 , 0,2
   2


1.8

 

and we put these variables equal to zero in other points. We define 

the random variables which are responsible for selections of pairs of 

ports to PBSs. For the device at LHS: 

 

L1 ,0,0,2
   L1 ,0,1

 ,0  1,L0,2 ,0,2
   L0,2 ,1

 ,0  2. 1.9

 

For the device at RHS: 
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R1 ,0,1
 ,0  R0,2 ,1

 ,0  1,R0,2 ,0,2
   R1 ,0,0,2

   2. 1.10

 

We choose now 0  ij  |L  i,R  j.  We set 

 

ECAiBj  EAiBj|L  i,R  j  


AiBjdPij, 1.11

 

and 

 

SC  EA1B1 |L  1,R  1  EA1B2 |L  1,R  2 

EA2B1 |L  2,R  1  EA2B2 |L  2,R  2.

1.12

 

Theorem I.1.3. [9]. (CHSH-inequality for conditional correlations.) 

Let Ai,Bj, i, j  1,2 , be random variables defined by Eq. (1.8). Then the 

corresponding combination of conditional correlation SC  satisfies the 

inequality: 

SC  4. 1.13

 

However in papers [9], [10], [11], Bell's type inequality were derived 

in its traditional form, without resorting to the hypothesis of locality 

and hidden-variable theory the only assumption being that the 

probability distributions are nonnegative. The starting point of these 

papers that is a recognition of the existence of a positive-definite 

probability distribution function. 

 

Let A,A,B,B  be random variables with values in the set 1,1,  i.e., 

 

A  1,A  1,B  1,B  1. 1.14

 

Assume that there exists joint probability distribution function 

PA,A,B,B  of A,A,B,B  defining probabilities for each possible set of 
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outcomes such that: 

 


A,A ,B,B 

PA,A ,B,B   1,PA,A ,B,B   0, 1.15

and 

PA,A,B,B   PA,A,B,B  PA,B,B. 1.16

 

The main point of papers [9], [10], [11] also be a recognition of the 

existence of a positive-definite probability distribution function 

without any reference to the full classical Kolmogorovian model of 

probability [3]. 

We abbreviate now for short [11]: 

P1  PA,A ,B,B      PA  1,A   1,B  1,B  1,

P2  PA,A ,B,B      PA  1,A   1,B  1,B  1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P16  PA,A ,B,B      PA  1,A   1,B  1,B  1.

1.17

 

For the quantities AB, AB, AB   and A
B   using Eq. (1.17) one 

obtains the representatives 

 

AB  PAB   PAB   PAB   PAB ,

etc.,
1.18

 

where 

 

PAB   PA,A ,B,B      PA,A ,B,B     

PA,A ,B,B      PA,A ,B,B    ,

etc.

1.19

 

Theorem I.1.4. [11]. Assume that there exists joint probability 

distribution function PA,A,B,B  of A,A,B,B  such that Eq. (1.15) - 

Eq.(1.16) is satisfied. Then Bell inequality of the form 
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|AB  AB  AB   AB |  2. 1.20

 

holds. 

Remark I.1.3. We claim that the even general assumption given by 

Eqs.(1.15) - (1.16) is not supported by fundamental physical nature 

of the EPRB experiments. This fundamental physical nature formally 

explained by (i) Postulate of EPR-Nonlocality (see subsection I.4) 

and by (ii) Heisenberg noise-disturbance uncertainty relation, (see 

Appendix A). 

Remind that in a typical Bell experiment, (see Fig. I.1.2), two 

particles A and B which may have previously interacted - for 

instance they may have been produced by a common source - are 

now spatially separated and are each measured by one of two 

distant observers, Alice and Bob. 

 

 

 

Fig. I.1.2. Scheme of a “two-channel” Bell experiment 

 

Alice may choose one out of several possible measurements to 

perform on her system and we let x  denote her measurement 

choice. For instance, x  may refer to the position of a knob on her 

measurement apparatus. Similarly, we let y  denote Bob's 

measurement choice. Once the measurements are performed, they 

yield random outcomes a  and b  on the two systems. The 
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actual values assigned to the measurement choices x,y and 

outcomes a,b  are purely conventional; they are mere 

macroscopic labels distinguishing the different possibilities. These 

outcomes a  and b  are thus in general governed by a 

Kolmogorovian probability distribution pab|xy,  which can of course 

depend on the particular experiment being performed. The 

assumption of locality implies that we should be able to identify a set 

of past factors, described by some variables λ,  having a joint causal 

influence on both outcomes, and which fully account for the 

dependence between a  and b.  Once all such factors have 

been taken into account, the residual indeterminacies about the 

outcomes must now be decoupled, that is, the Kolmogorovian 

probabilities for a  and b  should factorize: 

 

pab|xy,  pa|x,pb|y,. 1.21

 

The different values of  across the runs should thus be 

characterized by a probability distribution qλ.  Combined with the 

above factorability condition, we can thus write 

 

pab|xy  


dqpa|x,pb|y,, 1.22

 

where we also implicitly assumed that the measurements x  and y  

can be freely chosen in a way that is independent of , i.e., that 

qλ|x,y  qλ . Let us consider for simplicity an experiment where 

there are only two measurement choices per observer x,y  0,1  

and where the possible outcomes take also two values labelled 

a,b  1,1.  Let axby   be the expectation value of the product ab  for 

given measurement choices x,y : 

 

λ

λ
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axby   a,b
abpab|xy. 1.23

 

Consider the following expression 

 

S  a0b0   a0b1   a1b0   a1b1 , 1.24

 

which is a function of the probabilities pab|xy.  If these probabilities 

satisfy the locality decomposition (1.21), we necessarily have that 

 

S  a0b0   a0b1   a1b0   a1b1   2, 1.25

 

which is known as the Clauser-Horne-Shimony-Holt (CHSH) 

inequality [12]. 

Remark I.1.4. Note that particles A and B in real EPRB experiments 

cannot collapse simultaneously. Taking into account postulate of 

EPR-Nonlocality (see subsection I.4) and Heisenberg noise-

disturbance uncertainty relation we obtain that random outcomes a  

and b  mentioned above in real EPRB experiments they is not 

simply random variables a  and b  but time dependent random 

functions at1
 and bt2

.  

Remark I.1.5. These time dependent outcomes at1
 and bt2

 are 

thus in general governed by a time dependent Kolmogorovian joint 

probability distribution pa, t1 ;b, t2 |x t1yt2,  which can of course depend 

on the particular experiment being performed. By repeating the 

experiment a sufficient number of times and collecting the observed 

data, one can get a fair estimate of such time dependent 

Kolmogorovian joint probabilities distribution. The assumption of 

locality implies that we should be able to identify a set of past 

factors, described by some variables λ,  having a joint causal 

influence on both outcomes at1
 and bt2

, and which fully 

account for the dependence between a t1  and bt2 .  Once all such 

factors have been taken into account, the residual indeterminacies 

about the outcomes must now be decoupled, that is, the time 
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dependent Kolmogorovian joint probabilities for a  and b  should 

factorize: 

 

pa, t1 ;b, t2 |xy,  pa, t1 |x,pb, t2 |y,. 1.26

 

The variable  will not necessarily be constant for all runs of the 

experiment, even if the procedure which prepares the particles to be 

measured is held fixed, because  may involve physical quantities 

that are not fully controllable. The different values of  across the 

runs should thus be characterized by a probability distribution 

qλ, t1 , t2.  Combined with the above factorability condition, we can 

thus write instead (1.22) 

 

pa, t1 ;b, t2 |xy  


dq, t1 , t2 pa, t1 |x,pb, t2 |y,, 1.27

 

where we also implicitly assumed that the measurements x t1  and yt2  

can be freely chosen in a way that is independent of , i.e., that 

qλ, t1 , t2 |x t1 ,yt2  qλ, t1 , t2 . 

Let us consider for simplicity an experiment where there are only 

two measurement choices per observer x t1 ,yt2  0,1  and where the 

possible outcomes take also two values labelled at1 ,bt2  1,1.  Let 

at1x t1
bt2y t2  be the expectation value of the product at1bt2  for given 

measurement choices x t1 ,yt2 : 

 

at1x t1
bt2y t2

 
a,b

abpab, t1 , t2 |x t1yt2. 1.28

 

We assume now that t1 , t2   2 ,    ,0    1,  

 

pab, t1 , t2 |x t1 yt2  pab, t1  t2 |x t1 yt2  |t1  t2 |    |t1  t2 |  0,

q, t1 , t2   q, t1  t2   |t1  t2 |    |t1  t2 |  0
. 1.29

λ

λ

λ

λ
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Thus 

 

at1x t1
bt2y t2

 
a,b

abpab, t1  t2 |x t1yt2. 1.30

 

We denote 

 

at1x t1
bt2y t2

 axby  1.31

 

iff |t1  t2 |  0,  

 

at1x t1
bt2y t2

 axby  1.32

 

iff |t1  t2 |    and t1  t2 ,  

 

at1x t1
bt2y t2

 axby  1.33

 

iff |t1  t2 |    and t1  t2 ,  

 

axby   axby   axby   axby . 1.34

 

Consider now the following expression 

 

S  a0b0   a0b1   a1b0   a1b1 , 1.35

 

which is a function of the probabilities pab, t1 , t2 |x t1yt2.  If these 

probabilities satisfy the locality decomposition (1.26) and Eq. (1.28), 

we necessarily have that 

 

S  S  S  S  a0b0   a0b1   a1b0   a1b1   6, 1.36

where 
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S  a0b0   a0b1   a1b0   a1b1 ,

S  a0b0   a0b1   a1b0   a1b1 ,

S  a0b0   a0b1   a1b0   a1b1 .

1.37

 

Remark I.1.6. Note that in contrast with CHSH-inequality for 

conditional correlations (1.13) the inequality (1.36) is obtained 

without any references to random choice of settings x t1  and yt2 .  

 

 

I.2. A new quantum mechanical formalism based on the 

probability representation of quantum states 

 

Definition I.2.1. In probability theory, the sample space 

(observation space) of an experiment or random trial is the set of all 

possible outcomes or results of that experiment. A sample space is 

usually denoted using set notation, and the possible outcomes are 

listed as elements in the set. It is common to refer to a sample 

space by the label Ω.  

Remark I.2.1. A well-defined sample space (observation space) is 

one of three basic elements in a probabilistic model (a probability 

space   ,,P); the other two are a well-defined set of possible 

events (a sigma-algebra ) and a probability assigned to each event 

(a probability measure function P). 

A simple example of a sample phase space and corresponding 

probability space closer to our Stern-Gerlach experiment is a coin 

toss. Consider 1000  coin tosses. If the coin is tossed without bias, 

you will find close to 500  heads and 500  tails, corresponding to prob

heads  0.5 and prob tails  0.5.  Here the sample space consists of the 

1000  detailed trajectories of the toss, which your eye cannot follow, 

but which if analyzed by a very fast computer could predict which 

toss would give a head and which a tail (Fig. I.2.1). 

Again, the probabilities are just reflections of our ignorance of the 

details, but the details are there. So we have the questions - are 

there hidden details underlying the probabilities in quantum 
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mechanics? Is there a hidden sample space and corresponding 

probability space? 

 

 

Fig. I.2.1. A sample space. Trajectories in a coin toss. 

Adapted from [7] 

 

In the de Broglie-Bohm interpretation: a particle has an initial 

position and follows a path whose velocity at each instant is given by 

a classical equation. On the basis of this assumption we conduct a 

simulation experiment by drawing random initial positions of the 

electrons in the initial wave packet ("quantum equilibrium 

hypothesis"). 

 

Fig. I.2.2 shows, after its initial starting position, 100 possible 

quantum trajectories of an electron passing through one of the two 

slits: We have not represented the paths of the electron when it is 

stopped by the first screen. Fig. I.2.3 shows a close-up of these 

trajectories just after they leave their slits. 

 

Remark I.2.2. The different trajectories explain both the impact of 

electrons on the detection screen and the interference fringes. This 

is the simplest and most natural interpretation to explain the impact 

positions: "The position of an impact is simply the position of the 

particle at the time of impact." This was the view defended by 

Einstein at the Solvay Congress of 1927. The position is the only 

measured variable of the experiment. 
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Fig. I.2.2. A sample space in Bohmian QM. 100 electron trajectories 

for the Jӧnsson experiment. Adapted from [8] 

 

 
 

Fig. I.2.3. Close-up on the 100 trajectories of the electrons just after 

the slits. Adapted from [8] 
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Fig. I.2.4. Ten silver atom trajectories within initial spin orientation 

𝜃0 = 𝜋/3 and initial position z0; arrows represent the spin orientation 

𝜃(𝑧, 𝑡) along the trajectories. Adapted from [8] 

 

Fig. I.2.4 presents, for a silver atom with the initial spinor orientation 

(𝜃0 = 𝜋/3, ᶲ0=0), a plot in the (Oyz) plane of a set of 10 trajectories 

whose initial position z0  has been randomly chosen from a Gaussian 

distribution with standard deviation σ0. The spin orientations θz, t  

are represented by arrows. 

 

Now let us consider a mixture of pure states where the initial 

orientation (θ0 ,ϕ0 ) from the spinor has been randomly chosen. These 

are the conditions of the initial Stern and Gerlach experiment. Fig. 

I.2.5 represents a simulation of 10 quantum trajectories of silver 

atoms from which the initial positions z0  are also randomly chosen. 
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Fig. I.2.5. Ten silver atom trajectories where the initial spin 

orientation  0 0,   has been randomly chosen; arrows represent the 

spin orientation 𝜃(𝑧, 𝑡) along the trajectories. Adapted from [8] 

 

Definition I.2.2. A probability space consists of three parts: 

1. A sample space (observation space) Ω,  which is the set of all 

possible single outcomes   .  

2. A set of events ,  where each event is a set containing   or more 

outcomes. 

3. The assignment of probabilities to the events; that is, a function P 

from events to probabilities. 

An outcome is the result of a single execution of the model. Since 

individual outcomes might be of little practical use, more complex 

events are used to characterize groups of outcomes. The collection 

of all such events is a -algebra . Finally, there is a need to specify 

each event's likelihood of happening. This is done using the 

probability measure function, P :  0,1.  

Remark I.2.3. Note that: 

(i) In conventional quantum mechanics we dealing with a 

probabilities without any probability space   ,,P.  

σ
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(ii) However a wave function   in quantum mechanics is a 

description of the quantum state | of a quantum system . The 

wave function is a complex-valued probability amplitude, and the 

probabilities for the possible results of measurements of an 

observable Q  Q  (represented by operator Q) made on the 

quantum system  in state | can be derived from a wave function 

 . 

(iii) From (ii) it follows that there exists an probability space 

  ,,P  and random variable 
Q

Q|
: Ω  E,

 i.e. 
X

Q|  is a 

measurable function from the set of possible outcomes Ω  to some 

set E.  

Example. We now, consider as an example, the simple case of a 

non-relativistic single particle, without spin, in one spatial dimension. 

Note that: 

(i) The state of such a particle is completely described by its 

position-space wave function, x  where x  is the position of a 

particle. This is a complex-valued function of real variable x.  For one 

spinless particle in 1D,  if the wave function is interpreted as a 

probability amplitude, the square modulus of the wave function, the 

positive real number 

 

|x|2  xx  x 2.1

 

is interpreted as the probability density that the particle is at x . 

(ii) If the particle position is measured, its location cannot be 

determined from the wave function, but is described by a probability 

distribution. The probability that its position x  will be in the interval 

a  x  b  is the integral of the density over this interval: 

 

Pa  x  b  
a

b

|x|2dx. 2.2

 

This leads to the normalization condition 
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




|x|2dx  1 2.3

 

because if the particle is measured, there is 100% probability that it 

will be somewhere. 

(iii) Assume that particle is in state |.  From a statement (ii) it 

follows that the coordinate x  of the particle wave function, x  

under measurement by a measuring device is a random variable 

x  X
x|,  X

x|Ω|  E |  which is well defined on a probability 

space 

 

 |  | ,| ,P. 2.4

 

(iv) However in conventional quantum mechanics as mentioned 

above such probability space |  | ,| ,P  is missing. 

Remark I.2.4. For a given system, the set of all possible 

normalizable wave functions (at any given time) forms an abstract 

mathematical vector space, meaning that it is possible to add 

together different wave functions, and multiply wave functions by 

complex numbers. Note that: 

(i) Technically, because of the normalization condition, wave 

functions form a projective space Hp  rather than an ordinary infinite-

dimensional vector space H. Also H is a Hilbert space, because the 

inner product of two wave functions 1  and 2  can be defined as the 

complex number 

 

1 |2   




1
x2xdx. 2.5

(ii) Hp  S  H.  

(iii) The all values of the wave function x  are components of a 

vector |. There are uncountably infinitely many of them and 

integration is used in place of summation. In Bra-ket notation, this 
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vector is written 

 

|  




dxx|x , 2.6

 

where x
 |x  x   x.  

Let us consider QM system which consists of one particle with a 

wave function x,  x  a,b,  such that supp x  a,b  and 



|x|2dx  1.  We go to construct now corresponding probability 

space |  | ,| ,P.  In one dimension, the position x  of such a 

particle can range over the values a  x  b.  Consider now the 

measurement of coordinate of such QM particle. Obviously a sample 

space for such a coordinate measurement is Ω|  a,b  a,b.  Note 

that in practice observable x  is measured to an accuracy x  

determined by the measuring device. Thus 

 

xx1x2x  x1 ,x  x2   a,b  x  x1 ,x  x2   | 

 

and therefore -algebra a,b  Ba,b  is the Borel algebra on the set 

a,b.  Let B  be the Borel algebra B  ab a,b ,  we choose the 

probability measure PB :B 0,1 of the form 

 

PBA  
A

xdx, 2.7

 

where A  B,

xdx  1  and dx  is  the Lebesgue measure. 

Definition I.2.3. We choose the probability measure P|:B
 0,1  

corresponding to a wave function x,x2
2  1,  in the following 

form: 

 

σ
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P|A  
A

|x|2dx, 2.8

 

where A  B  and dx  is the Lebesgue measure. 

Definition I.2.4. A random variable X | : Ω|  E |  is a measurable 

function from the set of possible outcomes Ω  to some set E | .  The 

technical axiomatic definition requires Ω |  to be a probability space 

and E |  to be a measurable space. Note that although X |  is usually 

a real-valued function X | : Ω|  a,b, it does not return a 

probability. The probabilities of different outcomes or sets of 

outcomes (events) in our case are already given by the probability 

measure P|  with which Ω |  is equipped above. 

Definition I.2.5. (Real-valued random variables.) In a case 

mentioned above the observation space is a set a,b. Recall, 

,B,PB  is the probability space. For real observation space, the 

function X | : Ωa,b  a,b  is a real-valued random variable, i.e. 

aba  b|a  X |  b  a,b .  

Definition I.2.6. Let |  H. We define now a signed measure 

P|A  : B    by formula 

 

P|A A  
A

xp |A xdx, 2.9

 

where p|A x  |x|A |2 .  

Remark I.2.5. We assume now that ,,P  ,B,PB   and P|

 PB , i.e. P |  is absolutely continuous with respect to P . By Radon-

Nicodym theorem there exists a random variable X | :     such 

that for any A  B : 

 

P|A  
A

X |dPB, 2.10
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Using Eq. (2.10) we define random variable X | : Ω|    by formula 

 

X | 
dP|

dPB
. 2.11

 

Definition I.2.7. The cumulative distribution function of a real-valued 

random variable X
|   is the function given by 

 

FX | x  P  B |X |   x , 2.12

 

where the right-hand side represents the probability that the random 

variable X
|   takes on a value less than or equal to x.  The 

probability that X
|   lies in the semi-closed interval a1 ,b1  a,b,  

where a1  b1 ,  is therefore P|a1  X
|  b1   FX | b1   FX |a1 .  

The CDF of any continuous random variable X |  X | can be 

expressed as the integral of its probability density function pX|
x  as 

follows: 

 

FX | x  


x

pX |
tdt  



x

|t|2dt. 2.13

 

From Eq. (2.9) - Eq. (2.10) we obtain 

 

EX |  
a,b

X |dP  




xpX |
xdx. 2.14

 

Using canonical QM-abbreviation 

 

|  



|x x|dx, 2.15
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where x|  x, |  S  H,  from Eq. (2.14) - Eq. (2.15) we 

obtain 

 

 |

x |  



X |dP  




xpX | xdx. 2.16

 

where 

x |  x|.  

Remark I.2.6. We assume now that: 

 

(i) for any x  H : (a) 



|X | |dP  ,
 (b) 




X |
2 dP  ,

 

 

(ii) for any x  H : X |  1,2dP  1dP 2dP.  

 

Definition I.2.8. We will write the Eq. (1.16) in the following form 

 

 |

x |  



X
x |dP  





xpX
x | xdx, 2.17

 

where 

x |  x|.  This form remind that continuous random variable 

X |

x  X |


x corresponds to the coordinate of a particle with a state 

vector |.  

Remark I.2.7. We assume that particle A  is initially in the state 

|A   H.  We assume now that: if on performing a measurement of x  

on particle A with an accuracy x,  and the result is obtained in the 

range xA  x,xA  x  at instant t,  then unconditional measure PB  

immediately after the measurement at instant t  collapses to 

conditional measure P 
A

X||A xA,x,  where X  B : 

 

P 
A

X |A xA,x 
PB X  X 

A

xA,x

PB X 
A

xA,x
, 2.18
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and where 
X 

A

xA,x  |xA  x  X |A   xA  x.
 

Remark I.2.8. (i) From Eq. (2.18) it follows that unconditional 

probability density function pAx  |x|A |2  immediately after the 

measurement at instant t  collapses to the following conditional 

probability density function 

 

pA x|X 
A

x A,x 

pAx

PB X 
A

xA,x
 x  X 

A

x A,x

0  x  X 
A

xA,x

2.19

 

(ii) From Eq. (2.18) it follows that immediately after the 

measurement on particle B  at instant t  a wave function 

Ax  x|A   collapses to the following wave function 

A
coll x 

Ax

PB X 
A

xA,x
 x  X 

A

xA,x

0  x  X 
A

xA,x.

2.20

 

Remark I.2.9. Note that in contrast with the usual ‘Copenhagen’ 

interpretation in quantum mechanical formalism based on the 

probability representation of quantum states, coordinate of a particle 

with a state vector | that continuous random variable X |

x  X |


x  

and such a random variable in contrast with a state vector | does 

not collapses under the measurement. However unconditional 

measure PB  immediately after the measurement at instant t  

collapses to conditional measure PBX||A xA,x  (is given by 

Eq.(2.18)) on whole probability space   ,B,PB .  

Remark I.2.10. Thus immediately after measurement on any 

particle A probability space   ,B,PB   collapses to probability 

space  
A
 ,B,PB X |A xA,x  
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,B,PB 
collaps
 ,B,P 

A
X |A xA,x . 2.21

 

 

I.3. EPR Paradox resolution by using Postulate of EPR- 

Nonlocality 

 

In the 20s and 30s it became evident that some properties in 

quantum mechanics can be assigned only to the quantum 

mechanical system, but not necessarily to its constituents. This led 

Einstein, Podolsky and Rosen (EPR) to their remarkable 1935 paper 

where they concluded that quantum mechanics is not a complete 

theory of nature (EPR paradox).  

The conclusion was derived from some common sense 

requirements that EPR postulated: 

 

1. Completeness: Each element of realism should have its 

correspondence in a theory. 

2. Realism: If a property can be assigned to a physical system with 

certainty then there exists an element of realism that corresponds to 

this property. 

3. Locality: Measurements of different elements of realism in 

spatially separated systems can not influence each other. 

In original paper [13], Einstein, Podolsky and Rosen describe two 

particles A  and B with perfectly correlated position 

 

xB  xA  x0 3.1

 

and perfectly anti-correlated momentum 

 

pB  pA, 3.2

 

see Fig. I.3.1. 
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Fig. I.3.1. Particles A and B with correlated position and anti-

correlated momentum 

 

EPR originally argued as follows. Consider two spatially separated 

subsystems at A  and B.  EPR considered two observables x  (the 

position) and 

p  (momentum) for subsystem A,  where x  and 


p  do not 

commute, so that C  0  

 

x,

p  2C. 3.3

 

Suppose now that one may predict with certainty the result of 

measurement x  based on the result of a measurement performed at 

B. Also, for a different choice of measurement at B, suppose one 

may predict the result of measurement 

p  at A . Such correlated 

systems are predicted by quantum theory. Assuming local realism 

EPR deduce the existence of an element of reality, 
x , for the 

physical quantity x  and also an element of reality, 

p , for 


p . Local 

realism implies the existence of two hidden variables x  and 

p  that 

simultaneously predetermine, with no uncertainty, the values for the 

result of an 
x  or 


p  measurement on subsystem A , should it be 

performed. This hidden variable state for the subsystem A  alone is 

not describable within quantum mechanics, since simultaneous 

eigenstates of x  and 

p  do not exist. Hence, EPR argued, if quantum 

mechanics is to be compatible with local realism, we must regard 

quantum mechanics to be incomplete. In the idealized entangled 

state proposed by EPR, 

 

|EPR  



|x,xdx  




|p,pdp 3.4
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the positions and momenta of the two particles are perfectly 

correlated. Note that: this state is non-normalizable and cannot be 

realized in the laboratory. When coordinates x A  and pA  are 

measured in independent realizations of the same state, the 

correlations allow for an exact prediction of x B  and pB . EPR assumed 

that such exact predictions necessitate an element of reality which 

predetermines the outcome of the measurement. Quantum 

mechanics however prohibits the exact knowledge of two 

noncommuting variables like x B  and pB , since their measurement 

uncertainties are subject to the Heisenberg relation 

 

xBpB  /2. 3.5

 

Remark I.3.1. A most critical component of the EPR argument was 

the principle of EPR-locality. Indeed, one may regard the EPR 

paradox as a statement of the mutual incompatibility of EPR-locality, 

entanglement, and completeness. 

We accept now the following postulate: 

 

The postulate of nonlocality for continuous variables. 

 

The Heisenberg uncertainty relations 

 

xApA  1 3.6

 

cannot be violated in any cases: 

(i) according to quantum mechanics, the Heisenberg uncertainty 

relations (1.3.4) cannot be violated if the coordinate x A  and 

momentum pA  of the particle A are measured directly by 

measurements performed on the particle A,  

(ii) the Heisenberg uncertainty relations (3.8) cannot be violated 

even if the coordinate xA  and momentum pA  of the particle A are 

measured indirectly, i.e. by using measurement on particle B , as 
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required in EPR gedanken experiment, 

(iii) in any cases true coordinate x A  and momentum pA  of the 

particle A cannot be predicted simultaneously with a sufficiently 

small uncertainty xA  and pA  such that the Reid's inequality [14]: 

 

xApA  1 3.7

 

based on local realism cannot be satisfied, i.e., always 

 

xApA  1. 3.8

 

Remark I.3.2. Obviously under postulate of nonlocality EPR 

paradox disappears. However postulate of nonlocality is supported 

by quantum mechanical formalism based on the probability 

representation of quantum states. 

Using probability representation Eq. (2.11) of quantum states |A   

and |B  from Eq. (3.4) we obtain 

 

X |B   X |A   x0 ,a.s. 3.9

 

We assume that particle A  is initially in the state |A   H.  We 

assume now that a measurement of x  performing on particle B  with 

an accuracy x,  and the result is obtained in the range 

xB  x,xB  x  at instant t.  Then from Eq.(3.9) we obtain 

 

|xB  x  X |B   xB  x 

|xB  x 0   x  X |B   x 0  xB  x 0   x 

|xA  x  X |A   xA  x.

3.10

 

We let now for short 
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X B
xB ,x  |xB  x  X |B   xB  x,

X 
A

xA,x  |xA  x  X |A   xA  x.
3.11

 

Then from Eq. (3.10) - Eq. (3.11) we obtain 

 

X B
xB ,x  X 

A

xA,x. 3.12

 

Since event X B

xB ,x   was occurred by performing a 

measurement on particle B,  then unconditional measure PB  

immediately after measurement at instant t  collapses to conditional 

measure P B
X||B xB ,x,  where X  B  and therefore from 

Eq.(2.18) we obtain 

 

PX B

X 
A

x A,x X B

x B ,x 
PB X B

x B ,x  X 
A

x A,x

PB X B

x B ,x


PB X B

x B ,x  X 
A

x A,x

PB X B

x B ,x


PB X B

xB ,x

PB X B

xB ,x
 1.

3.13

 

Therefore since event X B

xB ,x   was occurred by performing 

a measurement on particle B  immediately after measurement event 

X 
A

xA,x
 occurs with a probability = 1. 

From Eq. (3.13) it follows that unconditional probability density 

function pAx  |x|A |2  immediately after measurement at instant t  

collapses to the following conditional probability density function 

 

pA x|X 
A

x A,x 

pAx

PB X 
A

xA,x
 x  X 

A

x A,x

0  x  X 
A

xA,x

3.14
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a wave function Ax  x|A   collapses to the following wave 

function 

 

A
coll x 

Ax

PB X 
A

xA,x
 x  X 

A

xA,x

0  x  X 
A

xA,x.

3.15

 

From Theorem C.1, (see Appendix C) it follows that a wave function 

Ap  p|A   collapses in accordance with Heisenberg uncertainty 

relations (3.6). 

 

 

I.4. EPR-B Paradox resolution and  

Postulate of EPR-B-Nonlocality 

 

Entangled states are very interesting states because they exhibit 

correlations that have no classical analog. They are of particular 

importance in quantum computation and quantum information. As an 

example let us take the entangled bi-partite pure state: 

 

1  1

2
|01

AB
 |10

AB
  HA  HB . 4.1

 

Obviously this state can not be decomposed as a simple product 

state |qA |pB
,q,p  0,1.  

Remark I.4.1. Note that 1  mentioned above is one of the so-called 

four Bell states: 

 

1  1

2
|01

AB
 |10

AB
,2  1

2
|01

AB
 |10

AB
,

3  1

2
|00

AB
 |11

AB
,4  1

2
|00

AB
 |11

AB
.

4.2
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They form a convenient basis of bi-partite quantum states of two-

dimensional Hilbert spaces. The state is maximally entangled, i.e. 

when we trace over the state B then the reduced density operator A  

of the system will be a multiple of the identity operator. This means 

that if we measure in system A  in any basis the result will be 

completely random (0  or 1  with equal probability 1/2). 

Remark I.4.2. However, there is a perfect correlation: Whenever we 

measure with certainty 1  in system A  then we will measure 0  in 

system B with certainty and vice versa. 

Remark I.4.3. However, despite the randomness, the choice of 

basis for measurement in system A  clearly has a nonlocal effect on 

the state of the system B: it gives it a definite orientation in the basis 

|0B
, |1B

 , which it did not have before the measurement. 

Remark I.4.4. Obviously the process described above is nonlocal: 

the state changes instantly even though the systems A  and B could 

be space-like separated. We are accustomed to saying that this sort 

of instantaneous action at a distance is forbidden by canonical 

relativity. 

Remark I.4.5. In order to avoid the contradiction which arises from 

instantaneous action at a distance mentioned above we introduce 

an extension of the canonical relativity by using measure algebra of 

physical events in Minkowski space-time, see Chapter III.2. 

 

Definition I.4.1. A measure algebra   B,P  with a probability 

measure P,  is a Boolean algebra B  with a countably additive 

probability measure. 

 

Definition I.4.2. (i) A measure algebra of physical events 

ph  B,P  with a probability measure P,  is a Boolean algebra of 

physical events B  with an countably additive probability measure. 

(ii) A Boolean algebra of physical events can be formally defined as 

a set B  of elements a,b, . . .  with the following properties: 

1. B  has two binary operations,   (logical AND, or "wedge") and   

(logical OR, or "vee"), which satisfy: 
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the idempotent laws: (1) a  a  a  a  a,  

the commutative laws: (2) a  b  b  a,  (3) a  b  b  a,  

and the associative laws: (4) a  b  c  a  b  c,  

(5) a  b  c  a  b  c.  

2. The operations satisfy the absorption law: 

(6) a  a  b  a  a  b  a.  

3. The operations are mutually distributive 

(7) a  b  c  a  b  a  c,  (8) a  b  c  a  b  a  c.  

4. B  contains universal bounds 0  and 1  which satisfy 

(9) 0  a  0,  (10) 0  a  a,  (11) 1  a  a,  (12) 1  a  1.  

5. B  has a unary operation a  (or a  ) of complementation (logical 

negation), which obeys the laws: 

(13) a  a  0,  (14) a  a  1 . 

All properties of negation including the laws below follow from the 

above two laws alone. 

6. Double negation law: a  a . 

7. De Morgan's laws: (i) a  b  a  b,  (ii) a  b  a  b.  

8. Operations composed from the basic operations include the 

following important examples: 

The first operation, a  b (logical material implication): 

(i) a  b  a  b.  

The second operation, a  b,  is called exclusive. It excludes the 

possibility of both a and b 

(ii) a b  a  b  a  b.  

The third operation, the complement of exclusive or, is equivalence 

or Boolean equality: 

(iii) a  b  a  b . 

9. B  has a unary predicate Occa, which meant that event a has 

occurred, and which obeys the laws: 

(i) Occa  b  Occa Occb,  (ii) Occa  b  Occa Occb,  

(iii) Occa  Occa.  
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Definition I.4.3. (i) Let B  be a Boolean algebra of physical events. 

A Boolean algebra BM4  of physical events in Minkowski spacetime 

M4  1,3  that is cartesian product BM4
 B M4 .  

(ii) Let BM4  be a Boolean algebra of physical events in Minkowski 

spacetime. A measure algebra of physical events M4

ph  BM4
,P  in 

Minkowski spacetime that is a Boolean algebra BM4  with a 

probability measure P  such that 

 

A A  M4

ph B B  M4

ph A  B  PA  PB,

APA  PAOc .
4.3

 

(iii) Let BM4  be Boolean algebra of the all physical events in 

Minkowski spacetime and let M4

ph

 be an measure algebra 

M4

ph  BM4
,P  with a probability measure P.  We denote such 

physical events by Ax,Bx, . . .  etc., where x  t,x1 ,x2 ,x3   M4  or 

A,B, . . .  etc. 

(iv) We will write for a short AOcx,BOcx, . . .  etc., instead 

OccAx,OccBx, . . .  etc. 

Remark I.4.6. Note that Boolean algebra BM4  of physical events in 

Minkowski spacetime obviously contains a pairs Ax1 ,Bx2   of a 

Boolean equivalent events Ax1   and Bx2   such that 

 

x1x2Ax1   Bx2 , 4.4  

i.e., Boolean equality Ax1   Bx2   always holds even the events 

Ax1   and Bx2   are space-like separated. 

 

Definition I.4.4. A probability measure P  on a measure space ,  

gives a probability measure algebra   ,,P   on the Boolean 

algebra of measurable sets modulo null sets, i.e., sets P  measure 

zero. 

Remark I.4.7. We assume now that a measure algebra 
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M4

ph  BM4
,P  admit a representation  : M4

ph  ,,P   of the 

measure algebra M4

ph  BM4
,P  in a probability measure algebra 

  ,,P ,  such that (ii) PX  P1X  for any X  .  
 

Definition I.4.5. Given two events Ax1   and Bx2   from the measure 

algebra M4

ph  BM4
,P  the conditional probability of Ax1   given 

Bx2   is defined as the quotient of the probability of the joint of 

events Ax1   and Bx2  , and the probability of B : 

PAx1 |Bx2  
PAx1   Bx2 

PBx2 
4.5

 

where PBx2   0.  

Remark I.4.8. Assume that: (i) BOcx2 ,  then since event Bx2   is 

occurred, unconditional probability measure P  on algebra BM4  

collapses to the conditional probability measure 

 

PBOc Ax1   PAx1 |BOcx2   PAx1 |Bx2  
PAx1   Bx2 

PBx2 
4.6

 

and measure algebra M4

ph  BM4
,P  collapses to the measure 

algebra M4

ph  BM4
,PBOc  . 

(ii) BOcx2   and Ax1   Bx2 ,  then 

 

PBOc Ax1   PAx1 |BOcx2  
PAx1   Bx2 

PBx2 


PBx2 
PBx2 

 1, 4.7
 

i.e., PBOc Ax1   1  and therefore, since event Bx2   is occurred in 

point x2 , the event Ax1   is occurred with probability 1 in point x2  even 

points x1  and x2  are space-like separated. 

Remind that Bohm [15] considered two spatially-separated spin-1/2  

particles at A  and B  produced in an entangled singlet state (often 

referred to as the EPR-Bohm state or the Bell-state): 
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|  1

2

1
2 A

 1
2 B

  1
2 A

1
2 B

4.8
 

Here | 1

2
A  are eigenstates of the spin operator 


J z

A

, and we use 

J z

A

, 

J x

A

, 

J y

A

 to define the spin-components measured at location A . The 

spin-eigenstates and measurements at B  are defined similarly. By 

considering different quantization axes, one obtains different but 

equivalent expansions of |  in Eq. (4.4), just as EPR suggested. 

 

 
 

Fig. I.4.1. The Bohm gedanken EPR experiment. Two spin-1/2 

particles prepared in a singlet state from the source into spatially 

separated regions A and B, and give anti-correlated outcomes for 𝐽𝜃
𝐴 

and 𝐽𝐵, where θ is x, y or z 

 

Bohm's paradox is based on the existence, for Eq. (4.1), of a 

maximum anti-correlation between not only 

J z

A

 and 

J z

B

, but 

J y

A

 and 

J y

B

, and also 

J x

A

 and 

J x

B

. An assumption of local realism would lead 

to the conclusion that the three spin components of particle A  were 

simultaneously predetermined, with absolute definiteness. Since no 

such quantum description exists, this is the situation of an EPR 

paradox. 

We accept now the following postulate: 

 

The postulate of nonlocality for observables with discrete 

values. 

The Heisenberg spin uncertainty relations 
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Jx
AJy

A  Jz
A  /2,Jx

AJz
A  Jy

A  /2,Jz
AJy

A  Jx
A  /2 4.9

 
 

cannot be violated in any cases: 

(i) if the three spin components of the particle A are measured 

directly by measurements performed on the particle A, 

(ii) and even if some spin components of the particle A are 

measured indirectly as required in Bohm gedanken EPR 

experiment. 

Remark I.4.11. Obviously under postulate of nonlocality EPR 

paradox disappears. 

However postulate of nonlocality supported by quantum mechanical 

formalism based on the probability representation of quantum 

states, see Chapter V.3. 
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Chapter I 

 

THE POSTULATE OF EPR-B NONLOCALITY 

 

I.1. The EPR paradox 

 

In 1935, Einstein, Podolsky and Rosen (EPR) originated the famous 

EPR paradox [6]. This argument concerns two spatially separated 

particles which have both perfectly correlated positions and 

momenta, as is predicted possible by quantum mechanics. The EPR 

paper spurred investigations into the nonlocality of quantum 

mechanics, leading to a direct challenge of the philosophies taken 

for granted by most physicists. The EPR conclusion was based on 

the assumption of local realism, and thus the EPR argument 

pinpoints a contradiction between local realism and the 

completeness of quantum mechanics. 

 

 

I.2. Einstein's 1927 gedanken experiment 

 

Einstein never accepted orthodox quantum mechanics because he 

did not believe that its nonlocal collapse of the wave function could 

be real. When he first made this argument in 1927 [7], he 

considered just a single particle. The particle's wave function was 

diffracted through a tiny hole so that it `dispersed' over a large 

hemispherical area before encountering a screen of that shape 

covered in photographic film. Since the film only ever registers the 

particle at one point on the screen, orthodox quantum mechanics 

must postulate a `peculiar mechanism of action at a distance, which 

prevents the wave... from producing an action in two places on the 

screen’. That is, according to the theory, the detection at one point 

must instantaneously collapse the wave function to nothing at all 

other points.  
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Remark 1.2.1. It was only in 2010, nearly a century after Einstein's 

original proposal, that a scheme to rigorously test Einstein's `spooky 

action at a distance’ [7], [8] using a single particle (a photon), as in 

his original conception, was conceived [9]. In this scheme, Einstein's 

1927 gedanken experiment is simplified so that the single photon is 

split into just two wave packets, one sent to a laboratory supervised 

by Alice and the other to a distant laboratory supervised by Bob. 

However, there is a key difference, which enables demonstration of 

the nonlocal collapse experimentally: rather than simply detecting 

the presence or absence of the photon, homodyne detection is 

used. This gives Alice the power to make different measurements, 

and enables Bob to test (using tomography) whether Alice's 

measurement choice affects the way his conditioned state collapses, 

without having to trust anything outside his own laboratory. 

 

 

 

Fig. 1.2.1. Simplified version of Einstein’s original gedanken 

experiment. Adapted from [10] 

 

 

A single photon is incident on a beam splitter of reflectivity R and 

then subjected to homodyne measurements at two spatially 

separated locations.  
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Alice is trying to convince Bob that she can steer his portion of the 

single photon to different types of local quantum states by 

performing various measurements on her side. She does this by 

using different values of her LO phase, and extracting only the sign 

s  ,  of the quadrature she measures. Meanwhile, Bob scans 

his LO and performs full quantum-state tomography to reconstruct 

his local quantum state. He reconstructs unconditional and 

conditional local quantum states to test if his portion of the single 

photon has collapsed to different states according to Alice's LO 

setting θ,  and result s  see Fig .  1.2.1. 

 

The key role of measurement choice by Alice in demonstrating 

`spooky action at a distance' was introduced in the famous Einstein-

Podolsky-Rosen (EPR) paper [6] of 1935. In its most general form, 

this phenomenon has been called EPR-steering, to acknowledge the 

contribution and terminology of Schrödinger [11], who talked of Alice 

`steering' the state of Bob's quantum system. 

 From a quantum information perspective, EPR-steering is 

equivalent to the task of entanglement verification when Bob (and 

his detectors) can be trusted but Alice (or her detectors) cannot. 

This is strictly harder than verifying entanglement with both parties 

trusted [12], but strictly easier than violating a Bell inequality [13], 

where neither party is trusted [12]. 

 

Remark 1.2.2. A recent experimental test of entanglement for a 

single photon via an entanglement witness has no efficiency 

loophole [14], however, it demonstrates a weaker form on 

nonlocality than EPR-steering. In [10], it was demonstrated 

experimentally that there exists Einstein's elusive `spooky action at 

a distance' for a single particle without opening the efficiency 

loophole without claim to have closed the separation loophole. That 

is the one-sided device-independent verification of spatial-mode 

entanglement for a single photon. 

 

 

θ
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I.3. The continuous variable EPR paradox. EPR-Reid's 

criteria 

 

We remind that EPR treated the case of a non-factorizable pure 

state | which describes the results for measurements performed 

on two spatially separated systems at A  and B (Fig. 1.3.1). Non-

factorizable means entangled, that is, we cannot express | as a 

simple product |  |A  |B , where |A  and |B  are quantum 

states for the results of measurements at A  and B, respectively. 

 
 

Fig.1.3.1. The original EPR gedanken experiment. Two particles  

move from the source into spatially separated regions A and B, and 

yet continue to have maximally correlated positions: xA+x0=xB and 

anti-correlated momenta: pA=-pB. Adapted from [15] 

 

In the first part of their paper, EPR point out in a general way the 

problematic aspects of such entangled states. The key issue is that 

one can expand | in terms of more than one basis, that 

corresponds to different experimental settings, which we 

parametrize by  . Let us consider the state  

 

|   dx|x ,A
 |ux ,B

, 1.3.1
 

where the x  eigenvalue could be continuous or discrete. The 

parameter setting   at the detector B is used to define a particular 

orthogonal measurement basis |ux ,B . On measurement at B, that 
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projects out a wave-function |x ,A  at A , the process called 

reduction of the wave packet. 

 

Remark 1.3.1. The locality assumption postulates no action-at-a-

distance, so that measurements at a location B cannot immediately 

disturb the system at a spatially separated A  location. 

 

Remark 1.3.2. The problematic issue is that different choices of 

measurements   at B will cause reduction of the wave packet at A  in 

more than one possible way. EPR states that, as a consequence of 

two different measurements at B, the second system may be left in 

states with two different wave functions. Yet, no real change can 

take place in the second system in consequence of anything that 

may be done to the first system. 

 

The problem was established by EPR by a specific example, shown 

in Fig.1.3.1. EPR considered two spatially separated subsystems, at 

A  and B, each with two observables x  and p  where x  and p  are non-

commuting quantum operators, with commutator 

 

x,p   xp  px  2C  0. 1.3.2
 

 

The results of the measurements x  and p  are denoted x  and p  

respectively, and this convention we follow throughout the paper. 

We note that EPR assumed a continuous variable spectrum and 

considered wave function   defined in a position representation by 

 

x,xB    eip/xxBx0 dp , 1.3.3
 

 

where x 0  is a constant implying space-like separation. Here the pairs 

x  and p  refer to the results for position and momentum 

measurements at A , while x B  and pB  denote the position and 
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momentum measurements at B. We leave off the superscript for A  

system, to emphasize the inherent asymmetry that exists in the EPR 

argument, where one system A  is steered by the B other. 

 

Remark 1.3.3. According to canonical quantum mechanics, one can 

predict with certainty that a measurement x  will give result xB  x0 , if 

a measurement x B , with result x B , was already performed at B. One 

may also predict with certainty the result of p  measurement, for a 

different choice of measurement at B. If the momentum at B is 

measured to be p , then the result for p  is p . These predictions are 

made without disturbing the second system at A , based on the 

assumption, implicit in the original EPR paper, of locality. 

 

Remark 1.3.4. The locality assumption can be strengthened if the 

measurement events at A  and B are causally separated (such that 

no signal can travel from one event to the other, unless faster than 

the speed of light). 

 

Remark 1.3.5. The remainder of the EPR argument may be 

summarized as follows. Assuming local realism, one deduces that 

both the measurement outcomes, for x  and p  at A , are 

predetermined. The perfect correlation of x  with xB  x0  implies the 

existence of an element of reality for the x  measurement. Similarly, 

the correlation of p  with pB  implies an element of reality for p . 

Although not mentioned by EPR, it will prove useful to 

mathematically represent the elements of reality for x  and p  by the 

respective variables x
A  and p

A
, whose possible values are the 

predicted results of the measurement. 

 

Remark 1.3.6. To continue the argument, local realism implies the 

existence of two elements of reality, x
A  and p

A
, that simultaneously 

predetermine, with absolute definiteness, the results for 

measurement x  or p  at A . These elements of reality for the localized 



49 

 

subsystem A  are not themselves consistent with quantum 

mechanics. Simultaneous determinacy for both the position and 

momentum is not possible for any quantum state. Hence, assuming 

the validity of local realism, one concludes quantum mechanics to 

be incomplete or even inconsistent! 

 

Remark 1.3.7. We claim that any assumption of local realism is 

completely wrong. 

Such a claim meant as minimum the weak postulate of nonlocality. 

 

 

I.3.1. The weak postulate of nonlocality for continuous 

variables 

 

The Heisenberg uncertainty relations 

 

xApA  1 1.3.4
 

 

cannot be violated in any cases: 

(i) of course, according to quantum mechanics, the Heisenberg 

uncertainty relations (1.3.4) cannot be violated if the coordinate x A  

and momentum pA  of the particle A are measured directly by 

measurements performed on the particle A,   

(ii) the Heisenberg uncertainty relations (1.3.4) cannot be violated 

even if the coordinate xA  and momentum pA  of the particle A are 

measured indirectly, i.e. by using measurement on particle B , as 

required in EPR gedanken experiment, 

(iii) in any cases true coordinate x A  and momentum pA  of the 

particle A cannot be predicted simultaneously with a sufficiently 

small uncertainty xA  and pA  such that the Reid's inequality [16]: 

 

xApA  1 1.3.5
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based on local realism would be satisfied, i.e., always 

 

xApA  1. 1.3.6
 

 

We claim strictly stronger assumptions of nonlocality than mentioned 

above. 

 

 

I.3.2. The strong postulate of nonlocality for continuous 

variables 

 

Let | t
x 

A  and | t
x 

B  be a state vector in x -representation at instant t  

of the particle A and particle B correspondingly. 

Let  t
p 

A  and  t
p 

B  be a state vector in p -representation at instant t  

of the particle A and particle B correspondingly. 

Let t
Ax  x |t

x 
A

,t
Bx  x |t

x 
B  be a wave functions in x -

representation of the particle A and particle B correspondingly. 

Let t
Ap  p|t

p 
A

,t
Bp  p|t

p 
B  be a wave functions in p -

representation of the particle A and particle B correspondingly. 

Let t
A/BxA,xB   be corresponding two-particle wave function in x -

representation and let t
A/BpA,pB   be corresponding two-particle 

wave function in p -representation. 

 

We claim that: 

 

(i) whenever a measurement of the coordinate x  of a particle B is 

performed at instant t  with result xB  xB  ,xB  ,  1,  then: 

(a) according to quantum mechanics a state vector | t
x 

B  collapses 

at instant t  to the state vector 

 


t,,,xB
x

B
~

LxB

B
,|t

x 
B

1.3.7
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given by law (1.2.20), where 

LxB

B
, is a norm-reducing, positive, 

self-adjoint, linear operator in the 2  -particle non projective Hilbert 

space H, representing the localization of particle B  around the point 

x B ,  (see subsection II.2.); 

(b) according to postulate of nonlocality a state vector | t
x 

A  

immediately collapses at instant t  to the state vector 

 


t,,,xA
x

A
~

LxBx0

A
,| t

x 
A

1.3.8
 

 

given by law (1.2.20) and this is true independent of the distance in 

Minkowski space-time M4  1,3  that separates the particles. Thus 

 

| t
x 

B

col lapse
 

t,,,xB
x

B
 |t

x 
A

col lapse
 

t,,,xBx0

x

A
1.3.9

 
 

(ii) under conditions given by Eq. (1.3.7) - Eq. (1.3.9) two-particle 

wave function t
A/BxA,xB   collapses at instant t  by law 

 

t
A/BxA,xB 

col lapse



LxBx0

A 
LxB

B
,t

A/BxA,xB  1.3.10  

(iii) whenever a measurement of the momentum pB  of a particle B is 

performed at instant t  with result pB  pB  ,pB  ,  1,  then: 

(a) according to quantum mechanics a state vector  t
p 

B  collapses 

at instant t  to the state vector 

 


t,,,pB

p

B
~

LpB

B
, t

p 
B

, 1.3.11
 

 

where 

LpB

B
, is a norm-reducing, positive, self-adjoint, linear 

operator in the 2  -particle non projective Hilbert space H,  

representing the localization of momentum of the particle B  
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around the value pB .  The localization operators 

LpB

B
, have been 

chosen to have the following form: 

 


LpB

B
,  1



3/4

exp  1
2

p  pB 2 1.3.12
 

where   0,1 and lim0   .  

(b) according to postulate of nonlocality a state vector  t
p 

A  

immediately collapses at instant t  to the state vector 

 


t,,,xA

p

A
~

LpB

A
, t

p 
A

1.3.13
 

 

and this is true independent of the distance in Minkowski space-time 

M4  1,3  that separates the particles. Thus 

 

 t
p 

B

col lapse
 

t,,,pB

p

B
  t

p 
A

col lapse
 

t,,,pB

p

A
1.3.14

 
 

(iv) under conditions given by Eq. (1.3.11) - Eq. (1.3.13) two-particle 

wave function t
A/BpA,pB   collapses at instant t  by the law 

 

t
A/BpA,pB 

col lapse



LpB

A 
LpB

B
, t

A/BpA,pB . 1.3.15  

 

Remark 1.3.8. Let p t
A  and p t

B  be the momentum at instant t  of the 

particle A and particle B correspondingly. Note that whenever a 

measurement of the coordinate x  of a particle B is performed at 

instant t  with the accuracy xB  1  then: 

(i) immediately after this measurement the momentum p t
B  at instant 

t  changed according to quantum mechanics by the Heisenberg 

uncertainty relations (1.3.4); 

(ii) immediately after this measurement the momentum p t
A  at instant 
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t  changed according to postulate of nonlocality by the Heisenberg 

uncertainty relations (1.3.4). 

 

Remark 1.3.9. Let x t
A  and x t

B  be the coordinate at instant t  of the 

particle A and particle B correspondingly. Note that whenever a 

measurement of the momentum p  of a particle B is performed at 

instant t  with the accuracy pB  1  then: 

(i) immediately after this measurement the coordinate x t
B  at instant t  

changed according to quantum mechanics by the Heisenberg 

uncertainty relations (1.3.4); 

(ii) immediately after this measurement the momentum  at instant 

 changed according to postulate of nonlocality by the Heisenberg 

uncertainty relations (1.3.4). 

 

Remark 1.3.10. Schrödinger [11] pointed out that the EPR two-

particle wave function in Eq. (1.3.3) was verschränkten - which he 

later translated as entangled - i.e., not of the separable form AB . 

Schrödinger considered as a possible resolution of the paradox that 

this entanglement degrades as the particles separate spatially, so 

that EPR correlations would not be physically realizable.  

 

Definition 1.3.1.Quantum inseparability (entanglement) for a 

general mixed quantum state is defined as the failure of 

 

   dP
A  

B
, 1.3.16

 
 

where  dP  1  and 
  is the density operator. Here   is a discrete 

or continuous label for component states, and 


A
 and 


B

 correspond 

to density operators that are restricted to the Hilbert spaces A and B 

respectively. 

x t
A

t
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Remark 1.3.11. The definition of inseparability extends beyond that 

of the EPR situation, in that one considers a whole spectrum of 

measurement choices, parametrized by   for those performed on A  

system, and by   for those performed on B. We use canonical 

notation x 
A  and x 

B
 to describe all measurements at A  and B. 

Denoting the eigenstates of x 
A  by |x 

A , we define 

PQx
A |,  x

A |


A
|x

A  and PQx
B |,  x

B |


B
|x

B , which are the 

localized probabilities for observing results x 
A  and x 

B
 respectively. 

The separability condition (1.3.9) then implies that joint probabilities 

Px 
A,x

B  are given as [16]: 

 

Px 
A,x

B    dPPQx 
A |PQx

B | . 1.3.17
 

 

Remark 1.3.12. We note the canonical restriction 

 

2xA |2pA |  1 1.3.18
 

 

where 2xA |  and 2pA |  are the variances of PQx 
A|,  for the 

choices   corresponding to position x  and p  momentum, 

respectively. Thus, 

 

2xA |2pA |  1 1.3.19
 

 

is an EPR criterion, meaning that this would imply an EPR 

"paradox". 

Remark 1.3.13. Note that the original EPR state of Eq. (1.3.3) is not 

separable. Suppose that, based on a result x B  for the measurement 

at B , an estimate x estxB   is made of the result x  at A. We may define 

the average error  infx  of this inference as the root mean square 

(RMS) of the deviation of the estimate from the actual value, so that 

[16-18]: 
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inf
2 x   dxdxBPtx,xB x  x estxB 2

. 1.3.20
 

An inference variance  inf
2 p  is defined similarly, i.e. 

 

inf
2 p   dpdpBPtp,pB p  pestpB 2

. 1.3.21
 

 

Remark 1.3.14. Let t
A/BxA,xB   be corresponding two-particle wave 

function in x  -representation and let t
A/BpA,pB   be corresponding 

two-particle wave function in p  -representation. Note that: 

(i) Ptx,xB   is the joint probability of obtaining an outcome x  at A and 

x B  at B  at t  instant is of the form 

 

Ptx,xB   t
A/BxA,xB 

2
, 1.3.22

 
 

(ii) Ptp,pB   is the joint probability of obtaining an outcome p  at A and 

pB  at B  at t  instant is of the form 

 

Ptp,pB   t
A/BpA,pB 

2
. 1.3.23

 
 

The best estimate, which minimizes  infx , is given by choosing x est  

for each x B  to be the mean x|xB  of the conditional distribution 

Ptx|xB  . This is seen upon noting that for each x B  result, we can 

define the RMS error in each estimate as 

 

inf
2 t,x|xB    dxP tx|xB x  x estxB 2

. 1.3.24
 

 

The average error in each inference is minimized for x est  x|xB , 

when each inf
2 t,x|xB   becomes the variance 2t,x|xB  of Ptx|xB  . 

We thus define the minimum inference error  infx  for position, 
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averaged over all possible values of x B , as 

 

VA|B

x
 min inf

2 x   dxBPtxB 2t,x|xB  , 1.3.25
 

 

where PxB   is the probability density for a result x B  upon 

measurement of xB .  This minimized inference variance is the 

average of the individual variances for each outcome at B . Similarly, 

we can define a minimum inference variance VA|B

p

 for momentum, i.e. 

 

VA|B

p
 min inf

2 p   dpBP tpB 2t,p|pB  . 1.3.26
 

 

Remark 1.3.15. Let t
A/BxA,xB   be corresponding two-particle wave 

function in x  -representation and let t
A/BpA,pB   be corresponding 

two-particle wave function in p  -representation. Note that: 

(i) according to local realism the conditional distributions densities 

Plocx|xB   and Plocp|pB   vary given by formulae 

 

Plocx|xB  ~

LxB

B
,t

A/Bx,xB  1.3.27

and 

Plocp|pB  ~

LpB

B
, t

A/BpA,pB . 1.3.28
 

 

(ii) distribution densities Ploct,xB   and Ploct,pB   are given by 

formulae 

 

Ploct,xB   dxP loct,x|xB  1.3.29

and 

P loct,pB   dpP loct,p|pB . 1.3.30
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Remark 1.3.16. Let t
A/BxA,xB   be corresponding two-particle wave 

function in x -representation and let t
A/BpA,pB   be corresponding 

two-particle wave function in p -representation. Note that: 

(i) according to postulates of nonlocality the conditional distributions 

densities Pn .loct,x|xB   and Pn .loct,p|pB   are given by formulae 

 

Pn .loct,x|xB  

LxBx0

A 
LxB

B
,t

A/Bx,xB  1.3.31

and 

Pn .loct,p|pB  ~

LpB

A 
LpB

B
,t

A/Bp,pB , 1.3.32
 

see Eq. (1.3.10) and Eq. (1.3.15) respectively. 

(ii) distributions Pn .loct,xB   and Pn .loct,pB   are given by formulae 

 

Pn .loct,xB   dxPn .loct,x|xB  1.3.33

and 

Pn .loct,p|B   dpPn .loct,p|pB  1.3.34
 

Thus we can define corresponding RMS errors as 

 

 loc.inf
2 t,x|xB    dxP loct,x|xB x  x estxB 2

 loc.inf
2 t,p|pB    dxP loct,p|pB p  x estpB 2

1.3.35

and 

n .loc.inf
2 t,x|xB    dxP loct,x|xB x  x estxB 2

,

n .loc.inf
2 t,p|pB    dxP loct,p|pB p  x estpB 2

1.3.36

 

respectively. We thus define the minimum inference error  infx  for 

position, averaged over all possible values of x B  and pB  as 

 

min  loc.inf
2 x   dxBP loct,x B  loc.

2 t,x|xB  ,

min  loc.inf
2 p   dpBP loct,pB  loc.

2 t,p|pB 
1.3.37
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and 

min n .loc.inf
2 x   dx BPn .loct,x B n .loc.

2 t,x|x B  ,

min n .loc.inf
2 p   dpBPn .loct,pB n .loc.

2 t,p|pB .
1.3.38

 

respectively. From Eq. (1.3.37) and Eq. (1.3.38) we obtain the EPR-

nonlocality criteria 

 

min loc.inf.
2 x  min n .loc.inf.

2 x 

 dx BP loct,x B  loc.
2 t,x|x B   Pn .loct,x B n .loc.

2 t,x|x B   0,

min loc.inf.
2 p  minn .loc.inf.

2 p 

 dpBP loct,pB  loc.
2 t,p|pB   Pn .loct,pB n .loc.

2 t,p|pB   0

1.3.39

 

and 

minloc.inf.
2 x minloc.inf.

2 p  min n .loc.inf.
2 x n .loc.inf

2 p  0. 1.3.40
 

 

 

I.4. The EPR-Bohm paradox. Reid's criteria for EPR-

Bohm paradox 

 

Bohm [19]-[20] considered two spatially-separated spin-1/2  particles 

at A  and B produced in an entangled singlet state (often referred to 

as the EPR-Bohm state or the Bell-state): 

 

|  1

2

1
2 A

 1
2 B

  1
2 A

1
2 B

1.4.1

 

 

Here | 1

2
A  are eigenstates of the 


J z

A

 spin operator, and we use 

J z

A

, 

J x

A

, 

J y

A

 to define the spin-components measured at location A . The 

spin-eigenstates and measurements at B are defined similarly. By 

considering different quantization axes, one obtains different but 

equivalent expansions of | in Eq. (1.3.1), just as EPR suggested. 
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Fig. 1.4.1. The Bohm gedanken EPR experiment. Two spin-1/2 

particles prepared in a singlet state from the source into spatially 

separated regions A and B, and give anti-correlated outcomes for 𝐽𝜃
𝐴 

and 𝐽𝐵, where θ is x, y or z. Adapted from [16] 

 

Bohm's paradox is based on the existence, for Eq. (1.9.1), of a 

maximum anti-correlation between not only 

J z

A

 and 

J z

B

, but 

J y

A

 and 

J y

B

, and also 

J x

A

 and 

J x

B

. An assumption of local realism would lead 

to the conclusion that the three spin components of particle A  were 

simultaneously predetermined, with absolute definiteness. Since no 

such quantum description exists, this is the situation of an EPR 

paradox. 

Remark 1.4.1.Bohm's paradox is based on the existence, for 

Eq.(1.4.1), of a maximum anti-correlation between not only 

J z

A

 and 

J z

B

, but 

J y

A

 and 

J y

B

, and also 

J x

A

 and 

J x

B

. 

 

Remark 1.4.2. Note that an assumption of local realism would lead 

to the conclusion that the three spin components of particle A  were 

simultaneously predetermined, with absolute definiteness. Since no 

such quantum description exists, this is the situation of an EPR 

paradox. 

Remark 1.4.3. Criteria sufficient to demonstrate Bohm's EPR 

paradox can be derived using Reid's canonical inferred uncertainty 

approach [16]. Using the Heisenberg spin uncertainty relation 

 

Jx
AJy

A  Jz
A  /2, 1.4.2
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one obtains the following canonical spin-EPR criterion that is useful 

for the Bell state given by Eq. (1.4.1) 

 

infJx
AinfJy

A  1

2


Jz
B PJz

B  Jz
A 

Jz
B . 1.4.3

 
 

Here Jz
A 

Jz
B  is the mean of the conditional PJz

A |Jz
B   distribution. 

Calculations for Eq. (1.4.1) including the effect of detection efficiency 

  reveals this EPR criterion to be satisfied for   0.62.  The concept 

of spin-EPR has been experimentally tested in the continuum limit 

with purely optical systems for states with Jz
A   0.  In this case the 

EPR criterion linked closely to definition of spin squeezing 

 

infJx
AinfJy

A  Jz
A  . 1.4.4

 
 

Remark 1.4.4. We claim that any assumption of local realism is 

completely wrong. The three spin components of particle A  were 

simultaneously predetermined, does not with absolute definiteness 

but only with uncertainties which required by Heisenberg spin 

uncertainty relations (1.4.5). Such claim meant as minimum the 

weak postulate of nonlocality. 

 

 

I.4.1. The weak postulate of nonlocality Heisenberg spin 

uncertainty relations 

 

The Heisenberg spin uncertainty relations 

 

Jx
AJy

A  Jz
A  /2,Jx

AJz
A  Jy

A  /2,Jz
AJy

A  Jx
A  /2 1.4.5

 
 

does not violate in any cases: 

(i) if the three spin components of the particle A are measured 

directly by measurements performed on the particle A, 

(ii) and even if some spin components of the A particle are 
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measured indirectly as required in Bohm gedanken EPR 

experiment. 

Think of the following situation: a particle with zero spin decays into 

two particles (A and B), each with 1/2-spin. Due to the fact that spin 

angular momentum must be conserved during the decay, if initially 

the total spin angular momentum was zero, then after the decaying 

process it must still be zero. Therefore, particles A and B have 

opposite spin. Take as an example the dissociation of an exited 

hydrogen molecule into two hydrogen atoms. If the decaying 

mechanism does not change total angular momentum, then the 

spins on the hydrogen atoms will be anti-correlated. 

Remark 1.4.5. Whenever a measurement of the spin of A is found 

to be positive with respect of the z -axis (we shall note this state as 

|z
,  then, under local realism, we could infer that the spin of the B 

particle must be negative |z
,  and this is true independent of the 

distance that separates the particles. The spin of these particles are 

then entangled. 

Remark 1.4.6. We claim again that any assumption of local realism 

is completely wrong. 

 

 

I.4.2. The strong postulate of nonlocality 

 

Let | t A  and | t B  are states at instant t  of the particle A and particle 

B correspondingly. 

Let |z,A/B  be eigenstates of the spin operator SA/B
z : 

 

SA/B
z 

1 0

0 1
1.4.6

We claim that: 

(i) whenever a measurement of the spin of a particle A is performed 

at instant t1  t  and particle A is found in the state |z
,  i.e., a state 

| t1 A  collapses at instant t1  to the state |z,A  with respect of the 
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Heisenberg spin uncertainty relations (1.4.5), then a state | t1 B  

immediately collapses at instant t1  to the state |z,B  with respect of 

the Heisenberg spin uncertainty relations (1.4.5), and this is true 

independent of the distance in Minkowski space-time that separates 

the particles: 

 

|t1 A

col lapse
 |z,A

 |t1 B

col lapse
 |z,B

1.4.7
 

 

(ii) whenever a measurement of the spin of a particle A is performed 

at instant t1  t  and particle A is found in the state |z
,  i.e., a state 

| t1 A  collapses at instant t1  to the state |z,A  with respect of the 

Heisenberg spin uncertainty relations (1.4.5), then a state | t1 B  

immediately | t B  collapses at instant t1  to the state |z,B  with 

respect of the Heisenberg spin uncertainty relations (1.4.5), and this 

is true independent of the distance in Minkowski space-time that 

separates the particles: 

 

|t1 A

col lapse
 |z,A

 |t1 B

col lapse
 |z,B

1.4.8
 

 

Note that, we can not predict which spin will be positive (or negative) 

with respect of the z -axis, so the state that describes the spins of the 

particles could be for instance the spin singlet state 

|  1

2
|  | 1.4.9

 
 

We have 50% probability for the spin of particle A to be positive (and 

the spin of B negative) and 50% probability of it being the other way 

around. 

 

Remark 1.4.7. So far we have assumed that we are performing a 

measurement along the z  -axis, but measurements are not restricted 

to this particular election, we could measure for instance the spin of 
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particle A along the a  -axis and the spin of B along the b -axis. Let 

us see what happens if we decide to measure the spin along the x -

axis: a  b  x . As it known for 1/2-spins, the spin operator SA/B
x

 can 

be represented by the 2  2  Hermitian matrix 

 

SA/B
x 

0 1

1 0
1.4.10

 

By performing a change of basis we can rewrite the state | in 

terms of the eigenstates of the spin operator SA/B
x : 

 

|u  1

2
|  |, |v   1

2
|  |, 1.4.11

 
 

and using Eq. (1.4.10), we can rewrite the state | as 

 

|  1

2
|vu  |uv . 1.4.12

 
 

The strong postulate of nonlocality in this case takes the form 

similarly mentioned above. Just like before, by choosing to measure 

the spin of A along the x -axis we can determine its value and infer 

the value of the spin of particle B  B  B  in the state 

|
x,B

 |ux,B
 |x,B  without the need to measure it (and vice versa). 

 

Furthermore, it turns out that this is the case independent of the 

election of the axis we choose to measure! (Provided that a  b  v ). 

This is exactly the same situation such that a simple choice of the 

axis along which to measure the spin A allow us to establish the 

value of the spin of B along this same axis without the need to 

measure it. And this is also the case (as we already saw) for 

physical properties described by non-commuting operators (Sx  and 

Sz  do not commute).  
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Chapter II 

 

A NEW QUANTUM MECHANICAL FORMALISM BASED 

ON THE PROBABILITY REPRESENTATION OF 

QUANTUM STATES AND OBSERVABLES 

 

II.1. Generalized Postulates for Continuous Valued 

Observables  

 

Suppose we have an n  -dimensional physical quantum system. 

 

I. Then we claim the following: 

 

Q.I.1. Any given n  -dimensional quantum system is identified by a 

set Q : 

 

Q  H,,,2,1 ,H,G, |t   

where: 

 

(i) H that is some infinite-dimensional complex Hilbert space, 

(ii)   ,,P  that is complete probability space ,  

(iii)   n ,  that is measurable space ,  

(iv) 2,1  that is complete space of complex valued random 

variables 𝑋: Ω → C𝑛
 such that 

 



XdP  , 


X2dP   2.1.1

 

(v) G : CHH 2,1  that is one to one correspondence such that 
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 |Q|  


G Q, |  dP  E G Q|  ,

G

1, |   1

2.1.2

 

for any |  H and for any Hermitian adjoint operator Q : H  H such 

that 𝑄̂ ∈H𝐶∗(H), where CH  is C  - algebra of the Hermitian 

adjoint operators in H  and H  an commutative subalgebra of 

CH.  

(vi) | t   is a continuous vector function |t  :   H which 

represented the evolution of the quantum system Q.  

 

Q.I.2. For any |1 , |2   H and for any Hermitian operator Q : H  H 

such that 

 

1 Q 2  2 Q 1  0 2.1.3
 

the equality holds 

 

G Q|1   |2    G Q|1    G Q|2  . 2.1.4
 

Definition 2.1.1. A random variable X :   E  is a measurable 

function from the set of possible outcomes   to some E  set. 

 

Definition 2.1.2. Given a probability space   ,,P  and a 

measurable space   n , , any n -valued stochastic process 

that is a collection of n -valued random variables on  , indexed by 

a totally ordered set T  ("time"). That is, a stochastic process X t  is 

a collection Xt|t  T,  where each X t  is an n -valued random 

variable on . The space n  is then called the state space of the 

process. 

Q.I.3. Suppose that the evolution of the quantum system is 

represented by continuous vector function |t  :   H.  Then any 

process of continuous measurements on measuring observable Q 
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for the system in state | t   one can to describe by an continuous n -

valued stochastic process 

 

X t  X t ; Q t  X
Qt


 

given on the probability space ,,P  and the measurable space 

n , . 

 

Remark 2.1.1. We assume now for short but without loss of 

generality that n  1.  

 

Remark 2.1.2. Let X be random variable X  2,1  such that 

X  G|,  then we denote such random variable by X |.  

The probability density of X |  random variable we denote by 

p|q,q  .  

 

Definition 2.1.3. The classical pure states correspond to vectors 

v  H of v1  norm. Thus the set of all classical pure states 

corresponds to the unit sphere S  H in a H  Hilbert space. 

 

Definition 2.1.4. The projective Hilbert space PH of a complex 

Hilbert space H is the set of equivalence classes v of vectors v  in 

H, with v  0,  for the equivalence relation given by v Pw  v w for 

some non-zero complex number   .  The equivalence classes for 

the relation P  are also called rays or projective rays. 

 

Remark 2.1.3. The physical significance of the projective Hilbert 

space PH is that in canonical quantum theory, the | and | 

states represent the same physical state of the quantum system, for 

any   0 . It is conventional to choose a state | from the ray | 

so that it has unit norm |  1.  
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Remark 2.1.4. In contrast with canonical quantum theory we have 

used instead contrary to P  equivalence relation Q,  a H  Hilbert 

space, see Definition 2.1.7. 

 

Definition 2.1.5. The non-classical pure states correspond to the 

vectors v  H of a v1  norm. Thus the set of all non-classical pure 

states corresponds to the set H\S  H in the H  Hilbert space. 

 

Suppose we have an observable Q of a quantum system that is 

found through an exhaustive series of measurements, to have a set 

 of values q   such that   i1
m 1

i ,2
i ,m  2,  

1
i ,2

i   1

j
,2

j  , i  j.  Note that in practice any observable Q is 

measured to an accuracy q  determined by the measuring device. 

We represent now by |q  the idealized state of the system in the limit 

q  0,  for which the observable definitely has the value q.  

 

II. Then we claim the following: 

 

Q.II.1. The states |q : q    form a complete set of  -function 

normalized basis states for the state space H  of the system. That 

the states |q : q    form a complete set of basis states means 

that any state |  H  of the system can be expressed as: 

 

|  


c qdq, 2.1.5
 

 

where supp cq    and while  -function normalized means 

that q|q   q  q  from which follows cq  q|  so that 

 

|  


|qq|dq. 2.1.6
 

The completeness condition can then be written as 
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


|qq|dq 

1H . 2.1.7

 
 

Q.II.2. For the system in state | the probability Pq,q  dq; |  

of obtaining the result q   lying in the range q,q  dq    on 

measuring observable Q is given by 

 

Pq,q  dq; |  p | qdq 2.1.8
 

 

for any |  H .  

 

Remark 2.1.5. Note that in general case p|q  |cq|
2
.  

 

Q.II.3. The observable Q  is represented by a Hermitian operator 

Q : H H  whose eigenvalues are the possible results q : q  ,  

of a measurement of Q ,  and the associated eigenstates are the 

states |q : q  ,  i.e. Q |q  q|q,q  .  

 

Remark 2.1.6. Note that the spectral decomposition of the operator 

Q  is then 

 

Q  


q|qq|dq. 2.1.9
 

 

Definition 2.1.6. A connected set in   is a set X    that cannot be 

partitioned into two nonempty subsets which are open in the relative 

topology induced on the set. Equivalently, it is a set which cannot be 

partitioned into two nonempty subsets such that each subset has no 

points in common with the set closure of the other. 

 

Definition 2.1.7. The well localized pure states | with a support 

  1 ,2   correspond to vectors of the norm 1  and such that:  

supp cq    is a connected set in  . Thus the set of all well 
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localized pure states corresponds to the unit sphere S
  S  H in 

the Hilbert space H  H. 

Suppose we have an observable Q  of a system that is found 

through an exhaustive series of measurements, to have a 

continuous range of values q : 1  q  2 .  

 

III. Then we claim the following: 

 

Q.III.1. For the system in well localized pure state |  such that: 

 

(i) |  S
  and 

(ii) supp cq  q|cq  0  is a connected set in ,  then the 

probability Pq,q  dq; |  of obtaining the result q  lying in the range 

q,q  dq  on measuring observable Q  is given by 

 

Pq,q  dq; |  |q||2dq  |cq|
2
dq. 2.1.10

 
 

Q.III.2. p|qdq  |q||2dq  |cq|
2
dq.  

 

Q.III.3. Let |1  and |2   be well localized pure states with 

1  1
1 ,2

1   and 2  1
2 ,2

2   correspondingly. Let X1  X |1   

and X2  X |2   correspondingly. Assume that 1 2    

(here the closure of i, i  1,2   is denoted by i, i  1,2) then random 

variables X1  and X2  are independent. 

 

Q.III.4. If the system is in well localized pure state |  the state 

| described by a wave function q,  q||  and the value 

of observable Q  is measured once each on many identically 

prepared system, the average value of all the measurements will be 
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Q  




q|q,|2dq




|q,|2dq

.
2.1.11

 

The completeness condition can then be written as |qq|dq 

1H .  

Completeness means that for any state |  S
  it must be the 

case that |q||2dq  0,  i.e. there must be a non-zero probability 

to get some result on measuring observable Q.  

 

Q.III.5. (von Neumann measurement postulate) Assume that 

(i) |  S
  and (ii) supp cq    is a connected set in  . Then if 

on performing a measurement of Q  with an accuracy q,  the result 

is obtained in the q  1

2
q,q  1

2
q  range, then the system will end 

up in the state 

 

Pq,q|

 |Pq,q|



|qq  |q/2
|q q ||dq


|qq  |q/2

|q |||2dq
.

2.1.12

 
 

IV. We claim the following: 

 

Q.IV.1. For the system in state |a   a|  H,  

where: 

 

(i) |  S
, |a|  1,  

(ii) supp cq  is a connected set in   and 

(iii) |  
1

2
cq|qdq  
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G Q|a  |a|2G Q| . 2.1.13
 

 

Q.IV.2. Assume that the system in state |a  a|  H,  where 

 

(i) |  S
,  |a|  1,  

(ii) supp cq  is a connected set in   and 

(iii) |  
1

2
cq|qdq.  

 

Then if the system is in state |a  described by a wave function 

aq;  q||a  and the value of observable Q  is measured once 

each on many identically prepared system, the average value of all 

the measurements will be 

 

Q   


q|aq;|2dq. 2.1.14

 
 

Q.IV.3. The probability Pq,q  dq; |adq  of obtaining the result q  

lying in the range q,q  dq  on measuring Q  is 

 

Pq,q  dq; |adq  |a|2 cq|a|2  2
dq.

2.1.15

 
 

Remark 2.1.7. Note that Q.IV.3 immediately follows from Q.IV.1 and 

Q.III.2. 

 

Q.IV.4. (Generalized von Neumann measurement postulate) 

If on performing a measurement of observable Q  with an accuracy 

q,  the result is obtained in the q  1

2
q,q  1

2
q  range, then the 

system immediately after measurement will end up in the state 
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Pq,q|a

 |Pq,q|



|qq  |q/2
|q q ||adq 


|qq  |q/2

|q |||2dq


a 
|qq  |q/2

|q q ||dq


|qq  |q/2

|q |||2dq
 H.

2.1.16

 

V. We claim the following: 

Q.V.1. Let |a1,a21 ,2   |1
a11   |2

a22   H1,2  H1 H2  H,  

where 

 

(i) |i
a ii   ai|ii   Hi , |i   |ii   Si

 , |ai |  1, i  1,2;  

(ii) supp ciiq, i  1,2  are the connected sets in ;  

(iii) suppc11 q  suppc22 q   and 

(iv) |ii   1

2
ciiq|qdq, i  1,2.  

 

Then if the system is in a state |a1,a21 ,2   described by a wave 

function a1,a2q;1 ,2   q||a1,a21 ,2 ,q  1 2  and the value of 

observable Q1,2  is measured once each on many identically 

prepared system, the average value of all the measurements will be 

 

Q1,2   
12

q|a 1,a 2q;1 ,2 |2dq.
2.1.17

 

Q.V.2. The probability of getting a result q  with an accuracy q  such 

that q  1

2
q,q  1

2
q  suppc1

q  or q  1

2
q,q  1

2
q  suppc2

q  

given by 

 


|qq  |q/2

|q ||1
a 11 |

2  |q ||2
a 22 |

2
dq. 2.1.18
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Remark 2.1.8. Note that Q.IV.3 immediately follows from Q.III.3. 

 

Q.V.3. Assume that the system is initially in the state |a1,a21 ,2 .  

If on performing a measurement of Q1,2  with an accuracy q,  the 

result is obtained in the q  1

2
q,q  1

2
q  range, then the state of the 

system immediately after measurement given by 

 

Pqi,q|a 1,a 2 1 ,2 

 |Pqi,q|



|q iq  |q/2

|q q  ||1
a 11   |q q ||2

a 2 2 dq


|q iq  |q/2

|q ||11 |
2  |q ||22 |

2
dq 




|q iq  |q/2

a1 |q q  ||11   a2 |q  q ||22 dq


|q iq  |q/2

|q ||11 |
2  |q ||22 |

2
dq 

 H i ,

qi   i, i  1,2.

2.1.19

 

Definition 2.1.8. Let H1,2  be H1,2  H1 H2 .  

Definition 2.1.9. Let |a  be a state |a   a|,  where |  S, |a|  1  

and |  
1

2
cq|qdq.  Let |a  be an state such that |a   S.  States 

|a  and |a  is a Q -equivalent: |a  Q |a   iff 

 

Pq,q  dq; |a   |a|2 cq|a|2  2
dq  Pqq  dq; |a dq

2.1.20

 

Q.V.4. For any state |a   a|,  where |  S, |a|  1  and 

|  
1

2
cq|qdq  there exists a state |a   S  such that: |a  Q |a .  

Definition 2.1.10. Let |a  be a state |a   a|,  where 

|  S, |a|  1  and |  
1

2
cq|qdq.  Let |a  be a state such that 

|a   S.  States |a  and |a  is a Q-equivalent ( |a  
Q

|a  ) iff: 
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a | Q|a   a | Q|a .  

Q.VI. For any state |a   a|,  where |  S, |a|  1  and 

|  
1

2
cq|qdq  there exists a state |a   S  such that: 

|a  
Q

|a    

 

 

 

II.2. The nonclassical collapse models with 

spontaneous localizations based on generalized 

measurement postulates 

 

The nonclassical collapse models attempt to overcome the 

difficulties that standard quantum mechanics meets in accounting for 

the measurement (or macro-objectification) problem, an attempt 

based on the consideration of nonlinear and nonlocal stochastic 

modifications of the Schrödinger equation. 

 

The proposed new nonlocal dynamics is characterized by the 

feature of not contradicting any known fact about microsystems and 

of accounting, on the basis of a unique, universal dynamical 

principle, for wave packet reduction and for the classical behavior of 

macroscopic systems. 

 

 

II.2.1. Quantum Mechanics with Nonclassical 

Spontaneous Localizations 

 

Quantum Mechanics with Nonclassical Spontaneous Localizations is 

based on the following assumptions: 

 

(1) Each particle of a system of n distinguishable particles 

experiences, with a mean rate λi, a sudden spontaneous localization 

process. 

(2) In the time interval between two successive spontaneous 
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processes the system evolves according to the usual Schrödinger 

equation. 

(3) Let |cl  be the classical pure state correspond to a vector |cl

 S  H in a nonprojective Hilbert space H,  see Subsection II.1, 

Def. 2.1.1-2.1.2. Then the sudden spontaneous process is a 

localization given by: 

 

|cl

,-localization


,,x
i 

cl

,,x
i 

cl

,x  3 ,  0,1,  1, 2.2.1

 
where 

,,x
i 

cl


Lx

i
,|cl

. 2.2.2
 

 

Here 

Lx

i
,  is a norm-reducing, positive, self-adjoint, linear operator 

with a symbol Lx
i ,  in the n  -particle nonprojective H  Hilbert 

space, representing the localization of particle i  around the point x.  

 

Definition 2.2.1. Such localization as mentioned above is called ,-

localization or , -collapse of the state |cl
.  

 

(4) The probability density pix,,  for the occurrence of the 

localization at point x  is assumed to be 

 

pix,, 
,,x

i 
cl

2


3

,,x
i 

cl

2
d3x

. 2.2.3

 

(5) Let |n.cl  be the nonclassical pure state correspond to a vector  

 

|   |  H\S,  

 

where |  S, ||  1,  see subsection II.1, Def. 2.1.10. Then the 

sudden spontaneous process is a localization given by: 
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|n.cl

,localization


 ,,x
i 

n.cl

,,x
i 

n.cl

,x  3 , 2.2.4

 
where 

,,x
i 

n.cl


Lx

i
,|n.cl

. 2.2.5
 

 

Definition 2.2.2. Such localization as mentioned above is called ,-

localization or ,-collapse of the state |n.cl
.  

 

(6) The probability density pix,,,,   for the occurrence of the 

localization at point x  3  in accordance to postulate Q.IV.3 (see 

Subsection II.1, Eq.(2.1.15)) is assumed to be 

 

pix,,,,  
||6 

,,| |
2x

i

n.cl

2


3

,,x
i 

cl

2
d3x

. 2.2.6

 

(7) The localization operators 

Lx

i
,  have been chosen to have the 

form: 

 


Lx

i
, 

1


3/4

exp  1
2

q
i
 x2

iff q
i
 x    1,

0 iff q
i
 x  .

2.2.7

 

Here   0,1  d3xLx
i ,2  1  and lim0   .  

 

Remark 2.2.1. In one dimension case it follows that 

 


Lx

i
, 

1


1/4

exp  1
2

q
i
 x2

iff |qi  x |    1,

0 iff |qi  x |  .

2.2.8

 
 

Remark 2.2.2. Note that from Eq. (2.2.3) and Eq. (2.2.7) it follows 

that a probability density pix,,,,   for the occurrence of the 
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localization inside sphere Sx,  q
i
 3 |q

i
 x    is given by 

 

pix,, 
,,x

i 
cl

2

,
,,  

3

,,x
i 

cl

2
d3x,

,,x
i 

cl

2
 1



3/2


q ix

d3qi iq
i
exp  1


q

i
 x2

,

 iqi   qi || i 
cl

,

2.2.9

 

and therefore 

 

pix, 
0

lim pix,, 

0

lim 1, 1


3/2


qix

d3qi iq
i
exp  1


q

i
 x2   ix.

2.2.10

 

Remark 2.2.3. In one dimension case it follows that a probability 

density pix,,,   for the occurrence of the localization inside interval 

x  ,x   is given by 

 

pix,,  ,,x
i 

cl

2
 1



1/2


|q ix |

d3qi iqi exp  1

qi  x2 ,

 iqi   qi || i 
cl

,

2.2.11

 

and therefore 

pix, 
0

lim pix,, 


0

lim1, 1


1/2


|q ix |

dqi iqi exp  1

qi  x2   ix.

2.2.12

 

 

 

II.2.2. The generalization of nonclassical collapse 

models 

 

(1) Let |t cl
, t  0,T  be the classical pure states correspond to a 

vector-function |t cl
: 0,T  S  S

 such that  
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|t cl
 S  H , t  0,T,  

 

where is a nonprojective H Hilbert space, see Subsection II.1, 

Def.2.1.1-2.1.2. Then the sudden spontaneous process is the 

localization along classical trajectory xt : 0,T  3  3  given by: 

 

| t cl

,,x tlocalization


 t,,,x t

i 
cl

 t,,,x t

i 
cl

,

  0,1,  1,xt  3 , t  0,T,

2.2.13

 
 

where 

 

t,,,x t

i 
cl


Lx t

i
,|t cl

. 2.2.14
 

Here 

Lx t

i
, is a norm-reducing, positive, self-adjoint, linear 

operator with a symbol Lx t

i , in the n -particle nonprojective H  

Hilbert space, representing the localization of particle i  at each 

instant t  0,T around the point x t.  

 

Definition 2.2.3. Such localization as mentioned above is called 

,,xt -localization or ,,xt -collapse of the state | t cl
.  

 

(2) The probability density pit,xt,,  for the occurrence of the 

localization at point x t  at instant t  is assumed to be 

 

pit,xt,, 
 t,,,x t

i 
cl

2

t,,
,t,,  

3

,,x t

i 
cl

2
d3x. 2.2.15

 
 

(3) Let | t n.cl  be the nonclassical pure state corresponding to a 

vector-function t
  |t   H\S,  where | t   S, ||  1, t  0,T , 

see Subsection II.1, Def.2.1.10. 
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Then the sudden spontaneous process is the localization along 

classical trajectory xt : 0,T  3  3  given by: 

 

| t n.cl

,,x tlocalization


  t,,,x t

i 
n.cl

 t,,,x t

i 
n.cl

,

xt 3 , t  0,T

2.2.16

 

where 

 

t,,,x t

i 
n.cl



Lx t

i
,|t n.cl

. 2.2.17
 

Definition 2.2.4. Such localization as mentioned above is called 

,,xt -localization or ,,xt -collapse of the state |n.cl
.  

 

(4) The probability density pit,xt,,,,   for the occurrence of the 

localization at point x t  3  at instant t  0,T in accordance to 

postulate Q.IV.3 (see Subsection II.1, Eq. (2.1.14)) is assumed to be 

 

pit,xt,,,,  
||6 

t,,,| |
2x t

i

n.cl

2

t,,
,t,,  

3

,,x t

i 
cl

2
d3x. 2.2.18

 

(5) The localization operators 

Lx t

i
, have been chosen to have the 

form: 

 


Lx t

i
, 

1


3/4

exp  1
2

q
i
 xt 

2
iff q

i
 xt    1,

0 iff q
i
 xt  .

1.2.19

 

Here   0,1 and lim0   .  

 

Remark 2.2.4. In one dimension case it follows that 

 


Lx t

i
, 

1


1/4

exp  1
2

q
i
 x t 

2
iff |qi  x t |    1,

0 iff |qi  x t |  .

2.2.20

 



80 

 

Remark 2.2.5. Note that from Eq. (2.2.18) and Eq. (2.2.19) it 

follows that a probability density pit,xt,,,,   for the occurrence of 

the localization at instant t  inside sphere 

Sxt,  q
i
 3 |q

i
 xt    is given by 

 

pit,xt,, 
 t,,,x t

i 
cl

2

t,,

 t,,,x t

i 
cl

2
 1



3/2


q ix t

d3qi t
iq

i
exp  1


q

i
 xt 

2
,

 t
iqi   qi |  t

i 
cl

,

2.2.21

 

 

and therefore 

 

pit,x, 
0

lim pit,x,, 


0

lim1t,, 1


1/2


|q ix |

dqi iqi exp  1

qi  x t 2   ix t .

2.2.22
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Chapter III 

 

III. EINSTEIN’S 1927 GEDANKEN EXPERIMENT 

REVISITED 

 

III.1. Single-photon space-like antibunching 

 

During the famous 5-th Solvay conference in 1927, Einstein [7] 

considered a single particle which, after diffraction in a pin-hole 

encounters a detection plate (e.g. in the case of photons, a 

photographic plate), see Fig 3.1.1. 

 

We simplify this thought experiment, though keeping the essence, 

by replacing the detection plate by two detectors. Einstein noted that 

there is no a question that only one of them can detect the particle, 

otherwise energy would not be conserved. However, he was deeply 

concerned about the situation in which the two detectors are space-

like separated, as this prevents - according to relativity - any 

possible coordination among the detectors: It seems to me, Einstein 

continued, that this difficulty cannot be overcome unless the 

description of the process in terms of the Schrödinger wave is 

supplemented by some detailed specification of the localization of 

the particle during its propagation. I think M. de Broglie is right in 

searching in this direction. 

But what happened to Einstein's original Gedanken experiment? 

This simple - with today's technology - experiment had been done 

originally by T. Guerreiro, B. Sanguinetti, H. Zbinden N. Gisin, and 

A. Suarez, see [21]. This experiment consists in verifying that when 

a single photon is thrown at a beam splitter, it is detected in only one 

arm, i.e. the probability PAB  of getting a coincidence between the 

two detectors A  and B is much smaller than the product of the 

probabilities of detection on each side PA  PB,  as would be 

expected in the case of uncorrelated events. 
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Fig. 3.1.1. Einstein’s 1927 gedanken experiment. A and B are points 

on the photographic plate, for which the events of detection can be 

space-like separated from each other. Adapted from [7] 

 

The experimental setup is shown in Fig. 3.1.2 and consists of a 

source of heralded single photons which is coupled into a single 

mode fiber and injected into a fiber beam splitter (BS). Each of the 

two outputs of the beam splitter goes to a single photon detector 

(IDQ ID200), A detector being close to the source and B detector 

being separated by a distance of approximately 10 meters. 

 

Fig. 3.1.2. Experimental setup: photon pairs regenerated by 

Spontaneous Parametric Down Conversion at the wavelengths of 

1550 nm and 810 nm. These pairs are splitted by a dichroic mirror 

(DM), and 810 nm photon is sent to detector D, used to herald the 

presence of the 1550 nm photon that follows to the beam splitter 

(BS). Arbitrary electronic delays were applied before TDC to ensure 

the coincidence peak would remain on scale. Adapted from [21] 
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If we ensure that the fiber lengths before each detector are equal by 

inserting a 10 m (50 ns) fiber delay loop before detector A, the 

detections will happen simultaneously in some reference frame, thus 

being space-like separated (a signal would take 33 ns to travel 

between the two detectors at the speed of light; simultaneity of 

detection is guaranteed to within 1ns by the matched length of fiber 

both before and inside the detectors). It is also possible to make the 

detections time-like separated by removing the 10m delay line from 

detector A and adding it to detector B. 

 

 

 
 

Fig. 3.1.3. Spacetime diagrams for spacelike (i) and timelike (ii) 

configurations. A and B represent the locations of the detectors. 

Adapted from [21] 

 

First, one measures the probabilities of detecting a photon at 

detector A or at detector B given that a heralding photon has been 

detected at H. We denote RHA  the total number of coincident counts 

at detector H and detector A during the time of measurement, and 

RHA  the total number of counts at detector H alone during the same 

measurement; RHB  and RHB  denote similar quantities for the 

measurement with H and B.  

Next we measure the probability of detectors A and B clicking at the 

same time, again given a heralding signal. RHAB  denotes the number 



84 

 

of triple coincident counts at the detectors H, A and B, and RHAB  

denotes the total number of counts at detector H alone during the 

same measurement. All these quantities are measured directly for 

both a space-like configuration and a time-like configuration. 

 

Fig. 3.1.4. Coincidences between the heralding detector and each of 

the detectors A (red) and B (blue) with spacelike separation, 

measured in a window of 1 ns during a time period of 10 minutes. 

RHA=9.49×104/10 min, RHB=6.39×104/10 min. The noise is on 

average: RN=50/10 min. Adapted from [21] 

 

Fig. 3.1.5. Coincidences between the heralding detector and each of 

the detectors A (red) and B (blue) with timelike separation, 

measured in a window of 1 ns during a time period of 10 minutes. 

RHA=9.90×104/10 min, RHB=6.22×104/10 min. Adapted from [21] 
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The raw TDC data is shown in Figures 3.1.4-3.1.5 and the results 

are summarized in Table 3.1.1. 

Table 3.1.1. 

Summary of results. Values obtained for the different counting rates 

and corresponding probabilities defined in the text, measured with 

spacelike and timelike separation. Adapted from [21] 

 
 

The number of counts given by detector noise and two-photon 

events can be estimated by looking at the counts away from the 

peak. As an example, for the space-like configuration (Figure 3.1.4) 

in a window of 1 ns the noise rate is on average RHN  = 50/10 for a 10 

minutes integration time [21]. This corresponds to a noise probability 

PN  = 9·10 6  (1.310 6 ). From the values in Table 1 one derives the 

following probability values for spacelike separation: 

 

PA
SL  PB

SL  1.86  0.01·104 ,

PAB
SL  0.002  0.001·104 .

3.1.1

 

For timelike separation one derives the values: 
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PA
TL·PB

TL  1.65  0.01·104 ,

PAB
TL  0.002  0.001·104 .

3.1.2

 

For the probability PN
SL

 that A and B detect photons coming from 

different pairs (noise) one derives the value: 

 

PN
SL1,1  PN

SL·PA
SL  PN

SL·PB
SL 

0.0025  0.0026·104
3.1.3

 

 

III.2. The measure algebra of physical events in 

Minkowski space-time 

 

Definition 3.2.1. [22]. A measure algebra   B,P  with a 

probability measure P,  is a Boolean algebra B  with a countably 

additive probability measure. 

 

Definition 3.2.2. (i) A measure algebra of physical events 

ph  B,P  with a probability measure P,  is a Boolean algebra of 

physical events B  with a countably additive probability measure. 

(ii) A Boolean algebra of physical events can be formally defined as 

a set B  of elements a,b, . . .  with the following properties: 

1. B  has two binary operations,   (logical AND, or "wedge") and   

(logical OR, or "vee"), which satisfy: 

the idempotent laws:(1) a  a  a  a  a,  

the commutative laws:(2) a  b  b  a,  

(3) a  b  b  a,  

and the associative laws: 

(4) a  b  c  a  b  c,  

(5) a  b  c  a  b  c.  

2. The operations satisfy the absorption law: 

(6) a  a  b  a  a  b  a.  

3. The operations are mutually distributive 
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(7) a  b  c  a  b  a  c,  

(8) a  b  c  a  b  a  c.  

4. B  contains universal bounds 0  and 1  which satisfy 

(9) 0  a  0 , 

(10) 0  a  a , 

(11) 1  a  a , 

(12) 1  a  1.  

5. B  has an unary operation a  (or a  ) of complementation (logical 

negation), which obeys the laws: 

(13) a  a  0, 

(14) a  a  1. 

All properties of negation including the laws below follow from the 

above two laws alone. 

6. Double negation law: a  a . 

7. De Morgan's laws: (i) a  b  a  b,  

(ii) a  b  a  b.  

8. Operations composed from the basic operations include the 

following important examples: 

The first operation, a  b  (logical material implication): 

(i) a  b  a  b.  

The second operation, a  b,  is called exclusive. It excludes the 

possibility of both a  and b   

(ii) a b  a  b  a  b.  

The third operation, the complement of exclusive or, is equivalence 

or Boolean equality: 

(iii) a  b  a  b . 

9. B  has a unary predicate Occa , which meant that event a  has 

occurred, and which obeys the laws: 

(i) Occa  b  Occa Occb,  

(ii) Occa  b  Occa Occb,  

(iii) Occa  Occa.  
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Remark 3.2.1. A probability measure P on a measure space ,  

gives the probability measure algebra   ,,P  on the Boolean 

algebra of measurable sets modulo null sets. 

 

Definition 3.2.3. (i) Let B  be a Boolean algebra of physical events. A 

Boolean algebra BM4  of physical events in Minkowski space-time 

M4  1,3  that is Cartesian product BM4
 B M4 .  

 

(ii) Let BM4  be a Boolean algebra of physical events in Minkowski 

space-time. A measure algebra of physical events M4

ph  BM4
,P  in 

Minkowski space-time that is a Boolean algebra BM4  with a 

probability measure P.  

(iii) Let BM4  be Boolean algebra of the all physical events in 

Minkowski space-time and let M4

ph

 be a measure algebra 

M4

ph  BM4
,P  with a probability measure P.  We denote such 

physical events by Ax,Bx, . . .  etc., where x  t,x1 ,x2 ,x3   M4  or 

A,B, . . .  etc. 

(iv) We will write for a short AOcx,BOcx, . . .  etc., instead 

OccAx,OccBx, . . .  etc. 

 

Definition 3.2.4. Let AutPBM4
 be a set of the all measure-

preserving automorphism of BM4
.  This is a group, being a subgroup 

of the group AutBM4
 of all Boolean automorphism of BM4

.  Let P 
  be 

Poincaré group. 

 

Remark 3.2.2. We assume now that: any element   ,a  P 
  

induced an element   AutPBM4
 by formula 

  Ax  Ax  a  BM4
.  

 

Definition 3.2.5. Given two events A  and B from the algebra 
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M4

ph  BM4
,P  the conditional probability of A  given B is defined as 

the quotient of the probability of the joint of events A  and B, and the 

probability of B : 

 

PA|B 
PA  B

PB


PAB

PB
 PA|B , 3.2.1

 

where PB  0.  

Definition 3.2.6. (i) Events A  and B from the algebra M4

ph  BM4
,P  

are defined to be statistically independent or uncorrelated iff 

 

PAB  PA  PB, 3.2.2
 

 

where PB  0,  then this is equivalent to the statement that PA|B  PA.  

Similarly if PA  is not zero, then PB|A  PB  is also equivalent. 

(ii) Events A  and B from the algebra   BM4
,P are defined to be 

statistically almost independent or almost uncorrelated iff 

 

PAB  PA  PB ,

PAB  PA  PB  A,B, 0  A,B  PA  PB .
3.2.3

 
 

Remark 3.2.3. Note that 

 

PAB  PA  PB  PAB. 3.2.4
 

 

Although mathematically equivalent, this may be preferred 

philosophically; under major probability interpretations such as the 

subjective theory, conditional probability is considered a primitive 

entity. Further, this "multiplication axiom" introduces the symmetry 

with the summation axiom for mutually exclusive events, i.e. 

 

PAB  PA  PB  P AB. 3.2.5
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Definition 3.2.7. (i) Events A1 ,A2 , . . . ,An  M4

ph  BM4
,P  are said to 

be exactly mutually exclusive if the occurrence of any one of them 

implies the non-occurrence of the remaining n  1  events. Therefore, 

two mutually exclusive events cannot both occur. Formally said, the 

conjunction of each two of them is 0  (the null event): A  B  0 . In 

consequence, exactly mutually exclusive events A  and B have the 

property: 

 

 
 

(ii) Events A1 ,A2 , . . . ,An  M4

ph  BM4
,P  are said to be almost mutually 

exclusive if A1 ,A2 , . . . ,An  have the property: 

 

PA1  A2 . . .An   0,

PA1  A2 . . .An   PA1   PA2     PAn .
3.2.7

 
 

In consequence, almost mutually exclusive events A  and B have the 

property: 

 

PA  B  0,

PA  B  PA  PB.
3.2.8

 

Remark 3.2.4. Let Aph ,Bph  be events such that detectors A, B detect 

photon at an instants t1  and t2  correspondingly. Note that (3.1.1) 

and (3.1.2) show that whether the separation between the detectors 

is timelike or spacelike, the number of coincidences is three orders 

of magnitude smaller than what would be expected had the events 

been statistically almost uncorrelated, i.e., PAB  PA  PB,  see 

Def.3.2.6 (ii). 

Remark 3.2.5. Let Aph ,Bph  be events such that detectors A, B detect 

photon at an instants t1  and t2  correspondingly. Note that: 

(i) from Eq. (3.1.1) probability value for spacelike separation follows: 

PA  B  0. 3.2.6
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P
AphBph
SL  0.002  0.001·104  0, 3.2.9

 

(ii) from Eq. (3.1.2) probability value for timelike separation follows: 

 

P
AphBph
TL  0.002  0.001·104  0. 3.2.10

 

Therefore in both cases the property (3.2.6) are violated, i.e. 

PAphBph  0  but however in both cases the property (3.2.8) is 

satisfied 

 

0.002  0.001·104  P
AphBph
SL  P

Aph
SL  P

Bph
SL  1.86  0.01·104 ,

0.002  0.001·104  P
AphBph
TL  P

Aph
TL  P

Bph
TL  1.65  0.01·104

3.2.11

 

and therefore in both cases the events Aph ,Bph  are almost mutually 

exclusive events. 

 

 

III.2.1. Beamsplitter transformation 
 

A beamsplitter is the most simple way to mix two modes, see 

Fig.3.2.1. From classical electrodynamics, one gets the following 

amplitudes for the outgoing modes: 

a1

a2
in


A1

A2
out


t r

r t 

a1

a2
in

. 3.2.12

 

 

Fig. 3.2.1. Mixing of two models by a beamsplitter 
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The recipe for quantization is now: `replace the classical amplitudes 

by annihilation operators'. 

If the outgoing modes are still to be useful for the quantum theory, 

they have to satisfy the commutation relations: 

 

Aiout,Ajout  ij 3.2.13
 

 

These conditions give constraints on the reflection and transmission 

amplitudes, for example |t |2  |r|2  1.  

 

We are now looking for an unitary operator S  [the S  -matrix] that 

implements this beamsplitter transformation in the following sense: 

 

Ai  SaiS, i  1,2. 3.2.14
 

 

Let us start from the general transformation (summation over double 

indices) 

 

ai  Ai  Bijai, a  A  Ba 3.2.15
 

 

where we have introduced the matrix and vector notation.  

Using this S  -matrix one can also compute the transformation of the 

states: |out  S|in.  For the unitary transformation, we make the 

ansatz 

 

S  expiJkiak
ai 3.2.16

 
 

with Jkl  a Hermitian matrix (ensuring unitarity). The action of this 

unitary on the photon mode operators is now required to reduce to 

 

ai  Ai  SaiS Bijaj. 3.2.17
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We compute this `operator conjugation' by using a differential 

equation: 

 

dA i
d

 iJkiA i. 3.2.18
 

 

This is a system of linear differential equations with constant 

coefficients, so that one obtains a solution 

 

A  expiθJ. 3.2.19
 

 

We thus conclude that the so-called generator J  of the beam splitter 

matrix is fixed by equation 

 

B  expiθJ. 3.2.20  

If the transformation B  is part of a continuous group and depends on 

 as a parameter, we can expand it around unity. Doing the same 

for the matrix exponential, we get 

 

B  1  iθJ . . . . 3.2.21
 

 

Equation (3.2.21) explains the name generator for the J  matrix: it 

actually generates a subgroup of matrices B  Bθ  parametrized by 

the  angle. The unitary transformation we are looking for is thus 

determined via the same J  generator. For the two-mode beam 

splitter, an admissible transformation is given by 

 

Bθ 
t r

r t 


cos isin

isin cos
3.2.22

 
 

The factor i  is just put for convenience so that the reflection 

amplitudes are the same for both sides, r  r,  as expected by 

θ

θ
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symmetry. Expanding for small , the generator is 

 

J 
0 1

1 0
 1 3.2.23

 
 

and so that the unitary operator for this beamsplitter is 

 

S  expia1
a2  a2

a1 . 3.2.24
 

 

herefore, the effective Hamiltonian of the beam splitter is given by 

 

Heff  a1
 a2  a2

 a1 . 3.2.25  

 

III.2.2. Splitting a two-photon state 

 

Let us consider two single photon states |in  |1,1  incident on the 

beam splitter such that mentioned above. Then 

 

|  |out  S|in  Sa1
 SSa2

 SS|0, 0 

a1
 cosθ  ia2

 sinθa2
 cosθ  ia1

 sinθ|0,0 

|2,0  |0,2 sinθ

2
 |1,1cosθ.

3.2.26

 

Let H be a complex Hilbert space such that 

 

|cl
 H,

  0,1  0,1 ,,x
i 

cl
 H ,

,,x
i 

cl
 Lx

i ,|cl
.

3.2.27

 
 

By postulate Q.I.1 (see section II.1) quantum system with 

Hamiltonian given by Eq. (3.2.25) is identified with a set 

θ
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  H,Heff ,,,2,1,G, |t  ,
 where 

(i) H that is a complex Hilbert space defined above, 

(ii)   ,,P  that is complete probability space, 

(iii)   n ,  that is measurable space ,  

(iv) 2,1  that is complete space of random variables X :   n  

such that 

 



XdP  , 


X2dP  , 3.2.28

 
 

(v) G : H  2,1  that is one to one correspondence such that 

 

|Q|  


G Q|  dP  E G Q|  3.2.29
 

 

for any |  H and for any Hermitian operator Q : H  H,  

(vi) | t   is a continuous vector function |t  :   H which 

represented the canonical evolution of the quantum system .  

 

Remark 3.2.6. Note that M4

ph    M4  ,,P  M4 ,  where   is a 

probability measure algebra   ,,P  on the Boolean algebra of 

measurable sets modulo null sets, see Remark 3.2.1. 

 

Let BM4  be Boolean algebra of the all physical events in Minkowski 

space-time M4  and let M4  be a measure algebra M4
 BM4

,

P  

with a probability measure 

P,  see Definition 3.2.2 (7). 

 

We assume now that there exists subalgebra M4

#  M4  and 

isomorphism  : M4

#  M4

ph

 such that for any event Ax  M4

# ,x 

t,x1 ,x2 ,x3   M4  (see Definition 3.2.2): 
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Ax  Ax,

PAx  PAx  PAx.

3.2.30

 

Proposition 3.2.1. Suppose that A  and B are events in measure 

algebra M4
 BM4

,

P . 

 

Then following properties is satisfied: 

 

1.PA|B  PA  PB|A  PB  PA  B  PAPB

2.PA|B  PA  PB|A  PB  PA  B  PAPB

3.PA|B  PA  PB|A  PB  PA  B  PAPB

3.2.31

 
 

Proposition 3.2.2. Suppose that A  and B are events in measure 

algebra M4
 ,,P.  

Then following properties is satisfied: 

 

1.PA|B  PA  PB|A  PB  PA  B  PAPB

2.PA|B  PA  PB|A  PB  PA  B  PAPB

3.PA|B  PA  PB|A  PB  PA  B  PAPB

3.2.32

 

Definition 3.2.8. In case (1), A  and B are said to be positively 

correlated. 

Intuitively, the occurrence of either event means that the other event 

is more likely. 

 

In case (2), A  and B are said to be negatively correlated. 

Intuitively, the occurrence of either event means that the other event 

is less likely. 

 

In case (3), A  and B are said to be uncorrelated or independent. 

Intuitively, the occurrence of either event does not change the 

probability of the other event. 

 

Remark 3.2.7. Suppose that A  and B are events in measure algebra 
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M4
 ,,P.  

 

Note from the result above that if A  B or B  A  then A  and B are 

positively correlated. If A  and B are disjoint then A  and B are 

negatively correlated. 

 

Proposition 3.2.3. Suppose that A  and B are events in measure 

algebra M4
 BM4

,

P . Then: 

(i) A  and B have the same correlation (positive, negative, or zero) as 

A  and B. 

(ii) A  and B have the opposite correlation as A  and B (that is, 

positive-negative, negative-positive, or zero-zero). 

 

Proposition 3.2.4. Suppose that A  and B are events in measure 

algebra M4
 ,,P.  

Then: (i) A  and B have the same correlation (positive, negative, or 

zero) as Ac  and Bc . 

(ii) A  and B have the opposite correlation as A  and Bc  (that is, 

positive-negative, negative-positive, or zero-zero). 

 

Definition 3.2.9. Let Ax1   At1 ,r1   and Bx2   Bt2 ,r2   be the 

events Ax1   M4

#
 which occur at instant t1  and Bx2   M4

#
 at 

instant t2  correspondingly. 

Let x1,2  be a vector: 

 

x1,2  ct1  t2 ,r1  r2  ct1,2 ,r1,2 , t1,2  t1  t2 ,r1,2  r
1
 r2 .  

 

Vectors x1,2  ct1,2 ,r1,2   are classified according to the sign of 

c2 t1,2
2  r1,2

2
. A vector is 

(i) timelike if c2 t1,2
2  r1,2

2
, 

(ii) spacelike if c2 t1,2
2  r1,2

2
, and null or lightlike if 
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(iii) c2 t1,2
2  r1,2

2 .  

Pairs of events At1 ,r1 ,Bt2 ,r2   M4

# M4

#
 are classified according 

to the sign of c2 t1,2
2  r1,2

2
: 

(i) a pair At1 ,r1 ,Bt2 ,r2   is timelike separated if c2 t1,2
2  r1,2

2
, 

and we denoted such pairs by At1 ,r1 ,Bt2 ,r2 t.l .s. ; 

(ii) a pair At1 ,r1 ,Bt2 ,r2   is spacelike separated if c2 t1,2
2  r1,2

2
; 

and we denoted such pairs by At1 ,r1 ,Bt2 ,r2 s.l .s. ; 

(iii) a pair At1 ,r1 ,Bt2 ,r2   is null or lightlike separated if c2 t1,2
2  r1,2

2
, 

and we denoted such pairs by At1 ,r1 ,Bt2 ,r2 l .l .s. . 

 

Definition 3.2.10. (i) Let M4

# ,t1 ,r1 ,t2 ,r2 
t.l .s.  be a set of the all 

timelike separated pairs At1 ,r1 ,Bt2 ,r2 t.l .s.  which are 

corresponding to a given vector t1 ,r1 ,t2 ,r2   M4  M4 ,  i.e., 

 

M4

# ,t1 ,r1 , t2 ,r2 
s.l .s.



At1 ,r1 ,Bt2 ,r2   M4

# M4

# c2 t1,2
2  r1,2

2 .
3.2.33a

 
 

(ii) Let M4

# ,t1 ,r1 ,t2 ,r2 
s.l .s.  be a set of the all spacelike separated 

pairs At1 ,r1 ,Bt2 ,r2 s.l .s.  which is corresponding to a given vector 

t1 ,r1 ,t2 ,r2   M4  M4 ,  i.e., 

 

M4

# ,t1 ,r1 , t2 ,r2 
s.l .s.



At1 ,r1 ,Bt2 ,r2   M4

# M4

# c2 t1,2
2  r1,2

2 .
3.2.33b

 
 

Remark 3.2.8. Let M4

# ,t,r1 ,t,r2 
s.l .s.  be a set of all pairs 

At,r1 ,Bt,r2  , which corresponds to a given vector 

t,r1 ,t,r2   M4  M4 ,  r1  r2 ,  i.e., 
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M4

# ,t,r1 , t,r2 
s.l .s.



At,r1 ,Bt,r2   M4

# M4

# 0  r1,2
2 ,

r1,2  r
1
 r2 .

3.2.34

 
 

Such pairs obviously are spacelike separated. Note that 

 

tr1r2r1  r2  M4

# ,t,r1 , t,r2 
s.l .s.

  . 3.2.35
 

 

Definition 3.2.11. Let At1  Ax1   At1 ,xA   and Bt2  Bx2   Bt2 ,xB   

be a symbols such that A t1  and Bt2  represent there is detection 

events Ax1   M4

#
 at instant t1  and Bx2   M4

#
 at instant t2  

correspondingly, where symbols x A  and x B  represent the locations 

of the detectors A  and B correspondingly (see Fig. 3.1.3). We 

assume that 

 

At1 ,Bt2   M4

# ,t1 ,xA ,t2 ,xB 
s.l .s.

. 3.2.36
 

 

Remark 3.2.9. We assume now without loss of generality that 

t1  t2  t,  note that such assumption valid by properties: 

Ax1   M4

#
 and Bx2   M4

# ,  required above, see Remark 3.2.2. 

 

 

III.3. Einstein's 1927 gedanken experiment explained 

 

In classical case considered by A. Einstein in his 1927 gedanken 

experiment, by postulates of canonical QM, both events At  M4

#
 

and Bt  M4

#
 cannot occur simultaneously, i.e. that is mutually 

exclusive events with a probability  1,  and therefore At  Bt  0.  

Such exactly mutually exclusive events have the property: 

 

PAt  Bt  0, 3.3.1
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see Definition 3.2.6. 

 

We remind that the probability density pphx,,  for the occurrence 

of a photon localization at point x  is assumed to be 

 

pph x,,  ,,x
ph 

cl

2

,

  0,1,  0,1,
3.3.2

 
where 

 

,,x
ph

cl
 Lx, ph 

cl
. 3.3.3

 
 

and where the localization operators Lx,  have been chosen to 

have the form: 

 


Lx


q,, 

1


1/4

exp  1
2

q  x2 iff |

q  x |    1,

0 iff |

q  x |  .

3.3.4

 
 

see subsection II.2.1. 

 

Remark 3.3.1. Note that: (i) from (3.2.27) it follows that 

,,x
ph 

cl
 H,  

(ii) from (3.3.3) and (3.3.4) where   1  it follows that 

 

pph x,,  ,,x
ph 

cl

2

  dq ,,x
ph  |qq| ,,x

ph  

 dq

Lx


q,,ph  |qq|


Lx


q,,ph  

 dqLx
2q,,ph  |qq| ph   x | ph 

cl

2
 O 

 x | ph 
cl

2
,

  1,  0,1,

3.3.5
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It follows from postulate Q.I.3 that there exists unique random 

variable X ; ph
cl  given on a probability space ,,P  and 

a measurable space n ,  by formula 

 

X ; ph
cl

 X ph   G ph
cl

3.3.6
 

 

The probability density of random variable 
X ph  we denote by 

p ph q,q  .
 

 

Remark 3.3.2. From postulate Q.II.2 (see subsection II.1) it follows 

that for the system in state ph
cl  the probability 

P q,q  dq; ph
cl  of obtaining the result q  lying in the range 

q,q  dq  on measuring observable 

q  is given by 

 

P q,q  dq; ph
cl

 p ph
cl

qdq  c phcl
q

2

 q ph
cl

2
3.3.7

 
 

Now we go to explain Einstein's 1927 gedanken experiment. Let 

Apht,xA   and Bpht,xA   be events such that detectors A, B detect 

photon at an instant t  correspondingly. By properties (3.2.31) we 

obtain 

P A
pht,x A   PAph t,x A  


PApht,x A ,

P B
pht,x B   PBph t,x B  


PBpht,x B .

3.3.8

 
 

Note that 

 

A t  A
pht,x A    |x A    X ph   x A   ,

Bt  B
pht,x B    |x B    X ph   x B   ,

  0,,  1,

3.3.9
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where a small parameter   |xA  xB |  is dependent on the measuring 

device. Thus by general definition of random variable one obtains 

directly 

 

A
pht,xA   B

pht,xB    3.3.10
 

 

and therefore 

 

P A
pht,xA   B

pht,xB   0 3.3.11
 

 

The property (3.3.11) follows directly from (3.3.8). 

 

 

 
 

 

Fig. 3.3.1. The plot of the random variable X ph .

A t  A
pht,x A ,Bt  B

pht,x B ,A t  Bt  
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Remark 3.3.3. Let M4

# ,t,xA ,t,xB 
s.l .s.  be a set of the all pairs 

At,xA ,Bt,xB   which is corresponding to a given vector 

t,xA,0,0,t,xB,0,0  M4  M4 ,  xA  xB,  i.e., 

 

M4

# ,t,x A , t,x B 
s.l .s.



At,x A ,Bt,x B   M4

# M4

# 0  x A  x B 2 .
3.3.12

 
 

Such pairs obviously are spacelike separated. Note that 

 

txAxBxA  xB  M4

# ,t,xA , t,xB 
s.l .s.

  . 3.3.13
 

 

Now we will go to explain non zero result 

PAt  Bt  0  given above 

by (3.1.1) and (3.1.2): 

 


PA tB t

TL
 0.002  0.001·104 ,PA t

TL·PB t
TL  1.65  0.01·104 ,


PA tB t

SL
 0.002  0.001·104 .PA tB t

SL  0.002  0.001·104 .
3.3.14

 
 

We consider this problem in general case. 

 

Remark 3.3.4. Note that: 

 

(i) a probability density px,A,,   for the occurrence of the 

localization inside interval x  ,x   in arm with detector A (see 

Fig.3.1.2.) is given by formula 

 

px,A , 
|A,,x cl

2

A ,
, 3.3.15

 
 

where 
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|A,,x cl
2  1

AA

1/2


|qx |

dq|q|2 exp  1
A

q  x2 ,

q  q||,

A ,  




|A,,x cl
2

dx,

3.3.16

 
 

and where parameter A  depends on arm with detector A. 

(ii) a probability density px,B,,   for the occurrence of the 

localization inside interval x  ,x   in arm with detector B (see 

Fig.3.1.2) is given by formula 

 

px,B , 
|B,,x cl

2

B ,
, 3.3.17

 
where 

 
 

and where parameter B  depends on arm with detector B. 

 

Remark 3.3.5. Note that parameter   in formula (3.3.18) of course 

depends on measurement device and there no exist two equivalent 

devices such that A  B.  

We assume now that 

 

A  B  1,

0  |A  B |,





|x|2


dx  ,

3.3.19

 

|B,,x cl
2  1

BB

1/2


|qx |

dq|q|2 exp  1
B

q  x2 ,

q  q||,

B ,  




|B,,x cl
2

dx,

3.3.18
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From Eq. (3.3.16) and Eq. (3.3.19) by using Laplace approximation, 

we obtain: 

 

 
 

From Eq. (3.3.18) and Eq. (3.3.19) by using Laplace approximation, 

we obtain: 

 

|B,,x cl
2  1

BB

1/2


|qx |

dq|q|2 exp  1
B

q  x2 

|x|2  BO |x|2


 |x|2  Bc1
B |x|2


,

B ,  




|B,,x cl
2

dx  1  c2
BB ,c2

B  O 



|x|2


dx .

3.3.21

 
 

From Eq. (3.3.15) and Eq. (3.3.17) we obtain 

 

px,A , 
|A,,x cl

2

A ,


|x|2  Ac1
A |x|2



1  c2
AA ,

. 3.3.22a

 

 

From Eq. (2.2.54) and Eq. (2.2.57) we obtain 

 

px,B , 
|B,,x cl

2

B ,


|x|2  Bc1
B |x|2



1  c2
BB ,

. 3.3.22b

 

 

Definition 3.3.1. We define now the probability measures P|A,,x A
t  

and P|B,,x A
t  by formulae 

|A,,x cl
2  1

AA

1/2


|qx |

dq|q|2 exp  1
A

q  x2 

 |x|2  AO |x|2


 |x|2  Ac1
A |x|2


,

A ,  




|A,,x cl
2

dx  1  c2
AA ,c2

A  O 



|x|2


dx .

3.3.20



106 

 

 

P|A,,x A
t   

A t

px,A ,dx,

P|B,,x A
t   

A t

px,B ,dx,
3.3.23

 

where At  a,b  and dx  is the Lebesgue measure and a,b  Ba,b  

is the Borel algebra on a set a,b. 

 

Definition 3.3.2. We assume now that 
P

A,,x  P and 
P

B,,x  P, 

i.e. P
|  is absolutely continuous with respect to P . By Radon-

Nicodym theorem we obtain for any At  a,b : 

 

P A,,x

A t   
A t

X
A,,x

dP,

X
A,,x

 
dP

A,,x

dP
,

P A,,x

A t   
A t

X
A,,x

dP,

X
A,,x

 
dP

A,,x

dP
.

3.3.24

 
 

We write below for a short 

 

X 1
  X

A,,x

,X 2
  X

B,,x

. 3.3.25
 

 

Remark 3.3.6. We assume now without loss of generality that 

 

X 2
  X 1

  0 a.s. 3.3.26
 

 

see Fig .  3.3.1. 

 

Let us consider now the quantity 
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1,2  


|X1  X2|dP  


X 2
  X 1

dP. 3.3.27

 
 

We assume now that 

 





x|x|2dx  ,




x |x|2


dx  , 3.3.28

 
 

From Eq. (3.3.27) by using Eq. (3.3.21) and Eq. (3.3.22) we obtain 

 

1,2 




xpx,B ,dx  


xpx,A ,dx  1

1  c2
BB




x |x|2  Bc1
B |x|2


dx 

 1

1  c2
AA




x |x|2  Ac1
A |x|2


dx 

1  c2
BB  



x |x|2  Bc1
B |x|2


dx 

1  c2
AA  



x |x|2  Ac1
A |x|2


dx 

Bc1
B 


x |x|2

dx  c2

BB 


x|x|2dx  B
2 c1

Bc2
B 


x |x|2

dx 

Ac1
A 


x |x|2

dx  c2

AA 


x|x|2dx  A
2 c1

Ac2
A 


x |x|2

dx 

Bc1
B  Ac1

A  B
2 c1

Bc2
B  A

2 c1
Ac2

A  


x |x|2

dx  c2

AA  c2
BB  



x|x|2dx 

1c2
AA  c2

BB   2Bc1
B  Ac1

A ,

3.3.29

 
where 

1  


x|x|2dx,2  


x |x|2

dx. 3.3.30

 
 

Lemma 3.3.1. Let ,Σ,P  be a measure space, and let f be a real-

valued measurable function defined on  . 

Then for any real number t  0 : 

 

P  ||f|  t  1
t


|f|t

f  dP. 3.3.31
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From inequality (3.3.31) and Eq. (3.3.29) we obtain 

 

P    : |X 1
  X 2

|  t  1
t


X

1
X

2
 t

|X 1
  X 2

|dP

 1

t2



X 1
  X 2

 
1,2

t


1c2
AA  c2

BB   2Bc1
B  Ac1

A 
t

.

3.3.32

 
 

We define now 

 

 
 

and chose in (3.3.31) number t  xB  xA  1.  

 

 

 
 

Fig. 3.3.2. The plot of the random variables X 1
 and X 2

.

A t  A
pht,xA ,Bt  B

pht,xB ,A t  Bt  C t

A t  A
pht,x A    |x A    X 1

  x A  ,

Bt  B
pht,x B    |x B    X 2

  x B  ,
3.3.33
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Note that 

 

PAt  Bt  PC t, 3.3.34
 

 

see Fig .  3.3.2. From Eq. (3.3.32) - Eq. (3.3.34) it follows that 

 

PA t  Bt  
1c2

AA  c2
BB   2Bc1

B  Ac1
A 

xB  xA 2
 1. 3.3.35
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Chapter IV 

 

THE ERP PARADOX RESOLUTION 

 

IV.1. The relaxed locality principle 

 

The Special Theory of Relativity limits the speed at which any 

physical influences and any real information can travel to the speed 

of light, c. 

The Einstein's principle of locality (EPL): any effects do not 

propagate faster than the speed of light, i.e. speed of light is a 

limiting factor. 

The principle of locality claimed that: 

(i) Any physical event At1 ,r1  which has occurred at point 

At1 ,r1   M4  (see Chapt. III, Definition 3.2.9) cannot cause (by 

physical interaction) a physical event Bt2 ,r2  (result) which has 

occurred at point Bt2 ,r2   M4  in a time less than T  D/c,  where D,  is 

the distance between the points. 

(ii) Any physical event At,r1  which has occurred at point At,r1   M4  

cannot cause a simultaneous physical event Bt,r2  (result) which 

has occurred at another point Bt,r2   M4 . 

(iii) Any real physical information about physical event At1 ,r1  at 

point At1 ,r1  cannot be obtained by observer at point Bt2 ,r2  in a 

time less than T  D/c,  where D,  is the distance between the points. 

Definition 4.1.1. Let M4

# ,t1 ,r1 ,t2 ,r2 
t.l .s.



 be a set of the all 

timelike separated pairs of events 

At1 ,r1 ,Bt2 ,r2 t.l .s.
 M4

# ,t1 ,r1 ,t2 ,r2 
t.l .s.

,  (see Chapt. III, 

Definition 3.2.10(i)) such that t2  t1  and AOct1 ,r1   BOct2 ,r2 .  

Note that M4

# ,t1 ,r1 ,t2 ,r2 
t.l .s.

  M4

# ,t1 ,r1 ,t2 ,r2 
t.l .s.

.  

Remark 4.1.1. Note that the claim (i) obviously meant that 
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t1  t2 At1 ,r1 Bt2 ,r2  AOct1 ,r1   BOct2 ,r2  

At1 ,r1 ,Bt2 ,r2   M4

# ,t1 ,r1 , t2 ,r2 
t.l .s.

.
4.1.1

 

Remark 4.1.2. In spacetime diagram, see Fig. 4.1.1, the interval sAB
2  

is "time-like", i.e. there is a frame of reference in which events A and 

B occur at the same location in space, separated only by occurring 

at different times. If A precedes B in that frame, then A precedes B 

in all frames. It is hypothetically possible for matter (or information) 

to travel from A  to B, so there can be a causal relationship (with A 

the cause and B the effect). 

 

 
 

Fig. 4.1.1. Spacetime diagram 

 

Remark 4.1.3. Note that: 

(i) the interval sAC
2  in the diagram, see Fig. 4.1.1, is "space-like"; i.e. 

there is a frame  t  of reference in which events At,r1  and Ct,r2  

occur simultaneously at instant t , separated only in space. There 

are also frames in which A precedes C and frames in which C 

precedes A. 
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(ii) If it were possible for a cause-and-effect relationship to exist 

between events A and C, then paradoxes of causality would result. 

For example, if A was the cause, and C the effect, then there would 

be frames of reference in which the effect preceded the cause. 

Although this in itself will not give rise to a paradox, one can show 

that faster than light signals can be sent back into one's own past. A 

causal paradox can then be constructed by sending the signal if and 

only if no signal was received previously. 

(iii) Obviously there exist space-like separated pairs of physical 

events At,r1 ,Bt,r2 s.l .s.  such that the events At,r1  and Ct,r2  

always occur only simultaneously at any instant t  i.e., 

 

AOct,r1   COct,r2 . 4.1.2
 

 

Example 4.1.1. Let us consider two synchronized clock A and B 

which at rest on given inertial frame F I .  Assume that clock A at rest 

in point r1  and clock B at rest in point r2  correspondingly. 

 

 

 

Fig. 4.1.2. Clock A and clock B  

which at rest on given inertial frame F I .  
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Let At,r1  be the event which consists that time on clock A is t  at 

time t  according to clock A and let Bt,r1  be the event which 

consists that time on clock B is t  at time t  according to clock B. It is 

clear that AOct,r1   BOct,r2 .  

Definition 4.1.2. Let M4

# ,t1 ,r1 ,t2 ,r2 
s.l .s.


 be a set of the all 

spacelike separated pairs of events 

At1 ,r1 ,Bt2 ,r2 s.l .s.
 M4

# ,t1 ,r1 ,t2 ,r2 
s.l .s.

,  (see Chapt. III, 

Definition 3.2.10 (ii)) such that 

 

AOct1 ,r1   BOct2 ,r2 . 4.1.3
 

 

Remark 4.1.4. Note that the condition (4.1.3) does not violate the 

Einstein's principle of locality and gives only an additional properties 

of the algebra M4

# .  

Remark 4.1.5. Note that from (4.1.3) it follows that 

 

M4

# ,t1 ,r1 ,t2 ,r2 
s.l .s.

  M4

# ,t1 ,r1 ,t2 ,r2 
s.l .s.

.  

 

On the basis of this Gedanken experiment, which is also realized by 

photons, the EPR-paradox can be derived if the following two 

principles are taken as postulates. 

1. The principle of reality R : 

If the value A i  of an observable A  can be determined without altering 

the quantum system S,  then any property PA i which corresponds to 

this value of A  pertains to the system S.  

2. The principle of locality L : 

2.1. If two quantum systems S1  and S2  cannot interact with each 

other, then a measurement with respect to one system cannot alter 

the other system and therefore we can assume the existence of 

state vectors |S1  and |S2 .  

2.2. Let x 1  and x 2  be two observables measured with respect to 

systems S1  and S2  mentioned above. Then by result of 

measurement of the quantity x2  S2 |

x 2 |S2  at instant t,  it is 

impossible to get any information on result of measurement of the 
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quantity x1  S1 |

x 1 |S1  at the same instant t.  

We assume now the relaxed principle of locality. Intuitively this 

principle says that for even spacelike separated entangled quantum 

systems S1  and S2  any measurement at instant t  with respect to 

system S1  always immediately alter the other system S2  at the same 

instant t.  But no additional information about the system S1  can be 

found out upon measurement on the system S2  except the canonical 

information which can be predicted by using correlation relations 

which follows from concrete type of entanglement. 

3. The relaxed principle of locality Lrel : 

3.1. Any spacelike separated quantum systems S1  and S2  cannot 

interact with each other and therefore we can assume the existence 

of state vectors |S1  and |S2  correspondingly. 

3.2. Let S12t,r1   and S21t,r2   be two spacelike separated 

entangled quantum systems located in points t,r1  and t,r2  

correspondingly. 

(i) Assume that a state vector |S12t,r1   suddenly collapses at 

instant t  to state vector S12
s-col t,r1  : 

 

|S12t,r1 
s- col lapse

 S12
s-col t,r1  , 4.1.4

 

 

then a state vector |S21t,r2  immediately collapses to state vector 

S21
col t,r2  : 

|S21t,r2 
col lapse
 S21

col t,r2  4.1.5
 

 

(ii) Assume that a state vector |S12t,r1   after measurement 

immediately collapses at instant t  to state vector S12
m -col t,r1  : 

 

|S12t,r1 
m - col lapse

 S12
m -col t,r1  , 4.1.6

 

then a state vector |S21t,r2  immediately collapses to state vector 
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S21
col t,r2  : 

 

|S21t,r2 
col lapse
 S21

col t,r2  4.1.7
 

 

(iii) Let S12
s-col t,r1  and S21

col t,r2   be a physical events defined by 

formulae (4.1.4) and (4.1.5) correspondingly, then 

 

Occ S12
s-col t,r1   Occ S21

col t,r2  , 4.1.8
 

 

(see Chapt. III, Definition 3.2.8(2)). 

(iv) Let S12
m -col t,r1  and S21

col t,r2   be a physical events defined by 

formulae (4.1.6) and (4.1.7) correspondingly, then 

 

Occ S12
m -col t,r1   Occ S21

col t,r2  , 4.1.9
 

 

3.3. No any additional information about the system S1  upon 

measurement at instant t  can be found out upon measurement on 

the system S2  upon measurement at instant t  except the canonical 

information which can be predicted by using correlation relations 

which follows from concrete type of entanglement. 

Remark 4.1.6. Note that conditions (1.1.8) - (1.1.9) are very similarly 

to condition (4.1.3) and give only an additional properties of the 

algebra M4

# .  

Remark 4.1.7. Note that from (4.1.8) it follows that 

 

S12
s-col t,r1 ,S21

col t,r2   M4

# ,t1 ,r1 , t2 ,r2 
s.l .s.

 4.1.10
 

 

from (4.1.9) it follows that 

 

S12
m-col t,r1 ,S21

col t,r2   M4

# ,t1 ,r1 ,t2 ,r2 
s.l .s.

 4.1.11
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Remark 4.1.8. Note that: 

(i) collapse of a state vector |S21t,r2   given by (4.1.5) occurs 

without any interaction between quantum systems S12   and S21   but 

only by property given by formulae (4.1.8); 

(ii) collapse of a state vector |S21t,r2  given by (4.1.7) occurs 

without any interaction between quantum systems S12   and S21   but 

only by property given by formulae (4.1.9). 

Remark 4.1.9. We find that the EPR-paradox can be resolved by 

nonprincipal and convenient relaxing of the Einstein's locality 

principle. However it follows also, that the nonlocalities which are 

introduced above cannot be explained within the conventional 

quantum theory. 

 

 

IV.2. Generalized EPR argument and Postulate of 

Nonlocality 

 

Entanglement is one of the most interesting properties of quantum 

mechanics, and is an important ingredient of quantum information 

protocols such as quantum dense coding and quantum computation. 

In the Schrödinger picture, a necessary and sufficient criterion for 

the emergence of entanglement is that the state describing the 

entire system is inseparable, i.e. the wave function of the total 

system cannot be factored into a product of separate contributions 

from each sub-system. Using the Heisenberg approach, a sufficient 

criterion for the presence of entanglement is that correlations 

between conjugate observables of two subsystems allow the 

statistical inference of either observable in one sub-system, upon a 

measurement in the other, to be smaller than the standard quantum 

limit, i.e. the presence of non-classical correlations. The latter 

approach was originally proposed in the paper of Einstein, Podolsky 

and Rosen [1]. These two different pictures result in two distinct 

methods of characterizing entanglement. One is to identify an 

observable signature of the mathematical criterion for wave function 
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entanglement, i.e. inseparability of the state. The second looks 

directly for the onset of non-classical correlations. For pure states 

these two approaches return the same result suggesting 

consistency of the two methods. However, when decoherence is 

present, causing the state to be mixed, difference scan occur. 

 

 

IV.2.1. The EPR-Reid criterion 

 

We remind now EPR-Reid criterion [2]-[5]. EPR originally argued as 

follows. Consider two spatially separated subsystems at A  and B.  

EPR considered two observables 
x  (the position) and 


p  

(momentum) for subsystem A,  where x  and 

p  do not commute, so 

that (C  is nonzero)  

 

x,

p  2C. 4.2.1

 

 

Suppose now that one may predict with certainty the result of 

measurement x  based on the result of a measurement performed at 

B. Also, for a different choice of measurement at B, suppose one 

may predict the result of measurement 

p  at A . Such correlated 

systems are predicted by quantum theory. Assuming local realism 

EPR deduce the existence of an element of reality, 
x , for the 

physical quantity x  and also an element of reality, 

p , for 


p . Local 

realism implies the existence of two hidden variables x  and 

p  that 

simultaneously predetermine, with no uncertainty, the values for the 

result of an 
x  or 


p  measurement on subsystem A , should it be 

performed. This hidden variable state for the subsystem A  alone is 

not describable within quantum mechanics, since simultaneous 

eigenstates of x  and 

p  do not exist. Hence, EPR argued, if quantum 

mechanics is to be compatible with local realism, we must regard 

quantum mechanics to be incomplete. 

We remind that in original publication [1] Einstein, Podolsky and 

Rosen describe two particles A  and B with correlated position 
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xB  xA  x0 4.2.2
 

 

and anti-correlated momentum 

 

pB  pA, 4.2.3
 

 

(see Fig. 4.2.1). 

 

 
 

Fig. 4.2.1. Particles A and B with correlated position and anti-

correlated momentum 

 

In the idealized entangled state proposed by EPR, 

 

|EPR  



|x,xdx  




|p,pdp

 
 

the positions and momenta of the two particles are perfectly 

correlated. Note that: this state is non-normalizable and cannot be 

realized in the laboratory. When coordinates xA  and pA  are 

measured in independent realizations of the same state, the 

correlations allow for an exact prediction of xB  and pB . EPR 

assumed that such exact predictions necessitate an element of 

reality which predetermines the outcome of the measurement. 

Quantum mechanics however prohibits the exact knowledge of two 

noncommuting variables like xB  and pB , since their measurement 

uncertainties are subject to the Heisenberg relation 
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xBpB  /2. 4.2.4
 

 

Classical notion of EPR correlations was generalized to a more 

realistic scenario, yielding a Reid criterion [6] for the uncertainties 

x inf
B

 and pinf
B

 of the inferred predictions for xB  and pB .  The EPR 

criterion is met if these uncertainties violate the Heisenberg 

inequality for the inferred uncertainties x inf
B pinf

B
 /2. 

Reid extended classical EPR argument to situations where the result 

of measurement x  at A  cannot be predicted with absolute certainty 

[2]-[5]. The assumption of local realism allows us to deduce the 

existence of an element of reality of some type for x  at A , since we 

can make a prediction of the result at A , without disturbing the 

subsystem at A , under the locality assumption. Let 

x A ,


x B

 be a 

wave function of composite system A  B.  Let x i
B  be the result of a 

measurement, x B  say, performed at B, where i  is used to label the 

possible results, discrete or otherwise, of the measurement x B . As a 

result of the measurement of the coordinate, we have a new wave 

function of composite system A  B which is given by Eq. (4.2.3) (see 

Remark 4.2.1) 

 

x i
B x,


x B  x i

B

x A,


x B  Rx B  x i

B 
x A,


x B  Rx B  x i

B x,

x B 4.2.5

 

and therefore adjoint probability density px i
B x,


x B  p x,


x B x i

B
 at 

instant at once after measurement is given by 

 

px i
B x,


x B  p x,


x B x i

B  Rx B  x i
B x,


x B 2

4.2.6
 

 

Then the conditional probability density px i
Bx  px|x i

B  conditional on 

a result x i
B  for QM measurement at B is given by 
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px i
Bx  px|x i

B   




px i
B x,


x B d


x B  





d

x B x i

B x,

x B 2








d

x B Rx B  x i

B x,

x B 2

.

4.2.7

 

The predicted results for the measurement at A , based on the 

measurement at B, are however no longer a set of definite numbers 

with zero uncertainty, but become fuzzy, being described by a set of 

distributions Px|x i
B  giving the probability of a result for the 

measurement at A,  conditional on a result x i
B  for measurement at B. 

We define  i
2x  to be the variance of the conditional distribution 

Px|x i
B . Similarly we may infer the result of measurement 


p  at A , 

based on a (different) measurement, 

p

B
 say, at B. Denoting the 

results of the measurement 

p

B
 at B by p j

B
, we then define the 

probability distribution, P p|pj
B

 which is the predicted result of the 

measurement for 

p  at A  conditional on the result p j

B
 for the 

measurement 

p

B
 at B. The variance of the conditional distribution 

P p|pj
B

 is denoted by  j
2p.  

Remark 4.2.1. We remind now that the QM-measurement is 

represented by the canonical scheme 

 

|
a 

 |a    a  |,da
a 
 a   1,pa   a 

2  |
a 
 a  |, 4.2.8

 

where pa   is a corresponding probability density. To obtain the 

probability that the parameter a   turns out to belong to the set   one 

has to integrate over this set: 

 

Pa    


dapa  . 4.2.9
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If the state | is represented by the wave function a the operator 

a   describing the measurement giving the result a   will be taken in 

the following form 

 

a a  Ra  aa, 4.2.10
 

 

where Ra is a function with a support concentrated in some vicinity 

of zero and representing the 'fuzziness' of the measurement. It is a 

characteristic function of the measurement and may, for example, 

be (and typically is) a Gaussian function. The width of this function 

corresponds to the resolution of the measurement. 

Normalization da
a 
 a   1  of the operators a   is provided by the 

corresponding normalization of the function Ra as follows: 

 

da|R2a|  1. 4.2.11
 

 

If the measurement is described by the Gaussian function 

 

Ra  exp 
a  a 2

42
4.2.12

 

 

it is a minimally disturbing measurement of the coordinate a   with 

resolution   [7]. 

 

Remark 4.2.2. Consider the momentum representation p of the 

initial wave function q 

 

p  1

2
 dqqexp  i


pq . 4.2.13

 

 

As a result of the measurement of the coordinate, 
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q q  Rq  qq  q q, 4.2.14
 

 

we have a new wave function and its momentum representation has 

the form 

 

q 
p  dp


Rq p  pp , 4.2.15

 

 

where 

Rq p is a momentum representation of the function Rq q.  

Note that 

 


Rq p 


Rpexp  i


pq ,


Rp  1

2
 dqRqexp  i


pq .

4.2.16

 

 

Remark 4.2.3. Consider now a coordinate measurement having a 

Gaussian characteristic function of width of the order of   

 

Rq  exp  q2

42
. 4.2.17

 

 

Then the momentum representation of this function (characterizing 

the structure of the momentum uncertainty / acquired in the 

measurement) is also Gaussian with width of the order of / : 

 


Rp  exp

p2




2
. 4.2.18

 

 

For a given experiment one could in principle measure the individual 

variances  i
2x  of the conditional distributions Px|x i

B (and also  j
2p for 

the Pp|pj
B). Obviously if each of the variances  i

2x  and  j
2p satisfy 

i
2x  0 and j

2p  0 this would imply the demonstration of the original 
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EPR paradox. This situation however is not practical for continuous 

variable measurements. Instead of considering the problem of 

simultaneous eigenstates as originally proposed by EPR, one can 

suggest a different and experimentally realizable criterion based on 

the Heisenberg Uncertainty Principle: xp  C.  For the sake of 

notational convenience we now consider in the remainder of this 

subsection that appropriate scaling enables x  and p  to be 

dimensionless and C  1. 

EPR correlations however would be demonstrated in a convincing 

manner if the experimentalist could measure each of the conditional 

distributions Px|x i
B and establish that each of the distributions is 

very narrow, in fact constrained such that [2]-[5]: 

 

Px|x i
B  0 iff |x  i| ,

Pp|pj
B  0 iff |p  j| .

4.2.19

 

 

Here i  is the mean value of the conditional distribution Px|x i
B and 

 j  is the mean value of the conditional distribution Pp|pj
B. In this 

case the assumption of local realism would imply, since the 

measurement x B  at B will always imply the result of x  at A  to be 

within the range i  x , that the result of the measurement at A  is 

predetermined to be within a bounded range of width 2 . In a 

straightforward extension of EPR's argument, we replace the words 

predict with certainty with predict with certainty that the result is 

constrained to be within the range i  , and then define an element 

of reality with this intrinsic bounded by fuzziness  . We now 

consider the situation where an experimenter has demonstrated that 

for every outcome x i
B  (and p j

B
) for the measurement x B  (and p B ) 

performed at B, the variance  ix  (and  jp  ) of the appropriate 

conditional distribution satisfies 

 

ix  1,jp  1 4.2.20
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for any i, j  . The measurement at B always allows an inference of 

the result at A  to a precision better than given by the uncertainty 

bound 1 . 

Remark 4.2.4. In this case we do not predict a result at A  with 

certainty, as in EPR's original paradox. The measurement x B  at B 

however does predict by Eq. (4.2.3) [or by Eq. (4.2.9) in general 

case] with a certain probability constraints on the result for x  at A . 

Remark 4.2.5. Following the EPR argument, which assumes no 

action-at-a-distance, so that the measurement at B does not cause 

any instantaneous influence to the system at A , one can attribute a 

probabilistic predetermined element of reality to the system at A . 

Remark 4.2.6. There is a similar predicted result for the 

measurement p  at A  based on a result of measurement at B, and a 

corresponding predetermined description based again on the no-

action-at-a-distance assumption. 

Remark 4.2.7. The important point in establishing the EPR paradox 

for this more general yet practical situation is that under the EPR 

premises the predetermined statistics (or generalised elements of 

reality) for the physical quantities x  and p  are attributed 

simultaneously to the subsystem at A . 

Assuming no action-at-a-distance, the choice of the experimenter 

(Bob) at B to infer information about either x  or p  cannot actually 

induce the result of the measurement at A . 

As there is no disturbance created by Bob's measurement, the 

(appropriately extended) EPR definition of realism is that the 

prediction for x  is something (a probabilistic element of reality) that 

can be attributed to the subsystem at A , whether or not Bob makes 

his measurement. 

 

Remark 4.2.8. This is also true of the prediction for p , and therefore 

the two elements of reality representing the physical quantities x  

and p  exist to describe the predictions for x  and p  simultaneously. 

The paradox can then be established by proving the impossibility of 

such a simultaneous level of prediction for both x  and p  for any 

quantum description of the subsystem A  alone. By this we mean 
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explicitly that there can be no procedure allowed, within the 

predictions of quantum mechanics, to make simultaneous inferences 

by measurements performed at B or any other location, of both the 

result x  and p  at A  , to the precision indicated by ix  1,  jp  1. 

Remark 4.2.9. Recall that the inference of the result at A  by 

measurement at B is actually a measurement of x  performed with 

the accuracy determined by the  ix . However simultaneous 

measurements of x  and p  to the accuracy (4.2.9) are not possible 

(predicted by quantum mechanics). The reduced density matrix 

describing the state at A  after such measurements would violate the 

H.U.P. (Heisenberg Uncertainty Principle). 

A simpler quantitative, experimentally testable criterion for EPR was 

proposed by Reid in 1989 see, for example, [2]-[5]. The 1989 

inferred H.U.P. criterion is based on the average variance of the 

conditional distributions for inferring the result of measurement x  

(and also for p ). The EPR paradox is demonstrated when the 

product of the average errors in the inferred results for x  and p  

violates the corresponding H.U.P. The spirit of the original EPR 

paradox is present, in that one can perform a measurement on B to 

enable an estimate of the result x  at A  (and similarly for p ). 

Abbreviation 4.2.1. For the sake of notational convenience we now 

abbreviate in the remainder of the book: loc.ix  and loc.ip instead  ix  

and  jp for the variance  ix  and  jp which were calculated under 

assumption no action-at-a-distance, see Remarks 4.2.5 - 4.2.6. 

We define now [2]: 

 

 loc.inf.
2 x  

i
Px i

B  loc.i
2 x,

 loc.inf.
2 p  

j
P pj

B  loc.j
2 p.

4.2.21

 

Here loc.inf.
2 x  is the average variance for the prediction (inference) 

under assumption no action-at-a-distance of the result x  for x  at A , 

conditional on a measurement x B  at B. Here i    labels all 

outcomes of the measurement x  at A , and i  and  ix  are the mean 

and standard deviation, respectively, of the conditional distribution 
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Px|x i
B, where x i

B  is the result of the measurement x B  at B. We define 

a loc.inf.
2 p  similarly to represent the weighted variance for the 

prediction (inference) under assumption no action-at-a-distance of 

the result p  at A , based on the result of the measurement at B. Here 

Px i
B is the probability for a result x i

B  upon measurement of x B , and 

Ppj is defined similarly. 

 

The Reid's criterion to demonstrate the EPR "paradox", the Reid's 

local signature of the EPR paradox, is 

 

loc.inf.
2 x loc.inf.

2 p  1. 4.2.22
 

 

This criterion is a clear criterion for the demonstration of the EPR 

"paradox", by way of the argument presented above. Such a 

prediction (4.2.21) for x  and p  with the average inference variances 

given, cannot be achieved by any quantum description of the 

subsystem alone. This EPR criterion has been achieved 

experimentally. 

 

 

IV.2.2. The Postulate of Nonlocality and signature of the 

EPR paradox 

 

Remark 4.2.10. A most critical component of the EPR argument 

was the principle of locality. Indeed, one may regard the EPR 

paradox as a statement of the mutual incompatibility of locality, 

entanglement, and completeness. Experimental tests of Bell's 

inequalities have indicated that quantum mechanics is complete by 

ruling out the possibility of hidden variables. Therefore, it is generally 

agreed that the assumption of locality is invalid for entangled states: 

measurement of either particle of an entangled system projects both 

particles onto a state consistent with the result of measurement, 

regardless of how far apart the particles are. In the situation 

proposed by EPR, the position or momentum of the unmeasured 
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particle becomes a reality if and only if, the corresponding quantity 

of the other particle is measured. 

 

Remark 4.2.11. The assumption of nonlocality allows us to deduce 

the existence of a fuzzy element of reality of some type for x  at A , 

since we can make a prediction of the result at A , but with some 

disturbing of the subsystem at A , under the measurement, 

x B  say, 

performed at B. This prediction is subject to the result x i
B  of a 

measurement, x B  say, performed at B, where i  is used to label the 

possible results, discrete or otherwise, of the measurement 

x B .  

We accept now the following postulate: 

 

Postulate of Nonlocality 

(i) Let A  and B two entangled particles. Let 

x A ,


x B

 be a wave 

function of composite system A  B.  Let x i
B  be the result of a 

measurement, x B  say, performed at B, where i is used to label the 

possible results, discrete or otherwise, of the measurement x B . As a 

result of the measurement of the coordinate, we have a new wave 

function of composite system A  B which [in contrast with Eq.(4.2.5)] 

is given by 

 

x i
B

x A ,


x B  R2


x A  x i

Ax i
B R1


x B  x i

B 
x A ,


x B ,

x i
Ax i

B   x 0  x i
B .

4.2.23

 

 

(ii) Let A  and B are two entangled particles. Let 

p

A
,

p

B

 be a wave 

function of composite system A  B.  Let p j
B
 be the result of a 

measurement, 

p

B
 say, performed at B, where j  is used to label the 

possible results, discrete or otherwise, of the measurement 

p

B
. As a 

result of the measurement of the coordinate, we have a new wave 

function of composite system A  B which is given by 
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p j
B

p

A
,

p

B 

R2


p

A  pj
A pj

B 

R1


p

B  pj
B 

p
A
,

p

B
,

pj
A pj

B  pj
B .

4.2.24

 

 

Remark 4.2.12. The spirit of the original EPR paradox now is 

present, in that the canonical EPR correlations (4.2.2) and (4.2.3) 

well preserved. 

Remark 4.2.13. Note that EPR correlations x i
Ax i

B   x0  x i
B
 and 

pj
A pj

B  pj
B
 however would be demonstrated in a convincing 

manner if the experimentalist could measure each of the conditional 

distributions Px|x i
B and establish that each of the distributions is 

very narrow, in fact constrained so that [2]-[5] 

 

px|x i
B  0 iff |x  i| ,

pp|pj
B  0 iff |p  j| ,

Px|x i
B  0 iff |x  i| ,

Pp|pj
B  0 iff |p  j| .

4.2.25

 

Here i  is the mean of the conditional distribution Px|x i
B and  j  is 

the mean of the conditional distribution Pp|pj
B. 

Remark 4.2.14. We assume now that a coordinate and momentum 

measurements have a Gaussian characteristic function of width of 

the order of 2  

 

R1x  R2x  Rx  exp  x 2

42


R1p 


R2p 


Rp  exp  p2

42

4.2.26

 

In this case the Postulate of Nonlocality would imply, since the 

measurement x B  at B will always imply the result of x  at A  to be 

within the range i  x , that the result of the measurement at A  is 

predetermined to be within a bounded range of width 2 . In a 

straightforward extension of EPR's argument, we replace the words 

‘predict with certainty’ with ‘predict with certainty that the result is 
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constrained to be within the range i   ’. We now consider the 

situation where an experimenter has demonstrated that for every 

outcome x i
B  (and p j

B
) for the measurement x B  (and p B ) performed at 

B, the variance  ix  (and  jp) of the appropriate conditional 

distribution satisfies 

 

ix  1,jp  1 4.2.27
 

 

for all i, j.  

The measurement at B always allows an inference of the result at A  

to a precision better than given by the uncertainty bound 1.  

In this case we do not predict a result at A  with certainty, as in EPR 

original paradox. The measurement x B  at B however does predict 

with a certain probability constraints on the result for x  at A.  

Remark 4.2.15. Note that adjoint probability density p

x A,


x B x i

B
 at 

instant at once after measurement [in contrast with Eq. (4.1.6)] is 

given by 

 

p

x A ,


x B x i

B  x i
B

x A ,


x B 2



Rx A  x i
Ax i

B Rx B  x i
B 

x A ,

x B 2

,

x i
Ax i

B   x 0  x B  i.

4.2.27a

 

 

Then the conditional probability density px i
Bx  px|x i

B  depending on 

a result x i
B  for QM measurement at B is given by 

 

px i
Bx  px|x i

B   




px i
B x,


x B d


x B  





d

x B x i

B x,

x B 2








d

x B Rx A  x i

Ax i
B Rx B  x i

B x,

x B 2

.

4.2.28

 

There is a similar predicted result for the measurement 

p  at A  based 

on a result of measurement at B,  and a corresponding 
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predetermined description based on the QM constraints 

 

p j
B

p

A
,

p

B 

RpA  pj

A pj
B 


RpB  pj

B 
p

A
,

p

B
,

pj
A pj

B  pB .
4.2.29

 

 

The spirit of the original EPR "paradox" is present, in that one can 

perform a measurement on B to enable an estimate of the result x  at 

A  (and similarly for 

p ). 

Abbreviation 4.2.2. For the sake of notational convenience we now 

abbreviate in the remainder of the book: nonloc.ix  and nonloc.ip instead 

 ix  and  jp for the variance  ix  and  jp which were calculated under 

nonlocality assumption (postulate) by conditional probability density 

given by Eq. (4.1.28). 

We define now 

 

nonloc.inf.
2 x  

i
Px i

B nonloc.i
2 x,

nonloc.inf.
2 p  

j
P pj

B nonloc.j
2 p.

4.2.30

 

 

Here nonloc.inf.
2

 x  is the average variance for the prediction (inference) 

of the result x  for 

x  at A,  conditional on a measurement 


x B  at B.  

Here i labels all outcomes of the measurement x  at A,  and µi  and 

 ix  are the mean and standard deviation, respectively, of the 

conditional distribution Px|x i
B,  where x i

B  is the result of the 

measurement 

x B  at B.  We define a nonloc.inf.

2
 p  similarly to represent 

the weighted variance for the prediction (inference) of the result 

p  at 

A,  based on the result of the measurement at B. Here Px i
B is the 

probability for a result x i
B  upon measurement of 


x B , and Ppj

B is 

defined similarly. The criterion to demonstrate the EPR paradox, the 

signature of the EPR paradox, is the criterion to demonstrate the 

EPR paradox, the nonlocal signature of the EPR paradox, is given 

by 
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nonloc.inf. x nonloc.inf. p  1. 4.2.31
 

 

This criterion is a clear criterion for the demonstration of the EPR 

paradox, by way of the argument presented above. Such a 

prediction for x  and p  with the average inference variances given, 

cannot be achieved by any quantum description of the subsystem 

alone. 

 

 

IV.2.3. The EPR-nonlocality criteria 

 

Remark 4.2.16. The principle of locality was a critical component of 

the EPR argument. Actually the EPR paradox is regarded as a 

statement of the mutual incompatibility of locality, entanglement, and 

completeness. Experimental studies of Bell's inequalities have 

shown that quantum mechanics is complete by ruling out the 

possibility of hidden variables. Consequently it is usually accepted 

that the assumption of locality is invalid for entangled states: 

measurement of either particle of an entangled system projects both 

particles onto a state corresponding with the measurement result, 

irrespective of how far apart these particles are. In the situation 

proposed by EPR, the position or momentum of the unmeasured 

particle becomes a reality if and only if, the corresponding quantity 

of the other particle is measured. 

Since only one quantity or the other is measured, the position and 

the momentum of the unmeasured particle need not be 

simultaneous realities. In this way the EPR paradox also is resolved. 

From Eq. (4.2.21) and Eq. (4.2.30) we obtain the EPR-nonlocality 

criteria 

 

 loc.inf.
2 x  nonloc.inf.

2 x  
i
Px i

B  loc.i
2 x  nonloc.i

2 x   0,

 loc.inf.
2 p  nonloc.inf.

2 p  
j
P pj

B  loc.j
2 p  nonloc.j

2 p  0,
4.2.32
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and 

 

nonloc.inf. x nonloc.inf. p  loc.inf. x loc.inf. p  0. 4.2.33  

 

These EPR-nonlocality criteria has been achieved experimentally 

[8], [9], (see subsection IV.5, Remark 4.5.3 - Remark 4.5.4). 

 

 

IV.3. Nonlocal Schrödinger equation implies the 

Postulate of Nonlocality 

 

In this subsection we obtain nonlocal Schrödinger equation (NSE) 

which corresponding to position-momentum entangled pairs A  and B 

(see Fig. 4.2.1) with well correlated position 

 

xB   xA   x0 4.3.1
 

 

and anti-correlated momentum 

 

pB  pA . 4.3.2
 

 

Remark 4.3.1. As pointed out in subsection IV.2 it is generally 

agreed that the assumption of locality is invalid for entangled states: 

measurement of either particle of an entangled system projects both 

particles onto a state consistent with the result of measurement, 

regardless of how far apart the particles are. It allow us to use 

special nonlocal generalization of the canonical Schrödinger 

equation. 

Remark 4.3.2. As pointed out in [10], [11] from nonlocal Schrödinger 

equation one obtains collapsed wave function corresponding to 

GRW collapse model. 

It allow us to use similar nonlocal Schrödinger equation also for 

entangled states. 

Remark 4.3.3. The spirit of the original EPR paradox is present, in 
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that the canonical EPR correlations (4.3.1) and (4.3.2) give a 

boundary conditions for the solutions of the nonlocal Schrödinger 

equation. 

Remark 4.3.4. In this subsection we denote (i) xA  x1 ,xB  x2 ,   

(ii) xA  
x 1 ,  xB  

x 2 

x 1  x0 .  

Definition 4.3.1. Let us consider the time-dependent canonical 

Schrödinger equation 

 

i
x 1 ,x 2 , t

t
 Hx 1 ,x 2 , t,

t  0,T, x 1 ,x 2  2 .

4.3.3

 

 

Let x1 ,x2 , t be a classical solution of the time-dependent 

Schrödinger equation (4.3.3). The time-dependent Schrödinger 

equation (4.3.3) is a weakly well preserved (in sense of Colombeau 

generalized functions) by corresponding to x1 ,x2 , t collapsed 

Colombeau generalized wave function 
#x1 ,x2 , t


,  0,1,  where 

 


#x 1 ,x 2 , t


 x 1 ,x 2 , t;


x 1t,


x 2t 


1,2x 1 ,


x 1t,x 2 ,


x 2t;,x 1 ,x 2 , t

1,2

x 1t,


x 2t;,x 1 ,x 2 , t

2 

,

1,2x 1 ,

x 1 ,x 2 ,


x 2 ;, 

i1

2

 ix i,

x i;,,

 ix,

x it;, 

2 1/4
exp  x i 


x it2

22
iff x i 


x i  ,

0 iff x i 

x i  .

i  1,2.

4.3.4

 

in region   2  if there exists a solution x1 ,x2 , t of Schrödinger 

equation (4.2.1) such that the estimate 
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
D

i


#x 1 ,x 2 , t
t

 H
#x 1 ,x 2 , t dx 1dx 2



 O ,

t  0,T,x 1 ,x 2D,

4.3.5

 

with 1/2  ,  is satisfied. 

Definition 4.3.2. Equation (4.3.5) with a following boundary 

conditions 

 

x B
t  x A

t   x 0 ,

x A
t    x A 

#x A ,x B , t 2
dx Adx B


,

x B
t   x B 

#x A ,x B , t 2
dx Adx B


,

4.3.6

 

that is time-dependent nonlocal Schrödinger equation corresponding 

to EPR entangled state. 

Definition 4.3.3. (i) The time-dependent integral equation (4.3.5) 

with a boundary conditions (4.3.6) is called the time-dependent 

nonlocal Schrödinger equation of the order   corresponding to EPR 

entangled state. 

(ii) Such collapsed wave function #x1 ,x2 , t,  as mentioned in 

Definition 4.3.2 is called the   - solution of the nonlocal Schrödinger 

equation (4.3.5)-(4.3.6) of the order .  

Definition 4.3.4. Let us consider the time-independent canonical 

Schrödinger equation 

 

Hx1 ,x2   0,x1 ,x 2  2 . 4.3.7
 

 

Let x1 ,x2  be a classical solution of the time-independent 

Schrödinger equation (4.3.7). The time-independent Schrödinger 

equation (4.3.7) is a weakly well preserved (in sense of Colombeau 

generalized functions) by corresponding to x1 ,x2  Colombeau 

generalized collapsed wave function 
#x1 ,x2 ,  0,1,  where 
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
#x 1 ,x 2 ,


 x 1 ,x 2 ;


x 1 ,


x 2 , 


1,2x 1 ,


x 1 ,x 2 ,


x 2 ;,x 1 ,x 2 

1,2

x 1 ,


x 2 ;,x 1 ,x 2 2 

,

1,2x 1 ,

x 1 ,x 2 ,


x 2 ;, 

i1

2

 ix i,

x i;,,

 ix,

x i;, 

2 1/4
exp  x i 


x i 2

22
iff x i 


x i  ,

0 iff x i 

x i  .

4.3.8

 

in region   2  if there exists a solution x1 ,x2  of Schrödinger 

equation (4.3.7) such that the estimate 

 


D

H
#x 1 ,x 2 dx 1dx 2



 O ,

x 1 ,x 2 D,

4.3.9

 

 

with 1/2  ,  is satisfied. 

 

Definition 4.3.5. Equation (4.3.9) with boundary conditions 

 

x B  x A   x 0 ,

x A    x A 
#x A ,x B 

2
dx Adx B


,

x B   x B 
#x A ,x B 

2
dx Adx B


,

4.3.10

 

 

that is time-independent nonlocal Schrödinger equation 

corresponding to EPR entangled state. 

Definition 4.3.6. (i) The time-independent integral equation (4.3.9) 

with a boundary conditions (4.3.10) is called the time-independent 

nonlocal Schrödinger equation of the order   corresponding to EPR 

entangled state. 
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(ii) Such collapsed wave function #x1 ,x2  as mentioned in 

Definition 4.3.5 is called the  - solution of the nonlocal 

Schrödinger equation (4.3.9) - (4.3.10) of the order .  

Lemma 4.3.1. Let  be a function 

 

  
0

a

x1 expxfxdx, 4.3.11

 

 

where   1,  0  a  ,0  ,0  .  Assume that fx is continuous on 

0,a.  Then 

 

  1

 f0  o1/ 4.3.12

 

 

Lemma 4.3.2. Let fx be a function such that f  C2x  x0  and 

f  C2x  x0 .  Then 

 

f x  f x
xx0

 f
x0
x  x 0 ,

f x  f x
xx0

 f 
x0

x  x 0   f
x0
 x  x 0 ,

f
x0
 fx 0  0  fx 0  0,

f 
x0

 f x 0  0  f x 0  0.

4.3.13

 

 

Theorem 4.3.1. Assume that there exists a classical solution 

x1 ,x2  of the Schrödinger equation (4.3.7) such that 

 

x1,x2 D

sup |x 1 ,x 2 |  O1/2 ,

x1,x2 D

sup |x 1 ,x 2 /x 1 |  O3/2 ,
x1,x2 D

sup |x 1 ,x 2 /x 2 |  O3/2 .
4.3.14

 

 

Then any collapsed wave function #x is given by Eq. (4.3.8) with 

/  , 1/4    1/2 that is  -solution of the time-independent 
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nonlocal Schrödinger equation (4.3.9)-(4.3.10) of the order .  

Proof. The Schrödinger equation (4.3.7) has the following form 

 

Hx 1 ,x 2   2 2x 1 ,x 2 

x 1
2

 2 2x 1 ,x 2 

x 2
2

 Vx 1 ,x 2 x 1 ,x 2   0. 4.3.15

 

 

Let 
#x1 ,x2  be a function  

 


#x1 ,x2   Rx1 ,


x 1Rx2 ,


x 2x1 ,x2 , 4.3.16

 
 

where 

 

Rx i,

x i 

2 1/4
exp  x i 


x i 2

22
iff x i 


x i  ,

0 iff x i 

x i  .

4.3.17

 

 

From Eq. (4.3.17) by using Eq. (4.3.13) we obtain 

 

Rx 1 ,

x 1

x 1

 1/41x 1 

x 1 exp  x 1 


x 1 2

2


 Rx 1 ,

x 1x 1

x 1 

x 1    Rx 1 ,


x 1x x 1 


x 1  ,

2Rx 1 ,

x 1

x 1
2

 1/41 exp  x 1 

x 1 2

2


1/42x 1 

x 1 2 exp  x 1 


x 1 2

2


Rx 1 ,

x 1

x 1 
x

x 1 

x 1   

Rx 1 ,

x 1

x 1 
x

x 1 

x 1   

Rx 1 ,

x 1 x 

x 1 

x 1    Rx 1 ,


x 1 x 

x 1 

x 1  

4.3.18

 
 

and 
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Rx 2 ,

x 2

x 2

 1/41x 2 

x 2 exp  x 2 


x 2 2

2


 Rx 2 ,

x 2x 1

x 2 

x 2    Rx 2 ,


x 2x x 2 


x 2  ,

2Rx 2 ,

x 2

x 2
2

 1/41 exp  x 2 

x 2 2

2


1/42x 2 

x 2 2 exp  x 2 


x 2 2

2


Rx 2 ,

x 2 

x 2 
x

x 2 

x 2   

Rx 2 ,

x 2 

x 2 
x

x 2 

x 2   

Rx 2 ,

x 2x 

x 2 

x 2    Rx 2 ,


x 2x 

x 2 

x 2  .

4.3.19

 

 

From Eq. (4.3.16) by differentiation we obtain 

2
#x 1 ,x 2 

x 1
2


2Rx 1 ,


x 1Rx 2 ,


x 2x 1 ,x 2 

x 1
2




x 1

x 1 ,x 2 Rx 2 ,

x 2

Rx 1 ,

x 1

x 1

 Rx 1 ,

x 1Rx 2 ,


x 2

x 1 ,x 2 
x 1



2
x 1 ,x 2 

x 1

Rx 2 ,

x 2

Rx 1 ,

x 1

x 1



x 1 ,x 2 Rx 2 ,

x 2

2Rx 1 ,

x 1

x 1
2

 Rx 1 ,

x 1Rx 2 ,


x 2

2x 1 ,x 2 

x 1
2

4.3.20

and 

2
#x 1 ,x 2 

x 2
2


2Rx 1Rx 2 ,


x 2x 1 ,x 2 

x 2
2




x 2

x 1 ,x 2 Rx 1 ,

x 1

Rx 2 ,

x 2

x 2

 Rx 1 ,

x 1Rx 2 ,


x 2

x 1 ,x 2 
x 2



2
x 1 ,x 2 

x 2

Rx 1 ,

x 1

Rx 2 ,

x 2

x 2



x 1 ,x 2 Rx 1 ,

x 1

2Rx 2 ,

x 2

x 2
2

 Rx 1 ,

x 1Rx 2 ,


x 2

2x 1 ,x 2 

x 2
2

.

4.3.21
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By substitution Eq. (4.3.15) and Eq. (4.3.20) - Eq. (4.3.21) into LHS 

of the Eq. (4.3.9) we obtain 

 




H
#x 1 ,x 2 dx 1dx 2 




dx 1dx 2Rx 1 ,

x 1Rx 2 ,


x 2 

2 2x 1 ,x 2 

x 1
2

 2 2x 1 ,x 2 

x 2
2

 Vx 1 ,x 2 x 1 ,x 2  

 2 


dx 1dx 2 

2
x 1 ,x 2 

x 1

Rx 2 ,

x 2

Rx 1 ,

x 1

x 1

 x 1 ,x 2 Rx 2 ,

x 2

2Rx 1 ,

x 1

x 1
2



 2 


dx 1dx 2 

2
x 1 ,x 2 

x 2

Rx 1 ,

x 1

Rx 2 ,

x 2

x 2

 x 1 ,x 2 Rx 1 ,

x 1

2Rx 2 ,

x 2

x 2
2



 1,  2,.

4.3.22

 

Now we go to estimate the quantities 

 

1,  2 


dx 1dx 2 

2
x 1 ,x 2 

x 1

Rx 2 ,

x 2

Rx 1 ,

x 1

x 1

 x 1 ,x 2 Rx 2 ,

x 2

2Rx 1 ,

x 1

x 1
2

4.3.23

 

 

and 

 

2,  2 


dx 1dx 2 

2
x 1 ,x 2 

x 2

Rx 1 ,

x 1

Rx 2 ,

x 2

x 2

 x 1 ,x 2 Rx 1 ,

x 1

2Rx 2 ,

x 2

x 2
2

4.3.24

 

From Eq. (4.3.23) using Eq. (4.3.14) we obtain 
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|1,|  2 


dx 1dx 2 

2
x 1 ,x 2 

x 1

Rx 1 ,

x 1

Rx 2 ,

x 2

x 1

 |x 1 ,x 2 |Rx 1 ,

x 1

2Rx 2 ,

x 2

x 1
2

 2O1/2  


Rx 2 ,

x 2

Rx 1 ,

x 1

x 1

dx 1dx 2 

 O3/2  


Rx 2 ,

x 2

2Rx 1 ,

x 1

x 1
2

dx 1dx 2 

 2O1/2  


Rx 2 ,

x 2dx 2 



Rx 1 ,

x 1

x 1

dx 1 

O3/2  


Rx 2 ,

x 2dx 2 



2Rx 1 ,

x 1

x 1
2

dx 1 

 


Rx 2 ,

x 2dx 2 2O1/2  



Rx 1 ,

x 1

x 1

dx 1  O3/2  


2Rx 1 ,

x 1

x 1
2

dx 1 .

4.3.25

 

From Eq. (4.3.24) using Eq. (4.3.14) we obtain 

 

|2,|  2 


dx 1dx 2 

2
x 1 ,x 2 

x 2

Rx 1 ,

x 1

Rx 2 ,

x 2

x 2

 |x 1 ,x 2 |Rx 1 ,

x 1

2Rx 2 ,

x 2

x 2
2



2O1/2  


Rx 1 ,

x 1

Rx 2 ,

x 2

x 2

dx 1dx 2 

O3/2  


Rx 1 ,

x 1

2Rx 2 ,

x 2

x 2
2

dx 1dx 2

2O1/2  


Rx 1 ,

x 1dx 1 



Rx 2 ,

x 2

x 2

dx 2 

O3/2  


Rx 1 ,

x 1dx 1 



2Rx 2 ,

x 2

x 2
2

dx 2 




Rx 1 ,

x 1dx 1 2O1/2  



Rx 2 ,

x 2

x 2

dx 2  O3/2  


2Rx 2 ,

x 2

x 2
2

dx 2 .

4.3.26

 

 

Having substituted Eq. (4.3.18) into Eq. (4.3.25) and Eq. (4.3.19) 

into Eq. (4.3.26) and having applied Lemma 4.3.1 we have finalized 

the proof of the Eq. (4.3.9). 

We assume now that 
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




|x1 ,x 2 |2dx 1dx2  1. 4.3.27
 

 

From Eq. (4.3.27) and Eq. (4.3.17) by Lemma 4.3.1 we obtain 

 






R
2x 1 ,


x 1R

2x 2 ,

x 2|x 1 ,x 2 |2dx 1dx2  1 4.3.28

 

 

From Eq. (4.3.16) - Eq. (4.3.17) by Lemma 4.3.1 we obtain 

 

x A     x 1
#x 1 ,x 2 dx 1dx 2 

  x 1R
2x 1 ,


x 1R

2x 2 ,

x 2|x 1 ,x 2 |2dx 1dx 2 


x 1 ,

x B     x 2
#x 1 ,x 2 dx 1dx 2 

  x 2R
2x 1 ,


x 1R

2x 2 ,

x 2|x 1 ,x 2 |2dx 1dx 2 


x 2 .

4.3.29

 

 

We choose now: x 1  xA,

x 2  xB  xA  x0 ,  then a boundary condition 

xB  xA   x0  given by Eq. (4.3.10) is satisfied. 

 

 

IV.4. Position-momentum entangled photon pairs in 

non-linear wave-guide 

 

The physical system where we expect the entangled photon states 

to appear include: (A) a Kerr-type nonlinear single-mode wave-guide 

characterized by strong photon-photon coupling [12] or (B) a chain 

of coupled non-linear resonators. For two photons with momenta 

k1  k0  δkandk2  k0  δk and dispersion 

 

ωk0  δk  ωk0  vδk  βδk2 /2, 4.4.1
 

 

where v  is the photon group velocity, the variation of the energy of a 

photon pair is 
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2ω  ωk0  δk  ωk0  δk  2ωk0  βδk2 . 4.4.2
 

 

As the photon-photon interaction conserves both energy and 

longitudinal momentum, the two-photon states propagating along 

the non-linear transmission line can be described by the Fock 

function 

 

|ψ2k0
  dk1dk2δk1  k2  2k0fk1  k2|k1 ,k2  4.4.3

 

 
 

Fig. 4.4.1. Entangled two-photon states in non-linear wave guides. 

Adapted from [12] 

 

(a) Spectrum of a two-photon state, E  E  2ωk0|β|/κ2 ,  with total 

momentum 2k 0  in a wave-guide with quadratic dispersion (4.3.1) for 

β  0,κ  0 (left) and β  0,κ  0 (right). Solid line corresponds to the 

continuous spectrum, while the single eigenvalue corresponding to 

the entangled state is shown by dashed line. 

(b) Wigner function of the two-photon entangled state. It takes 

negative values, which is a hallmark of non-Gaussian entangled 

states. 
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To demonstrate the principle of position-momentum entanglement of 

photons in Kerr-nonlinear systems, we, first, consider the entangled 

photon pairs in non-linear optical wave-guides. Classically, Kerr 

nonlinearity in an isotopic medium manifests itself in the third-order 

polarisation P3  3E  EE  αE  EE,  where + and - 

correspond to positive and negative frequency parts, E is the electric 

field, 3  is the susceptibility of the medium 3=xyxy
3

, α xxyy
3

/23.  

Quantizing electromagnetic field, integrating over transverse 

degrees of freedom, and neglecting magneto-optical effects (α  0) 

leading to entanglement over polarization degrees of freedom, one 

obtains the following Hamiltonian (  c  1): 

 

H  H0  Hint,H0  k
kωkak

 ak,

Hint  k
L


k1,k2,k3,k4

δk 1  k 2 ,k 3  k 4ak4

 ak3

 ak1
ak2

,
4.4.4

 

 

where akak
  is the annihilation (creation) operator of a photon with 

longitudinal momentum k  and energy ω k , L  is the length of the 

system. The non-linear term Hint  in Eq. (4.4.3) describes photon-

photon interaction with coupling κ  πω2χ3/2nr
4A0 ,  where n r  is the 

refraction index, A  is the area occupied by the wave-guide mode and 

0  is the vacuum permittivity. Hamiltonian (4.4.3) can be 

diagonalized exactly in the case of 2ω  δk2 .  We consider a sector 

of the Hilbert space, which consists of all the two-photon states with 

the total pair momentum 2k 0  and assume the effective mass 

approximation for the wave-guide dispersion given by Eq. (4.4.1). In 

the coordinate domain, ax  1/ L 
k  ak expik  k0x,  the Hamilton 

Eq.(4.4.3) takes the form 

 

H  dx ωk0
ax
ax  ivax

xax  1
2
βax

2ax  1
2
dx 1dx 2ax1

 ax2

 Ux1  x 2ax1ax2 , 4.4.5
 

 

where Ux1  x2  2κδx1  x2.  For a two-photon state, described by 

the wave-function 
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t
A/Bx 1 ,x 2   ψ  dx 1dx 2 fx 1 ,x 2ax1

 ax2


|0, 4.4.6.a

 

 

one obtains the following Schrödinger equation: 

 

2ωk0
 ivx1  x2  1

2
βx1

2  x2

2   2κδx 1  x 2fx1 ,x 2  Efx 1 ,x 2, 4.4.6.b
 

 

where E  is the energy of a two-photon state. Equation (4.4.6b) has 

scattering state solutions, which correspond to the continuous 

spectrum of non-interacting photons with energies given by 

Eq.(4.4.2) (See Fig. 4.4.1(a)). When the curvature of the wave-guide 

dispersion  and the photon coupling constant κ are of opposite 

signs, βκ  0,  there exists a bound state solution with 

 

fx 1 ,x 2 
ξ

2L
exp|x 1  x 2 |ξ,ξ  |κ/β| 4.4.7

 

 

The energy of this state is split from the continuum of weakly 

correlated scattering states, as we show in Fig. 4.4.1(a), and it is 

given by 

 

Eb  2ωk0
 κ2 /β, 4.4.8  

 

as expected from binding of a one-dimensional massive particle to 

an attractive -functional potential well [13]. In the momentum 

domain, the two-photon bound state wave-function is given by 

Eq.(4.4.3) with 

 

fk 1  k 2 
8ξ3/2

2L k 1  k 22  4ξ2
4.4.9

 

 

The state (4.4.9) can be characterised by the Wigner function 

defined as the expectation value 

 

β

δ
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Wx1 ,k1 ;x2 ,k2  π2ψ|Πx1 ,k1 Πx2 ,k2|ψ  

 

of the parity operator 

 

Πx,k   dζe2ixζakζ


|00|akζ.  

 

After straightforward calculations, one obtains 

 

Wx 1 ,k 1 ;x 2 ,k 2 
ξ2e2ξ|δx|

2π2δk 2  ξ2
cos2δk|δx| 

ξ

δk
sin2δk|δx|δk 1  k 2 ;2k 0, 4.4.10

 

 

where δx  x1  x2 .  This function is negative for 

cos2δk|δx|  ξ/δksin2δk|δx|  0,  as shown in Fig. 4.4.1(b), which 

implies that the state (4.4.9) is entangled in position-momentum 

degrees of freedom. Moreover, for ξ  ,  the two-photon wave-

function approaches the ideal Einstein-Podolsky-Rosen state in 

which position and momenta are perfectly (anti-) correlated: 

 

ψ  dδk|k0  δk,k0  δk  dxe2ik0x |x,x.
 

 

Alternatively, to demonstrate that the state (4.4.9) is entangled in 

position-momentum degrees of freedom, one can find the 

uncertainties x1  x2 and k1  k2 calculated over the joint 

probability distributions Px1 ,x2 and Pk1 ,k2 respectively, for which, 

the separability criterion: 

 

x2  x12k2  k2  1, 4.4.11  

 

can be applied. Although, the states for which the inequality (4.4.11) 

is violated are inseparable, they do not necessarily lead to EPR 

paradox. In order for an EPR "paradox" to arise, correlations must 

violate a more strict inequality: 
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x2  x12k1  k22  1/4, 4.4.12  

 

which can be accessible experimentally. 

Nonlocal Schrödinger equation (4.3.9) corresponding to Schrödinger 

equation (4.4.6) (see subsection IV.3) is 

 

  dx 1d x 2 2ωk0
 ivx1  x2  1

2
βx1

2  x2

2   2κδx 1  x 2f #x 1 ,x 2 

Efx 1 ,x 2  0,

4.4.13

 

 

where f #x1 ,x2 is given by Eq. (4.3.8). 

Remark 4.4.1. Note that. We assume now the canonical postulate of 

locality. Then: 

(a) Whenever a measurement of the coordinate x 2  of a particle B is 

performed at instant t  with the result x 2
B  x2  ,x2  ,  1 

according to quantum mechanics a state vector | t
x2 

B  collapses at 

instant t  to the state vector 


t,,,xB

x2

B
~

LxB

B
,|t

x2 
B

, 4.4.14
 

see Chapter I. 

(b) Under conditions given by Eq. (4.4.14) two-particle wave function 

t
A/Bx1 ,x2  given by Eq. (4.4.6b), collapses at instant t  by the law 

 

t
A/Bx1 ,x2 

col lapse



LxB

B
,t

A/Bx 1 ,x2 . 4.4.15  

Remark 4.4.2. Note that. We assume now the postulate of 

nonlocality. Then: 

(i) Whenever a measurement of the coordinate x 1  of a particle B is 

performed at instant t  with the result xB  x1  ,x1  ,  1.  Then: 

(a) According to quantum mechanics a state vector | t
x 

B  collapses 

at instant t  to the state vector 

 


t,,,xB

x1

B
~

LxB

B
,|t

x1 
B

, 4.4.16
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where 

LxB

B
, is a norm-reducing, positive, self-adjoint, linear 

operator in the 2 -particle non projective Hilbert space H, 

representing the localization of particle B  around the point xB ,  see 

Chapter I. 

(b) According postulate of nonlocality (see Chapter I) a state vector 

| t
x2 

A  immediately collapses at instant to the state vector 

 


t,,,xA

x1

A
~

LxBx0

A
,|t

x1 
A

4.4.17
 

and this is true independent of the distance in Minkovski spacetime 

M4  1,3  that separates the particles. Thus 

 

|t
x 

B

col lapse
 

t,,,xB
x

B
 |t

x 
A

col lapse
 

t,,,xBx0

x

A
. 4.4.18

 

(ii) Under conditions given by Eq. (4.4.16) - Eq. (4.4.18) two-particle 

wave function t
A/Bx1 ,x2  given by Eq. (4.4.6b) collapses at instant t  

by the law 

 

t
A/Bx1 ,x 2 

col lapse



LxBx0

A 
LxB

B
,t

A/Bx1 ,x2 . 4.4.19  

 

 

IV.5. Position-momentum entangled photon pairs and 

the experimental verification of the postulate of 

nonlocality 

 

In paper [14] it is reported on a demonstration of the EPR paradox 

using position-entangled and momentum-entangled photon pairs 

produced by spontaneous parametric down conversion. Transverse 

correlations from parametric down conversion have been studied 

both theoretically and experimentally. It was find experimentally that 

the position and momentum correlations are strong enough to allow 

the position or momentum of a photon to be inferred from that of its 

partner with a product of variances  0.012 ,  which violates the 
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separability bound by 2  orders of magnitude. In the idealized 

entangled state proposed by EPR, the positions and momenta of the 

two particles are perfectly correlated. However such idealized 

entangled state is non-normalizable and cannot be realized in the 

laboratory. However, the state of the light produced in parametric 

down conversion can be made to approximate the EPR state under 

suitable conditions. In parametric down conversion, a pump photon 

is absorbed by a nonlinear medium and reemitted as two photons 

(conventionally called signal and idler photons), each with 

approximately half the energy of the pump photon. Considering only 

the transverse components, the momentum conservation of the 

down conversion process requires p
1
 p

2
 p

p
,  where 1,2,  and p  

refers to the signal, idler, and pump photons, respectively. Provided 

the uncertainty in the pump transverse momentum is small, the 

transverse momenta of the signal and idler photons are highly 

anticorrelated. The exact degree of correlation depends on the 

structure of the signal idler state. In the regime of weak generation, 

this state has the form 

 

|1,2
 |vac  dp

1
dp

2
Ap

1
,p

2
|p1

,p
2 , 4.5.1

 

 

where vac  denotes the vacuum state and the two-photon amplitude 

Ap
1
,p

2
 is 

Ap
1
,p

2
  Epp1

,p
2


expikzL  1

ikz

. 4.5.2
 

 

Here is the coefficient of the nonlinear interaction, Ep  is the 

amplitude of the plane-wave component of the pump with transverse 

momentum p1p2 ,L is the length of the nonlinear medium, and  
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kz  kp,z  k1,z  k2,z  (where k  p/) is the longitudinal wave vector 

mismatch, which generally increases with transverse momentum 

and limits the angular spread of signal and idler photons. The 

vacuum component of the state makes no contribution to photon 

counting measurements and may be ignored. Also, there is no 

inherent difference between different transverse components; so 

without loss of generality, we consider the scalar position and 

momentum. The narrower the angular spectrum of the pump field 

and the wider the angular spectrum of the generated light, the more 

closely the integral (4.4.1) approximates 

 

dp1dp2p1  p2 |p1 ,p2   |EPR 

 

and the stronger the correlations in the position and momentum 

become. The experimental setup used to determine position and 

momentum correlations is portrayed in Fig. 4.5.1(a)-(b). The idea is 

to measure the positions and momenta by measuring the down 

converted photons in the near and far fields, respectively [15]. The 

source of entangled photons is spontaneous parametric down 

conversion generated by pumping a 2 mm thick type-II-barium-

borate (BBO) crystal with a 30 mW, cw, 390 nm laser beam. A prism 

separates the pump light from the down converted light. The signal 

and idler photons have orthogonal polarizations and are separated 

by a polarizing beam splitter. In each arm, the light passes through a 

narrow 40 m vertical slit, a 10 nm spectral filter, and a microscope 

objective. The objective focuses the transmitted light onto a 

multimode fiber which is coupled to an avalanche photodiode single-

photon counting module. The spectral filter ensures that only 

photons with nearly equal energies are detected. 
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Fig. 4.5.1(a). Experimental setup for measuring position photon 

correlations. Position correlations are obtained by imaging the birth 

place of each photon of a pair onto a separate detector. Adapted 

from [14] 

 

 

 

 
 

Fig. 4.5.1(b). Experimental setup for measuring correlations in 

transverse momentum. Correlations in transverse momentum are 

obtained by imaging the propagation direction of each photon of a 

pair onto a separate detector. Adapted from [14] 
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To measure correlations in the positions of the photons, a lens of 

focal length 100 mm (placed prior to the beam splitter) is used to 

image the exit face of the crystal onto the planes of the two slits 

[Fig.4.5.1(a)]. One slit is fixed at the location of peak signal intensity. 

The other slit is mounted on a translation stage. The photon 

coincidence rate is then recorded as a function of the displacement 

of the second slit. 

To measure correlations in the transverse momenta of the photons, 

the imaging lens is replaced by two lenses of focal length 100 mm, 

one in each arm, at distance f from the planes of the two slits 

[Fig.4.5.1(b)]. These lenses map transverse momenta to transverse 

positions, such that a photon with transverse momentum k  comes 

to a focus at the point x  fk/k  in the plane of the slit. Again, one slit 

is fixed at the location of the peak count rate while the other is 

translated to obtain the coincidence distribution.  

By normalizing the coincidence distributions, the conditional 

probability density functions px2 |x1  and pp2 |p1  were obtained (see 

Fig. 4.5.2-4.5.3). 

 

These probability densities are then used to calculate the 

uncertainty in the inferred position or momentum of photon 2 given 

the position or momentum of photon 1: 

 

x 2
2x 1    x 2

2px 2 |x 1 dx 2   x 2px 2 |x 1 dx 2

2

,

p2
2p1    p2

2pp2 |p1 dx 2   p2pp2 |p1 dx 2

2

.

4.5.3

 

 

Because of the finite width of the slits, the raw data in Fig. 4.5.2-

4.5.3 describe a slightly broader distribution than is associated with 

the down conversion process itself.  

By adjusting the computed values of x 2  and p2  to account for this 

broadening (an adjustment smaller than 10%), we obtain the 

correlation uncertainties x2  0.027 mm and Δp2 3.7 mm 1 . 
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Fig. 4.5.2. The conditional probability distribution of the relative 

birthplace of the entangled photons. The solid line is the theoretical 

prediction and the dots are the experimented data. Adapted from 

[14] 

 

 
 

Fig. 4.5.3. The conditional probability distribution of the relative 

transverse momentum of the entangled photons. The solid line is the 

theoretical prediction and the dots are the experimented data. 

Adapted from [14] 
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The widths of the distributions determine the uncertainties in 

inferring the position or the momentum of one photon from that of 

the other. The experimentally measured variance product is then 

[14] 

expx2
2x1 expp2

2p1   0.012 . 4.5.4
 

Also shown in Fig. 4.5.2-4.5.3 are the predicted probability densities. 

These curves contain no free parameters and are obtained directly 

from the two-photon amplitude Ap1 ,p2  [14], which is determined by 

the optical properties of BBO and the measured profile of the pump 

beam. Figure 4.5.2 indicates that the correlation widths obtained are 

intrinsic to the down conversion process and are limited only by the 

degree to which it deviates from the idealized EPR state (4.5.1). The 

value of p2  p1  is limited by the finite width of the pump beam. 

The pump photons in a Gaussian beam of width w  have an 

uncertainty /2w  in transverse momentum which, due to conservation 

of momentum, is imparted to the total momentum p1  p2  of the signal 

and idler photons. The value of x2  x1  is limited by the range of 

angles over which the crystal generates signal and idler photons. If 

the angular width of emission is  , then the principle of diffraction 

indicates that the photons cannot have a smaller transverse 

dimension than ~k s,i1 .  Careful analysis based on the angular 

distribution of emission yields x2  x1   1.88k s,i1  [14]. With the 

measured beam width of w  0.17 mm and predicted angular width 

0.012 rad, the theory predicts [14]: 

 

th x2
2x1 th p2

2p1   0.00362 . 4.5.5
 

Remark 4.5.1. This is somewhat smaller than the experimentally 

calculated value of 0.012 , even though the data appear to closely 

match the theoretical curves 

expx2
2x1 expp2

2p1   th x2
2x1 th p2

2p1   0.012  0.00362  0.00642 . 4.5.6  

Remark 4.5.2. The reason for this discrepancy is that the 

experimental distributions have small (1% of the peak) but very 

broad wings. 



154 

 

Remark 4.5.3. The origin of these uncoincidence counts is unknown 

[14]. 

Remark 4.5.4. In paper [14] it was assumed that these counts are 

perhaps due to scattering from optical components. If these counts 

are treated as a noise background and subtracted, the 

experimentally obtained uncertainties come into somewhat better 

agreement with the theoretically predicted values, yielding an 

uncertainty product of 0.0042 : 

EPR
nonloc.x2  x1 ,p2  p1   expx2

2x1 expp2
2p1   th x2

2x1 th p2
2p1   0.0062 . 4.5.7  

Thus final value of uncoincidence counts is 

 

EPR
nonloc.x2  x1 ,p2  p1   0.0062 . 4.5.8  

Remark 4.5.5. Note that the separability criterion derived by Mancini 

et al. [16] is more useful here. We remind that it states that 

separable systems satisfy the joint uncertainty product 

 

x2  x1 p2  p1   2 , 4.5.9  

where the uncertainties are calculated over the joint probability 

distributions Px1 ,x2  and Pp1 ,p2 , respectively. In these experiments 

the widths of the conditional probability distributions are P. 

Therefore the results of [14] constitute a 2-order-of-magnitude 

violation of Mancini's separability criterion as well as a strong 

violation of EPR criterion. 

 

 

IV.6. The EPR Paradox Resolution by using quantum 

mechanical formalism based on the probability 

representation of quantum states 

 

IV.6.1. Preleminaries 

 

We remind that any given n -dimensional quantum system is 

identified by a set Q : 
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Q  H,,,2,1 ,H,G, |t  4.6.1  

where: 

(i) H that is some infinite-dimensional complex Hilbert space, 

(ii)   ,,P  that is complete probability space ,  

(iii)   n ,  that is measurable space ,  

(iv) 2,1  that is complete space of complex valued random 

variables X :   n  such that 

 



XdP  , 


X2dP  , 4.6.2

 

see Chapter II subsection II.1 postulate Q.I.1. 

Remark 4.6.1. Let BM4  be a Boolean algebra of physical events in 

Minkowski spacetime and let M4

ph  BM4
,P  be a measure algebra of 

physical events in Minkowski spacetime, i.e., M4

ph

 that is a Boolean 

algebra BM4  with a probability measure P,  see Chapter III 

subsection III.2, Definition 3.2.3. 

We remind that we denote such physical events by Ax,Bx, . . .  etc., 

where x  t,x1 ,x2 ,x3   M4  or A,B, . . .  etc., and we write for a short 

AOcx,BOcx, . . .  iff there physical events Ax,Bx. . .  were occured. 

 

Remark 4.6.2. We assume that particle A  is initially in the state 

|A   H.  Let 
Aq, t  A |A ,Q,q,q, t  BM4  be a physical event 

which consists of the performing a measurement of the observable 

Q  
q 1

q 2
q|qq|dq

 with the accuracy q,  and the result is obtained in the 

range q  q,q  q  at the instant t.  

We assume that 
A |A ,Q,q,q, t  M4

ph
.
 

 

Remark 4.6.3. Note that: if the physical event  was 

occurred then immediately after the measurement at the instant  

A |A ,Q,q,q, t

t
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unconditional measure  collapses to conditional measure 

P X A |A ,Q,q,q, t ,
 where X  M4

ph
: 

 

P X A |A ,Q,q,q, t 
P X  A |A ,Q,q,q, t

P A |A ,Q,q,q, t

. 4.6.3

 

 

Remark 4.6.4. Remind if we are to suppose that a particle at a 

definite position x  is to be assigned a state vector |x  H,  and if 

further we are to suppose that the possible positions are continuous 

over the range ,  and that the associated states are complete, 

then we are lead to requiring that any state |A  of the particle must 

be expressible as 

 

|A   



|x x|A dx 4.6.4

 

with the states |x   by  -function normalised, i.e. x|x    x  x .  

Definition 4.6.1. Let B  a,b  a,b  where a,b  Ba,b  is the Borel 

algebra on a set a,b.  Let |  H. We define now a signed measure 

P|A  : B    by formula 

 

P|A A  
A

xp |A xdx, 4.6.5

 

 

where p|A x  |x|A |2 .  
 

Remark 4.6.5. We assume now that ,,P  ,B,PB   and P|

 PB , i.e. P
|  is absolutely continuous with respect to P .By Radon-

Nicodym theorem we obtain for any A  a,b : 

 

P|A  
A

X |dP, 4.6.6

P
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i.e. 

 

X | 
dP|

dP
. 4.6.7

 

Remark 4.6.6. We assume now that: (i) a measure algebra 

M4

ph  BM4
,P  admits a representation  : M4

ph  ,B,PB   of the 

measure algebra M4

ph  BM4
,P  in the measure algebra 

B  ,B,PB ,  such that (ii) PBX  P1X  for any X  B  and 

(iii) for any physical event such that 
A |A ,Q,q,q, t  M4

ph

 (see 

Remark 4.6.2) the following condition holds 

 

 A |A ,Q,q,q, t  |q  q  X |A   q  q, 4.6.8
 

 

where |q  q  X |A   q  q  B.  

 

 

IV.6.2.The EPR Paradox Resolution 

 

The classical weak EPR argument 

We briefly remind now the EPR argument [1]. Suppose that a 

system of two identical particles is prepared in a state such that their 

relative distance is large and constant |r1  r2 |  L  x0 , i.e., they are 

space-like separated, and the total momentum is zero p
1
 p

2
 0  

(see Fig. 4.6.1). 

 

This preparation is, in principle, possible because the two 

observables, say x 1  x 2  and p
1
 p

2 , are compatible, i.e., both of 

them can be set to certain values with certainty on the same state. 

Correspondingly according to quantum mechanics they are in fact 

represented by commuting operators [1]. 
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Fig. 4.6.1. Schematic representation of EPR thought experiment 

 

Remark 4.6.7. Then one can measure the value of either of the two 

incompatible single particle observables, say x 1  or p1  and 

correspondingly deduce the value of either x2  x0  x1  or p2  p1  

without interacting with particle 2. Because of this they correspond, 

according to the EPR argument, to elements of reality of the state of 

particle 2 that are independent of measurements and should be 

predictable by the theory [1]. On the other hand, quantum 

mechanics cannot predict the value of both x 2  and p2  on the same 

state, because they are incompatible observables and this would be 

in contrast to Heisenberg uncertainty principle. 

Remark 4.6.8. Thus, to conclude EPR, there are elements of reality 

of a state that cannot be predicted by the theory and therefore the 

theory is incomplete [1]. 

 

The strong EPR argument 

Remark 4.6.9. Note then in additional to canonical EPR thought 

experiment: (i) one can measure at instant t  the value of single 

particle 1 observable, say x 1
t
 and deduce the value x2

t  x0  x1
t
 of 

particle 2 at instant t  without interacting with particle 2 which at 

instant t  is in a state, say 2
t
. Such a measurement however is not 

disturbed by the particle 2 and thus is not altered by its state 2
t
 and 

therefore the value of single particle 2 observable, say p2  is the 

same as before the measurement on particle 1. Therefore one can 

measure the value  in the state  exactly without any p2
t 2

t
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uncertainty. On the other hand, Heisenberg uncertainty principle 

predicts that the position  and the momentum  of any particle 

cannot both be measured or predicted exactly, at the same time , 

even in the theory. 

Let A and B  be two particles A  and B with a state vector |A  

 

|A   



|x x|A dx 4.6.9

 

and with a state vector |B  

 

|B   



|x x|B dx 4.6.10

 

respectively, and with perfectly correlated position 

 

xB  xA  x0 4.6.11  

and perfectly anti-correlated momentum 

 

pB  pA. 4.6.12  

We define now a signed measures P|A  : B    and P|B  : B    by 

formulas 

 

P|A A  
A

xp |A xdx, 4.6.13

 

and 

 

P|B A  
A

xp |B xdx, 4.6.14

 

where p|A x  |x|A |2  and p|B x  |x|B |2  respectively. 

Remark 4.6.10. We assume now that ,,P  ,B,P  and 

(i) P|A   P,  

(ii) P|B   P.  

We define now random variables X |A   and X |B   by formulas 

x 2
t p2

t

t
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X |A  
dP|A 

dP
,X |B  

dP|B 

dP
4.6.15

 

respectively. Notice that from Eq. (4.6.11), Eq. (4.6.13)-(4.6.14) and 

Eqs.(4.6.15) it follows that 

 

X |B   X |A   x0 ,a.s. 4.6.16  

Let 
B |B ,X,xB ,x, t  BM4  be a physical event which consists of 

performing a measurement of the observable X  
x1

x2
x|x x |dx  with an 

accuracy x,  and the result is obtained in the range xB  x,xB  x  

at instant t.  

Remark 4.6.11. Note that: if the physical event  was 

occurred then immediately after the measurement at the instant  

unconditional measure  collapses to conditional measure 

P X B |B ,X,xB ,x, t ,
 where X  M4

ph
: 

 

P X B |B ,X,xB ,x, t 
P X  B |B ,X,xB ,x, t

P B |B ,X,xB ,x, t
, 4.6.17

 

see Remark 4.6.3. 

Notice that: (i) from Eq. (4.6.8) it follows that 

 

 B |B ,X,xB ,x, t  X B

xB ,x, 4.6.18
 

where we write for short X B

xB ,x  instead 

|xB  x  X |B   xB  x,  i.e. 

 

B |B ,X,xB ,x, t

t

P
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X B
xB ,x  |xB  x  X |B   xB  x, 4.6.19

 

see Remark 4.6.2; 

(ii) from Eq. (4.6.11), Eq. (4.6.16) and Eq. (4.6.19) it follows that 

 

X B
xB ,x  |xB  x  X |B   xB  x 

|x B  x 0   x  X |B   x 0  xB  x 0   x 

|xA  x  X |A   xA  x  X B
xA,x,

4.6.20

and thus 

X B
xB ,x  X B

xA,x 4.6.21
 

(iii) from Eq. (4.6.17) - (4.6.19) it follows that: (i) unconditional 

measure PB  immediately after the measurement at instant t  

collapses to conditional measure PBX||B xB ,x,  where X  B : 

 

PB X |B xB ,x 
PB X  X B

xB ,x

PB X B
xB ,x

. 4.6.22

 

Remark 4.6.12. (i) From Eq. (4.6.22) it follows that the unconditional 

probability density function pBx  |x|B |2  immediately after the 

measurement at instant t  collapses to the following conditional 

probability density function as 

 

pB x|X B
xB ,x 

pBx

PB X B
xB ,x

 x  X B
xB ,x

0  x  X B
xB ,x

4.6.23

 

see Appendix B. 

(ii) From Eq. (4.6.21) and Eq. (4.6.22) it follows that the 

unconditional probability density function pAx  |x|A |2  immediately 

after the measurement at instant t  collapses to the following 

conditional probability density function as 
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pA x|X 
A

xA,x 

pAx

PB X 
A

xA,x
 x  X 

A

xA,x

0  x  X 
A

xA,x

4.6.24

 

From Eq. (4.6.23) it follows that a wave function Bx  x|B   

immediately after the measurement at instant t  collapses to the 

following wave function 

B
coll x 

Bx

PB X B
xB ,x

 x  X B
xB ,x

0  x  X B
xB ,x

4.6.25

 

From Eq. (4.6.24) it follows that immediately after the measurement 

on particle B  at instant t  a wave function Ax  x|A   collapses to 

the following wave function 

 

A
coll x 

Ax

PB X 
A

xA,x
 x  X 

A

xA,x

0  x  X 
A

xA,x

4.6.26

 

Thus the measurement on particle B  alters a wave function Ax  

even if particles A and B  are space-like separated and therefore 

EPR paradox disappears. 
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Chapter V 

 

ERP-B PARADOX RESOLUTION 

 

V.1. EPR-B experiment 

 

The EPR-B, the spin version of the Einstein-Podolsky-Rosen 

experiment proposed by Bohm, see [17], [18] Bohm: "We consider a 

molecule of total spin zero consisting of two atoms, each of spin 

one-half. The wave function of the system is therefore 

 

  1/ 2 12  12  

where 1 refers to the wave function of the atomic state in which 

one particle (A) has spin /2,  etc. The two atoms are then separated 

by a method that does not influence the total spin. After they have 

separated enough so that they cease to interact, any desired 

component of the spin of the first particle A is measured. Then, 

because the total spin is still zero, it can immediately be concluded 

that the same component of the spin of the other particle B is 

opposite to that of A. If this were a classical system, there would be 

no difficulty in interpreting the above results, because all 

components of the spin of each particle are well defined at each 

instant of time. Thus, in the molecule, each component of the spin of 

particle A has, from the very beginning, a value opposite to that of 

the same component of B; and this relationship does not change 

when the atom disintegrates. In other words, the two spin vectors 

are correlated. Hence, the measurement of any component of the 

spin of A permits us to conclude also that the same component of B 

is opposite in value. The possibility of obtaining knowledge of 

the spin of particle B in this way evidently does not imply any 

interaction of the apparatus with particle B or any interaction 

between A and B. 

In quantum theory, a difficulty arises, in the interpretation of the 
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above experiment, because only one component of the spin of each 

particle can have a definite value at a given time. Thus, if the x  

component is definite, then the y  and z  components are 

indeterminate and we may regard them more or less as in a kind of 

random fluctuation. 

In spite of the effective fluctuation described above, however, the 

quantum theory still implies that no matter which component of the 

spin of A may be measured the same component of the spin of B 

will have a definite and opposite value when the measurement is 

over. Of course, the wave function then reduces to 12 or 

12, in accordance with the result of the measurement. Hence, 

there will then be no correlations between the remaining 

components of the spins of the two atoms. Nevertheless, before the 

measurement has taken place (even while the atoms are still in 

flight) we are free to choose any direction as the one in which the 

spin of particle A (and therefore of particle B) will become definite. 

In order to bring out the difficulty of interpreting the result, let us 

recall that originally, the indeterminacy principle was regarded as 

representing the effects of the disturbance of the observed system 

by the indivisible quanta connecting it with the measuring apparatus. 

This interpretation leads to no serious difficulties for the case of a 

single particle. For example, we could say that on measuring the z  

component of the spin of particle A, we disturb the x  and y  

components and make them fluctuate. This point of view more 

generally implies that the definiteness of any desired component of 

the spin is (along with the indefiniteness of the other two 

components) a potentiality which can be realized with the aid of a 

suitably oriented spinmeasuring apparatus. 

In the case of complementary pairs of continuous variables, such as 

position and momentum, one obtains from this point of view the well 

known wave-particle duality. In other words, the electron, for 

example, has potentialities for mutually incompatible wave-like and 

particle-like behavior, which are realized under suitable external 

conditions. In the laboratory those conditions are generally 

determined by the measuring apparatus although, more generally, 
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they may be determined by any arrangement of matter with which 

the electron interacts. But in any case, it is essential that there must 

be an external interaction, which disturbs the observed system in 

such a way as to bring about the realization of one of its various 

mutually incompatible potentialities. As a result of this disturbance, 

when any one variable is made definite, other (noncommuting) 

variables must necessarily become indefinite and undergo 

fluctuation. 

Evidently, the foregoing interpretation is not satisfactory when 

applied to the experiment of ERP. It is of course acceptable for 

particle A alone (the particle whose spin is measured directly). But it 

does not explain why particle B (which does not interact with A or 

with the measuring apparatus) realizes its potentiality for a definite 

spin in precisely the same direction as that of A. Moreover, it cannot 

explain the fluctuations of the other two components of the spin of 

particle B as the result of disturbances due to the measuring 

apparatus. 

In this subsection we explain EPR-B experiment using reduction to a 

sort of generic EPR correlations for two particles A and B with 

maximally correlated position zA  and zB .  This explanation avoids the 

EPR-Bohm paradox. 

 

 

 

 

Fig. 5.1.1. Einstein-Podolsky-Rosen-Bohm experiment 
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Fig. 5.1.1 presents the Einstein-Podolsky-Rosen-Bohm experiment. 

A source S  created in O pairs of identical atoms A and B, but with 

opposite spins. The atoms A and B split following the y -axis in 

opposite directions, and head towards two identical Stern-Gerlach 

apparatus EA  and EB . The electromagnet EA  "measures" the spin of 

A along the z-axis and the electromagnet EB  "measures" the spin of 

B along the z -axis, which is obtained after a rotation of an angle   

around the y -axis. 

Remark 5.1.1. So far we have consistently made use of the idea 

that if we know something definite about the state of such a physical 

system, say that we know z  component of the spin of a particle is Sz

  1

2
,  then we assign to the system the state |Sz    1

2
 , or, more 

simply, |.  

Remark 5.1.2. We can also note that these two states | and | are 

mutually exclusive, i.e. if an atom is in the state |, then the result 

Sz   1

2
 is never observed, and furthermore, we note that the two 

states | and | cover all possible values for Sz.  

Remark 5.1.3. When we say that we `know' the value of some 

physical observable of a quantum system, we are presumably 

implying that some kind of measurement has been made that 

provided us with this knowledge. Furthermore, it is assumed that in 

the process of acquiring this knowledge, the system, after the 

measurement has been performed, survives the measurement, and 

moreover if we immediately remeasured the same quantity, we 

would get the same result. 

This is certainly the situation with the measurement of spin in the 

Stern-Gerlach experiment. If an atom emerges from one such a set 

of apparatus in a beam which indicates Sz  1

2
 for that atom, and we 

passed the atom through a second apparatus, also with its magnetic 

field oriented in the z  direction, we would find the atom emerging in 

the Sz  1

2
 beam once again. Under such circumstances, we would 

be justified in saying that the atom has been prepared in the state 
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Sz  1

2
 ,  etc. 

Definition 5.1.1. Assume that atom A has been prepared in the 

state Sz  1

2
 ,  Sz   1

2
 ,  etc. Then we will say that these events 

Sz  1

2
 , Sz   1

2
 ,  etc. occur. We will denote these events by 

symbols Sz  1

2


A
, Sz   1

2


A
,  etc., or 

1

2


A
,  1

2


A
,  etc. 

Definition 5.1.2. Assume that we know exactly that atom A is in the 

state 
1

2
 ,  1

2
 ,  etc. 

Then we will say that these events 
1

2
 ,  1

2
 ,  etc. occur and we will 

denote these events again by symbols 
1

2


A
,  1

2


A
,  etc. 

Definition 5.1.3. Assume that these events 
1

2


A
,  1

2


A
,  etc. occur 

in the point x  t,x1 ,x2 ,x3   t,r  M4  of Minkowski spacetime M4 .  

Then we will denote these events by symbols 
1

2


x

A
,  1

2


x

A
,  etc. or 

1

2


tA,zA 

A
,  1

2


tA,zA 

A
,  etc. 

Assumption 5.1.1. We claim for any x  M4  that: 

 

1

2


x

A  M4
,  1

2


x

A  M4
,etc. 5.1.1

 

Here M4  is a measure algebra M4
 BM4

,P with a probability 

measure P,  see Chapt. III, subsection III.2, Definition 3.2.3. 

Remark 5.1.4. Note that for any x  M4  and for any atom A these 

events 
1

2


x

A
,  1

2


x

A

 are mutually exclusive, see Remark 5.1.2, and 

therefore for any x  M4  

 

P 1

2


x

A   1

2


x

A
 0. 5.1.2

 

Remark 5.1.5. We remind that if an atom is prepared in an arbitrary 

initial state |S,  then the probability amplitude of finding it in some 

other state |S   is given by 

 

S|S  S||S  S||S 5.1.3  

which leads, by the cancellation trick to 
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|S  ||S  ||S 5.1.4  

and therefore the states | form a complete set of orthonormal basis 

states for the state space of the system. 

Suppose we have an n -dimensional quantum system which contains 

only a quantum observable with discrete values such as Sz,  etc. 

Then we claim the following: 

Q d  .V.1. Any given n  -dimensional quantum system which contains 

only a quantum observable with discrete values such that mentioned 

above is identified by a set Qd
: 

 

Q
d
 Hd,d,d,2,1

d ,Gd, |t  , 5.1.5
 

where: 

(i) Hd  that is some finite-dimensional complex Hilbert space, 

(ii) d  d,d,Pd that is complete probability space ,  

(iii) d  n ,d that is measurable space ,  

(iv) 2,1
d d that is complete space of discrete complex valued 

random variables Xd : d  n  such that 

 


d

XddPd  , 
d

Xd
2dPd   5.1.6

 

(v) Gd : Hd 2,1d that is one to one correspondence such that 

 

|Qd|  
d

Gd Q
d|  dPd  Ed

Gd Q
d|  5.1.7

 

for any |  Hd  and for any Hermitian operator with discrete 

spectrum Q
d

: Hd  Hd,  where Q
d
 Hd  CHd,CHd is C -

algebra of the Hermitian adjoint operators in Hd  and Hd is 

commutative subalgebra of CHd.  

(vi) | t  is a continuous vector function |t  :   Hd  which 

represented the evolution of the quantum system Qd
.  

Q d  .V.2. For any |1 , |2   Hd  and for any Hermitian operator 
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Q
d

: Hd  Hd  such that 

1 Q
d
2  2 Q

d
1  0 5.1.8

 

the equality is valid 

 

Gd Q
d
|1   |2    Gd Q

d|1    Gd Q
d|2  . 5.1.9

 

Remark 5.1.6. Let Sz
 and Sz

 be discrete random variables 

Sz


: d  1,1,  Sz


: d  1,1 correspondingly such that: 

 

(i) Sz
  G|, (ii) Pd

1   1,where 
1  |Sz

  1 ,

(iii) Pd
1   0,where 

1  |Sz
  1

and

(i) Sz
  G|, (ii) Pd1   1,where 1  |Sz

  1 ,

(iii) Pd1   0,where 1  |Sz
  1 .

5.1.10

 

Let Q
c  be any n -dimensional quantum system which contains only a 

quantum observable with continuous values. We remind that such a 

quantum system is identified with a set Q 

 

Q  H,,,2,1 ,G, |t . 5.1.11  

Definition 5.1.4. We define now a composite quantum system Q
c,d  

which contains both sort of quantum observables by a set Q
c,d  

 

Q
c,d

 Hc,d,c,d,c,d,2,1
c,d

,Gc,d, |t  5.1.12
 

where: 

(i) Hc,d  Hc  Hd  that is composite complex Hilbert space, 

(ii) c,d  c,d,c,d,Pd that is complete probability space ,  with 

c,d  c d,c,d  c d,c,d  c d,2,1
c,d  2,1

c  2,1
d ,Gc,d  Gc  Gd,  

(iii) c,d  n ,c,d that is measurable space with с,d  с  d,  
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(iv) 2,1
c,dd that is complete space of random variables 

Xc,d : c,d  n  such that 

 


c,d

Xc,ddPc dPd  , 
c,d

Xc,d
2dPc dPd  ,  c,d 5.1.13

 

(v) Gc,d : Hc,d 2,1
c,dd that is one to one correspondence such that 

 

|Qc,d|  
c,d

Gc,d Q
c,d|  dPc dPd  Ec,d

Gc,d Q
c,d|  5.1.14

 

for any |  Hc,d  and for any Hermitian operator Qc,d : Hc,d  Hc,d,  

where Qc,d  Hc,d  CHc,d,CHc,d is C -algebra of the 

Hermitian adjoint operators in Hc,d  and Hc,d is commutative 

subalgebra of CHc,d.  

(vi) | t  is a continuous vector function |t  :   Hd  which 

represented the evolution of the quantum system Qc,d.  

 

 

V.2. EPR-B paradox resolution 

 

The usual conclusion of EPR-B experiment is to reject the non-local 

realism for two reasons: the impossibility of decomposing a pair of 

entangled atoms into two states, one for each atom, and the 

impossibility of interaction faster than the speed of light. 

 

Remark 5.2.1. We find that the EPRB-paradox can be resolved by 

nonprincipal and convenient relaxing of the Einstein's locality 

principle, that is the "relaxed locality principle" introduced in Chapter 

IV.1. 

 

Remark 5.2.2. The solution to the entangled state is obtained by 

resolving the Pauli equation from an initial singlet wave function with 

a spatial extension as: 
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0rA ,rB  1

2
frAfrB|A  |B   |A  |B , 5.2.1

 

The initial wave function of the entangled state is the singlet state 

(5.2.1) with 

 

fr  20
2

1

2 e


x 2  y2  z2

40
2

iff r  ,

0 iff r  

r  x,y, z,0  1,  1

5.2.2

 

and where |A  and |B  are the eigenvectors of the operators  zA  

and zB : 

zA |A   |A ,zB |B   |B . 5.2.3  

Remark 5.2.3. We treat the dependence with y  strictly 

quasiclassically, i.e., with speed vy
A v0 ,0

A  for A and vy
B v0 ,0

B  for B 

such that 

 

P y  vy
A v0 ,0

A t    1,

P y  vy
A v0 ,0

A t    0,

P y  vy
B v0 ,0

B t    1,

P y  vy
B v0 ,0

B t    0,

  1,

5.2.4

 

where 

 

vy
A v0 ,0

A   0
A
 v0 ,vy

B v0 ,0
B   0

B
 v0 ,

0
A
  cos2 0

A

2
,0

A
  sin2 0

A

2
,

0
B
  cos2 0

B

2
,0

B
  sin2 0

B

2
.

5.2.5

 

The wave function rA,rB, t of the two identical particles A and B, 

electrically neutral and with magnetic moments 0 , subject to 

magnetic fields EA  and EB , admits on the basis of |A  and |B  four 

components a,brA,rB, t and satisfies the two-body Pauli equation 
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i
a,bt

t
  

2

2m
A  2

2m
B a,bt  Bj

EA jc
ac,bt  Bj

EB  jd
ba,dt 5.2.6

 

with the initial conditions: 

 

a,b0,rA,rB  0
a,brA,rB, 5.2.7  

where 0
a,brA,rB corresponds to the singlet state (5.2.1). 

 

Below we explain the EPR-B experiment by using nonlocal two-body 

Pauli equation 

 

 drAdrB  dt i
#a,bt, t ,rA ,rB 

t
  

2

2m
A  2

2m
B #a,bt, t ,rA ,rB 

Bj

EA jc
a#c,bt, t ,rA ,rB   Bj

EB  jd
b#a,dt, t ,rA ,rB   O ,

drA  dx AdyAzA ,drB  dx BdyBzB

5.2.8

 

with a boundary condition 

 

drAdrBzAt1  #t1 , t ,rA ,rB
2  drAdrBzBt2  #t2 , t ,rA ,rB

2
. 5.2.9

 

One of the difficulties of the canonical interpretation of the EPR-B 

experiment is the existence of two simultaneous measurements. By 

doing these measurements one after the other, the interpretation of 

the experiment will be facilitated. That is the purpose of the two-step 

version of the experiment EPR-B studied below. 

 

 

V.2.1. First step EPR-B: Spin measurement of A 

 

Consider that at time t0  the particle A arrives at the entrance of 

electromagnet EA . 

 

Remark 5.2.4. We assume that a particle A collapses in a magnetic 

field EA  at some instant t   into two particles A   and A  , i.e. the 

spinor z,y, t collapses in a magnetic field EA  at some instant t   into 
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two spinors z,y, t, t , and z,y, t, t , given by Eq. (6.1.9a)-

(6.1.9b), see Assumption 5.1.1. 

Remark 5.2.5. The particles A   and A stay within the magnetic 

field for a time t   t  l
v0

.  

Thus after exit of the magnetic field EA , at time t1  t0  t  t,  the 

wave functions z,y, t0  t  t, and z,y, t0  t  t, become 

 

rA,rB , t0  t  t  frB   f rA, t|A  |B  5.2.10.a
 

and 

rA,rB , t0  t  t  frB   f rA, t|A  |B  5.2.10.b
 

respectively, with 

 

f r, t  cos
0

2
fx, z  z  utexp i muz


 t

f r, t  sin
0

2
fx, z  z  utexp i muz


 t

5.2.11

 

wherez  and u  are given by 

 

z 
BB0

 t2

2m
 105m, u 

BB0
 t
m  1m/s. 5.2.12

 

Remark 5.2.6. We deduce that: 

the beam of particle A is divided into two A   and A  , and the 

beam of particle B is divided into two B   and B  .  

Remark 5.2.7. Our first conclusion is: the position of B   and B   

does not depend on the spin measurement of A   and A  , only the 

spins are involved. 

We conclude from equation (5.2.10) that the spins of A   and B   

(A   and B  ) remain opposite throughout the experiment. These 

are the two properties used in the relaxed causal interpretation. 

Remark 5.2.8. By "relaxed locality principle" and decoherence it 

follows that the interaction between A ,  A  , B ,  and B   is absent, 

we assume the existence of wave functions 
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0
ArA,0

A,0
A,0

ArA,0
A,0

A,0
BrB ,0

B,0
B,0

BrB ,0
B,0

B. 5.2.13  

 

 

V.2.2. Second step EPR-B: Spin measurement of B 

 

The second step is a continuation of the first one and corresponds to 

the EPR-B experiment broken down into two steps. On a pairs of 

particles A ,  B   and A  ,  B   in a singlet state, first we made the 

Stern and Gerlach measurement on the A   and A   atom at instant 

t1  between t0  and t0  t  tD : 

 

t0  t1  t0  t  tD. 5.2.14  

Secondly, we make the Stern and Gerlach measurement on the B   

and B   atom with an electromagnet EB  forming an angle   with EA  at 

instant t2  between t0  t  tD  and t0  2t  tD : 

 

t0  t  tD  t2  t0  2t  tD 5.2.15  

At the exit of magnetic field EA , at time t0  t  tD,  the pair of particles 

wave functions is given by Eq. (5.2.10a) and Eq. (5.2.10b) 

respectively. Immediately after the measurements of A   and A  , still 

at time t0  t  tD,  the wave functions of B   and B   depend on the 

measurements   of A respectively such that: 

 

B/ArB, t0  t  t1  frB|B , 5.2.16.a

and 

 

B/ArB, t0  t  t1  frB|B . 5.2.16.b
 

Then, the measurement of B   and B   at time t2  t0  2t  tD yields, 

in this two-step version of the EPR-B experiment, the same results 

for spatial quantization and correlations of spins as in the EPR-B 

experiment. 
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V.2.3. Resolution of the EPR-B experiment in de 

Broglie-Bohm interpretation by the "relaxed locality 

principle" 

 

We assume, at the creation of the two entangled particles A and B, 

that each of the two particles A and B has an initial wave function 

with opposite spins: 

0
ArA ,0

A ,0
A  frA cos

0
A

2
|A   sin

0
A

2
ei0

A

|A  5.2.17

and 

0
BrB ,0

B ,0
B  frB cos

0
B

2
|B   sin

0
B

2
ei0

B

|B  

frB cos 
2

0

A

2
|B   sin 

2

0

A

2
ei 0

A |B  

0
BrB ,0

B ,0
B  frB sin

0
A

2
|B   cos

0
A

2
ei0

A

|B 

5.2.18

 

with 0
B    0

A  and 0
B  0

A  . The two particles A and B are 

statistically prepared as in the Stern and Gerlach experiment. Then 

the Pauli principle tells us that the two-body wave function must be 

antisymmetric; after calculation we find the same singlet state 

(5.2.1): 

 

0rA,A,A,rB ,B ,B  eiA

frAfrB  |A  |B   |A  |B . 5.2.19  

Thus, we can consider that the singlet wave function is the wave 

function of a family of two fermions A and B with opposite spins: the 

direction of initial spin A and B exists, but is not known. It is a local 

hidden variable which is therefore necessary to add in the initial 

conditions of the model. 

Here, we assume that at the initial time we know the spin of each 

particle (given by each initial wave function) and the initial position of 

each particle. 
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V.2.3.1. Step 1: spin measurement of A in de Broglie-

Bohm interpretation 

 

In Eq. (5.2.19) particle A can be considered independent on B. We 

can therefore give it the wave function 

 

ArA , t0  t  t  cos
0

A

2
f rA , t|A   sin

0
A

2
ei0

A

f rA , t|A  5.2.20
 

which is the wave function of a free particle in a Stern Gerlach 

apparatus and whose initial spin is given by 0
A ,0

A . 

For an initial polarization 0
A ,0

A  and an initial position z0
A ,  we obtain, 

in the de Broglie-Bohm interpretation [17] of the Stern and Gerlach 

experiment, an evolution of the position zAt  and of the spin 

orientation of A ,AzAt, t,  see [19]. 

The case of particles B   is different. B   follows a rectilinear 

trajectories with yBt  vy
v0 ,0 t,  zBt  z0

B
 and xBt  x0

B
. By 

contrast, the orientation of its spin moves with the orientation of the 

spin of A  : 

 

Bt    AzAt, t 5.2.21  

and 

Bt  AzAt, t  . 5.2.22  

Remark 5.2.9. Let At,rAt,
AzAt, t,

AzAt, t denote events 

such that: "at instant t  particles A   obtain the position coordinates 

rAt  xAt,yAt,zAt and spin orientation At  AzAt, t and 

At  AzAt, t.  Let Bt,rBt,
BzBt, t denote events such that: 

"at instant t  particles B  obtain the position coordinates 

rBt  xBt,yBt,zBt and spin orientation B  BzBt, t  and 

BzBt, t.  
 

Then in accordance with the relaxed principle of locality (see 
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subsection IV.1) we assume that 

 

At1 ,rAt,
A,At,Bt,rB t,

B t,B t
s.l .s .



 M4

# ,t1 ,r1 , t2 ,r2 
s .l .s.


, 5.2.23

 

see subsection IV.1, Definition 4.1.2. We can then associate the 

wave functions: 

 

BrB, t0  t  t  frBcos
Bt

2
|B  5.2.24

 

and 

 

BrB, t0  t  t  frBsin
Bt

2
eiBt|B  5.2.25

These wave functions are specific, because they depend upon initial 

conditions of A (position and spin). The orientation of spin of the 

particles B   is driven by the particles A   respectively through the 

singlet wave functions. 

 

 

V.2.3.2. Step 2: spin measurement of B   in de Broglie-

Bohm interpretation 

 

V.2.3.2.1. The prediction of the result of the spin 

measurement of B   under assumption of canonical 

postulate of locality 

 

At the time t0  t  tD , immediately after the measurement of A, 

Bt0  t  tD   or 0  in accordance with the value of AzAt, t and 

the wave functions of B   are given by Eq. (5.2.16a) and 

Eq.(5.2.16b) respectively. 

The frame Ox yz corresponds to the frame Oxyz after a rotation of 

an angle   around the y -axis (see Fig. 5.1.1). B  corresponds to the 
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B  -spin angle with the z -axis, and  B  to the B-spin angle with the z

-axis, then  Bt0  t  tD     or  . 

In this second step, we are exactly in the case of a particle in a 

simple Stern and Gerlach experiment (with magnet EB ) with a 

specific initial polarization equal to    or   and not random like in 

step 1. 

Then, the measurement of B, at time t0  2t  tD), gives, in this 

interpretation of the two-step version of the EPR-B experiment, the 

same results as in the EPR-B experiment above. Thus we obtain 

EPR-B paradox again in de Broglie-Bohm interpretation. 

 

Remark 5.2.10. Note that the derivation EPR-B paradox in the de 

Broglie-Bohm interpretation completely based on the canonical 

postulate of locality. 

 

 

V.2.3.2.2. The prediction of the result of the spin 

measurement of B   under assumption of postulate of 

nonlocality 

 

We assume now a weak or strong postulate of nonlocality, see 

subsections I.4.1-I.4.2. At the time t1  t0  t  tD , immediately after 

the spin measurement of A  , Bt0  t  tD   or 0  in accordance 

with the value of AzAt, t and the wave functions of B   are given 

by Eq. (5.2.16a) and Eq.(5.2.16b) respectively. 

 

Remark 5.2.11. In accordance with the postulate of nonlocality it 

follows: 

 

(i) Whenever a measurement of the spin of a particle A   is 

performed at instant t1  and particle A   is found in the state |z
,  i.e., 

a state | t1 A  collapses at instant t1  to the state |z,A  with respect of 

the Heisenberg spin uncertainty relations, then a state | t1 B   
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immediately collapses at instant t1  to the state |z,B   with respect of 

the Heisenberg spin uncertainty relations, and this is true 

independent of the distance in Minkowski spacetime that separates 

the particles, e.g., 

 

|t1 A

col lapse
 |z,A

 |t1 B 

col lapse
 |z,B 

5.2.26
 

In accordance with Heisenberg spin uncertainty relations (1.4.5) spin 

of a particle B  obtains an uncertainty along direction Oz  (see Fig. 

5.1.1) and therefore EPR-B paradox disappears. 

 

(ii) Whenever a measurement of the spin of a particle A is 

performed at instant t1  and particle A   is found in the state |z
,  i.e., 

a state | t1 A  collapses at instant t1  to the state |z,A  with respect of 

the Heisenberg spin uncertainty relations (1.4.5), then a state | t1 B   

immediately collapses at instant t1  to the state |z,B   with respect of 

the Heisenberg spin uncertainty relations (1.4.5), and this is true 

independent of the distance in Minkowski spacetime that separates 

the particles, e.g., 

 

|t1 A

col lapse
 |z,A

 |t1 B

col lapse
 |z,B

. 5.2.27
 

In accordance with Heisenberg spin uncertainty relations (1.4.5) spin 

of a particle B  obtains an uncertainty along direction Oz  (see Fig. 

5.1.1) and therefore EPR-B paradox disappears. 

 

 

V.2.4. Physical explanation of non-local influences 

using the relaxed principle of locality 

 

From the wave function of two entangled particles, we find spins, 

trajectories and also a wave function for each of the two particles. In 

this interpretation, the quantum particle has a local position like a 

classical particle, but it has also a non-local behavior through the 

wave function. So, it is the wave function that creates the non 
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classical properties. We can keep a view of a local realist world for 

the particle, but we should add a non-local vision through the wave 

function. As we saw in step 1, the non-local influences in the EPR-B 

experiment only concern the spin orientation, not the motion of the 

particles themselves. Indeed only spins are entangled in the wave 

function but not positions and motions like in the initial EPR 

experiment. This is a key point in the search for a physical 

explanation of non-local influences. 

 

 

V.3. EPR-B paradox resolution by using quantum 

mechanical formalism based on the probability 

representation of quantum states 

 

V.3.1. Preleminaries 

 

We remind now EPR-B argument [17] in original D. Bohm 

formulation: "The Hypothetical Experiment of Einstein, Rosen, and 

Podolsky. We shall now describe the hypothetical experiment of 

Einstein, Rosen, and Podolsky. We have modified the experiment 

somewhat, but the form is conceptually equivalent to that suggested 

by them, and considerably easier to treat mathematically. 

Suppose that we have a molecule containing two atoms in a state in 

which the total spin is zero and that the spin of each atom is /2.  

Roughly speaking, this means that the spin of each particle points in 

a direction exactly opposite to that of the other, insofar as the spin 

may be said to have any definite direction at all. Now suppose that 

the molecule is disintegrated by some process that does not change 

the total angular momentum. The two atoms will begin to separate 

and will soon cease to interact appreciably. Their combined spin 

angular momentum, however, remains equal to zero, because by 

hypothesis, no torques have acted on the system. 

Now, if the spin was a classical angular momentum variable, the 

interpretation of this process would be as follows: while the two 

atoms were together in the form of a molecule, each component of 
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the angular momentum of each atom would have a definite value 

that was always opposite to that of the other, thus making the total 

angular momentum equal to zero. When the atoms separated, each 

atom would continue to have every component of its spin angular 

momentum opposite to that of the other. The two spin-angular-

momentum vectors would therefore be correlated. These 

correlations were originally produced when the atoms interacted in 

such a way as to form a molecule of zero total spin, but after the 

atoms separate, the correlations are maintained by the deterministic 

equations of motion of each spin vector separately, which bring 

about conservation of each component of the separate spin-angular-

momentum vectors. 

Suppose now that one measures the spin angular momentum of any 

one of the particles, say No. 1. Because of the existence of 

correlations, one can immediately conclude that the angular-

momentum vector of the other particle (No. 2) is equal and opposite 

to that of No. 1. In this way, one can measure the angular 

momentum of particle No. 2 indirectly by measuring the 

corresponding vector of particle No. 1. 

Let us now consider how this experiment is to be described in the 

quantum theory. Here, the investigator can measure either the x,y,  

or z  component of the spin of particle No. 1, but not more than one 

of these components, in any one experiment. Nevertheless, it still 

turns out as we shall see that whichever component is measured, 

the results are correlated, so that if the same component of the spin 

of atom No. 2 is measured, it will always turn out to have the 

opposite value. This means that a measurement of any component 

of the spin of atom No. 1 provides, as in classical theory, an indirect 

measurement of the same component of the spin of atom No. 2. 

Since, by hypothesis, the two particles no longer interact, we have 

obtained a way of measuring an arbitrary component of the spin of 

particle No. 2 without in any way disturbing that particle. If we accept 

the definition of an element of reality suggested by ERP, it is clear 

that after we have measured  z  for particle 1, then  z  for particle 2 

must be regarded as an element of reality; existing separately in 
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particle No. 2 alone. If this is true, however, this element of reality 

must have existed in particle No. 2 even before the measurement of 

 z  at for particle No. 1 took place. For since there is no interaction 

with particle No. 2, the process of measurement cannot have 

affected this particle in any way. But now let us remember that, in 

each case, the observer is always free to reorient the apparatus in 

an arbitrary direction while the atoms are still in flight, and thus to 

obtain a definite (but unpredictable) value of the spin component in 

any direction that he chooses. Since this can be accomplished 

without in any way disturbing the second atom, we conclude that if 

criterion of ERP is applicable, precisely defined elements of reality 

must exist in the second atom, corresponding to the simultaneous 

definition of all three components of its spin. Because the wave 

function can specify, at most, only one of these components at a 

time with complete precision, we are then led to the conclusion that 

the wave function does not provide a complete description of all 

elements of reality existing in the second atom." 

Actually, most experiments have been performed using polarization 

of photons. The quantum state of the pair of entangled photons is 

not the singlet state.The polarization of a photon is measured in a 

pair of perpendicular directions. Relative to a given orientation, 

polarization is either vertical (denoted by V  or by  ) or horizontal 

(denoted by H or by  ). The photon pairs are generated in the 

quantum state 

 

|EPRB   1

2
|Vs

 |Vi
 |H

s
 |H

i
 5.3.1

 

where |V and |H denotes the state of a single vertically or 

horizontally polarized photon, respectively, relative to a fixed and 

common reference direction for both particles.This state cannot be 

factored into a simple product of signal and idler states: 

 

|EPRB  |As
 |Bi

5.3.2  

for any choice of |As  and |Bi . This means the state of one particle 
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cannot be specified without making reference to the other particle. 

Such particles are said to be entangled and |EPRB  is an entangled 

state. If we measure the polarizations of signal and idler photons in 

the H,V  basis there are two possible outcomes: both vertical or both 

horizontal. Each occurs half of the time. We could instead measure 

the polarizations with polarizers rotated by an angle  . We use the 

rotated polarization basis 

 

|V   cos|V  sin|H,

|H   sin|V  cos|H,
5.3.3

 

where |V  describes a state with polarization rotated by   from the 

vertical, while |H  is   from the horizontal. In this basis the state is 

 

|EPRB   1

2
|V  |V   |H  |H . 5.3.4

 

Remark 5.3.1. After the signal photon is measured the idler is 

equally likely to be V  or H . A measurement of its polarization, at 

any angle , finds V  or H  with probability 

 

PV ,  1
2

|V|V |2  1
2

|V|H |2 

 1
2
cos2    sin2    1

2
,

PH ,  1
2

|H|V |2  1
2

|H|H |2  1
2

.

5.3.5

 

Remark 5.3.2. Let ,,  be a measure space and f be a Borel 

function. Note that 

 

A  
A

fd,A   5.3.6
 

is a signed measure satisfying A  0  A.  We say  is 

absolutely continuous with respect to (w.r.t.)  and write  ν . 

Theorem (Radon-Nikodym). Let X  be a set, let   be a  -algebra of 

λ

ν λ
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subsets of X , let   be a  -nite measure defined on ,  and let   be a 

signed defined on .  Suppose that   .  Then there exists a 

function f : X    on X  that is integrable w.r.t. the measure   and that 

satisfies Eq. (5.3.6) for all A  .  Moreover any two functions with 

this property are equal almost everywhere (a.e.) on X.  

Remark 5.3.3. If X
fdν  1  for any f ≥ 0 a. e. ν,  then  is a probability 

measure and f is called its probability density function (p.d.f.) w.r.t. . 

Remark 5.3.4. Remind that: (i) A random variable X  is a 

measurable function from a probability space ,,P  to the reals ,  

i.e., it is a function X :     such that for every Borel set 

B  B : X1B  X  B  ,  where we use the shorthand notation 

X  B    |X  B  and where B  is Borel algebra of the all 

Borel subset B of .  

(ii) If X  is a random variable, then for every Borel subset B of of 

,X1B    and we can define a function on Borel sets by 

 

PXB  PX1B. 5.3.7
 

(iii) This function PX : B    is in fact a probability measure, and 

and ,B,X  is a probability space. 

(iv) The measure PX  is called the distribution of the random variable 

X . If X  gives measure one to a countable set of reals, then 

X  is called a discrete random variable. 

(v) Let X  be a discrete random variable.Then the probability mass 

function fX : AA    0,1  for X  is defined as 

 

fXx  P  |X  x. 5.3.8  

The total probability for all hypothetical outcomes x : 
xA

fXx  1.  

(vi) Let ,,P  be a probability space mentioned above, see 

Remark 5.3.4. The distribution PX  is often given in terms of the 

λ

ν
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cumulative distribution function (c.d.f.) FX  defined by 

FXx  PX  x.  

Remark 5.3.5. For any probability measure PX  on ,B   

corresponding to a random variable X  (or to a c.d.f. FX  ) if PX  has a 

p.d.f. pX  w.r.t. a measure P,  then pX  is also called the p.d.f. of FX  or X  

w.r.t. P. 

Remark 5.3.6. (Discrete c.d.f. and p.d.f.). Let a1  a2 . . . an  be a 

sequence of real numbers and let pi, i  1,2, . . . ,n  be a sequence of 

positive numbers such that i1

n
pi  1.  Then 

 

Fx 


i1

m
pi ai  x  ai1 , i  1,2, . . . ,n  1

0   x  a1

5.3.9

 

is a stepwise c.d.f. It has a jump of size p i  at each a i  and is flat 

between a i  and ai1 .  Such a c.d.f. is called a discrete c.d.f. The 

corresponding probability measure PF  is 

 

PFA  i|a iA
pi,A  . 5.3.10

 

Remark 5.3.7. Remind that the counting measure   on a 

measurable space ,  is the positive measure 

 

A 
|A| if A is finite

 if A is infinite
5.3.11

 

for all A  Σ, where |A|  denotes the cardinality of the set A. 

Let ν  be the counting measure on .  Then 

 

PFA  
A

fFdν  
a iA

fFai ,A  , 5.3.12
 

where fFai  pi, i  1,2, . . . .  That is, fF  is the p.d.f. of PF  or F  w.r.t. ν. 

Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure. A 

p.d.f. w.r.t. counting measure is called a discrete p.d.f. 
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Definition 5.3.1. Let ,,P  be a probability space and X  is a 

discrete random variable X :   .  The conditional probability of 

event A    given X,y  is defined as 

 

PA|X  y 
PA  X  y

PX  y


P A  X 1y

P X 1y
, 5.3.13

 

where P X 1y  0.  

Definition 5.3.2. (I) Let X |V  be a discrete random variable 

X |V :     with the probability mass function (see Remark 5.3.4.v) 

fX |V  defined by 

 

fX |V
x 

1
2

if x  1

1
2

if x  0
5.3.14

 

Thus there exist: (i) 1,   such that 1,  XX |V

1 1  and P1,  1/2,  

(ii) 2,   such that 2  XX |V

1 0  and P2,  1/2,  

(iii) 1,  \2, mod,P  0.  

(II) Let X |H  be a discrete random variable X |H :     such that 

 

  1,X |H  1  X |V. 5.3.15  

Therefore 1,  XX |H

1 0,2,  XX |H

1 1  and the probability mass 

function f
X |H  is 

 

f
X |H

x 

1
2

if x  1

1
2

if x  0
5.3.16

 

Remark 5.3.8. Let BM4  be a Boolean algebra of physical events in 

Minkowski spacetime and let M4

ph  BM4
,P  be measure algebra of 
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physical events in Minkowski spacetime, i.e., M4

ph

 that is a Boolean 

algebra BM4  with a probability measure P,  see Chapter III 

subsection III.2, Definition 3.2.3. 

We remind that we denote such physical events by Ax,Bx, . . .  etc., 

where x  t,x1 ,x2 ,x3   M4  or A,B, . . .  etc., and we write for a short 

AOcx,BOcx, . . .  iff there physical events Ax,Bx. . .  were occured. 

 

Definition 5.3.3. Let   be the measurement operator 

corresponding to measurments the photon polarization (see 

Appendix A) in polarization basis |V , |H ,  see Eq. (5.3.3). Let 

A|A
 ,, t  BM4  be a physical event which consists on performing a 

measurement with absolute certainty of the observable   at instant 

t.  

Remark 5.3.9. We assume that: 

(i) particle A  is initially in the state 
|A

   1

2
|V   |H ,

  

(ii) A|A
 ,, t  M4

ph
.  

 

Remark 5.3.10. Note that: (i) if there physical event A|A
 ,, t  was 

occurred then immediately after the measurement at the instant t  a 

particle A  will be in the state V
A   |V   or in the state H

A   |H ,  

(ii) immediately after the measurement at the instant t  the 

unconditional measure P collapses to the conditional measure 

 
 

P X AOc|A
 ,, t 

PX  AOc|A
 ,, t

PAOc|A
 ,, t

, 5.3.17
 

where X  M4

ph

. 

Remark 5.3.11. Let A|A , t  be a physical event which consists that 

a particle A  at the instant t  is in the state |A .  Note that: 

(i) A
Oc|A

 ,, t  AOc V
A , t  AOc H

A , t,  

P X AOc|A
 ,, t :
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(ii) A
Oc V

A , t  AOc H
A , t  M4

ph
,  

(iii) from (i), (ii) and (5.3.17) it follows that: 

 

P X AOc|A
 ,, t  P X A V

A , t 
PX  A V

A , t

PA V
A , t

5.3.18
 

or 

 

P X AOc|A
 ,, t  P X A H

A , t 
PX  A H

A , t

PA H
A , t

, 5.3.19
 

where X  M4

ph
.  

Remark 5.3.12. We assume now that: (i) a measure algebra 

M4

ph  BM4
,P  admits a representation  : M4

ph  ,B,PB   of the 

measure algebra M4

ph  BM4
,P  in the measure algebra B  ,B,PB ,  

such that 

(ii) PBX  P1X  for any X  B  and 

(iii) for physical events A V
A , t  M4

ph

 and A H
A , t  M4

ph

 (see 

Remark 5.3.10) the following conditions hold 

 

AOc V
A , t  1, 5.3.20

 

and 

 

AOc H
A , t  2,, 5.3.21

 

where 1,  XX |V

1 1  and 2,  XX |H

1 1,  see Definition 5.3.2. 

Remark 5.3.13. We note that the product of the noise in a 

polarization measurement in the polarization basis  V
A , H

A   and 

the polarization disturbance in the polarization basis  V
A , H

A   

caused by that measurement should be no less than , : 

 

,  1
2

|A
 |,|A

 |  0, 5.3.22
 

see Appendix A. Note that Heisenberg's noise-disturbance 
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uncertainty relation for the case of the polarization measurement is: 

for any apparatus A to measure an observable ,  the relation 

 

, |A
 ,A, |A

 ,A  1
2

|A
 |,|A

 |  , 5.3.23
 

holds for any input state |A
  and any observable  , where 

,A
 ,A  stands for the noise of the   measurement in the state 

A

 using apparatus A and ,A

 ,A  stands for the disturbance of 

  in the state A

 caused by apparatus A. We refer to the above 

relation as the Heisenberg noise-disturbance uncertainty relation in 

polarization measurements, see Appendix A. 

Remark 5.3.14. We use the rotated polarization basis |V , |H   

with uncertainty   , |A
 ,A  

 

|V   |V |   
    ,

|V   cos
|V  sin|H,

|H   |H |   
    ,

|H   sin|V  cos
|H

5.3.24

 

where |V  describes states with polarization rotated by any  
    ,     from the vertical, while |H  is 

  from the horizontal. 

 

We abbreviate for short

|V   cos   |V  sin   |H,

|H   sin   |V  cos   |H,
 

Remark 5.3.15. After the signal photon is measured the idler is 

equally likely to be V  or H . A measurement of its polarization, 

at any angle 

 :    


     , finds V

  or H
  with probability 
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PV

,


  1

2
|V |V |2 

1
2

|V |H |2 

 1
2
cos2       sin2       1

2
,

PH

,


  1

2
|H |V |2 

1
2

|H |H |2 
1
2

.

5.3.25

 

where   , |A
 ,A,   , A

 ,A  and 

A
  1

2
|V   |H .  

 

Definition 5.3.4. (I) Let X |V   be a discrete random variable 

X |V  :     with the probability mass function (see Remark 5.3.4.v) 

fX V  defined by 

 

fX V
x 

1
2

if x  1

1
2

if x  0
5.3.26

 

Thus there exist: (i) 1,    such that 
1,  XX V

1 1
 and 

P1,   1/2,  

(ii) 1,    such that 
2,  XX V

1 0
 and P2,   1/2,  

(iii) 1,  \2, mod,P  0.  

Thus there exist: (i) 1,    such that 1,  XX |V

1 1  and 

P1,   1/2,  

(ii) 2,    such that 2,  XX |V

1 0  and P2,   1/2,  

(iii) 1,  \2, mod,P  0.  

(III) Let X |H   be a discrete random variable X |H  :     such 

that 

 

  1, X |H   1  X |V . 5.3.27  

Therefore 
1,  XX H

1 0,2,  XX H

1 1
 and the probability 

mass function 
f X H  is 
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f
X H

x 

1
2

if x  1

1
2

if x  0
5.3.28

 

Remark 5.3.16. Let BM4  be a Boolean algebra of physical events in 

Minkowski spacetime and let M4

ph  BM4
,P  be a measure algebra of 

physical events in Minkowski spacetime, i.e., M4

ph

 that is a Boolean 

algebra BM4  with a probability measure P,  see Chapter III 

subsection III.2, Definition 3.2.3. We remind that we denote such 

physical events by Ax,Bx, . . .  etc., where x  t,x1 ,x2 ,x3   M4  or 

A,B, . . .  etc., and we write for a short AOcx,BOcx, . . .  iff there physical 

events Ax,Bx. . .  were occured. 

 

Definition 5.3.5. Let   be the measurement operator 

corresponding to measurements of the photon polarization (see 

Appendix A) in the polarization basis |V , |H ,  see Eq. (5.3.3). Let 

A|A
 ,,, t  BM4  be a physical event which consists of the 

performing a measurement (on the particle A  at the instant t ) of the 

observable   with accuracy   , |A
 ,A,  where the particle A  

is initially in the state A

 at the instant t.  Here   ,,A  stands 

for the noise of the A  measurement in the state   using apparatus A 

and   ,,A  stands for the disturbance of   in the state   

caused by apparatus A. 

 

Remark 5.3.17. We assume that: (i) the particle A  is initially in the 

state 
|A

   1

2
|V   |H ,

 (ii) A|A
 ,,, t  M4

ph
.  

 

Remark 5.3.18. Note that: (i) if the physical event A|A
 ,,, t  was 

occurred then immediately after the measurement at the instant t  

the particle A  would be in the state V
A   |V   or in the state 
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H
A   |H ,  

(ii) immediately after the measurement at the instant t  unconditional 

measure P collapses to conditional measure P X AOc|A
 ,,, t : 

 

P X AOc|A
 ,,, t 

PX  AOc|A
 ,,, t

PAOc|A
 ,,, t

, 5.3.29
 

where X  M4

ph
.  

 

Remark 5.3.19. Let A|A , t  be a physical event which consists of 

that a particle A  at the instant t  is in the state |A .  Note that: 

(i) AOc|A
 ,,, t  AOc V

A , t  AOc H
A , t,  

(ii) A
Oc V

A , t  AOc H
A , t  M4

ph
,  

(iii) from (i), (ii) and (5.3.17) it follows that: 

 

P X AOc|A
 ,,, t 

PX  A V
A , t

PA V
A , t

5.3.30

 

or 

 

P X AOc|A
 ,,, t 

PX  A H
A , t

PA H
A , t

, 5.3.31

 

where X  M4

ph
.  

 

Remark 5.3.20. We assume now that: (i) a measure algebra 

M4

ph  BM4
,P  admits a representation  : M4

ph  ,B,PB   of the 

measure algebra M4

ph  BM4
,P  in the measure algebra B  ,B,PB ,  

such that 

(ii) PBX  P1X  for any X  B  and 

(iii) for physical events A V
A , t  M4

ph

 and A H
A , t  M4

ph

 

(see Remark 5.3.18) the following conditions hold 
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AOc V
A , t  X

|V
A

1 1  1, 5.3.32
 

and 

 

AOc H
A , t  X

|H
A

1 1  2,, 5.3.33
 

where 
1,  XX V

1 1
 and 2,  XX |H

1 1.  

 

 

V.3.2. The EPR-B Paradox Resolution 

 

Remind that in the well-known Einstein-Podolsky-Rosen-Bohm 

gedanken experiment with photons (Fig. 5.3.1), a source emits pairs 

of photons in a nonfactorizing state: 

 

|EPRB   1

2
|V 1

 |V 2
 |H 1

 |H 2
. 5.3.34

 

 

After the particles have been space-like separated, one performs 

correlated measurements of their polarizations along arbitrary 

directions a  and b . Two photons in a singlet state are space-like 

separated. The linear polarizations of photon 1 and photon 2 are 

measured along a  and b . Quantum mechanics predicts strong 

correlations between these measurements. 

 

 
 

Fig. 5.3.1. Einstein-Podolsky-Rosen-Bohm gedanken experiment 

with photons 
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Quantum mechanics predicts that by a measurement of the linear 

polarization of photon 1 using a noiseless measuring apparatus A 

one obtais definite outcome exactly only |V 1  or |H 1
.  In the 

canonical Copenhagen interpretation QM predicts that the state 

|EPRB  has collapsed, at the moment of measurement, from |EPRB  

to either |V 1
 |V 2  or |H 1

 |H 2
.  

Remark 5.3.21. The process described above seems to be 

nonlocal: the state changes instantly even though the particles could 

be space-like separated. We are accustomed to saying that this sort 

of instantaneous action at a distance is forbidden by relativity. 

Assume that the state |EPRB  has collapsed to |V 1
 |V 2

.  Thus in 

the canonical Copenhagen interpretation result of the measurement 

of the polarizations of photon 1 predicts exactly the polarization of 

photon 2. This means that if we measure the linear polarization of 

photon 1 (using a noiseless measuring apparatus A) in any basis 

|V1
, |H2

  the result will be completely random ( |V1  or |H1  with 

equal probability 1/2). 

Remark 5.3.22. However, there is a perfect correlation: whenever 

we measure with certainty the linear polarization of photon 1 with 

outcome say |V1  (using a noiseless measuring apparatus A) then 

we will measure with certainty (using a noiseless measuring 

apparatus B) the linear polarization of photon 2 exactly with 

outcome |V2 . 

Remark 5.3.23. We note that such a perfect correlation implies that 

the corresponding probability mass functions: f
X |V1

,  f
X |H1

f
X |V2  and 

f
X |H2  (see Definition 5.3.2) are perfectly contracted for any ,  by the 

following equations: 

 

f
X |V1

x  f
X |V2

x, 5.3.35
 

and 

 

f
X |H1

x  f
X |H2

x, 5.3.36
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where f
X |H1

x  1  f
X |V1

x.  

Now we go to prove that Eqs. (5.3.35) - (5.3.36) hold without any 

instantaneous action at a distance. 

Remark 5.3.24. We assume now that: (i) photon 1  is initially in the 

state 
|1

   1

2
|V 1

 |H 1
,

 

(ii) A|1
 ,, t  M4

ph
,  see Remark 5.3.9. 

If the measurement of the linear polarization of photon 1 (using a 

noiseless measuring apparatus A) was performed at the instant t , 

i.e., AOc|A
 ,, t  after the measurement at the instant t  the 

unconditional measure P collapses to the conditional measure 

 

P X AOc|1
 ,, t  P X AOc|V 1

, t 
PX  AOc|V 1

, t

PA|V 1
, t

5.3.37
 

or collapses to the conditional measure 

 

P X AOc|1
 ,, t  P X AOc|H 1

, t 
P X  AOc H

A 
1
, t

PA|H 1
, t

, 5.3.38
 

where X  M4

ph
,  see Remark 5.3.19. 

Remark 5.3.25. We assume now that: (i) immediately after the 

measurement at the instant t  the particle 1 is in the state |V 1
.  In 

this case immediately after the measurement at the instant t  the 

unconditional measure P collapses to the conditional measure 

P X A|V 1
, t  which is given by 

 

P X AOc|V 1
, t 

PX  AOc|V 1
, t

PA|V 1
, t

5.3.39
 

where X  M4

ph
,  

(ii) immediately after the measurement at the instant t  the particle 1 

is in the state |H 1
.  In this case immediately after the measurement 

at the instant t  the unconditional measure P collapses to the 
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conditional measure P X AOc|V 1
, t  given by 

 

P X AOc|H 1
, t 

PX  AOc|H 1
, t

PA|H 1
, t

, 5.3.40
 

where X  M4

ph
.  

(1) From Eq. (5.3.39) and Eq. (5.3.20) - Eq. (5.3.21) we obtain 

 

P A|H 2
, t AOc|V 1

, t 
PA|H 2

, t  AOc|V 1
, t

PA|V 1
, t



PBA|H 2
, t  AOc|V 1

, t

PBA|V 1
, t


PB2,  1, 

PB1, 


PB
PB1, 

 0.

5.3.41

 

Therefore AOc|H 2
, t  and AOc|V 1

, t  are mutually exclusive 

(disjoint) physical events, i.e., they cannot both occur 

simultaneously: 

 

AOc|H 2
, t  AOc|V 1

, t  M4

ph
. 5.3.42  

(2) From Eq. (5.3.39) and Eq. (5.3.20) - Eq. (5.3.21) we obtain 

 

P A|V 2
, t AOc|V 1

, t 
PA|V 2

, t  AOc|V 1
, t

PA|V 1
, t



PBA|V 2
, t  AOc|V 1

, t

PBA|V 1
, t


PB1,  1, 

PB1, 


PB1, 
PB1, 

 1.

5.3.43

 

Therefore physical events AOc|V 2
, t  and AOc|V 1

, t  always occur 

simultaneously even particle 1 and particle 2 are space-like 

separated: 

 

AOc|V 2
, t  AOc|V 1

, t. 5.3.44
 

 

(3) From Eq. (5.3.40) and Eq. (5.3.20) - Eq.(5.3.21) we obtain 
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P A|H 2
, t AOc|H 1

, t 
PA|H 2

, t  AOc|H 1
, t

PA|H 1
, t



PBA|H 2
, t  AOc|H 1

, t

PBA|H 1
, t


PB2,  2, 

PB1, 


PB2, 
PB2, 

 1.

5.3.45

 

Therefore physical events AOc|H 2
, t  and AOc|H 1

, t  always occur 

simultaneously even particle 1 and particle 2 are space-like 

separated: 

 

AOc|H 2
, t  AOc|H 1

, t. 5.3.46  

(4) From Eq. (5.3.40) and Eq. (5.3.20) - Eq.(5.3.21) we obtain 

 

P A|V 2
, t AOc|H 1

, t 
PA|V 2

, t  AOc|H 1
, t

PA|H 1
, t



PBA|V 2
, t  AOc|H 1

, t

PBA|H 1
, t


PB1,  2, 

PB2, 


PB
PB2, 

 0.

5.3.47

 

Therefore AOc|H 2
, t  and AOc|V 1

, t  are mutually exclusive 

(disjoint) physical events, i.e., they cannot both occur 

simultaneously: 

 

AOc|V 2
, t  AOc|H 1

, t  M4

ph
. 5.3.48  

Remark 5.3.26. Under rigorous consideration using Heisenberg 

noise-disturbance uncertainty relation (see Appendix A) quantum 

mechanics predicts that by a measurement of the linear polarization 

of photon 1 using measuring apparatus A one obtains definite 

outcome exactly only |V 1  or |H 1
,  where   ,1

,A  

stands for the noise of the   measurement in state 1

 using 

apparatus A, see Appendix A, Eq. (A.13). In the canonical 

Copenhagen interpretation QM predicts that the state |EPRB  has 

collapsed, at the moment of the measurement, from |EPRB  to either 

|V 1
 |V 2  or |H 1

 |H 2
.  



198 

 

Remark 5.3.27. However, there is a perfect correlation: whenever 

we measure with uncertainty   the linear polarization of photon 1 

with outcome say |V 1  using measuring apparatus A then we will 

measure with uncertainty   (using a similar measuring apparatus B 

with ,1
,A   ) the linear polarization of photon 2 exactly with 

outcome |V 2 . 

Remark 5.3.28. We note that such a perfect correlation implies that 

the corresponding probability mass functions: 
f

X V 1

,
 

f
X H 1

f
X V 2  and 

f
X H 2  (see Definition 5.3.4) are perfectly 

contracted for any ,  by the following equations: 

 

f
X V 1

x  f
X V 2

x, 5.3.49
 

and 

 

f
X H 1

x  f
X H 2

x, 5.3.50
 

where 
f

X H 1

x  1  f
X V 1

x.
 

Now we go to prove that Eqs. (5.3.49) - (5.3.50) hold without any 

instantaneous action at a distance. 

Remark 5.3.29. We assume now that: (i) photon 1  is initially in the 

state 
|1

   1

2
|V 1

 |H 1
,

 (ii) A|1
 ,,, t  M4

ph
,  where 

  ,1
,A  stands for the noise of the   measurement in state 

1

 using apparatus A. 

If the measurement of the linear polarization of photon 1 using 

measuring apparatus A was performed at the instant t , i.e., 

AOc|A
 ,,, t  after the measurement at the instant t  the 

unconditional measure P collapses to the conditional measure 

 

P X AOc|1
 ,, t  P X AOc|V 1

, t 
PX  AOc|V 1

, t

PA|V 1
, t

5.3.51
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or collapses to the conditional measure 

 

P X AOc|1
 ,, t  P X AOc|H 1

, t 
P X  AOc H

A 
1
, t

PA|H 1
, t

, 5.3.52
 

where X  M4

ph
,  see Remark 5.3.19. 

Remark 5.3.30. We assume now that: (i) immediately after the 

measurement at the instant t  the particle 1 is in the state |V 1
.  In 

this case immediately after the measurement at the instant t  the 

unconditional measure P collapses to the conditional measure 

P X A|V 1
, t  given by 

 

P X AOc|V 1
, t 

PX  AOc|V 1
, t

PA|V 1
, t

5.3.53
 

where X  M4

ph
,  

(ii) immediately after the measurement at the instant t  the particle 1 

is in the state |H 1
.  In this case immediately after the 

measurement at the instant t  the unconditional measure P collapses 

to the conditional measure P X AOc|H 1
, t  given by 

 

P X AOc|H 1
, t 

PX  AOc|H 1
, t

PA|H 1
, t

, 5.3.54
 

where X  M4

ph
.   

(1) From Eq. (5.3.53) and Eq. (5.3.32) - Eq.(5.3.33) we obtain 

 

P A|H 2
, t AOc|V 1

, t 
PA|H 2

, t  AOc|V 1
, t

PA|V 1
, t



PBA|H 2
, t  AOc|V 1

, t

PBA|V 1
, t


PB2,  1, 

PB1, 


PB
PB1, 

 0.

5.3.55

 

Therefore AOc|H 2
, t  and AOc|V 1

, t  are mutually exclusive 
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(disjoint) physical events, i.e., they cannot both occur 

simultaneously: 

 

AOc|H 2
, t  AOc|V 1

, t  M4

ph
. 5.6.56

 

 

(2) From Eq. (5.3.39) and Eq. (5.3.20) - Eq. (5.3.21) we obtain 

 

P A|V 2
, t AOc|V 1

, t 
PA|V 2

, t  AOc|V 1
, t

PA|V 1
, t



PBA|V 2
, t  AOc|V 1

, t

PBA|V 1
, t


PB1,  1, 

PB1, 



PB1, 
PB1, 

 1.

5.3.57

 

 

Therefore physical events AOc|V 2
, t  and AOc|V 1

, t  always 

occur simultaneously even particle 1 and particle 2 are space-like 

separated: 

 

AOc|V 2
, t  AOc|V 1

, t. 5.3.58  

(3) From Eq. (5.3.40) and Eq. (5.3.20) - Eq.(5.3.21) we obtain 

 

P A|H 2
, t AOc|H 1

, t 
PA|H 2

, t  AOc|H 1
, t

PA|H 1
, t



PBA|H 2
, t  AOc|H 1

, t

PBA|H 1
, t


PB2,  2, 

PB1, 


PB2, 
PB2, 

 1.

5.3.59

 

 

Therefore physical events AOc|H 2
, t  and AOc|H 1

, t  always 

occur simultaneously even particle 1 and particle 2 are space-like 

separated: 

 

AOc|H 2
, t  AOc|H 1

, t. 5.3.60  

(4) From Eq. (5.3.40) and Eq. (5.3.20) - Eq. (5.3.21) we obtain 
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P A|V 2
, t AOc|H 1

, t 
PA|V 2

, t  AOc|H 1
, t

PA|H 1
, t



PBA|V 2
, t  AOc|H 1

, t

PBA|H 1
, t


PB1,  2, 

PB2, 


PB
PB2, 

 0.

5.3.61

 

Therefore AOc|H 2
, t  and AOc|V 1

, t  are mutually exclusive 

(disjoint) physical events, i.e., they cannot both occur 

simultaneously: 

 

AOc|V 2
, t  AOc|H 1

, t  M4

ph
. 5.3.62  

Definition 5.3.6. Let   be the measurement operator 

corresponding to measurements of the photon polarization (see 

Appendix A) in the polarization basis |V , |H   and let   be the 

measurement operator corresponding to measurements of the 

photon polarization in the polarization basis |V, |H  see 

Eq.(1.3.3). We assume that particle 1  is initially in the state |1
 .  Let 

A|1
 ,,; 1

 ,,, t  BM4  be a physical event which consists of: 

(i) performing a measurement (on particle A  at instant t ) of the 

observable   with accuracy   , |A
 ,A,  where particle A  is 

initially in the state A

 at the instant t,  

(ii) immediately after the measurement on particle 1 at the instant t  

the particle 1 is in the state 1

 ,  

(iii) performing a measurement (on particle 1  at the instant t ) of the 

observable   with accuracy   , |A
 ,A  particle A  obtains 

disturbance   , 1

 ,A  of the observable   in the state 1

   

caused by apparatus A. 

Definition 5.3.7. (I) Let 
X

V,


 be a discrete random variable 

X
V,

:   
 with the probability mass function (see Remark 

5.3.4.v) fX V,  defined by 
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fX
V,

x 

1
2

if x  1

1
2

if x  0
5.3.63

 

Thus there exist: (i) 1,,    such that 
1,,  XX

V,

1 1
 

and P1,,   1/2,  

(ii) 1,,    such that 
2,,  XX

V,

1 0
 and 

P2,,   1/2,  

(iii) 1,,  \2,, mod,P  0.  

Thus there exist: (i) 1,,    such that 
1,,  XX

V,

1 1
 

and P1,,   1/2,  

(ii) 2,,    such that 
2,,  XX

V,

1 0
 and 

P2,,   1/2,  

(iii) 1,,  \2,, mod,P  0.  

(II) Let 
X

H,


 be a discrete random variable 
X

H,
:   

 

such that 

 

  1,,  X
H,

  1  X
V,

 . 5.3.64
 

Therefore 
1,,  XX

H,

1 0,2,,  XX
H,

1 1
 and the 

probability mass function 
f

X
H,  is 

 

f
X

H,

x 

1
2

if x  1

1
2

if x  0
5.3.65

 

Remark 5.3.31. Let BM4  be a Boolean algebra of physical events in 

Minkowski spacetime and let M4

ph  BM4
,P  be a measure algebra of 

physical events in Minkowski spacetime, i.e., M4

ph

 that is a Boolean 
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algebra BM4  with a probability measure P,  see Chapter III 

subsection III.2, Definition 3.2.3. We remind that we denote such 

physical events by Ax,Bx, . . .  etc., where x  t,x1 ,x2 ,x3   M4  or 

A,B, . . .  etc., and we write for a short AOcx,BOcx, . . .  iff the physical 

events Ax,Bx. . .  were occurred. 

Remark 5.3.32. We assume that: (i) particle 1  is initially in the state 

|1
   1

2
|V   |H ,

 (ii) A|1
 ,,; 1

 ,,, t  M4

ph
.  

Remark 5.3.33. Note that: (i) if the physical event 

A|1
 ,,; 1

 ,,, t  was occurred then immediately after the 

measurement at the instant t  particle 1  will be in the state 

V,
1  |V,   or in the state H,

1  |H, ,  

(ii) immediately after the measurement at the instant t  unconditional 

measure P collapses to conditional measure 

P X AOc|1
 ,,; 1

 ,,, t : 

 

P X AOc|1
 ,,; 1

 ,,, t 


PX  AOc|1

 ,,; 1

 ,,, t

PAOc|1
 ,,; 1

 ,,, t
,

5.3.66

 

where X  M4

ph
.  

 

Remark 5.3.34. Let A|1 , t  be a physical event which consists of 

that at the instant  particle 1  is in the state |1 .  Note that: 

(i) AOc|1
 ,,; 1

 ,,, t  AOc V,
1 , t  AOc H,

1 , t ,  

(ii) AOc V,
1 , t  AOc H,

A , t  M4

ph
,  

(iii) from (i), (ii) and (5.3.66) it follows that: 

 

P X AOc|1
 ,,; 1

 ,,, t 
P X  A V,

1 , t

P A V,
1 , t

5.3.67

 

or 

 

t
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P X AOc|1
 ,,; 1

 ,,, t 
P X  A H,

1 , t

P A H,
1 , t

, 5.3.68

 

where X  M4

ph
.  

Remark 5.3.35. We assume now that: (i) a measure algebra 

M4

ph  BM4
,P  admits a representation  : M4

ph  ,B,PB   of the 

measure algebra M4

ph  BM4
,P  in the measure algebra B  ,B,PB ,  

such that 

(ii) PBX  P1X  for any X  B  and 

(iii) for physical events A V,
1 , t  M4

ph

 and 

A H,
1 , t  M4

ph

 (see Remark 5.3.33) the following conditions 

hold 

 

 AOc V,
1 , t  X

V,
A

1 1  1,, 5.3.69
 

and 

 

 AOc H,
1 , t  X

H,
1

1 1  2,, , 5.3.70
 

where 

1,,  XX
V,

1 1
 and 

2,,  XX
H,

1 1.
 

Remark 5.3.36. We assume now that: (i) immediately after the 

measurement at the instant t  particle 1 is in the state |V, 1
.  In 

this case immediately after the measurement at the instant t  

unconditional measure P collapses to conditional measure 

P X A |V, 1
, t  given by 

 

P X AOc |V, 1
, t 

P X  AOc |V, 1
, t

P A |V, 1
, t

5.3.71

 

where X  M4

ph
,  

(ii)immediately after the measurement at the instant t  particle 1 is in 
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the state |H 1
.  In this case immediately after the measurement at 

the instant t  unconditional measure P collapses to conditional 

measure P X AOc |H, 1
, t  given by 

 

P X AOc |H, 1
, t 

P X  AOc |H, 1
, t

P A |H, 1
, t

, 5.3.72

 

where X  M4

ph
.  

(1) From Eq. (5.3.71) and Eq. (5.3.69) - (5.3.70) we obtain 

 

P A |H, 2
, t AOc |V, 1

, t 

P A |H, 2
, t  AOc |V, 1

, t

P A |V, 1
, t



PB  A |H, 2
, t   AOc |V, 1

, t

PB  A |V, 1
, t



PB2,,  1,, 

PB1,, 


PB
PB1,, 

 0.

5.3.73

 

Therefore AOc |H, 2
, t  and AOc |V, 1

, t  are mutually 

exclusive (disjoint) physical events, i.e., they both cannot occur 

simultaneously: 

AOc |H, 2
, t  AOc |V, 1

, t  M4

ph
. 5.3.74

 

(2) From Eq. (5.3.71) and Eq. (5.3.69) - Eq.( 5.3.70) we obtain 

 

P A |V, 2
, t AOc |V, 1

, t 

P A |V, 2
, t  AOc |V, 1

, t

P A |V, 1
, t



PB  A |V, 2
, t   AOc |V, 1

, t

PB  A |V, 1
, t



PB1,,  1, 

PB1,, 


PB1,, 

PB1,, 
 1.

5.3.75

 



206 

 

Therefore physical events AOc|V 2
, t  and AOc|V 1

, t  always 

occur simultaneously even particle 1 and particle 2 are space-like 

separated: 

AOc |V, 2
, t  AOc |V, 1

, t . 5.3.76
 

 

(3) From Eq. (5.3.72) and Eq. (5.3.69) - (5.3.70) we obtain 

 

P A |H, 2
, t AOc |H, 1

, t 

P A |H, 2
, t  AOc |H, 1

, t

P A |H, 1
, t



PB  A |H, 2
, t   AOc |H, 1

, t

PB  A |H, 1
, t



PB2,,  2, 

PB1,, 


PB2, 

PB2,, 
 1.

5.3.77

 

Therefore physical events AOc|H 2
, t  and AOc|H 1

, t  always 

occur simultaneously even particle 1 and particle 2 are space-like 

separated: 

AOc |H, 2
, t  AOc |H, 1

, t . 5.3.78
 

(4) From Eq. (5.3.40) and Eq. (5.3.20) - Eq. (5.3.21) we obtain 

 

P A |V, 2
, t AOc |H, 1

, t 

P A |V, 2
, t  AOc |H, 1

, t

P A |H, 1
, t



PB  A |V, 2
, t   AOc |H, 1

, t

PB  A |H, 1
, t



PB1,,  2,, 

PB2,, 


PB
PB2,, 

 0.

5.3.79
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Therefore AOc |H, 2
, t  and AOc |V, 1

, t  are mutually 

exclusive (disjoint) physical events, i.e., they both cannot occur 

simultaneously: 

 

AOc |V, 2
, t  AOc |H, 1

, t  M4

ph
. 5.3.80
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Chapter VI 

 

SCHRӦDINGER’S CAT MEASURED SPIN. 

SCHRӦDINGER’S CAT PARADOX RESOLUTION 

 

VI.1. Stern-Gerlach experiment revisited 

 

In 1922, by studying the deflection of a beam of silver atoms in a 

strongly inhomogeneous magnetic field (Fig. 6.1.1) Otto Stern and 

Walter Gerlach obtained an experimental result that contradicts the 

common sense prediction: the beam, instead of expanding, splits 

into two separate beams giving two spots of equal intensity N  and 

N  on a detector, at equal distances from the axis of the original 

beam. Historically, this is the experiment which helped establish spin 

quantization. Theoretically, it is the seminal experiment posing the 

problem of measurement in quantum mechanics. 

 

 

 

Fig. 6.1.1. Schematic configuration of the Stern-Gerlach experiment. 

Adapted from [19] 

 

z,y, t|t0
 0z,y  1

0z2
0y. 6.1.1
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We assume now that both density 0z and 0y is very narrow, in 

fact constrained such that 

 

1
0z  1

0z,  0 iff |x| ,

2
0y  2

0y,  0 iff |y| ,
6.1.2

and 

1
0z  1

0z,  2 00
2

1

4 e
 z2

4
0
2

cos
0

2
ei

0

2

sin
0

2
ei

0

2

iff |z| ,

1
0z,

2

2
 1;

2
0y  2

0y,  2 00
2

1

4 e
 y2

4
0
2

iff |y| ,

2
0y,

2

2  1

0  1.

6.1.3

Silver atoms contained in the oven E (Fig. 6.1.1) are heated to a 

high temperature and escape through a narrow opening. A second 

aperture, T, selects those atoms whose velocity, v0 , is parallel to the 

y-axis. The atomic beam crosses the gap of the electromagnet A1  

before condensing on the P1  detector. Before crossing the 

electromagnet, the magnetic moment of each silver atom is oriented 

randomly (isotropically). In the beam, we represent each atom by its 

wave function; one can assume that at the entrance to the 

electromagnet, A1 , and at the initial time t  0, each atom can be 

approximatively described by a quasi-Gaussian spinor in plain z,y 

given by Eqs. (6.1.1-6.1.3) corresponding to a pure state. As it will 

be proved later the variable y  will be treated strictly quasiclassically, 

i.e. almost classically, with 

P y  vy
v0 ,0 t    1,

P y  vy
v0 ,0 t    0

6.1.4

 

and 0  0
  104m,  where 0


 corresponds to the size of the slot T 

along the z-axis and where the expression of the functions vy
v0 ,0  
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and vy
v0 ,0  will be given later. 

The approximation by a quasi-Gaussian initial spinor will allow 

explicit calculations. Because the slot is much wider along the x -

axis, the variable z will be also treated strictly quasiclassically with 

 

P z  z
  vz

u,0 t    1,

P z  vz
u,0 t    0,

6.1.5

 

where the expression of the functions vz
u,0 ,u 

BB0
 t
m  will be 

given later. In order to obtain an explicit solution of the Stern-

Gerlach experiment, we take for the silver atom, we have 

m  1.8  1025kg,v0  500 m/s (corresponding to the temperature 

T  1000°K). In Eq. (6.1.3.) and in Fig. 6.1.2., 0  and 0  are the polar 

angles characterizing the initial orientation of the magnetic moment, 

0  corresponds to the angle with the z-axis. The experiment is a 

statistical mixture of pure states where the 0  and the 0  are 

randomly chosen: 0  is drawn in a uniform way from 0, and that 

0  is drawn in a uniform way from 0,2. 

 

 

 

Fig. 6.1.2. Orientation of the magnetic moment θ0 and φ0 are the 

polar angles characterizing the spin vector in the de Broglie-Bohm 

interpretation. Adapted from [19] 
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Assumption 6.1.1. We assume that a particle collapses in a 

magnetic field B  at some instant t   by two particles, i.e. the spinor 

z,y, t collapses in a magnetic field B  at some instant t   by two 

spinors z,y, t, t , and z,y, t, t , given by Eq. (6.1.9a) - 

Eq.(6.1.9b). Note that such a collapse obviously occurs except 

spinors such that: 21 
z  

z  
x

,  etc. 

 

Remark 6.1.1. Note that the standard assumption consists of that 

spinor collapses on detector P1 with respect to the Born rule. Thus 

the evolution of the spinor 

z,y, t, t   
z,y, t, t  

z,y, t, t  
 

in a magnetic field B  is then given by the nonlocal Pauli equation: 

 

i
 dzdy  dt

z,y, t, t  
t

 dzdy  dt
z,y, t, t  

t



  
2

2m
 dt  dzdy

z,y, t, t  

z,y, t, t  
 B  dt  dzdyB

z,y, t, t  

z,y, t, t  

6.1.6

 

where 
B  e

2me  is the Bohr magneton and where   x,y,z 

corresponds to the three Pauli matrices. 

Remark 6.1.2. First the particle enters an electromagnetic field B  

directed along the z-axis, Bx  B0
 x,By  0,Bz  B0  B0

 z,  with B0  5 Tesla, 

B0
  B

z  103 Tesla/m  over a length l  1 cm. 

Remark 6.1.3. In exiting the magnetic field, the both particles are 

free until they reach the detector P1  placed at distance D  20 cm. 

The particles stay within the magnetic field for a time t  with 

 

t  l
v0

. 6.1.7
 

Assumption 6.1.2. We assume now for simplification that 
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t   t. 6.1.8  

Thus during this time t  0, t   0,t, the spinor z,y, t, t , is: 

 

z,y, t, t , 
z,y, t, t ,

z,y, t, t ,


z, t, t ,y, t, t ,

z, t, t ,y, t, t ,
, 6.1.9.a

where 

 

z, t, t ,  cos
0

2
ei

0

2 20
2

1

2 exp 
z 

BB0


2m
t2

2

40
2



exp i
BB0

 tz  B
2 B0

2

6m
t3  BB0 t  0.50


iff z 

BB0


2m
t2  ,

z, t,  0 iff z 
BB0



2m
t2  ,

z, t, t ,  isin
0

2
ei

0

2 20
2

1

2 exp 
z 

BB0


2m
t2

2

40
2



exp i
BB0

 tz  B
2 B0

2

6m
t3  BB0 t  0.50


iff z 

BB0


2m
t2  ,

z, t, t ,  0 iff z 
BB0



2m
t2  ;

y, t, t ,  20
2

1

2 exp  y  v0 t2

40
2

iff |y  v0 t| ,

y, t, t ,  0 iff |y  v0 t|  .

6.1.9.b

After the magnetic field, at time t  t  t  0 in the free space, the 

both spinors become: 

 

z,y, t  t ,  z,y, t  t,  z, t  t,y, t  t, 6.1.10
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and 

z,y, t  t ,  z,y, t  t,  z, t  t,y, t  t,. 6.1.11

Here 

z, t  t, 

cos
0

2
20

2
1

2 exp  z  z  ut2

40
2

ei
muz

 iff |z  z  ut |  ,

0 iff |z  z  ut |  

6.1.12

 
 

and 

z, t  t, 

sin
0

2
20

2
1

4 exp  z  z  ut2

40
2

ei
muz

 iff |z  z  ut |  ,

0 iff |z  z  ut |  ,

6.1.13

 
 

and 

y, t,  20
2

1

4 exp  y  v0t  t2

40
2

iff |y  v0t  0 t| ,

y, t,  0 iff |y  v0t  t| .

6.1.14

 
 

where 

z 
BB0

 t2

2m
, u 

BB0
 t
m . 6.1.15

 

From Eq. (6.1.10) - Eq. (6.1.12) and Eq. (6.1.14) we obtain 

z,y, t  t, 

cos
0

2
20

2
1

2 exp  z  z  ut2

40
2

ei
muz

 

exp  y  v0t  t2

40
2

iff

|z  z  ut |  

and

|y  v0t  t| 

0 otherwise

6.1.16

 

From Eq. (6.1.16) by the postulate for the probability density with 

respect to observable z we obtain the expression 
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c |z, t 

20
2

1

2 exp 

z
0

  z  ut
2

20
2

iff z
0

  z  ut  

0 otherwise

0

  cos2 0

2

6.1.17

 

 

and with respect to observable y  we obtain the expression 

 

c |y, t 

20
2

1

2 exp 

y

0

  v0t  t
2

40
2

iff
y

0

  v0t  t  

0 otherwise

0

  cos2 0

2

6.1.18

 

 

and therefore the corresponding particle moves by the strictly 

quasiclassical law 

 

P zt  z
  vz

u,0 t    1,

P zt  z
  vz

u,0 t    0,

P yt  vy
v0 ,0 t  t    1,

P yt  vy
v0 ,0 t  t    0,

z
  0

 z ,

vz
0   0

 u,vy
0   0

 v0 .

6.1.19

 

 

From Eq. (6.1.11), Eq. (6.1.13) and Eq. (6.1.14) we obtain 
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z,y, t  t, 

sin
0

2
20

2
1

4 exp  z  z  ut2

40
2

ei
muz

 

exp  y  v0t  t2

40
2

iff

|z  z  ut |  

and

|y  v0t  0 t| 

0 otherwise

6.1.20

 

From Eq. (6.1.20) by the postulate for the probability density with 

respect to observable z we obtain the expression 

c |z, t 

20
2

1

2 exp 
z
0

  z  ut
2

20
2

iff z
0

  z  ut  

0 otherwise

0

  sin2 0

2

6.1.21

 

and with respect to observable y  we obtain the expression 

c |y, t 

20
2

1

2 exp 

y
0

  v0t  t
2

40
2

iff
y
0

  v0t  0 t  

0 otherwise

0

  sin2 0

2

6.1.22

 

and therefore the corresponding particle moves by the strictly 

quasiclassical law 

 

P zt  z
  vz

u,0 t    1,

P zt  z
  vz

u,0 t    0,

P yt  vy
v0 ,0 t  t    1,

P yt  vy
v0 ,0 t  t    0,

z
  0

 z ,

vz
u,0   0

 u,vy
v0 ,0   0

 v0 .

6.1.23
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All interpretations are based on the Eq. (6.1.18) - (6.1.21). One 

deduce from Eq. (6.1.18) - (6.1.21) the probability density of a pure 

state in the free space after the electromagnet: 

 

0z,y, t  t  20
2

1

2 0z, t  0 t


exp 

y

0

  v0t  t
2

40
2

;

0z, t  t  20
2

1

2 cos2 0

2
20

2
1

2 exp 
 z
0

  z  ut2

20
2



sin2 0

2
20

2
1

2 exp 
 z
0

  z  ut2

40
2

.

6.1.24

 

The decoherence time tdec,  where the two spots N  and N  are 

separated, is then given by the equation: 

 

tdec 
30  z

u0

  0

 
 30  z

u . 6.1.25
 

This decoherence time is usually the time required to diagonalize 

the marginal density matrix 0

S t,  of spin variables associated with 

a pure state 

 

0

S t, 

|z,y, t  t,|2dzdy 
z,y, t  t,z,y, t  t,dzdy

z,y, t  t,
z,y, t  t,dzdy |z,y, t  t,|2dzdy

6.1.26

 

For t  tdec , the product z,y, t  t,
z,y, t  t,  is null and the 

density matrix 0

S t,  is diagonal. We then obtain atoms with a spin 

oriented only along the z  -axis (positively or negatively). Let us 

consider the spinor z,y, t  t,  given by Eq. (6.1.10) - (6.1.15). 

Remark 6.1.4. Experimentally, we do not measure the spin directly, 

but the z position of the particle impact on the detector P1 

(Fig.6.1.3.). 
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Fig. 6.1.3. Silver atom impacts on the detector P1.  

Adapted from [19] 

 

Remark 6.1.5. Note that if we measure the z  -position of the particle 

at the instant t,  we also measure the y  -position of the particle at the 

same instant t.  

 

Remark 6.1.6. Let PtD  ,D,yt
  be the probability of obtaining the 

result y t

 at the instant t,  lying in the range D  ,D  on measuring 

observable y  in respect to spinor z,y, t  t,.  From Eq. (6.1.19) 

we obtain 

 

PtD  ,D  ,yt
   1 iff

yt  D and yt  vy
v0 ,0 t  t  .

6.1.27

 

From Eq. (6.1.27) it follows that: 
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PtD  ,D  ,yt
   1

if

t  tD  D
vy
v0 ,0 

 D

v0 cos2 0

2

.
6.1.28

 

Remark 6.1.7. Let Pt

z   ,


z   ,zt

  be the probability of obtaining 

the result zt

 at the instant t,  lying in the range 


z   ,


z   ,


z   N  

on measuring observable z  in respect to spinor z,y, t  t,.  From 

Eq.(6.1.19) we obtain 

 

Pt

z   ,


z   , zt

   1 iff

zt  
z  and |zt  z

  vz
u,0 t |  .

6.1.29

 

From Eq. (6.1.29) it follows that: 

 

Pt

z   ,


z   , zt

   1

if

t  tz   

z 

vz
u,0 



z 

ucos2 0

2

.

6.1.30

 

Remark 6.1.8. Note that from Remark 6.1.6 it follows that tz   tD  

and therefore from Eq. (6.1.28) and Eq. (6.1.30) one obtains 

 

z 

ucos2 0

2

 D

v0 cos2 0

2



z 
u  D

v0
6.1.31

 

as it should be, because the equality 


z 
u  D

v0

 is required by the 

condition of the Stern-Gerlach experiment. 

Remark 6.1.9. Let PtD  ,D,yt
  be the probability of obtaining the 

result y t

 at the instant t,  lying in the range D  ,D  on measuring 

observable y  in respect to spinor z,y, t  t,.  From Eq. (6.1.23) 

we obtain 
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PtD  ,D  ,yt
   1 iff

yt  D and yt  vy
v0 ,0 t  t  .

6.1.32

 

From Eq. (6.1.32) it follows that: 

 

PtD  ,D  ,yt
   1

if

t  tD  D
vy
v0 ,0 

 D

v0 sin2 0

2

.
6.1.33

 

Remark 6.1.10. Let Pt

z   ,


z   ,zt

  be the probability of obtaining 

the result zt


 at the instant t,  lying in the range 

z   ,


z   ,


z   N  

on measuring observable z  in respect to spinor z,y, t  t,.  From 

Eq.(6.1.32) we obtain 

Pt

z   ,


z   , zt

   1 iff

zt  
z  and |zt  z

  vz
u,0 t |  .

6.1.34

 

From Eq. (6.1.29) it follows that: 

Pt

z   ,


z   , zt

   1

if

t  tz   
|

z  |

vz
u,0 


|

z  |

u sin2 0

2

.

6.1.35

 

Remark 6.1.11. Note that from Remark 6.1.5 it follows that 

tz   tD  and therefore from Eq. (6.1.33) and Eq. (6.1.35) one 

obtains 

|

z  |

usin2 0

2

 D

v0 sin2 0

2



z 
u  D

v0
6.1.36

 

as it should be, because the equality 

|

z  |
u  D

v0

 is required by the 

condition of the Stern-Gerlach experiment.  
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VI.2. Schrödinger's cat which measures spin. 

Schrödinger's cat paradox resolution 

 

Another known in literature special sort of the Schrödinger cat 

paradox can be simply illustrated with the famous Stern-Gerlach 

experiment (Fig. 6.1.1). Silver atoms boiled off from a furnace are 

sent through a non-uniform magnetic field, and impinge on a 

photographic plate. Instead of a continuous distribution of spots, one 

sees two spots, corresponding to spin up and spin down relative to 

the magnetic field axis. Each atom goes up OR down, but one 

cannot predict which in any given run - the results of the experiment 

are probabilistic. There is a 50% chance of an atom going up, and a 

50% chance that it will go down. 

 

 
Fig. 6.1.4. Stern-Gerlach experiment. Adapted from [20] 

 

Remark 6.2.1. We remind that from the point of view of the 

Schrödinger equation of the quantum theory, this result has no any 

rigorous explanation. 

 

Remark 6.2.2. In the quantum theory, the state of the particle is 

described by its wave function, and the Schrödinger equation says 

that at a post-measurement final time t f ,  the wave function is related 

to that at a pre-measurement initial time t i , by known deterministic 

relation 
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t f   Ut f , t i t i ,

Ut f , t i   exp iHt f  t i 
 

with the transition unitary operator U  completely specified by the 

Hamiltonian H . To explain what is observed, the Schrödinger 

equation must be supplemented by the reduction postulate and the 

Born rule. 

This state that the wave function only gives a description of 

probabilities when a measurement is made, with the probabilities for 

an ‘up’ outcome and a ‘down’ outcome given by the squares of the 

coefficients of the corresponding components in the initial wave 

function t i ,  with the sum of the ‘up’ and ‘down’ probabilities equal 

to one. 

The reduction postulate and the Born rule are an add-on to the 

Schrödinger equation. According to the Copenhagen interpretation 

of quantum mechanics, the Schrödinger equation is applied when a 

microscopic system, the silver atom, is time-evolving in isolation. But 

when the atom interacts with a macroscopic measuring apparatus, 

as in the Stern-Gerlach setup, you have to use the reduction 

postulate and the Born rule. 

 

 

 
 

 

Fig. 6.1.5. The Stern-Gerlach apparatus with a Schrödinger cat as 

the outcome registration. Adapted from [20] 
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Remark 6.2.3. This situation leads to puzzles that have been 

debated for over eighty years. If quantum mechanics describes the 

whole universe, then why can't one use the Schrödinger equation to 

describe the system consisting of the silver atom plus the measuring 

apparatus? But we never see a superposition state of the atom plus 

apparatus. This is the Schrödinger's famous cat paradox. Arrange 

the experiment so that an up outcome triggers a mechanism that 

kills the cat, while a down outcome keeps the cat alive. Of course 

we don't do this, but if we were to do it, we would always see a live 

cat OR a dead one, never a superposition of the two (Fig. 6.1.5). So 

we have the problem of definite outcomes: where does the either - 

or dichotomy arises? 

Let us consider again the Schrödinger's cat which measures spin by 

using the Stern-Gerlach apparatus, see (Fig. 6.1.4). When a 

measurement is made, with the up outcome Schrödinger's cat is 

dead. When a measurement is made, with the down outcome 

Schrödinger's cat is alive. As it is known many years that 

conventional QM with canonical explanation of the Stern-Gerlach 

experiment cannot give predicable and definite outcomes for 

Schrödinger's cat which measures spin. 

Theorem 6.2.1. Any spinor 

z,y, t, t  

z,y, t, t  
6.2.1

 

given by Eq. (6.1.9a) - (6.1.9b) with 0  such that 
cos

0

2
 0

 always 

kills the Schrödinger's cat at the instant t : 

 

t  D

v0 cos2 0

2

. 6.2.2

 

Proof. Immediately from Eq. (6.1.31) and Eq. (6.1.36). 
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Chapter VII 

 

THE BELL INEQUALITIES REVISITED 

 

One of the Bell's assumptions in the original derivation of his 

inequalities was the hypothesis of locality, i.e., the absence of the 

influence of two remote measuring instruments on one another. That 

is why violations of these inequalities observed in experiments are 

often interpreted as a manifestation of the nonlocal nature of 

quantum mechanics, or a refutation of a local realism. In [1], [2] 

Bell's inequality was derived in its traditional form, without resorting 

to the hypothesis of locality and without the introduction of hidden 

variables, the only assumption being that the probability distributions 

are nonnegative. This can therefore be regarded as a rigorous proof 

that the hypothesis of locality and the hypothesis of existence of the 

hidden variables not relevant to violations of Bell's inequalities. The 

physical meaning of the obtained results is examined. Physical 

nature of the violation of the Bell inequalities is explained (see VII.2) 

under EPR-B nonlocality postulate. 

 

 

VII.1. Bell theorem without the hypothesis of locality 

and without the introduction of hidden variables 

 

VII.1.1. Clauser-Horne-Shimony-Holt (CHSH) inequality 

 

In a typical Bell experiment, two systems which may have previously 

interacted - for instance they may have been produced by a 

common source - are now spatially separated and are each 

measured by one of two distant observers, Alice and Bob (see 

Fig.7.2.1). Alice may choose one out of several possible 

measurements to perform on her system and we let x  denote her 

measurement choice. For instance, x  may refer to the position of a 

knob on her measurement apparatus. Similarly, we let y  denote 
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Bob's measurement choice. Once the measurements are 

performed, they yield outcomes a  and b  on the two systems. 

 

Remark 7.1.1. The actual values assigned to the measurement 

choices x,y and outcomes a,b are purely conventional; they are mere 

macroscopic labels distinguishing the different possibilities. 

 

Remark 7.1.2. From one run of the experiment to the other, the 

outcomes a and b  that are obtained may vary, even when the same 

choices of measurements x  and y  are made. 

 

Assumption 7.1.1. These outcomes a  and b  are thus in general 

governed by a Kolmogorovian probability distribution pab|xy,  which 

can of course depend on the particular experiment being performed. 

By repeating the experiment a sufficient number of times and 

collecting the observed data, one can get a fair estimate of such 

Kolmogorovian probabilities [3]-[4]. 

 

Assumption 7.1.2. When such an experiment is actually performed- 

say, by generating pairs of spin 1/2  particles and measuring the 

spin of each particle in different directions - it will in general be found 

that 

 

pab|xy  pa|xpb|y, 7.1.1

 

implying that the outcomes on both sides are not statistically 

independent of each other. Even though the two systems may be 

separated by a large distance – and may even be space-like 

separated - the existence of such correlations is nothing mysterious. 

In particular, it does not necessarily imply some kind of direct 

influence of one system on the other, for these correlations some 

dependence relation between the two systems which was 

established when they interacted in the past may simply reveal. 

This is at least what one would expect in a local theory. 
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Let us formulate the idea of a local theory more precisely. 

Assumption 7.1.3. The assumption of locality implies that we 

should be able to identify a set of past factors, described by some 

variables λ,  having a joint causal influence on both outcomes, and 

which fully account for the dependence between a  and b.  Once all 

such factors have been taken into account, the residual 

indeterminacies about the outcomes must now be decoupled, that 

is, the Kolmogorovian probabilities for a  and b  should factorize: 

 

pab|xy,  pa|x,pb|y,. 7.1.2

 

Remark 7.1.3. This factorability condition simply expresses that we 

have found an explanation according to which the probability for a  

only depends on the past variables  and on the local measurement 

x , but not on the distant measurement and outcome, and 

analogously for the probability to obtain b . 

The variable  will not necessarily be constant for all runs of the 

experiment, even if the procedure which prepares the particles to be 

measured is held fixed, because  may involve physical quantities 

that are not fully controllable. The different values of  across the 

runs should thus be characterized by a probability distribution qλ.  

Combined with the above factorability condition, we can thus write 

 

pab|xy  


dqpa|x,pb|y,, 7.1.3

 

where we also implicitly assumed that the measurements x  and y  

can be freely chosen in a way that is independent on , i.e., that 

qλ|x,y  qλ . This decomposition now represents a precise 

condition for locality in the context of Bell experiments. 

 

Remark 7.1.4. Note that no assumptions of determinism or of a 

classical behaviour are being involved in the condition (7.1.3): we 

λ

λ

λ

λ

λ
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assumed that a  (and similarly b ) is only probabilistically determined 

by the measurement x  and the variable , with no restrictions on the 

physical laws governing this causal relation. Locality is the crucial 

assumption behind (7.1.3). In relativistic terms, it is the requirement 

that events in one region of space-time should not influence events 

in space-like separated regions. 

Let us consider for simplicity an experiment where there are only 

two measurement choices per observer x,y  0,1  and where the 

possible outcomes take also two values labelled a,b  1,1.  Let 

axby   be the expectation value of the product ab  for given 

measurement choices x,y : 

 

axby   a,b
abpab|xy. 7.1.4

 

Consider the following expression 

 

S  a0b0   a0b1   a1b0   a1b1 , 7.1.5

 

which is a function of the probabilities pab|xy.  If these probabilities 

satisfy the locality decomposition (7.1.3), we necessarily have that 

 

S  a0b0   a0b1   a1b0   a1b1   2, 7.1.6

 

which is known as the Clauser-Horne-Shimony-Holt (CHSH) 

inequality [5]. 

To derive this inequality, we can use (7.1.3) in the Definition (7.1.4) 

of axby ,  which allows us to express this expectation value as an 

average 

 

axby   


dqdqax by  7.1.7

 

of a product of local expectations 

λ
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ax   a
apa|x, 7.1.8

 

and 

 

by   b
bpb|y, 7.1.9

 

taking values in 1,1.  Inserting these expressions (7.1.7) - (7.1.9) in 

Eq. (7.1.5), we can write 

 

S  


dqS, 7.1.10

 

where 

 

S  a0 b0   a0 b1   a1 b0   a1 b1 . 7.1.11

 

Since a0 , b0    1,1,  this last expression is smaller than Sλ

 

 

Sλ  Sλ
  |b0   b1  |  |b0   b1  |. 7.1.12

 

Without loss of generality, we can assume that b0   b1   0  

which yields Sλ  2b0   2  and thus S  2.  

 

Consider now the quantum predictions for an experiment in which 

the two systems measured by Alice and Bob are two qubits in the 

singlet state 
  1

2
|01  |10,

 where we have used the shortcut 

notation |ab  |a |b,  and where |0  and |1 are conventionally the 

eigenstates of σz  for the eigenvalues 1  and 1  respectively. 

 

Let the measurement choices x  and y  be associated with vectors x  

and y  corresponding to measurements of x  σ  on the first qubit and 

of y  σ  on the second qubit, where σ  σ1 ,σ2 ,σ3  denotes the Pauli 
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vector. According to the quantum theory we (then) have the 

expectations axby    x y . Let the two settings x  0,1  correspond 

to measurements in the orthogonal directions 

e 1  and 


e 2  respectively 

and the settings y  0,1  to measurements in the directions 

 1

2
e1 


e2  and 

1

2
e1 


e2 . We then have 

a0b0   a0b1   a1b0   1

2  and 
 a1b1    1

2  whence 

 

S  2 2 7.1.13

 

in contradiction with CHSH inequality (7.1.6). 

 

 

VII.1.2. Clauser Horne Inequality 

 

Suppose that some observable of the two particles is registered as a 

count in a detector. 

 

If the composite state consists of two photons, the detector registers 

a hit if the polarization is along some direction. The inequality will be 

determined by counting. There will be a total of N  events, with N1a  

counts in detector 1 when it is set to select a and N2b  counts in 

detector 2 when it is set to select b. The number of coincidences of 

the two detectors with settings a and b respectively is N12a,b.  The 

probabilities are 

 

p1a 
N1a

N
,p2


b 

N2b
N

,p12

a 

N12a,b
N

. 7.1.14

 

Remember that in the Bell formulation, the hidden variable 

determined absolutely the value of the polarization for a particular 

measurement. Then 
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p1a   dwp1a,,p2b   dwp2b,,

p12a,b,  p1a,p2b,,

p12a,b   dwp1a,p2b,.

7.1.15

 

Remind that for any four real numbers x,x ,y,y  0,1  the inequality 

holds 

 

xy  xy  x y  x y  x   y. 7.1.16

 

We denote now 

 

x  p1a,,y  p2b,,x   p1a,,y  p2b,, 7.1.17

 

and substitute into inequality (7.1.16) we get 

 

p1a,p2b,  p1a,p2b,  p1a,p2b,  p1a,p2b, 

 p1a,  p2b,.
7.1.18

 

Next multiplying by w  and integrating over all  we get 

 

p12a,b  p12a,b  p12a,b  p12a,b  p1a  p2b. 7.1.19

 

Consider now the quantum predictions for an experiment with 2 

photons. 

An atomic s-state with zero total angular momentum and even parity 

decays in two steps. 

Photon 1  is emitted in the E1 transition from the S-state to a P -state 

with m  1,0.  

Photon 2  is emitted in the second E1 transition to the ground state. 

The initial state of the atom also has zero angular momentum and 

even parity. Therefore the photons which are emitted back to back 

have the same helicity, so that their total angular momentum is zero. 



 

230 

 

The two photons have different energies, 1  and 2 . The helicity of 

each of the photons is determined by the intermediate state. If the 

intermediate state is m  1  then the helicity of both photons is odd 

and if m  1  then the helicities are even. The energy of the 

intermediate state is degenerate. There is no magnetic field that 

might split the energies of the m  1,0  levels. The final pure photon 

state is therefore the linear combination 

 

|  1

2
|1 |1  |1 |1. 7.1.20

 

It will be more interesting if the measurements of the photon 

polarizations are in the linear basis. Then we can look for 

correlations of the measurement of linear polarization by detector 1 

along a and by 2 along b. So let us write | in the linear polarization 

basis. The linear and circular polarization bases are related 

according to 

 

|x,y,k   1

2
|1  i|1 7.1.21

 

and 

 

|x,y,k   1

2
|1  i|1. 7.1.22

 

Thus we can rewrite 

 

|  1

2
|x 1

 |x 2
 |y1

 |y2
. 7.1.23

 

Evidently if detector 1 measures horizontal polarization then so will 

detector 2, etc. In general we want to measure the correlation 

p121 ,2 , that is the probability that we get a count on detector 1 

with polarization axis 1  coincident with a count in detector 2 with 

polarization axis 2 . The observable is the operator 
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1 ,2   |1 1 |2 2
1 |12 |2 . 7.1.24

 

Assume now that 

 

1 ,2   1  2 , 7.1.25

 

since there is zero angular momentum in the final state, there is 

rotation symmetry so the observable can only depend on the 

difference of the polarization angles. The expectation value of   is 

 

1  2   |1  2 | 
1

2
x |1x |2  y|1y|2 |1 1 |2 2

1 |12 |2|x 1 |x 2
 |y1 |y2

.
7.1.26

 

Note that x|  cos, y|  sin.  Finally one obtains 

 

1  2   1

4
1  cos21  2 . 7.1.27

 

The Clauser Horne inequality is 

 

N12a,b  N12b,a  N12a,b  N12a,b
N1a  N2b

 1. 7.1.28

 

Assume now that a,b,a,b  are all separated by the angle   then 

 

N12  N12  N12  N123
N1a  N2b


3N12  N123

N1a  N2b
 1. 7.1.29

 

Next relate coincidences to expectation values. Note that 

N12  N||.  As regards the singles counts N1a  and N2b , 

we know that the number of counts must be independent of the 

direction of a   or b and that for any direction N1  1

2
N , since half the 

photons will be polarized along and direction. Therefore the 
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inequality (7.1.29) becomes 

 

 
3

4
1  cos2  1

4
1  cos6

1

2
 1

2

 1

2
 3

4
cos2  1

4
cos6  1. 7.1.30

 

The inequality (7.1.30) is maximally violated if   
8 : 

 

 
8

 1

2
 3 2

4
 1

2 2
 1.2 7.1.31

 

which is not less than 1. 

 

 

VII.1.3. Violation of Bell's inequality under strict 

Einstein locality conditions 

 

The assumption of locality in the derivation of Bell's theorem 

requires that the measurement processes of the two observers are 

space-like separated (Fig. 7.1.1). This means that it is necessary to 

freely choose a direction for analysis, to set the analyzer and finally 

to register the particle such that it is impossible for any information 

about these processes to travel via any (possibly unknown) channel 

to the other observer before he, in turn, finishes his measurement. 

Selection of an analyzer direction has to be completely 

unpredictable which necessitates a physical random number 

generator. A numerical pseudo-random number generator can not 

be used, since its state at any time is predetermined. Furthermore, 

to achieve complete independence of both observers, one should 

avoid any common context as would be conventional registration of 

coincidences as in all previous experiments. Rather the individual 

events should be registered on both sides completely independently 

and compared only after the measurements are finished. This 

requires independent and highly accurate time bases on both sides. 

In our experiment for the first time any mutual influence between the 

two observations is excluded within the realm of Einstein locality. 
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To achieve this condition the observers Alice and Bob were spatially 

separated by 400 m across the Innsbruck university science 

campus. In [5] polarization entangled photon pairs which were sent 

to the observers through optical fibers were used. About 250 m of 

each 500 m long cable was laid out and the rest was left coiled at 

the source. This, we remark, has no influence on the timing 

argument because the optical elements of the source and the locally 

coiled fibers can be seen as jointly forming the effective source of 

the experiment (Fig. 7.1.1). 

 

Remark 7.1.5. The difference in fiber length was less than 1m  which 

means that the photons were registered simultaneously within 

interval 5ns. 

 

 
 

Fig. 7.1.1. Spacetime diagram of Bell experiment [5] 

 

Selecting a random analyzer direction, setting the analyzer and 

finally detecting a photon constitute the measurement process. This 
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process on Alice's side must fully lie inside the shaded region which 

is, during Bob's own measurement, invisible to him as a matter of 

principle. For setup this means that the decision about the setting 

has to be made after point “X” if the corresponding photons are 

detected at spacetime points “Y” and “Z” respectively. In this 

experiment the measurement process (indicated by a short black 

bar) including the choice of a random number only took less than a 

tenth of the maximum allowed time. The vertical parts of the kinked 

photon world lines emerging from the source represent the fiber 

coils at the source location. 

The source of polarization entangled photon pairs is degenerate 

type-II parametric down-conversion where a BBO-crystal was 

pumped with 400 mW of 351nm light from an Argon-ion-laser. A 

telescope was used to narrow the UV-pump beam, in order to 

enhance the coupling of the 702 nm photons into the two single 

mode glass fibers. On the way to the fibers, the photons passed a 

half-wave plate and the compensator crystals necessary to 

compensate for in-crystal birefringence and to adjust the internal 

phase of the entangled state |  1/ 2|H
1 |V

2
 ei |V

1 |H
2
,  which 

was chosen   .  

 

Remark 7.1.6. The horizontal and the vertical polarization jointly 

define a basis denoted by 

z,  which can take on the values |H  or 

|V . 

The modulation systems (high-voltage amplifier and electro-optic 

modulator) had a frequency range from DC to 30 MHz. In operating 

the systems at high frequencies a reduced polarization contrast of 

97% (Bob) and 98% (Alice) was observed. 

This, however, is no real depolarization but merely reflects the fact 

that we are averaging over the polarization rotation induced by an 

electrical signal from the high-voltage amplifier, which is not of 

perfectly rectangular shape. 
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Fig. 7.1.2. One of the two observer stations [5] 

 

A random number generator is driving the electro-optic modulator. 

Silicon avalanche photodiodes are used as detectors. A time tag is 

stored for each detected photon together with the corresponding 

random number 0 or 1 and the code for the detector + or - 

corresponding to the two outputs of the Wollaston prism polarizer. 

All alignments and adjustments were pure local operations that did 

not rely on a common source or on communication between the 

observers. 

 

The actual orientation for local polarization analysis was determined 

independently by a physical random number generator. This 

generator has a light-emitting diode (coherence time tc   10 fs) 

illuminating a beam splitter whose outputs are monitored by 

photomultipliers. The subsequent electronic circuit sets its output to 

0(1) upon receiving a pulse from photomultiplier 0(1). 

Remark 7.1.7. Events where both photomultipliers register a photon 

within △t ≤ 2 ns are ignored [5]. 
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Fig. 7.1.3. (i) t1 - t2 = 0, (ii) t1 - t2 = δ > 0, (iii) t1 - t2 = -δ < 0 

 

A down-converter (one way to produce an entangled pair) throws 

two entangled photons 1  and 2  in opposite directions. Polarization 

of the photons 1  and 2  is measured by polarizers I and II 

respectively. 

Remark 7.1.8. Assume that photon 1  collapses in polarizer I at 

instant t1  and photon 2  collapses in polarizer II at instant t2  

respectively. Note that in general case t1  t2  even if photons 1  and 

2  were registered simultaneously (within 5ns interval, see Remark 

7.1.5). 

Notice that obviously there exist only three possibilities: 

(i) t1  t2  0,  (ii) t1  t2  min    0,  (iii) t1  t2  min    0.  

We have chosen here min  const  .  

The resulting binary random number generator has a maximum 

toggle frequency of 500 MHz. By changing the source intensity the 

mean interval was adjusted to about 10 ns in order to have a high 

primary random bit rate. Certainly this kind of random-number 

generator is not necessarily evenly distributed. For a test of Bell's 

inequality it is, however, not necessary to have perfectly even 

distribution, because all correlation functions are normalized to the 

total number of events for a certain combination of the analyzers' 

settings. Still, we kept the distribution even to within 2% in order to 

obtain an approximately equal number of samples for each setting. 

The distribution was adjusted by equalizing the number of counts of 

the two photomultipliers through changing their internal 

photoelectron amplification. Due to the limited speed of the 
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subsequent modulation system it was sufficient to sample this 

random number generator periodically at a rate of 10 MHz. 

There are many variants of Bell's inequalities. In G. Weihs, T. 

Jennewein experiment [5] a version first derived by Clauser et al. [4] 

(CHSH) was used since it applies directly to Zeilinger's experimental 

configuration. The number of coincidences between Alice's detector 

i and Bob's detector j is denoted by C ij,  with i, j  ,  where   

and  are the directions of the two polarization analyzers and  and  
denote the two outputs of a two-channel polarizer respectively. If we 

assume that the detected pairs are a fair sample of all pairs emitted, 

then the normalized expectation value E, of the correlation 

between Alice's and Bob's local results is 

 

E,  C,  C,  C,  C,/N, 7.1.32

 

where N  is the sum of all coincidence rates. 

Remark 7.1.9. We define now: 

(i) Cij
,  Cij,, t1 , t2 ,  where t1  t2  0;  

(ii) Cij
,  Cij,, t1 , t2 ,  where t1  t2  ;   

(iii) Cij
,  Cij,, t1 , t2 ,  where t1  t2  .  

Remark 7.1.10. Note that 

C ij,  C ij
,  C ij

,  C ij
,. 7.1.33

 

In a rather general form the CHSH inequality reads 

 

S,,,  |E,  E,|  |E,  E,|  2. 7.1.34

 

Quantum theory predicts a sinusoidal dependence for the 

coincidence rate 

 

C
QM,  sin2   7.1.35
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on the difference angle of the analyzer directions in Alice's and 

Bob's experiments. The same behavior can also be seen in the 

correlation function 

 

EQM,  cos2  . 7.1.36

 

Thus, for various combinations of analyzer directions ,,,  these 

functions violate CHSH inequality. Maximum violation is obtained 

using the following set of angles 

 

Smax
QM  SQM0, 45, 22.5, 67.5  2 2  2.82  2. 7.1.37

 

If, however, the perfect correlations (    0  or 90  ) have a 

reduced visibility V ≤ 1 then the quantum theoretical predictions for 

E  and S are reduced as well by the same factor independent of the 

angle. Thus, because the visibility of the perfect correlations in this 

experiment was about 97% and was expected S to be not higher 

than 2.74  if alignment of all angles is perfect and all detectors are 

equally efficient. Various measurements with the described setup 

were performed [5]. The data presented in Fig. 7.1.4 are the result of 

a scan of the DC bias voltage in Alice's modulation system over a 

200 V range in 5 V steps. At each point a synchronization pulse 

triggered a measurement period of 5 s on each side. From the time-

tag series we extracted coincidences after all measurements had 

been finished. Fig. 7.1.4 shows four of the 16 resulting coincidence 

rates as functions of the bias voltage. Each curve corresponds to a 

certain detector and a certain modulator state on each side. A 

nonlinear χ2 fit showed perfect agreement with the sine curve 

predicted by quantum theory. Visibility was 97% as one could have 

expected from the previously measured polarization contrast. No 

oscillations in the singles count rates were found. We want to stress 

again that the accidental coincidences have not been subtracted 

from the plotted data. 
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Fig. 7.1.4. Four out of sixteen coincidence rates between various 

detection channels as functions of bias voltage (analyzer rotation 

angle) on Alice’s modulator. A+1/B−0, for example, are the 

coincidences between Alice’s “+” detector with switch having been in 

position “1” and Bob’s “−” detector with switch position “0”. The 

difference in height is explained by different efficiencies of the 

detectors 

 

In order to give quantitative results for the violation of Bell's 

inequality with better statistics, experimental runs were performed 

with the settings 0, 45  for Alice's and 22.5,67.5  for Bob's 

polarization analyzer. A typical observed value of the function S in 
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such a measurement was S 2.73  0.02  for 14700  coincidence events 

collected in 10s. This corresponds to a violation of the CHSH 

inequality of 30 standard deviations assuming only statistical errors. 

If we allow for asymmetries between the detectors and minor errors 

of the modulator voltages this result agrees very well with the 

quantum theoretical prediction. 

 

 

VII.1.4. CHSH theorem without the hypothesis of 

locality  

 

One of the Bell's assumptions in the original derivation of his 

inequalities was the hypothesis of locality, i.e., of the absence of the 

influence of two remote measuring instruments on one another. That 

is why violations of these inequalities observed in experiments are 

often interpreted as a manifestation of the nonlocal nature of 

quantum mechanics, or a refutation of local realism. In [1, 2], CHSH 

inequality was derived in its traditional form, without resorting to the 

hypothesis of locality, the only assumption being that the probability 

distributions are nonnegative. This can therefore be regarded as a 

rigorous proof that the hypothesis of locality is not relevant to 

violations of CHSH inequalities. 

 

Let A,A,B,B  be random variables with values in the set 1,1,  i.e., 

 

A  1,A  1,B  1,B  1. 7.1.38

 

Assume that there exist joint probability distribution functions 

WA,A,B,B,  of A,A,B,B  defining probabilities for each possible set 

of outcomes such that: 

 

(i) 

PA,A,B,B  0,PA,B,B  0,PA,B,B  0,etc., 7.1.39
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(ii) 


A,A ,B,B 

PA,A ,B,B   1, 
A,A ,B,B 

PA,B,B   1, 
A,A ,B,B 

PA ,B,B   1,etc., 7.1.40

 

(iii) 

PA,A ,B,B   PA,A ,B,B   PA ,B,B   PA,A ,B,B ,

PA,A ,B,B   PA,A ,B,B   PA ,B,B   PA,A ,B,B ,

etc.

7.1.41

 

From (7.1.41) one obtains 

 

0  PA,B,B   PA,A ,B,B   PA,A ,B,B   PA ,B   PA ,B 

PA ,B   PB  PA ,B.
7.1.42

 

Similarly one obtains 

 

0  PA,B,B   PA,B  PA,B,B  

PA  PA,B  PA,B   PA,B,B 
7.1.43

 

and therefore 

 

PA,B,B  PA  PA,B  PA,B . 7.1.44

 

From (7.1.42) and (7.1.44) we obtain 

 

0  PA,B,B   PA,B,B  

PA ,B   PB  PA ,B  PA  PA,B  PA,B 
7.1.45

 

and therefore 

 

0  PA ,B   PB  PA ,B  PA  PA,B  PA,B  

 PA  PB  PA,B  PA ,B  PA,B   PA ,B .
7.1.46
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From (7.1.46) one obtains 

 

A,A,B,B   PA,B  PA,B  PA,B   PA,B   PA  PB  0. 7.1.47

 

Note that 

 

PB,B  PB  PB,B 7.1.48

 

and 

 

PB,B  PB  PB,B  1  PB  PB,B. 7.1.49

 

From (7.1.49) and (7.1.48) we obtain 

 

PB,B  1  PB  PB  PB,B . 7.1.50

 

Note that 

 

0  PA,B,B  PB,B   PA,B,B . 7.1.51

 

Inserting (7.1.43) and (7.1.50) into (7.1.51) we obtain 

 

0  1  PA  PB  PB   PA,B  PA ,B  PA,B  

PB,B   PA,B,B   1  PA  PB  PB  

PA,B  PA ,B  PA,B,B .

7.1.52

 

Note that 

 

PA,B,B   PA,A ,B,B   PA,A ,B,B   PA ,B  PA ,B  

 PA ,B  PB   PA ,B .
7.1.53

 

From (7.1.53) we obtain 
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0  1  PA  PB  PB  PA,B  PA,B  PA,B  PA,B. 7.1.54

 

From (7.1.54) and (7.1.47) we obtain 

 

1  A,A,B,B  0. 7.1.55

 

Note that the following representation of the quantities 

AB, AB, AB , AB   holds 

 

AB  PAB   PAB   PAB   PAB ,

etc.,
7.1.56

 

where 

 

PAB   PA  1,B  1,PAB   PA  1,B  1,etc. 7.1.57

 

From (7.1.56) and (7.1.57) we obtain 

 

AB  A B  AB   A B            

        .
7.1.58

 

From (7.1.55) we obtain 

 

2            0 7.1.59

 

and 

 

0            2. 7.1.60

 

From (7.1.59) and (7.1.60) we obtain 

 

2                      2. 7.1.61
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From (7.1.58) and (7.1.61) finally we obtain 

 

|AB  AB  AB   AB |  2. 7.1.62

 

 

VII.1.5. CHSH theorem without the introduction of 

hidden variables 

 

A hidden-variable theory is the traditional, but not unique, basis for 

constructing various types of Bell's theorem. The starting point may 

also be a recognition of the existence of a positive-definite 

probability distribution function. This assumption alone is used to 

formulate and prove Bell's paradoxes of different types [6, 7]. 

 

Let A,A,B,B  be random variables with values in the set 1,1,  i.e., 

 

A  1,A  1,B  1,B  1. 7.1.63

 

Assume that there exists joint probability distribution function 

PA,A,B,B  of A,A,B,B  defining probabilities for each possible set of 

outcomes such that: 

 

PA,A,B,B   0, 7.1.64

 

and 

 


A,A ,B,B 

PA,A ,B,B   1, 7.1.65

 

and 

 

PA,A,B,B  PA,A,B,B   PA,B,B . 7.1.66

 



 

245 

 

Let us consider Bell inequality of the form 

 

  1
2

|AB  A B  AB   A B |  1. 7.1.67

 

It is well known [1], [6] that under assumptions (7.1.64)-(7.1.66) Bell 

inequality is directly provable without any reference to Kolmogorov 

probability space ,,P.  

 

We abbreviate now for short [1, 6]: 

 

P1  PA,A ,B,B      PA  1,A   1,B  1,B  1,

P2  PA,A ,B,B      PA  1,A   1,B  1,B  1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P16  PA,A ,B,B      PA  1,A   1,B  1,B  1.

7.1.68

 

For the quantities AB, AB, AB   and A B   using Eq. (7.1.68) one 

obtains the representatives 

 

AB  PAB   PAB   PAB   PAB ,

etc.,
7.1.69

 

where 

 

PAB   PA,A ,B,B      PA,A ,B,B     

PA,A ,B,B      PA,A ,B,B    ,

etc.

7.1.70

 

Substituting Eq. (7.1.69) into the expression AB  AB  AB   AB   

one obtains 
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  1
2
AB  A B  AB   A B  

PA,A ,B,B      PA,A ,B,B      PA,A ,B,B     

PA,A ,B,B      PA,A ,B,B      PA,A ,B,B     

PA,A ,B,B      PA,A ,B,B      PA,A ,B,B     

PA,A ,B,B      PA,A ,B,B      PA,A ,B,B     

PA,A ,B,B      PA,A ,B,B      PA,A ,B,B     

PA,A ,B,B    .

7.1.71

 

From (7.1.64) - (7.1.65) it obviously follows that 1    1,  and 

therefore Bell inequality (7.1.67) holds. 

 

 

VII.2. Physical nature of the violation of the Bell 

inequalities 

 

VII.2.1. Physical interpretation of the Bell test 

experiment under EPR-B nonlocality postulate 

 

Actually, most experiments have been performed using polarization 

of photons. The quantum state of the pair of entangled photons is 

not the singlet state. The polarization of a photon is measured in a 

pair of perpendicular directions. Relative to a given orientation, 

polarization is either vertical (denoted by V  or by ) or horizontal 

(denoted by H  or by ). The photon pairs are generated in the 

quantum state 

 

|EPR   1

2
|V

s
 |V

i
 |H

s
 |Hi , 7.2.1

 

where |V  and |H  denote the state of a single vertically or 

horizontally polarized photon, respectively (relative to a fixed and 

common reference direction for both particles) and subscripts s and i 

indicate signal or idler photon respectively. 
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The source S  produces pairs of "photons" sent in opposite 

directions. Each photon encounters a two-channel polariser whose 

orientation (a or b) can be set by the experimenter. Emerging signals 

from each channel are detected and coincidences of four types (

 , ,   and  ) are counted by the coincidence monitor. 

 

This state cannot be factored into a simple product of signal and 

idler states: |EPR  |A
s
 |Bi  for any choice of |A

s  and |Bi . This 

means the state of one particle cannot be specified without making 

reference to the other particle. Such particles are said to be 

“entangled” and |EPR   is an entangled state. If we measure the 

polarizations of signal and idler photons in the H,V  basis there are 

two possible outcomes: both vertical or both horizontal. Each occurs 

half of the time. We could instead measure the polarizations with 

polarizers rotated by an angle  . We use the rotated polarization 

basis 

 

|V   cos|V  sin|H, |H   sin|V  cos|H. 7.2.2

 

Here |V   describes a state with polarization rotated by  from the 

vertical, while |H  is  from the horizontal. In this basis the state is 

 

|EPR   1

2
|V s|V i

 |H s|H i
. 7.2.3

 

Remark 7.2.1. We will denote the events corresponding to 

coincidences (at the instant t ) of four types  , , ,   on 

the coincidence monitor by symbols 

 

,; t,,; t,,; t,,; t

 

or by symbols a,b;t,a,b;t,a,b;t,a,b;t  respectively or 

simply a,b,a,b,a,b,a,b . 
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Fig. 7.2.1. Scheme of a “two-channel” Bell test 

 

 

Remark 7.2.2. Clearly, if we measure in this rotated basis we get 

the same results: half the time both are |V   and half of the time both 

are |H . Knowing this, we can measure the signal polarization and 

infer with certainty the idler polarization. This is the situation EPR 

described, but we have used polarizations instead of position and 

momentum. 

 

Remark 7.2.3. Note that there is an uncertainty relationship between 

polarizations in different bases. Knowledge of a photon polarization 

after the measurement such a polarization in the V0  ,H0   basis 

implies complete uncertainty of its polarization in the V45  ,H45   basis, 

for example. 
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Fig. 7.2.2. Schematic of experimental setup [8] 

Symbols: LD Laser Diode, CL Collimating Lens, BF Blue Filter, BA 

Beam Aperture, LP Laser Polarizer, QP Quartz Plate, MI Mirror, CR 

Downconversion Crystals, RA Rail, PA Polarizer A, PB Polarizer B, 

ID Iris Diaphragm, RF Red Filter, FL Focusing Lens, CA Cage 

Assembly, DA Detector A, DB Detector B, ST Beam Stop. 

 

Figure 7.2.2 shows a schematic of an experimental setup to produce 

polarization - entangled photons [8]. A 5 mW free-running InGaN 

diode laser produces a beam of violet (405  nm) photons which 

passes through a blue filter, a linear polarizer, and a birefringent 

plate before reaching a pair of beta barium borate (BBO) crystals. In 

the crystals, a small fraction of the laser photons spontaneously 

decays into pairs of photons by the process of spontaneous 

parametric downconversion (SPD). In a given decay the 

downconverted photons emerge at the same time and on opposite 

sides of the laser beam. The detectors, two single-photon counting 

modules (SPCMs), are preceded by linear polarizers and red filters 

to block any scattered laser light. Even so, it is necessary to use 

coincidence detection to separate the downconverted photons from 

the background of other photons reaching the detectors. Because 

the photons of a downconverted pair are produced at the same time 
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they cause coincident, i.e., nearly simultaneous, firings of the 

SPCMs. Coincidences are detected by a fast logic circuit and 

recorded by a personal computer. The detection components 

(SPCMs, irises, lenses and filters) are mounted on rails which pivot 

about a vertical axis passing through the crystals. This allows the 

detection of SPD photons at different angles with minimal 

realignment. The rails were positioned at A  B  2.5  and the 

focusing lenses adjusted for maximum singles rates. With the irises 

fully open and polarizers both set to vertical, more than 300 counts 

per second were observed [8]. 

 

 

 

Fig. 7.2.3. Two-crystal down conversion source 

 

 

The crystals are 0.1 mm thick and in contact face-to-face, while the 

pump beam is approximately 1 mm in diameter. Thus the cones of 

downconverted light from the two crystals overlap almost 

completely. 

 

These BBO crystals are cut for Type I phase matching, which 

means that the signal and idler photons emerge with the same 

polarization, which is orthogonal to that of the pump photon. Each 

crystal can only support downconversion of one pump polarization. 

The other polarization passes through the crystal unchanged. We 
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use two crystals, one rotated 90  from the other, so that either pump 

polarization can downconvert according to the rules 

 

|V
p
 |H

s|H
i
, |H

p
 expi|V

s|V
i
. 7.2.4

 

where   is a phase due to dispersion and birefringence in the 

crystals. The geometry is shown schematically in Figure 7.2.3. 

To create an entangled state, we first linearly polarize the laser 

beam at an angle  l  from the vertical and then shift the phase of one 

polarization component by  l  with the birefringent quartz plate. The 

laser photons (pump photons) are then in the state 

 

|pump   cos l|V
p
 expi lsin l|H

p
7.2.5

 

when they reach the crystals. The downconverted photons emerge 

in the state 

 

|DC  cos l|H
s|H

i
 expisin l|V

s|V
i

7.2.6

 

where    l    is the total phase difference of the two polarization 

components [8]. 

Remark 7.2.4. This state is an entangled state and is already quite 

adjustable. 

Further modifications can be made with ordinary optical 

components. For example, if  l  /4 ,    then a half-wave plate 

in the signal beam could be used to switch the signal polarization 

|H
s
 |V

s  to produce |DC
   |V

s|H
i
 |H

s|V
i
/ 2 . 

By placing polarizers rotated to angles  and  in the signal and idler 

paths, respectively, we measure the polarization of the 

downconverted photons. For a pair produced in the state |DC , the 

probability of coincidence detection is 
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PVV,  |V |sV |
i
|DC|2 . 7.2.7

 

The VV  subscripts on P  indicate the measurement outcome VV , 

both photons vertical in the bases of their respective polarizers. 

More generally, for any pair of polarizer angles ,, there are four 

possible outcomes, VV,VH,HV  and HH  indicated by VV,VH,HV  

and HH, respectively. Using the basis of equation (7.2.2), we find 

 

PVV,  |sinsincos l  expicoscossin l |
2 7.2.8

or 

PVV,  sin2sin2cos2 l  cos2cos2sin2 l  1

4
sin2sin2sin2 l cos. 7.2.9

 

A special case occurs when |DC  |EPR , i.e., when  l  /4  and 

  0. In this case 

 

PVV,  1

2
cos2  , 7.2.10

 

which depends only on the relative angle    . 

The last term in Eq. (7.2.9) is a cross term which accounts for the 

interference between the H,H and V,V  parts of the state. The   in 

this term is, through its dependence on  , a complicated function of 

pump photon wavelength, signal photon wavelength and angle as 

well as crystal characteristics. Because the laser has a finite line 

width and we collect photons over a finite solid angle and 

wavelength range, we collect a range of  . To account for this, we 

replace cos  by its average cos  cosm  to get 

 

PVV,  sin2sin2cos2 l  cos2cos2sin2 l  1

4
sin2sin2sin2 l cosm 7.2.11

 

In the experiment, a fixed interval T of data acquisition (typically in 

the range 0.5 seconds to 15 seconds) was chosen and the number 

of coincidences N, during that interval was recorded [8]. 
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Assuming a constant flux of photon pairs, the number collected will 

be 

 

N, 

A sin2sin2cos2 l  cos2cos2sin2 l  1

4
sin2sin2sin2 l cosm  C

7.2.12

 

where A  is the total number of entangled pairs produced and C  is 

an offset to account for imperfections in the polarizers and alignment 

of the crystals. This is necessary to account for the fact that some 

coincidences are observed even when the polarizers are set to 

  0,  90  . 

Remark 7.2.5. We emphasize that (7.2.9) and (7.2.10) hold iff the 

measurements on photon ν 1  and photon ν 2  occur simultaneously, 

i.e., photon ν 1  and photon ν 2  collapse in polarizers I and II 

respectively at an instant t  t1  t2 , t  0,T,  (see Remark 7.1.8) and 

we will denote such events by 

ν1
t1 ,ν2

t2 

or simply ν1 ,ν2.  

Remark 7.2.6. We will denote such entangled pairs of photons also 

by ν1
t1 ,ν2

t2 

 or simply ν1 ,ν2  and we will denote the total number 

of entangled pairs ν1
t1 ,ν2

t2 

 produced during interval T by AT
.  The 

number of coincidences during interval T corresponding exactly to 

entangled pairs ν1
t1 ,ν2

t2 

 we will denote by 

 

NT
,.

 

We rewrite now Eq. (7.2.11) in the following form: 

 

PVV
 ,| ν 1

t1 ,ν 2
t2 

  PVV
 , t1 ;, t2 | ν 1

t1 ,ν 2
t2 

  sin2 sin2cos2 l 

cos2cos2sin2 l  1

4
sin2 sin2sin2 l cosm

7.2.13
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Remark 7.2.7. Note that PVV
 , t1 ;, t2 | ν1

t1 ,ν2
t2 

  is the conditional 

probability of the event ,; t  (see Remark 7.2.1) under 

condition that the event ν1
t1 ,ν2

t2 

 was occured at instant t  t1  t2 .  

We rewrite now Eq. (7.2.12) in the following form: 

 

NT
, 

AT
 sin2sin2cos2 l  cos2cos2sin2 l  1

4
sin2sin2sin2 l cosm  C1

7.2.14

 

Remark 7.2.8. Let us now consider the complete set of probabilities 

pa, t1 ;b, t2   of joint detections of ν 1  and ν 2  in the channels   or  of 

polarisers I or II, in orientations a  and b, see Fig. 7.2.4. The 

canonical Quantum Mechanical predictions for the the joint detection 

probabilities are 

pa, t1 ;b, t2   pa, t1 ;b, t2   1

2
cos2a,b,

pa, t1 ;b, t2   pa, t1 ;b, t2   1

2
sin2a,b,

t1  t2 .

7.2.15

 

We emphasize that (7.2.15) holds iff the measurements on photon 

ν 1  and photon ν 2  occur simultaneously, i.e., iff photon ν 1  and photon 

ν 2  collapse in polarizers I and II respectively at instant t  t1  t2 ,  see 

Remark 7.1.8. 

Remark 7.2.9. Suppose now that the measurement on photon ν 1  

occurs first, at instant t1 , and gives the result ,  with the polarizer I 

in the orientation a and therefore the measurement on photon ν 2  

occurs at instant t2 ,  where t1  t2    0,  (see Remark 7.1.8) and 

we will denote such events (i.e., if photon ν 1  collapses in polarizer I 

at instant t1  and photon ν 2  collapses in polarizer II at instant t2 ,  

where t1 , t2  0,T  respectively) by 

 

ν 1
t1 ,ν2

t2 
,

or simply ν1 ,ν2.  
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Remark 7.2.10. We will denote such entangled pairs of photons also 

by ν1
t1 ,ν2

t2 
,  t1 , t2  0,T,  or simply ν1 ,ν2.  

 

 

 

Fig. 7.2.4. Schematic of the experiment testing EPR non-locality. 

(i) 
1 2 0t t  , (ii) 

1 2 0t t    , (iii) 
1 2 0t t      

 

Entangled photons from the source are sent to two fast switches, 

that direct them to polarizing detectors. The switches change 

settings very rapidly, effectively changing the detector settings for 

the experiment while the photons are in flight. 

ν1 ,ν2   describing the pair is obtained by projection of the initial 

state vector 
|ν1 ,ν2   1

2
|x,x  |y,y,

 where |x  and |y are linear 

polarizations states, onto the eigenspace associated to the result  : 

this two dimensional eigenspace has a basis |a,x, |a,y.  Using the 

corresponding projector, one finds after a little algebra 

 

ν1 ,ν2   |a,a. 7.2.16

 

This means that (i) immediately after the first measurement, photon 

ν 1  takes the polarization |a: this is obvious because it has been 

measured with a polarizer oriented along a , and the result  has 

been found, (ii) the distant photon ν 2 ,  which has not yet interacted 

with any polarizer, at instant t1  has also been projected exactly into 
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the state |a with a well defined polarization, parallel to the one found 

for photon 1 . 

Remark 7.2.11. Note that the standard Heisenberg's uncertainty 

principle predicts that if the polarization of the photon ν 2  along the 

direction a  becomes certainty, i.e., known exactly, all information 

about the polarization of the photon ν 2  along the direction b 

becomes uncertainty, i.e., it will be completely lost. In order to 

overcome this problem we apply Heisenberg's noise - disturbance 

uncertainty relation, see Appendix A. 

This relation is generally formulated as follows: for any apparatus A  

to measure an observable A,  the relation 

 

A,,AB,,A  1

2
||A,B|| 7.2.17

 

holds for any input state   and any observable B, where A,,A  

stands for the noise of the A measurement in state   using 

apparatus A and B,,A  stands for the disturbance of B in state   

caused by apparatus A. 

From (7.2.17) one obtains 

 

a ,12 ,PIb,12 ,PI  1

2
|12 |a ,b |12 |, 7.2.18

 

where the measurement operators a  and b  measure the 

polarization in the a -direction and b-direction respectively and where 

|12   |ν1 ,ν2 .  

Remark 7.2.12. Note that after the measurement on the photon ν 1  

along the direction a  the polarization of the photon ν 1  along the 

direction b obtains finite uncertainty b  b,12 ,PI.  

Thus for the joint detection probabilities pa, t1 ;b, t2   instead 

classical Eq. (7.2.15) by using the weak postulate of nonlocality, 
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(see subsection I.4.1) we obtain 

 

p
 a, t1 ;b, t2   p

 a, t1 ;b, t2   1

2
cos2a a ,b b ,

p
 a, t1 ;b, t2   p

 a, t1 ;b, t2   1

2
sin2a a ,b b .

7.2.19

 

Where a  a ,12 ,PI, t1  t2    0.  

Remark 7.2.13. Suppose now that the measurement on photon ν 2  

occurs first, at instant t2 , and gives the result ,  with the polarizer I 

in the orientation a  and therefore the measurement on photon ν 1  

occurs at instant t1 ,  where t1  t2    0,  (see Remark 7.1.8) and 

we will denote such events (i.e., if photon ν 1  collapses in polarizer I 

at instant t1  and photon ν 2  collapses in polarizer II at instant t2  

respectively, where t1  t2    0, t1 , t2  0,T ) by 

 

ν1
t1 ,ν2

t2 

 

or simply ν1 ,ν2.  

 

Remark 7.2.14. We will denote such entangled pairs of photons by 

ν1
t1 ,ν2

t2 
,  t1 , t2  0,T  or simply ν1 ,ν2.  

 

Remark 7.2.15. Note that after the measurement on the photon ν 2  

along the direction b the polarization of the photon ν 1  along the 

direction a  obtains finite uncertainty a  a ,12 ,PII.  Thus for 

the joint detection probabilities p
 a, t1 ;b, t2   instead classical 

Eq.(7.2.15) by using the weak postulate of nonlocality, (see 

subsection I.4.1) we obtain 

 

p
 a, t1 ;b, t2   p

 a, t1 ;b, t2   1

2
cos2a a ,b b,

p
 a, t1 ;b, t2   p

 a, t1 ;b, t2   1

2
sin2a a ,b b ,

7.2.20
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where b  b,12 ,PII, t1  t2    0.  

Remark 7.2.16. Note that similarly as above, instead Eq. (7.2.11) 

and Eq. (7.2.12) we obtain: 

(I)  

PVV
 ,  PVV

 , t1 ;, t2   |V |sV |
i
|DC|2 , 7.2.21

 

PVV
 ,  PVV

 , t1 ;, t2   sin2  sin2cos2 l 

cos2  cos2 sin2 l  1

4
sin2  sin2sin2 l cosm

7.2.22

 

where t1  t2    0  and 

 

NT
, 

AT
sin2   sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2   sin2sin2 l cosm  C2 

AT
sin2 sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2 sin2sin2 l cosm  AT

C,, l,m ,,  C2 ,

7.2.23

 

where AT

 is the total number of entangled pairs ν1

t1 ,ν2
t2 

 produced 

during interval T and 

 

NT
,

 

is the number of coincidences corresponding to entangled pairs 

ν1
t1 ,ν2

t2 

 produced during interval T.  

Remark 7.2.17. Note that PVV
 , t1 ;, t2 | ν1

t1 ,ν2
t2 

  is the conditional 

probability of the event ,; t2  (see Remark 7.2.1) under 

condition that the event ν1
t1 ,ν2

t2 

 was occurred at instant t  t2 .  

(II) 

PVV
 ,  PVV

 , t1 ;, t2   |V |
s
V |

i
|DC|2 , 7.2.24
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PVV
 ,  PVV

 , t1 ;, t2   sin2  sin2cos2 l 

cos2  cos2 sin2 l  1

4
sin2  sin2sin2 l cosm

7.2.25

 

where t1  t2    0  and 

 

NT
, 

AT
sin2   sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2   sin2sin2 l cosm  C3 

AT
sin2 sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2 sin2sin2 l cosm  AT

C,, l,m ,,   C3 ,

7.2.26

 

where AT

 is the total number of entangled pairs ν1

t1 ,ν2
t2 

 produced 

during interval T and 

 

NT
,

 

is the number of coincidences corresponding to entangled pairs 

ν1
t1 ,ν2

t2 

 produced during interval T.  

 

Remark 7.2.18. Note that PVV
 , t1 ;, t2 | ν1

t1 ,ν2
t2 

  is the conditional 

probability of the event ,; t1  (see Remark 7.2.1) under 

condition that the event ν1
t1 ,ν2

t2 

 was occurred at instant t  t1 .  

 

From Eq. (7.2.14), (7.2.23) and (7.2.26) we obtain 

(I) 

PVV


 PVV


,   PVV

 ,  ν 1 ,ν 2  
NT
,

AT
  AT

  AT
 

AT


AT
  AT

  AT
 sin

2 sin2cos2 l  cos2cos2sin2 l 

1

4
sin2 sin2sin2 l cosm  C,

7.2.27
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where PVV


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true. 

 

(II) 

PVV


,   PVV

 ,  ν 1 ,ν 2  
NT
,

AT
  AT

  AT
 

AT


AT
  AT

  AT
 sin

2   sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2   sin2sin2 l cosm  C 

AT
sin2 sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2 sin2sin2 l cosm  C,, l,m ,,,

7.2.28

 

where PVV


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true. 

 

(III) 

PVV


,   PVV

 ,  ν 1 ,ν 2  
NT
,

AT
  AT

  AT
 

AT


AT
  AT

  AT
 sin

2   sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2   sin2sin2 l cosm  C 

Asin2 sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2 sin2sin2 l cosm  C,, l,m ,, ,

7.2.29

 

where PVV


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true. 

 

From Eq. (7.2.27), (7.2.28) and (7.2.29) we obtain 

 

PVV  PVV,  PVV


,  PVV


,  PVV


,, 7.2.30

 

where PVV,  is the unconditional probability of the event ,.  
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Remark 7.2.19. Note that 

 

PVH
 ,  |V |sH |

i
|DC |2 ,PHV

 ,  |V |sH |
i
|DC |2 ,

PHH
 ,  |H |sH |

i
|DC |2 ,

PVV
 ,  |V |sV |

i
|DC |2 ,

PVV
 ,  |V |

s
V |

i
|DC |2

7.2.31

 

From Eqs. (7.2.31) similarly as above we obtain 

(I) 

 

PVH  PVH,  PVH


,  PVH


,  PVH


,, 7.2.32

where 

(i) PVH  PVV,  is the unconditional probability of the event 

,,  

(ii) PVH


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true, 

(iii) PVH


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true, 

(iv) PVH


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true, 

(II) 

PHV  PHV,  PHV


,  PHV


,  PHV


,, 7.2.33

 

where 

(i) PHV  PHV,  is the unconditional probability of the event 

,,  

(ii) PHV


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true, 

(iii) PHV


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true, 
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(iv) PHV


,  is the joint probability of both events ,  and 

ν1 ,ν2  being true, 

(III) 

PHH  PHH,  PHH


,  PHH


,  PHH


,, 7.2.34

where 

(i) PHV  PHV,  is the unconditional probability of the event 

,,  

(ii) PHH


,   is the joint probability of both events ,  and 

ν1 ,ν2  being true, 

(iii) PHH


,   is the joint probability of both events ,  and 

ν1 ,ν2  being true, 

(iv) PHH


,   is the joint probability of both events ,  and 

ν1 ,ν2  being true. 

 

From Eq. (7.2.14), (7.2.23) and (7.2.26) we obtain 

 

 

where AT  AT
  AT

  AT

 is the total number of entangled pairs 

produced and 

NT
tot,  NT

,  NT
,  NT

, 

AT
 sin2 sin2cos2 l  cos2cos2sin2 l  1

4
sin2 sin2sin2 l cosm  C1 

AT
sin2   sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2   sin2sin2 l cosm  C2 

AT
sin2   sin2cos2 l  cos2cos2sin2 l 

 1

4
sin2   sin2sin2 l cosm  C3 

AT
  AT

  AT
  

 sin2 sin2cos2 l  cos2cos2sin2 l  1

4
sin2 sin2sin2 l cosm 

AT
C2,, l,m ,,  AT

C3,, l,m ,,   C 

AT sin2 sin2cos2 l  cos2cos2sin2 l  1

4
sin2 sin2sin2 l cosm 

AT
C2,, l,m ,,  AT

C3,, l,m ,,   C1  C2  C3 

AT sin2 sin2cos2 l  cos2cos2sin2 l  1

4
sin2 sin2sin2 l cosm  C,

7.2.35
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C  AT
C2,, l,m ,,  AT

C3,, l,m ,,  C1  C2  C3 . 7.2.36

 

Remark 7.2.20. To create the state |EPR   or something close to it, it 

is necessarily to adjust the parameters which determine the laser 

polarization. First one adjusts  l  to equalize the coincidence counts 

N0, 0  and N90,90 .  

Next one set  l  by rotating the quartz plate about a vertical axis to 

maximize N45,45 . When performing these optimizations, one 

typically collects a few hundred photons per point which requires an 

acquisition window of a few seconds. 

 

Remark 7.2.21. A rough idea of the purity of the entangled state can 

be found by measuring N0,0,  N90,90,N45,45  and N0, 90 . 

Using the model of Eq. (7.2.19), one obtains 

 

C  N0,90, 7.2.37

 

A  N0, 0  N90, 90  2C, 7.2.38
 

tan2 l 
N90, 90  C

N0, 0  C
, 7.2.39

 

cosm  1
sin2 l

4
N45, 45  C

A
 1 . 7.2.40

 

In a typical acquisition, after optimizing  l  and  l  we find, with T  10  

seconds, N0,0  293 , N90,90  307 , N0,90  22 ,and N45,45  286 .  

 

These give C  22,A  556, l  46,  and m  26 . More extensive data 

are shown in Fig. 7.2.5 along with a fit to Eq. (7.2.19). The best fit 

parameters, C  31,A  539, l  46  and m  26  are in good 

agreement with the rough estimates made with just four points. 
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Fig. 7.2.5a Experimental polarization correlations. 

  0  (open circles) and   45  (filled circles) 

 

 
 

Fig. 7.2.5b. Experimental polarization correlations. 

  90  (open circles) and   135  (filled circles) 
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Fig. 7.2.5a shows   0  (open circles) and   45  (filled circles). 

Fig.7.2.5b shows   90  (open circles) and   135  (filled circles). 

Error bars indicate plus/minus one standard deviation statistical 

uncertainty. Curves are a fit to Eq. (7.2.19). 

 

Remark 7.2.22. Remind that in his comment on Bohr's lecture, 

Einstein noted that quantum mechanics allows a measurement of 

one particle to influence the state of another. To illustrate this for 

polarizations, we consider again the state |EPR   of Eq. (7.2.3). If the 

signal photon is measured with a polarizer set to  , the result will be 

H  or V , each occurring half the time. 

In the usual Copenhagen interpretation the state has collapsed, at 

the moment of measurement, from |EPR   to either |V s|V i  or 

|H s|H i . But the mere choice of   does not determine the state of 

the idler photon; it is the (random) outcome of the measurement on 

the signal photon that decides whether the idler ends up as |V i  or 

|H i .  

Despite the randomness, the choice of   clearly has an effect on the 

state of the idler photon: it gives it a definite polarization in the 

|V i
, |H i  basis, which it did not have before the measurement. 

 

Remark 7.2.23. After the signal photon is measured the idler is 

equally likely to be V  or H . A measurement of its polarization, at 

any angle  , finds V  with the probability 

 

PV  1

2
|Vb

|V |2  1

2
|Vb

|H |2 

 1

2
cos2b    sin2b    1

2
.

7.2.41

 

This gives no information about the choice of α. It is also the 

probability we would find if the signal photon had not been 

measured. 
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VII.2.2. EPR-B nonlocality is the physical nature of the 

violation of the Bell inequalities 

 

Remind that classical CHSH constrains the degree of polarization 

correlation under measurements at different polarizer angles.  

The proof involves two measures of correlation, see subsection 

VII.2.3. The first measure is 

 

E,  PVV,  PHH,  PVH,  PHV,. 7.2.42

 

This incorporates all possible measurement outcomes and varies 

from 1 when the polarizations always agree to 1 when they always 

disagree. 

 

Fig. 7.2.6. Polarizer angles for maximal SQM 

 

The second measure is 

 

S  Ea,b  Ea,b  Ea,b  Ea,b, 7.2.43

 

where a,a,b,b  are four different polarizer angles. S does not have a 

clear physical meaning. Its importance comes from the fact that 

Clauser, Horne, Shimony and Holt proved 
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|SHVT|  2 7.2.44

 

(see subsection VII.2.3) for any classical Hidden Variable Theory 

(HVT) and arbitrary a,a,b,b . 

Remark 7.2.24. Quantum mechanics under (i) canonical 

Copenhagen interpretation, and (ii) canonical SRT (Special 

Relativity Theory) locality for certain settings, can violate this 

inequality. If we choose the polarizer angles, a  45,  a  0,  b  22.5  

and b  22.5 , as shown in Fig. 7.2.6, then, using Eq. (7.2.15) 

 

SQM  2 2 . 7.2.45

 

This result is specific to the state |EPR  . Other states give lower S  

values. It is interesting to note that for these angles our simple HVT 

(see subsection VII.2.3) gives 

 

SHVT  2. 7.2.46

 

The CHSH (Clauser, Horne, Shimony and Holt) inequality shows 

that no theory which is both local and realistic (or `complete' in the 

EPR sense) will ever agree with quantum mechanics. 

Remark 7.2.25. Note that derivation of the CHSH inequality 

essentially depends on SR locality condition, see Remark 7.2.27. In 

subsection VII.2.4 we introduced generalized HVT (GHVT) based on 

EPR-B nonlocality condition. For such GHVT we derive the revised 

CHSH inequality 

 

|SGHVT|  4. 7.2.47

 

To find the probabilities P  that make up E , we need four values of 

N,  specificially 
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PVV,  NT
tot,/NT

tot,PVH,  NT
tot,/NT

tot,

PHV,  NT
tot,/NT

tot,PHH,  NT
tot,/NT

tot,

NT
tot  NT

tot,  NT
tot,  NT

tot,  NT
tot,,

7.2.48

 

where N tot  is the total number of pairs detected during interval of 

time 0,T and ,  are the polarizer settings   90,    90 . This 

requires counting coincidences for equal intervals with the polarizer 

set four different ways. 

The quantity E, requires four N  measurements 

 

E, 
NT

tot,  NT
tot,  NT

tot,  NT
tot,

NT
tot,  NT

tot,  NT
tot,  NT

tot,
7.2.49

 

and S  Ea,b  Ea,b  Ea,b  Ea,b  requires sixteen. 

Remark 7.2.26. By consideration above (see Eq. (7.2.35)) based on 

EPR-B nonlocality condition we find that the quantities: 

NT
tot,,NT

tot,,NT
tot,,NT

tot,  have the representations 

NT
tot,  NT

,  NT
,  NT

,,

NT
tot,  NT

,  NT
,  NT

,,

NT
tot,  NT

,  NT
,  NT

,,

NT
tot,  NT

,  NT
,  NT

,.

7.2.50

 

These representations have the rigorous physical meaning and they 

are essentially important for derivation of the revised CHSH 

inequality (7.2.47), see subsection VII.2.4. 

 

Remark 7.2.27. Remind that any classical Bell's type inequality was 

derived under the condition of SR locality and the canonical 

Copenhagen interpretation of QM. 

We consider now again the state |EPR   of Eq. (7.2.3). If the signal 

photon 1  is measured at instant t1  with a polarizer I set to  , the 
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result will be H  or V , each occurring half the time. In the usual 

Copenhagen interpretation the state |EPR   has immediately 

collapsed, at the moment of measurement, from |EPR   to either 

|V s|V i  or |H s|H i . We assume now for definiteness that the state 

|EPR  collapsed to |V s|V i  and thus the state of the idler photon 2  

is |V i
.  In agreement with a strong SR locality the idler photon 2  is 

not disturbed and its polarization can be measured with a polarizer II 

at instant t2  such that t2  t1 .  Thus under the canonical physical 

interpretation of the Bell test experiment given in physical literature 

[8] it is not important which event was occurred: 1
t1 ,2

t2 
, 1

t1 ,2
t2 

 

or 1
t1 ,2

t2 
,  before the corresponding coincidence is revealed with 

detectors A and B. 

Remark 7.2.28. We emphasize that the violation of the classical 

CHSH inequality (7.2.44) confirms EPR-B nonlocality condition. 

 

 

VII.2.3. Canonical Local Realistic Hidden Variable 

Theory 

 

Einstein believed that a theory could be found to replace quantum 

mechanics, one which was complete and contained only local 

interactions. Here we describe such a theory, a local realistic hidden 

variable theory (HVT) [8]. 

In a such HVT, each photon has a polarization angle  , but this 

polarization does not behave like polarization in quantum 

mechanics. When a photon meets a polarizer set to an angle  , it 

will always register as V  if   is closer to   than to   /2 , i.e., 

 

PV
HVT, 

1 |  | /4

1 |  | 3/4

0 otherwise.

7.2.51

 

In each pair, the signal and idler photon have the same polarization 
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s  i   . As successive pairs are produced   changes in an 

unpredictable manner that uniformly covers the whole range of 

possible polarizations. 

The quantity  is the hidden variable, a piece of information that is 

absent from quantum mechanics. HVTs do not have the spooky 

features of quantum mechanics. The theory is local: measurement 

outcomes are determined by features of objects present at the site 

of measurement. Any measurement on the signal (idler) photon is 

determined by s  and   ( i  and ). The theory is also realistic: All 

measurable quantities have definite values, independent of our 

knowledge of them. Furthermore, the theory specifies all of these 

values (for a given  ), so it is complete in Einstein's sense of the 

word. Finally, there is no requirement that  be random; it could be 

that   is changing in a deterministic way that remains to be 

discovered. 

 
Fig. 7.2.7. Predicted polarization correlations for a quantum 

mechanical entangled state (solid curve) and a hidden-variable 

theory (dashed line) 

 

To compare this theory to quantum mechanics, we need a prediction 

for the coincidence probability PVV
HVT, . A coincidence occurs 

when   is in a range such that both   and   are close to  . The 

probability of this is 
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PVV
HVT,  1

 
0


PV

HVT,PV
HVT,d  1

2
 |  |

 . 7.2.52

 

This function and the corresponding quantum mechanical probability 

from Eq. (7.2.10) are plotted in Fig. 7.2.7. The predictions are fairly 

similar. Where they disagree quantum mechanics predicts stronger 

correlations (or stronger anti-correlations) than the HVT. 

Remind that for any canonical HVT, the distribution of the hidden 

variable   is described by a function  , where   0  and 

d  1.  

The assumptions of locality and realism are embodied in the 

following: It is assumed that for the signal photon the outcome of a 

measurement is determined completely by   and the measurement 

angle  . These outcomes are specified by the function A, , which 

can take on the values 1 for detection as V  and 1 for detection as 

H . Similarly, a function B, describes the outcomes for the idler 

photon as 1 for V  and 1 for H . A HVT would specify the 

functions ,A  and B. 

The probability of a particular outcome, averaged over an ensemble 

of photon pairs, is given by an integral. In particular 

 

PVV,   1A,
2

1B,

2
d,PVH,   1A,

2

1B,

2
d,

PHV,   1A,
2

1B,

2
d,PHH,   1A,

2

1B,

2
d.

7.3.53

 

Let E, be 

 

E,  PVV,  PHH,  PVH,  PHV,. 7.2.54

 

It is easy to see that E,, given in Eq. (7.2.54), is 

 

E,  A,B,d. 7.2.55
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We define now the quantity s , which describes the polarization 

correlation in a single pair of particles: 

 

s,a,a,b,b  A,aB,b  A,aB,b  A,aB,b  A,aB,b

 A,aB,b  B,b  A,aB,b  B,b,
7.2.56

 

where a,a,b,b  are four angles. Note that s  can only take on the 

values 2. The average of s  over an ensemble of pairs is 

 

s,a,a,b,b   s,a,a,b,bd 

Ea,b  Ea,b  Ea,b  Ea,b  Sa,a,b,b.
7.2.57

 

Because s  can only take on the values 2, its average S must satisfy 

2  S  2 , which is the Clauser, Horne, Shimony and Holt 

inequality 

 

|S|  2. 7.2.58

 

 

VII.2.4. Local Hidden Variable Theory revisited. 

Generalized Local Hidden Variable Theory Validity of 

CHSH-inequality for correlations taking into account 

EPR-B nonlocality 

 

For any GHVT, the distribution of the hidden variable  is described 

by a function , t1 , t2 , where 

 

, t1 , t2  0 7.2.59

and 

, t1 , t2d  1. 7.2.60

 

The assumptions of EPR-B nonlocality and realism are embodied in 
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the following: It is assumed that for the signal photon the outcome of 

a measurement is determined completely by   and the 

measurement angle  . 

 

These outcomes are specified by the function A,, t1 , which can 

take on the values 1 for detection as V  and 1 for detection as H . 

Similarly, a function B,, t2  describes the outcomes for the idler 

photon as 1 for V  and 1 for H . A GHVT would specify the 

functions ,A  and B. 

 

The probability of a particular outcome, averaged over an ensemble 

of photon pairs, is given by an integral. In particular 

 

PVV, t1 ;, t2 

 1  A,, t1  A,, t2
2

1  B,, t1  B,, t2
2

, t1 , t2d,

PVH, t1 ;, t2 

 1  A,, t1  A,, t2
2

1  B,, t1  B,, t2
2

, t1 , t2d,

PHV, t1 ;, t2 

 1  A,, t1  A,, t2
2

1  B,, t1  B,, t2
2

, t1 , t2d,

PHH, t1 ;, t2 

 1  A,, t1  A,, t2
2

1  B,, t1  B,, t2
2

, t1 , t2d.

7.2.61

 

Let E, t1 ;, t2  be 

 

E, t1 ;, t2  PVV, t1 ;, t2  PHH, t1 ;, t2  PVH, t1 ;, t2  PHV, t1 ;, t2. 7.2.62

 

It is easy to see that E, t1 ;, t2 , given in Eq. (7.2.62), is 

 



 

274 

 

 

E, t1 ;, t2 

A,, t1  A,, t2B,, t1  B,, t2, t1 , t2d 

A,, t1B,, t1, t1 , t2d  A,, t1B,, t2, t1 , t2d 

A,, t2B,, t1, t1 , t2d  A,, t2B,, t2, t1 , t2d 

A,, t1B,, t2, t1 , t2d  A,, t2B,, t1, t1 , t2d 

A,, t1B,, t1, t1 , t2d  A,, t2B,, t2, t1 , t2d

7.2.63

 

We assume now for simplicity that: 

(i) |t1  t2 |    0,  i.e. t1  t2   t1  t2   t1  t2   and 

(ii) 

A,, t1B,, t1, t1 , t2d  0,A,, t2B,, t2, t1 , t2d  0. 7.2.64

 

From Eq. (7.2.63) and Eq. (7.2.64) we obtain 

 

E, t1 ;, t2 

A,, t1B,, t2, t1 , t2d  A,, t2B,, t1, t1 , t2d
7.2.65

 

We assume now for definiteness that: t1  t2  and rewrite Eq. (7.2.65) 

in the following form 

 

E, t1 ;, t2  E1, t1 ;, t2  E2, t1 ;, t2

E1, t1 ;, t2  A,, t1B,, t2, t1 , t2d,

E2, t1 ;, t2  A,, t2B,, t1, t1 , t2d.

7.2.66

 

The second measure Sa,a,b,b; t1 , t2   now is 
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Sa,a,b,b; t1 , t2   S1a,a,b,b; t1 , t2   S2a,a,b,b; t1 , t2  

Ea, t1 ;b, t2  Ea, t1 ;b, t2  Ea, t1 ;b, t2  Ea, t1 ;b, t2 

E1, t1 ;, t2  E1a, t1 ;b, t2  E1a, t1 ;b, t2  E1a, t1 ;b, t2 

E2a, t1 ;b, t2  E2a, t1 ;b, t2  E2a, t1 ;b, t2  E2a, t1 ;b, t2,

7.2.67

 

where 

 

S1a,a,b,b; t1 , t2  

E1, t1 ;, t2  E1a, t1 ;b, t2  E1a, t1 ;b, t2  E1a, t1 ;b, t2,

S2a,a,b,b; t1 , t2  

E2a, t1 ;b, t2  E2a, t1 ;b, t2  E2a, t1 ;b, t2  E2a, t1 ;b, t2.

7.2.68

 

Note that 

 

S1a,a,b,b; t1 , t2    s1,a,a,b,b; t1 , t2 , t1 , t2d,

S2a,a,b,b; t1 , t2    s2,a,a,b,b; t1 , t2 , t1 , t2d,

7.2.69

where 

s1,a,a,b,b; t1 , t2  

A,a, t1B,b, t2  A,a, t1B,b, t2 

A,a, t1B,b, t2  A,a, t1B,b, t2 

A,a, t1B,b, t2  B,b , t2 

A,a, t1B,b, t2  B,b, t2

7.2.70

and 

s2,a,a,b,b; t1 , t2  

A,a, t2B,b, t1  A,a, t2B,b, t1 

A,a, t2B,b, t1  A,a, t2B,b, t1 

A,a, t2B,b, t1  B,b, t1 

A,a, t2B,b, t1  B,b, t1.

7.2.71

 

Remark 7.2.29. Note that s1,a,a,b,b;t1 , t2   and s2,a,a,b,b;t1 , t2   

can only take on the values 2 and therefore its averages 
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S1a,a,b,b; t1 , t2   and S2a,a,b,b; t1 , t2   must satisfy 

 

2  S1  2,2  S2  2. 7.2.72

 

From Eq. (7.2.67) we obtain 

 

SGHVTa,a,b,b; t1 , t2   |S1a,a,b,b; t1 , t2   S2a,a,b,b; t1 , t2 | 

|S1a,a,b,b; t1 , t2 |  |S2a,a,b,b; t1 , t2 |
7.2.73

 

Thus from Eq. (7.2.72) and (7.2.73) finally we obtain 

 

SGHVT  4. 7.2.74

 

 

VII.3. Bell inequalities revisited 

 

VII.3.1. Clauser-Horne-Shimony-Holt (CHSH) inequality 

revisited. Validity of revised CHSH inequality 

 

In a typical Bell experiment, two systems which may have previously 

interacted - for instance they may have been produced by a 

common source - are now spatially separated and are each 

measured by one of two distant observers, Alice and Bob (see 

Fig.7.2.1). Alice may choose one out of several possible 

measurements to perform on her system and we let x t1  denote her 

measurement choice at instant t1 . For instance, x t1  may refer to the 

position of a knob on her measurement apparatus at instant t1 . 

Similarly, we let yt2  denote Bob's measurement choice. Once the 

measurements are performed, they yield outcomes a t1  and b t2  on 

the two systems. 

Remark 7.3.1. The actual values assigned to the measurement 

choices x t1 ,yt2  and outcomes at1 ,bt2  are purely conventional; they 

are mere macroscopic labels distinguishing the different possibilities. 
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Remark 7.3.2. From one run of the experiment to the other, the 

outcomes a t1  and b t2  that are obtained may vary, even when the 

same choices of measurements x t1  and yt2  are made. 

Assumption 7.3.1. These outcomes a t1  and b t2  are thus in general 

governed by a Kolmogorovian probability distribution pa, t1 ;b, t2 |x t1yt2,  

which can of course depend on the particular experiment being 

performed. By repeating the experiment a sufficient number of times 

and collecting the observed data, one can get a fair estimate of such 

Kolmogorovian probabilities. 

 

Assumption 7.3.2. The assumption of locality implies that we 

should be able to identify a set of past factors, described by some 

variables λ,  having a joint causal influence on both outcomes, and 

which fully account for the dependence between a t1  and bt2 .  Once 

all such factors have been taken into account, the residual 

indeterminacies about the outcomes must now be decoupled, that 

is, the Kolmogorovian joint probabilities for a t2  and b t2  should 

factorize: 

 

pa, t1 ;b, t2 |xy,  pa, t1 |x,pb, t2 |y,. 7.3.1

 

Remark 7.3.3. This factorability condition simply expresses that we 

have found an explanation according to which the probability for a t1  

only depends on the past variables  and on the local measurement 

x t1 , but not on the distant measurement and outcome, and 

analogously for the probability to obtain b t2 . 

The variable  will not necessarily be constant for all runs of the 

experiment, even if the procedure which prepares the particles to be 

measured is held fixed, because  may involve physical quantities 

that are not fully controllable. The different values of  across the 

runs should thus be characterized by a probability distribution 

qλ, t1 , t2.  Combined with the above factorability condition, we can 

thus write 

λ

λ

λ

λ
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pa, t1 ;b, t2 |xy  


dq, t1 , t2 pa, t1 |x,pb, t2 |y,, 7.3.2

 

where we also implicitly assumed that the measurements x t1  and yt2  

can be freely chosen in a way that is independent of , i.e., that 

qλ, t1 , t2 |x t1 ,yt2  qλ, t1 , t2 . This decomposition now represents a 

precise condition for locality in the context of Bell experiments. 

Let us consider for simplicity an experiment where there are only 

two measurement choices per observer x t1 ,yt2  0,1  and where the 

possible outcomes take also two values labelled at1 ,bt2  1,1.  Let 

at1x t1
bt2y t2  be the expectation value of the product at1bt2  for given 

measurement choices x t1 ,yt2 : 

 

at1x t1
bt2y t2

 
a,b

abpab, t1 , t2 |x t1 yt2. 7.3.3

 

Assumption 7.3.3. We assume now that 

t1 , t2   2 ,    ,0    1,  

 

pab, t1 , t2 |x t1 yt2  pab, t1  t2 |x t1 yt2  |t1  t2 |    |t1  t2 |  0,

q, t1 , t2   q, t1  t2   |t1  t2 |    |t1  t2 |  0
. 7.3.4

 

Thus 

 

at1x t1
bt2y t2

 
a,b

abpab, t1  t2 |x t1yt2. 7.3.5

 

Remark 7.3.4. We denote 

 

at1x t1
bt2y t2

 axby  7.3.6

 

iff |t1  t2 |  0.  We denote 

 

λ



 

279 

 

at1x t1
bt2y t2

 axby  7.3.7

 

iff |t1  t2 |    and t1  t2 .  We denote 

 

at1x t1
bt2y t2

 axby  7.3.8

 

iff |t1  t2 |    and t1  t2 .  We denote 

 

axby   axby   axby   axby . 7.3.9

 

Consider the following expression 

 

S  a0b0   a0b1   a1b0   a1b1 , 7.3.10

 

which is a function of the probabilities pab|xy.  If these probabilities 

satisfy the locality decomposition (7.3.2) and Eq. (7.3.4), we 

necessarily have that 

 

S  S  S  S  a0b0   a0b1   a1b0   a1b1   6, 7.3.11

 

where 

 

S  a0b0   a0b1   a1b0   a1b1 ,

S  a0b0   a0b1   a1b0   a1b1 ,

S  a0b0   a0b1   a1b0   a1b1 .

7.3.12

 

To derive this inequality, we can use (7.3.2) and Eq. (7.3.4) in the 

definitions (7.3.6) - (7.3.8) of a0b0 , axby   and axby   which allows 

us to express these expectation values as averages: 

(i) 
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axby   


dq, t1  t2 ax 
by 


, 7.3.13

 

where t1  t2  0,  and where we denote at1x t1 
 ax 

, bt2y t2 
 by 


,  

 

 

(ii) 

axby   


dq, t1  t2 ax 
by 


, 7.3.14

 

where t1  t2  and t1  t2  ,  and where we denote 

at1x t1 
 ax 

, bt2y t2 
 by 


,  

 

(iii)

axby   


dq, t1  t2 ax 
by 


, 7.3.15

 

where t1  t2 ,  t1  t2  ,  and where we denote 

at1x t1 
 ax 

, bt2y t2 
 by 


,  of a product of corresponding local 

expectations: 

 

ax 
  

a
apa, t1 |x,, by 

  
b

bpb, t2 |y,, 7.3.16

 

and 

 

ax 
  

a
apa, t1 |x,, by 

  
b

bpb, t2 |y,, 7.3.17

 

and 

 

ax 
  

a
apa, t1 |x,, by 

  
b

bpb, t2 |y,, 7.3.18
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taking values in 1,1.  Inserting this expressions (7.3.16)-(7.3.18) in 

Eqs. (7.3.12), one obtains 

 

S  


dq, 0S
 , S  



dq,S
 , S  



dq,S
, 7.3.19

 

where 

 

S
  a0 

b0 
  a0 

b1 
  a1 

b0 
  a1 

b1 
,

S
  a0 

 b0 
  a0 

 b1 
  a1 

 b0 
  a1 

 b1 
 ,

S
  a0 

b0 
  a0 

b1 
  a1 

b0 
  a1 

b1 
,

7.3.20

 

Since a0 , b0    1,1,  these last expressions are smaller than 

Sλ


,

S


 and 


S

 correspondingly, where 

 

Sλ
 


Sλ


 |b0 

  b1 
 |  |b0 

  b1 
 |,

S
 


S

  |b0 
  b1 

 |  |b0 
  b1 

 |,

S
 


S

  |b0 
  b1 

 |  |b0 
  b1 

 |.

7.3.21

 

Without loss of generality, we can assume that 

 

b0 
  b1 

  0, b0 
  b1 

  0, b0 
  b1 

  0, 7.3.22

 

which yields 

 

Sλ
  2b0 

  2,S
  2b0 

  2,S
  2b0 

  2 7.3.23

 

and thus 

 

S  2,S  2,S  2. 7.3.24

 

From (7.3.24) we obtain 
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S  S  S  S  6. 7.3.25

 

The inequality (7.3.25) finalized the proof. 

 

 

VII.3.2. Clauser-Horne inequality revisited. Validity of 

revised Clauser-Horne inequality 

 

The inequality will be determined by counting during the large time 

t.  There will be a total of N t  events, with N1a, t  counts in detector 1 

by the time t  when it is set to select a  and N2b, t  counts in detector 

2  by the time t  when it is set to select b . The number of 

coincidences of the two detectors with settings a  and b  respectively 

is N12a,b, t.  The probabilities are 

 

p1a, t 
N1a, t

N t
,p2b, t 

N2b, t
N t

,p12a,b, t 
N12a,b, t

N t
,

p12a,b, t 
N12a,b, t

N t
,p12a,b, t 

N12a,b, t
N t

,p12a,b, t 
N12a,b, t

N t
.

7.3.26

 

Remember that in the Bell formulation, the hidden variable 

determined absolutely the value of the polarization for a particular 

measurement. Then 

 

p1a, t1   dwp1a, t1 ,,p2b, t2   dwp2b, t2 ,,

p12a,b, t1 , t2 ,  p1a, t1 ,p2b, t2 ,,

p12a,b, t1 , t2   dwp1a, t1 ,p2b, t2 ,,

7.3.27

 

where t1 , t2  0, t.  Remind that for any four real numbers 

x,x ,y,y  0,1  the inequality holds 

 

xy  xy  x y  x y  x   y. 7.3.28
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We denote now 

 

x  p1a, t1 ,,y  p2b, t2 ,,x   p1a, t1 ,,y  p2b, t2 ,, 7.3.29

 

and substitute into inequality (7.3.28), we get 

 

p1a, t1 ,p2b, t2 ,  p1a, t1 ,p2b, t2 , 

p1a, t1 ,p2b, t2 ,  p1a, t1 ,p2b, t2 ,  p1a, t1 ,  p2b, t2 ,.
7.3.30

 

Next, multiply by w  and integrate over all   we get 

 

p12a,b, t1 , t2  p12a,b, t1 , t2  p12a,b, t1 , t2  p12a,b, t1 , t2 

 p1a, t1  p2b, t2.
7.3.31

 

Remark 7.3.5. We assume now that 

t1 , t2   2 ,    ,0    1,  

 

p12a,b, t1 , t2  p12a,b, t1  t2  |t1  t2 |    |t1  t2 |  0,

p12a,b, t1 , t2  p12a,b, t1  t2  |t1  t2 |    |t1  t2 |  0,

p12a,b, t1 , t2  p12a,b, t1  t2  |t1  t2 |    |t1  t2 |  0,

p12a,b, t1 , t2  p12a,b, t1  t2  |t1  t2 |    |t1  t2 |  0.

. 7.3.32

 

Where t1 , t2  0, t.  

Remark 7.3.6. We denote 

 

p12a,b, t1  t2  p12
 a,b 7.3.33

iff t1  t2  0.  

We denote 

p12a,b, t1  t2  p12
 a,b 7.3.34

iff t1  t2    and t1  t2 .  

We denote 
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p12a,b, t1  t2  p12
 a,b 7.3.35

iff t1  t2    and t1  t2 .  

Remark 7.3.7. We denote 

p12a,b, t1  t2  p12
 a,b 7.3.36

iff t1  t2  0.  

We denote 

p12a,b, t1  t2  p12
 a,b 7.3.37

iff t1  t2    and t1  t2 .  

We denote 

p12a,b, t  t2  p12
 a,b 7.3.38

iff t1  t2    and t1  t2 .  

Remark 7.3.8. We denote 

p12a,b, t1  t2  p12
 a,b 7.3.39

iff t1  t2  0.  

We denote 

p12a,b, t1  t2  p12
 a,b 7.3.40

iff t1  t2    and t1  t2 .  

We denote 

p12a,b, t1  t2  p12
 a,b 7.3.41

iff t1  t2    and t1  t2 .  

 

Remark 7.3.9. We denote 

p12a,b, t1  t2  p12
 a,b 7.3.42

iff t1  t2  0.  

We denote 

p12a,b, t1 , t2  p12
 a,b 7.3.43

iff t1  t2    and t1  t2 .  

We denote 

p12a,b, t1  t2  p12
 a,b 7.3.44

iff t1  t2    and t1  t2 .  

 

Remark 7.3.10. We denote 
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p12a,b  p12
 a,b  p12

 a,b  p12
 a,b,

p12a,b  p12
 a,b  p12

 a,b  p12
 a,b,

p12a,b  p12
 a,b  p12

 a,b  p12
 a,b,

p12a,b  p12
 a,b  p12

 a,b  p12
 a,b.

7.3.45

 

From (7.3.31) - (7.3.32) we obtain 

 

p12a,b, t1  t2  p12a,b, t1  t2  p12a,b, t1  t2  p12a,b, t1  t2 

 p1a, t1  p2b, t2,
7.3.46

 

where |t1  t2 |    |t1  t2 |  0.  

 

From (7.3.46) we obtain: 

(i) 

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b 

 p1a, t1  p2b, t2,
7.3.47

where t1  t2  0;  

 

(ii) 

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b 

 p1a, t1  p2b, t2,
7.3.48

 

where t1  t2    and t1  t2 ;  

 

(iii) 

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b 

 p1a, t1  p2b, t2,
7.3.49

where t1  t2    and t1 < t2. 

 

From (7.3.47) we obtain 

 

(i)
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p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b 


t1
lim p1a, t1 

t2
lim p2b, t2  p1a  p2b,

7.3.50

 

where we denote p1a  t1
lim p1a, t1,p2b 

t2
lim p2b, t2;

 

 

(ii)

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b 


t1
lim p1a, t1 

t2
lim p2b, t2  p1a  p2b,

7.3.51

 

where we denote p1a  t1
lim p1a, t1,p2b 

t2
lim p2b, t2;

 

(iii)

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b 


t1
lim p1a, t1 

t2
lim p2b, t2  p1a  p2b,

7.3.52

 

where we denote p1a  t1
lim p1a, t1,p2b 

t2
lim p2b, t2;

 

From (7.3.50) - (7.3.52) we obtain 

 

(i)

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b  p1a  p2b, 7.3.53

 

(ii)

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b  p1a  p2b, 7.3.54

 

(iii)

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b  p1a  p2b. 7.3.55

 

From (7.3.53) - (7.3.55) we obtain 
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p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b 

p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b  p12
 a,b  p12

 a,b 

 3p1a  3p2b,

7.3.56

 

From (7.3.53) by Eqs. (7.3.45) we obtain 

 

p12a,b  p12a,b  p12a,b  p12a,b  3p1a  3p2b. 7.3.57

 

The revised Clauser Horne inequality is 

 

N12a,b  N12b,a  N12a,b  N12a,b
N1a  N2b

 3. 7.3.58

 

Assume now that a,b,a,b  are separated by the angle   then 

 

N12  N12  N12  N123
N1a  N2b


3N12  N123

N1a  N2b
 3. 7.3.59

 

Next relate coincidences to expectation values. Note that 

N12  N||.  As regards the singles counts N1a  and N2b , 

we know that the number of counts must be independent of the 

direction of a   or b  and that for any direction N1  1

2
N , since half the 

photons will be polarized along the direction. Therefore, the 

inequality (7.3.59) becomes 

 

 
3

4
1  cos2  1

4
1  cos6

1

2
 1

2

 1

2
 3

4
cos2  1

4
cos6  3. 7.3.60

 

The inequality (7.3.60) is not violated even if   
8 : 

 


max    

8
 1

2
 3 2

4
 1

2 2
 1.2, 7.3.61

which of course is less than 3. 
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VII.3.3. Revised CHSH inequality without the hypothesis 

of locality 

 

Let At,At
,Bt,Bt

, t      ,0    1,  be stochastic processes 

defined on a common probability space ,,P  with values in the 

set 1,1,  i.e., 

 

At  1,At
  1,Bt  1,Bt

  1, t  0,T. 7.3.62

 

Assume that there exist joint probability distribution functions 

WAt1 ,At2

 ,Bt3 ,Bt4

 ,  of At1 ,At2

 ,Bt3 ,Bt4


 (where 

|t i  t j |  0  |t i  t j |  , i, j  1,2,3,4 ) defining probabilities for each 

possible set of outcomes such that: 

 

(i)

PAt1 ,At2

 ,Bt3 ,Bt4

   0,PAt1 ,Bt3 ,Bt4

   0,PAt2

 ,Bt3 ,Bt4

   0,etc., 7.3.63

 

(ii) 


A t1

,A t2

 ,B t3
,B t4



PA t1 ,A t2

 ,Bt3 ,Bt4

   1,


A t1

,B t3
,B t4



PA t1 ,Bt3 ,Bt4

   1, 
A t2

 ,B t3
,B t4



PA t2

 ,Bt3 ,Bt4

   1,

etc.,

7.3.64

(iii)

PA t1 ,A t2

 ,Bt3 ,Bt4

   PA t1 ,A t2

 ,Bt3 ,Bt4

   PA t2

 ,Bt3 ,Bt4

   PA t1 ,A t2

 ,Bt3 ,Bt4

 ,

PA t1 ,A t2

 ,Bt3 ,Bt4

   PA t1 ,A t2

 ,Bt3 ,Bt4

   PA t2

 ,Bt3 ,Bt4

   PA t1 ,A t2

 ,Bt3 ,Bt4

 ,

etc.

7.3.65

 

From (7.3.65) one obtains 
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0  PA t1 ,Bt3 ,Bt4

   PA t1 ,A t2

 ,Bt3 ,Bt4

   PA t1 ,A t2

 ,Bt3 ,Bt4

  

 PA t2

 ,Bt4

   PA t2

 ,Bt3
 

PA t2

 ,Bt4

   PBt3
  PA t2

 ,Bt3
.

7.3.66

 

Similarly one obtains 

 

0  PA t1 ,Bt3 ,Bt4

   PA t1 ,Bt3
  PA t1 ,Bt3 ,Bt4

  

PA t1
  PA t1 ,Bt3

  PA t1 ,Bt4

   PA t1 ,Bt3 ,Bt4

 
7.3.67

 

and therefore 

PAt1 ,Bt3 ,Bt4

   PAt1
  PAt1 ,Bt3

  PAt1 ,Bt4

 . 7.3.68

 

From (7.3.66) and (7.3.68) we obtain 

 

0  PA t1 ,Bt3 ,Bt4

   PA t1 ,Bt3 ,Bt4

  

PA t2

 ,Bt4

   PBt3
  PA t2

 ,Bt3
  PA t1

  PA t1 ,Bt3
  PA t1 ,Bt4

 
7.3.69

 

and therefore 

 

0  PA t2

 ,Bt4

   PBt3
  PA t2

 ,Bt3
  PA t1

  PA t1 ,Bt3
  PA t1 ,Bt4

  

 PA t1
  PBt3

  PA t1 ,Bt3
  PA t2

 ,Bt3
  PA t1 ,Bt4

   PA t2

 ,Bt4

 .
7.3.70

 

From (7.3.70) one obtains 

 

A t1 ,A t2

 ,Bt3 ,Bt4

  

PA t1 ,Bt3
  PA t2

 ,Bt3
  PA t1 ,Bt4

   PA t2

 ,Bt4

   PA t1
  PBt3

  0.
7.3.71

 

Note that 

 

PBt3 ,Bt4

   PBt3
  PBt3 ,Bt4

  7.3.72
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and 

 

PBt3 ,Bt4

   PBt4

   PBt3 ,Bt4

   1  PBt4

   PBt3 ,Bt4

 . 7.3.73

 

From (7.3.73) and (7.3.72) we obtain 

 

PBt3 ,Bt4

   1  PBt3
  PBt4

   PBt3 ,Bt4

 . 7.3.73a

 

Note that 

 

0  PAt1 ,Bt3 ,Bt4

   PBt3 ,Bt4

   PAt1 ,Bt3 ,Bt4

 . 7.3.74

 

Inserting (7.3.67) and (7.3.73a) into (7.3.74) we obtain 

 

0  1  PA t1
  PBt3

  PBt4

   PA t1 ,Bt3
  PA t2

 ,Bt3
  PA t1 ,Bt4

  

PBt3 ,Bt4

   PA t1 ,Bt3 ,Bt4

   1  PA t1
  PBt3

  PBt4

  

PA t1 ,Bt3
  PA t2

 ,Bt3
  PA t1 ,Bt3 ,Bt4

 .

7.3.75

 

Note that 

 

PA t1 ,Bt3 ,Bt4

   PA t1 ,A t2

 ,Bt3 ,Bt4

   PA,A ,B,B  

 PA t2

 ,Bt3
  PA t2

 ,Bt4

   PA t2

 ,Bt3
  PBt4

   PA t2

 ,Bt4

 .
7.3.76

 

From (7.3.76) we obtain 

 

0  1  PA t1
  PBt3

  PBt4

   PA t1 ,Bt3
 

PA t2

 ,Bt3
  PA t1 ,Bt4

   PA t2

 ,Bt4

 .
7.3.77

 

From (7.3.77) and (7.3.71) we obtain 

 

1  At1 ,At2

 ,Bt3 ,Bt4

   0. 7.3.78
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(I)Let us define the following quantities: AB, AB, AB , AB   

 

AB  PAB
    PAB

    PAB
    PAB

  ,

A B  P
A B
    P

A B
    P

A B
    P

A B
  ,

AB   P
AB 
    P

AB 
    P

AB 
    P

AB 
  ,

A B   P
A B 
    P

A B 
    P

A B 
    P

A B 
  ,

7.3.79

where 

 

PAB
    PA t1  1,Bt3  1  t1  t3  0,

PAB
    PA t1  1,Bt3  1  t1  t3  0,

PAB
    PA t1  1,Bt3  1  t1  t3  0,

PAB
    PA t1  1,Bt3  1  t1  t3  0,

P
A B
    PA t2

  1,Bt3  1  t2  t3  0,

etc.

7.3.80

 

From Eqs. (7.3.71), (7.3.79) and (7.3.80) we obtain 

 

AB  A B  AB   A B            

        .
7.3.81

 

From (7.3.78) we obtain 

 

2            0 7.3.82

 

and 

 

0            2 7.3.83

 

From (7.3.82) and (7.3.83) we obtain 

 

2                      2. 7.3.84
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(II)Let us define the following quantities: AB, AB, AB , AB   

 

AB  PAB
    PAB

    PAB
    PAB

  ,

A B  P
A B
    P

A B
    P

A B
    P

A B
  ,

AB   P
AB 
    P

AB 
    P

AB 
    P

AB 
  ,

A B   P
A B 
    P

A B 
    P

A B 
    P

A B 
  ,

7.3.85

 

where 

 

PAB
    PA t1  1,Bt3  1  t1  t3  ,

PAB
    PA t1  1,Bt3  1  t1  t3  ,

etc.

7.3.86

 

From Eqs. (7.3.71), (7.3.85) and (7.3.86) we obtain 

 

AB  A B  AB   A B            

        .
7.3.87

 

From (7.3.78) we obtain 

 

2            0 7.3.88

 

and 

 

0            2 7.3.89

 

From (7.3.88) and (7.3.89) we obtain 

 

2                      2. 7.3.90

 

(III) Let us define the following quantities: AB, AB, AB , AB  : 
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AB  PAB
    PAB

    PAB
    PAB

  ,

A B  P
A B
    P

A B
    P

A B
    P

A B
  ,

AB   P
AB 
    P

AB 
    P

AB 
    P

AB 
  ,

A B   P
A B 
    P

A B 
    P

A B 
    P

A B 
  ,

7.3.91

where 

PAB
    PA t1  1,Bt3  1  t1  t3  ,

PAB
    PA t1  1,Bt3  1  t1  t3  ,

etc.

7.3.92

 

From Eqs. (7.3.71), (7.3.91) and (7.3.92) we obtain 

 

AB  A B  AB   A B            

        .
7.3.93

 

From (7.3.78) we obtain 

 

2            0 7.3.94

 

and 

 

0            2. 7.3.95

 

From (7.3.94) and (7.3.95) we obtain 

 

2                      2. 7.3.96

 

(IV) Let us define the following quantities: 

   ,   ,     and      
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                  ,

                  ,

                  ,

                .

7.3.97

 

From Eq. (7.3.97) and the inequalities (7.3.96), (7.3.90) and (7.3.84) 

we obtain 

 

6                      6. 7.3.98

 

(V) Let us define the following quantities: AB, AB  

 

AB  AB  AB  AB,

A B  A B  A B  A B,

AB   AB   AB   AB ,

A B   A B   A B   A B .

7.3.99

 

From Eqs. (7.3.93), (7.3.87), (7.3.84), (7.3.97) and (7.3.99) we 

obtain 

AB  A B  AB   A B            

        .
7.3.100

 

From inequality (7.3.98) and Eq. (7.3.100) finally we obtain 

 

|AB  AB  AB   AB |  6. 7.3.101

 

 

VII.3.4. Revised CHSH inequality without the 

introduction of hidden variables 

 

Let At,At
,Bt,Bt

, t      ,0    1,  be stochastic processes 

defined on a common probability space ,,P  with values in the 
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set 1,1,  i.e., 

 

At  1,At
  1,Bt  1,Bt

  1, t  0,T. 7.3.102

 

Assume that there exist joint probability distribution functions 

PAt1 ,At2

 ,Bt3 ,Bt4

 ,  of At1 ,At2

 ,Bt3 ,Bt4


 (where 

|t i  t j |  0  |t i  t j |    0, i, j  1,2,3,4 ) defining probabilities for each 

possible set of outcomes such that: 

 

(i)

PAt1 ,At2

 ,Bt3 ,Bt4

   0,PAt1 ,Bt3 ,Bt4

   0,PAt2

 ,Bt3 ,Bt4

   0,etc., 7.3.103

and 


A t1

,A t2

 ,B t3
,B t4



PA t1 ,A t2

 ,Bt3 ,Bt4

   1, 7.3.104

 

and 

PAt1 ,At2

 ,Bt3 ,Bt4

   PAt1 ,At2

 ,Bt3 ,Bt4

   PAt2

 ,Bt3 ,Bt4

 . 7.3.105

 

We abbreviate now for short: 

 



 

296 

 

 
 

and 

 

PA t1
B t3

    PA t1
,A t2

 ,B t3
,B t4

      PA t1
,A t2

 ,B t3
,B t4

     

PA t1
,A t2

 ,B t3
,B t4

      PA t1
,A t2

 ,B t3
,B t4

      t1  t3 ,

etc.,

7.3.107

 

PA t1
B t3

    PA t1
,A t2

 ,B t3
,B t4

      PA t1
,A t2

 ,B t3
,B t4

     

PA t1
,A t2

 ,B t3
,B t4

      PA t1
,A t2

 ,B t3
,B t4

      t1  t3  ,

etc.,

7.3.108

P
A,A ,B,B 
     

P
A t1

,A t2
 ,B t3

,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3 ,

P
A,A ,B,B 
     

P
A t1

,A t2
 ,B t3

,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P
A,A ,B,B 
     

P
A t1

,A t2
 ,B t3

,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3 ;

P
A,A ,B,B 
     

P
A t1

,A t2
 ,B t3

,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3  ,

P
A,A ,B,B 
     

P
A t1

,A t2

 ,B t3
,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3  ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P
A,A ,B,B 
     

P
A t1

,A t2

 ,B t3
,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3  ;

P
A,A ,B,B 
     

P
A t1

,A t2

 ,B t3
,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3  ,

P
A,A ,B,B 
     

P
A t1

,A t2

 ,B t3
,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3  ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P
A,A ,B,B 
     

P
A t1

,A t2

 ,B t3
,B t4


      PA t1  1,A t2

  1,Bt3  1,Bt4

  1  t1  t3  ;

7.3.106
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PA t1
B t3

    PA t1
,A t2

 ,B t3
,B t4

      PA t1
,A t2

 ,B t3
,B t4

     

PA t1
,A t2

 ,B t3
,B t4

      PA t1
,A t2

 ,B t3
,B t4

      t1  t3  ,

etc.

7.3.109

 

For the quantities (i) AB, AB, AB , AB ;  

(ii) AB, AB, AB , AB ;  and  

(iii) AB, AB, AB , AB  , using Eqs. (7.3.107) - (7.3.109) one 

obtains the representatives 

 

AB  PAB
    PAB

    PAB
    PAB

  ,

etc.,

AB  PAB
    PAB

    PAB
    PAB

  ,

etc.,

AB  PAB
    PAB

    PAB
    PAB

  .

7.3.110

 

Substituting Eqs. (7.3.110) into expressions 

 

  1
2
AB  A B  AB   A B  ,

  1
2
AB  A B  AB   A B  ,

  1
2
AB  A B  AB   A B  ,

7.3.111

 

one obtains 

 

  1
2
AB  A B  AB   A B   

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
    ;

7.3.112
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  1
2
AB  A B  AB   A B   

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
    ;

7.3.113

 

  1
2
AB  A B  AB   A B   

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
      P

A,A ,B,B 
      P

A,A ,B,B 
     

P
A,A ,B,B 
    .

7.3.114

 

From (7.3.103)-(7.3.105) it obviously follows that 

 

 2    2,2    2,2    2. 7.3.115

 

Thus we obtain 

 

  2, | |  2, | |  2. 7.3.116

 

We define now the quantityes 

 

       7.3.117

 

and 
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AB  AB  AB  AB,

A B  A B  A B  A B,

AB   AB   AB   AB ,

A B   A B   A B   A B .

7.3.118

 

From (7.3.116) and (7.3.117) we obtain 

 

||  |     |  | |  | |  | |  6. 7.3.119

 

From (7.3.117) and (7.3.118) we obtain 

 

        AB  AB  AB   AB . 7.3.120

 

From (7.3.119) and (7.3.120) finally we obtain 

 

|AB  AB  AB   AB |  6. 7.3.121

 

 

VII.4. Leggett inequality revisited 

 

VII.4.1. Classical Leggett inequality 

 

Leggett have introduced the class of non-local models and 

formulated an incompatibility theorem [8]. Such models were 

extended so as to make them applicable to real experimental 

situations and also to allow simultaneous tests of all local hidden-

variable models. Finally, an experiment was performed that violates 

the new inequality and hence excludes a broad class of non-local 

hidden-variable theories [9]. 

 

These theories are based on the following assumptions: (1) all 

measurement outcomes are determined by pre-existing properties of 

particles independent of the measurement (realism); (2) physical 
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states are statistical mixtures of subensembles with definite 

polarization, where (3) polarization is defined such that expectation 

values taken for each subensemble obey Malus' law (that is, the 

well-known cosine dependence of the intensity of a polarized beam 

after an ideal polarizer). 

 

These assumptions are in a way appealing, because they provide a 

natural explanation of quantum mechanically separable states 

(polarization states indeed obey Malus' law). In addition, they do not 

explicitly demand locality; that is, measurement outcomes may very 

well depend on parameters in space-like separated regions. 

 

As a consequence, such theories can explain important features of 

quantum mechanically entangled (non-separable) states of two 

particles: first, they do not allow information to be transmitted faster 

than the speed of light; second, they reproduce perfect correlations 

for all measurements in the same bases, which is a fundamental 

feature of the Bell singlet state; and third, they provide a model for 

all thus far performed experiments in which the Clauser, Horne, 

Shimony and Holt (CHSH) inequality was violated. 

 

A general framework of such models is the following: assumption (1) 

requires that an individual binary measurement outcome A  for a 

polarization measurement along direction a  (that is, whether a single 

photon is transmitted or absorbed by a polarizer set at a specific 

angle) is predetermined by some set of hidden-variables  , and a 

three-dimensional vector u , as well as by some set of other possibly 

non-local parameters   (for example, measurement settings in 

space-like separated regions) - that is, A  A,u,a, . 

 

According to assumption (3), particles with the same u  but with 

different   build up subensembles of 'definite polarization' described 

by a probability distribution u . The expectation value Au , 

obtained by averaging over  , fulfills Malus' law, that is, 
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Au   duA,u,a,  u  a. 

Finally, with assumption (2), the measured expectation value for a 

general physical state is given by averaging over the distribution Fu  

of subensembles, that is, A   duFuAu . 

Let us consider a specific source, which emits pairs of photons with 

well-defined polarizations u  and v  to laboratories of Alice and Bob, 

respectively. The local polarization measurement outcomes A  and B 

are fully determined by the polarization vector, by an additional set 

of hidden variables   specific to the source and by any set of 

parameters  outside the source. For reasons of clarity, we choose 

an explicit non-local dependence of the outcomes on the settings a  

and b  of the measurement devices. Note, however, that this is just 

an example of a possible non-local dependence, and that one can 

choose any other set out of  . Each emitted pair is fully defined by 

the subensemble distribution u,v . In agreement with assumption 

(3) we impose the following conditions on the predictions for local 

averages of such measurements (all polarizations and measurement 

directions are represented as vectors on the Poincaré sphere [10]): 

 

Au   du,vAa,b,  u  a, 7.4.1

 

Bv   du,vBb,a,  v  b. 7.4.2

 

It is important to note that the validity of Malus' law imposes the non-

signalling condition on the investigated non-local models, as the 

local expectation values do only depend on local parameters. The 

correlation function of measurement results for a source emitting 

well-polarized photons is defined as the average of the products of 

the individual measurement outcomes: 

 

ABu,v   du,vAa,b,Bb,a, 7.4.3
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For a general source producing mixtures of polarized photons the 

observable correlations are averaged over a distribution of the 

polarizations Fu,v , and the general correlation function E  is given 

by: 

 

E  AB   dudvFu,vABu,v 7.4.4

 

It is a very important trait of this model that there exist 

subensembles of definite polarizations (independent of 

measurements) and that the predictions for the subensembles agree 

with Malus' law. It is clear that other classes of non-local theories, 

possibly even fully compliant with all quantum mechanical 

predictions, might exist that do not have this property when 

reproducing entangled states. There the non-local correlations are a 

consequence of the non-local quantum potential, which exerts 

suitable torque on the particles leading to experimental results 

compliant with quantum mechanics. In that theory, neither of the two 

particles in a maximally entangled state carries any angular 

momentum at all when emerging from the source [11]. 

 

In contrast, in the Leggett model, it is the total ensemble emitted by 

the source that carries no angular momentum, which is a 

consequence of averaging over the individual particles' well defined 

angular momenta (polarization). 

 

The theories described here are incompatible with quantum theory. 

Remind the basic idea of the incompatibility theorem [8] uses the 

following identity, which holds for any numbers A  1 and B  1 : 

 

1  |A  B| AB  1  |A  B|. 7.4.5

 

One can apply this identity to the dichotomic measurement results 

A  Aa,b,  1  and B  Bb,a,  1 . The identity holds even if the 

values of A  and B mutually depend on each other. For example, the 
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value of a specific outcome A  can depend on the value of an 

actually obtained result B. In contrast, in the derivation of the CHSH 

inequality it is necessary to assume that A  and B do not depend on 

each other. 

 

Therefore, any kind of non-local dependencies used in the present 

class of theories are allowed. Taking the average over the 

subensembles with definite polarizations we obtain: 

 

1   du,v|A  B|  du,vAB  1   du,v|A  B| 7.4.6

 

Denoting these averages by bars, one arrives at the shorter 

expression: 

 

1  |A  B|  AB  1  |A  B|. 7.4.7

 

As the average of the modulus is greater than or equal to the 

modulus of the averages, one gets the set of inequalities: 

 

1  |A  B| AB  1  |A  B|. 7.4.8

 

By inserting Malus' law, equations (7.4.1) and (7.4.2), in equation 

(7.4.8), and by using expression (7.4.4), one arrives at a set of 

inequalities for experimentally accessible correlation functions (for a 

detailed derivation see Appendix B). In particular, if we let Alice 

choose her observable from the set of two settings a1  and a2 , and 

Bob from the set of three settings b1 , b2  and b3  a2 , the following 

generalized Leggett-type inequality is obtained: 

 

SNLHV  |E11  E230||E22  E230| 4  4
 |sin



2
|, 7.4.9

 

where Ekl  is a uniform average of all correlation functions, 

defined in the plane of ak  and bl , with the same relative angle  ; the 
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subscript NLHV stands for 'non-local hidden- variables'. For the 

inequality to be applied, vectors a1  and b1  necessarily have to lie in 

a plane orthogonal to the one defined by a2  and b2 . This contrasts 

with the standard experimental configuration used to test the CHSH 

inequality, which is maximally violated for settings in one plane. 

 

 

Fig. 7.4.1. Testing non-local hidden-variable theories [9] 

 

(a) Diagram of a standard two-photon experiment to test for 

hidden variable theories. When pumping a nonlinear crystal 

(NL) with a strong pump field, photon pairs are created via 

spontaneous parametric down-conversion (SPDC) and their 

polarization is detected with single-photon counters (PC). 

Local measurements at A and B are performed along 

directions a  and b  on the Poincaré sphere, respectively. 

Depending on the measurement directions, the obtained 

correlations can be used to test Bell inequalities (b) or 

Leggett-type inequalities (c). 

(b) Correlations in one plane. Shown are measurements along 

directions in the linear plane of the Poincaré sphere (H (V) 

denotes horizontal (vertical) polarization). The original 

experiments by Wu and Shaknov [12] and Kocher and 

Commins [13], designed to test quantum predictions for 

correlated photon pairs, measured perfect correlations (solid 

lines). Measurements along the dashed line allow a Bell test, 

as was first performed by Freedman and Clauser [14]. 

(c) Correlations in orthogonal planes. All current experimental 
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tests to violate Bell's inequality (CHSH) are performed within 

the shaded plane. Out-of-plane measurements are required 

for a direct test of the class of non-local hidden-variable 

theories, as was first suggested by Leggett [15]. 

 

The situation resembles in a way the status of the Einstein, 

Podolsky and Rosen (EPR) paradox before the advent of Bell's 

theorem and its first experimental tests. The experiments of Wu and 

Shaknov [12] and of Kocher and Commins [13] were designed to 

demonstrate the validity of a quantum description of photon-pair 

correlations. 

 

As this task only required the testing of correlations along the same 

polarization direction, their results could not provide experimental 

data for the newly derived Bell inequalities (Fig. 7.4.1a, b). 

Curiously, as was shown by Clauser, Horne, Shimony and Holt, only 

a small modification of the measurement directions, such that non-

perfect correlations of an entangled state are probed, was sufficient 

to test Bell's inequalities. 

The seminal experiment by Freedman and Clauser [14] was the first 

direct and successful test. Today, all Bell tests - that is, tests of local 

realism - are performed by testing correlations of measurements 

along directions that lie in the same plane of the Poincaré sphere. 

Similar to the previous case, violation of the Leggett-type inequality 

requires only small modifications to that arrangement: To test the 

inequality, correlations of measurements along two orthogonal 

planes have to be probed (Fig. 7.4.1c). Therefore, the existing data 

of all Bell tests cannot be used to test the class of nonlocal theories 

considered in [14]. 

 

Quantum theory violates inequality (7.4.9). Consider the quantum 

predictions for the polarization singlet state of two photons, 

|AB  1

2
|HA |VB  |VA |HB  , where, for example, |HA  denotes a 

horizontally polarized photon propagating to Alice. The quantum 

correlation function for the measurements ak  and bl  performed on 
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photons depends only on the relative angles between these vectors, 

and therefore Ekl  ak  bl  cos . Thus the left hand side of 

inequality (7.4.9), for quantum predictions, reads |2cos  1| . The 

maximal violation of inequality (7.4.9) is for max  18.8 . For this 

difference angle, the bound given by inequality (7.4.9) equals 3.792 

and the quantum value is 3.893. Although this excludes the non-

local models, it might still be possible that the obtained correlations 

could be explained by a local realistic model. In order to avoid that, 

we have to exclude both local realistic and non-local realistic hidden-

variable theories. Note however that such local realistic theories 

need not be constrained by assumptions (1) - (3). The violation of 

the CHSH inequality invalidates all local realistic models. If one 

takes 

 

SCHSH  |E11  E12  E21  E22 |  2 7.4.10

 

the quantum value of the left hand side for the settings used to 

maximally violate inequality (7.4.9) is 2.2156. 

The correlation function determined in an actual experiment is 

typically reduced by a visibility factor V  to Eexp  Vcos  owing to 

noise and imperfections. Thus to observe violations of inequality 

(7.4.9) (and inequality (7.4.10)) in the experiment, one must have a 

sufficiently high experimental visibility of the observed interference. 

For the optimal difference angle max  18.8 , the minimum required 

visibility is given by the ratio of the bound (3.792) and the quantum 

value (3.893) of inequality (7.4.9), or  97.4%. We note that in 

standard Bell-type experiments, a minimum visibility of only  71% is 

sufficient to violate the CHSH inequality, inequality (7.4.10), at the 

optimal settings. For the settings used here, the critical visibility 

reads 2/2.2156  90.3%, which is much lower than 97.4%. 

 



 

307 

 

 

 

Fig. 7.4.2. Experimental set-up [9] 

 

A 2-mm-thick type-II - barium-borate (BBO) crystal is pumped with a 

pulsed frequency- doubled Ti: sapphire laser (180 fs) at   = 395 nm 

wavelength and ~150  mW optical c.w. power. The crystal is aligned 

to produce the polarization-entangled singlet state 

|AB  1

2
|HA |VB  |VA |HB  . Spatial and temporal distinguishability 

of the produced photons (induced by birefringence in the BBO) are 

compensated by a combination of half-wave plates /2  and 

additional BBO crystals (BBO/2), while spectral distinguishability 

(due to the broad spectrum of the pulsed pump) is eliminated by 

narrow spectral filtering of 1 nm bandwidth in front of each detector. 

In addition, the reduced pump power diminishes higher-order SPDC 

emissions of multiple photon pairs. This allows us to achieve a two-

photon visibility of about 99%, which is well beyond the required 

threshold of 97:4%. The arrows in the Poincaré spheres indicate the 

measurement settings of Alice's and Bob's polarizers for the 

maximal violation of inequality (7.4.9). Note that setting b 2  lies in 

the y  z plane and therefore a quarter-wave plate has to be 
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introduced on Bob's side. The coloured planes indicate the 

measurement directions for various difference angles   for both 

inequalities. 

In the experiment [9] (see Fig. 7.4.2), a pairs of polarization 

entangled photons was generated via SPDC. The photon source is 

aligned to produce pairs in the polarization singlet state. We 

observed maximal coincidence count rates (per 10 s), in the H/V  

basis, of around 3,500 with single count rates of 95,000 (Alice) and 

105,000 (Bob), 3,300 coincidences in the 45  basis (75,000 singles 

at Alice and 90,000 at Bob), and 2,400 coincidences in the R/L  basis 

(70,000 singles at Alice and 70,000 at Bob). The reduced count 

rates in the R/L  basis are due to additional retarding elements in the 

beam path. The two-photon visibilities are approximately 99.0  1.2% 

in the H/V  basis, 99.2  1.6% in the 45  basis and 98.9  1.7% in the 

R/L  basis, which - to our knowledge - is the highest reported visibility 

for a pulsed SPDC scheme. So far, no experimental evidence 

against the rotational invariance of the singlet state exists. We 

therefore replace the rotation averaged correlation functions in 

inequality (7.4.9) with their values measured for one pair of settings 

(in the given plane). 

 

In terms of experimental count rates, the correlation function Ea,b  
for a given pair of general measurement settings is defined by 

 

Ea,b  N  N  N  N
N  N  N  N

7.4.11

 

where NAB  denotes the number of coincident detection events 

between Alice's and Bob's measurements within the integration 

time. We ascribe the number 1, if Alice (Bob) detects a photon 

polarized along a b , and 1 for the orthogonal direction a  b . 

For example, N  denotes the number of coincidences in which 

Alice obtains a  and Bob b . Note that Eak,bl  Ekl , where   is the 
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difference angle between the vectors a  and b  on the Poincaré 

sphere. 

To test inequality (7.4.9), three correlation functions (Ea1 ,b1 , , 

Ea2 ,b2 , Ea2 ,b3) have to be extracted from the measured data. We 

choose observables a1  and b1  as linear polarization measurements 

(in the x  - z plane on the Poincaré sphere; see Fig. 7.4.2) and a2  and 

b2  as elliptical polarization measurements in the y  - z  plane. Two 

further correlation functions (Ea2 ,b1  and Ea1 ,b2) are extracted to 

test the CHSH inequality (7.4.10). 

The first set of correlations, in the x  - z  plane, is obtained by using 

linear polarizers set to 1  and 1  (relative to the z  - axis) at Alice's 

and Bob's location, respectively. In particular, 1  45 , while 1  is 

chosen to lie between 45  and 160  (green arrows in Fig. 7.4.2). The 

second set of correlations (necessary for CHSH) is obtained in the 

same plane for 2  0/90  and 1  between 45  and 160 . The set of 

correlations for measurements in the y - z  plane is obtained by 

introducing a quarter-wave plate with the fast axis aligned along the 

(horizontal) 0 - direction at Bob's site, which effectively rotates the 

polarization state by 90  around the z-axis on the Poincaré sphere 

(red arrows in Fig. 7.4.2). The polarizer angles are then set to 

2  0/90  and 2  is scanned between 0  and 115 . With the same 2  

and 1  45 , the expectation values specific only for the CHSH 

case are measured. The remaining measurement for inequality 

(7.4.9) is the check of perfect correlations, for which we choose 

2  3  0 , that is, the intersection of the two orthogonal planes. 

Fig. 7.4.3 shows the experimental violation of inequalities (7.4.9) 

and (7.4.10) for various difference angles. Maximum violation of 

inequality (7.4.9) is achieved, for example, for the settings 

1 ,2 ,1 ,2 ,3  45,0,55,10,0 . 
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Fig. 7.4.3. Experimental violation of the inequalities for non-local 

hidden-variable theories (NLHV) and for local realistic theories 

(CHSH) 

 

(a) Dashed line indicates the bound of inequality (7.4.9) for the 

investigated class of nonlocal hidden variable theories. The 

solid line is the quantum theoretical prediction reduced by the 

experimental visibility. The shown experimental data were 

taken for various difference angles   (on the Poincaré 

sphere) of local measurement settings. The bound is clearly 

violated for 4    36.  Maximum violation is observed for 

max  20.  

(b) At the same time, no local realistic theory can model the 

correlations for the investigated settings as the same set of 

data also violates the CHSH inequality (7.4.10). The bound 

(dashed line) is overcome for all values   around max , and 

hence excludes any local realistic explanation of the observed 

correlations in a. Again, the solid line is the quantum 

prediction for the observed experimental visibility. Error bars 

indicate s.d. 

The following expectation values for a difference angle   20  (the 

errors are calculated assuming that the counts follow a poissonian 

distribution) were obtained [9]: Ea1 ,b1  0.9298  0.0105 , 

Ea2 ,b2  0.942  0.0112 , Ea2 ,b3  0.9902  0.0118 . This results in 
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SNLHV  3.8521  0.0227 , which violates inequality (7.4.9) by 3.2  

standard deviations (see Fig. 7.4.3). At the same time, we can 

extract the additional correlation functions Ea2 ,b1  0.3436  0.0088 , 

Ea1 ,b2  0.0374  0.0091  required for the CHSH inequality. We obtain 

SCHSH  2.178  0.0199 , which is a violation by  9  standard deviations. 

The stronger violation of inequality (7.4.10) is due to the relaxed 

visibility requirements on the probed entangled state. 

 

 

VII.4.2. Derivation of the Canonical Leggett inequality 

 
With the assumption that photons with well defined polarization obey 

Malus' law: 

A  u  a, B  v  b, 7.4.12

 

the upper bound of Eq. (7.4.8) becomes: 

 

AB  1  |u  ak  v  bl|, 7.4.13

 

where ak  and bl  are unit vectors associated with the k -th 

measurement setting of Alice and the l  -th of Bob, respectively. 

Taking the average over arbitrary polarizations we obtain 

 

Ekl
HVT  1   dudvFu,v|u  ak  v  bl|, 7.4.14

 

where Ekl
HVT

 is the correlation function which can be experimentally 

measured when Alice chooses to measure ak  and Bob chooses bl . 

Let us denote by ukl  and v kl  the length of projections of vectors u  

and v  onto the plane spanned by ak  and bl . Since one can 

decompose vectors u  and v  into a vector orthogonal to the plane of 

the settings and a vector within the plane the scalar products read 
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u  ak  ukl cosa k  u,v  bl  v kl cosb l
 v, 7.4.15

 

where all the   angles are relative to some axis within the plane of 

the settings; angles u  and v  describe the position of the 

projections of vectors u  and v , respectively, whereas angles a k  and 

b l  describe the position of the setting vectors. With this notation the 

inequality (7.4.14) becomes: 

 

Ekl
HVT  1   dudvFu,v|ukl cosa k  u  v kl cosb l

 v|. 7.4.16

 

The magnitudes of the projections can always be decomposed into 

the sum and the difference of two real numbers ukl  n1  n2  and 

v kl  n1  n2 .  

We insert this decomposition into the last inequality, and hence the 

terms multiplied by n1  and n2  are 

 

cosa k  u  cosb l
 v 

2sin
a k  b l

 u  v
2

sin
a k  b l

  u  v

2

7.4.17

 

and 

 

cosa k  u  cosb l
 v 

2cos
a k  b l

 u  v
2

cos
a k  b l

 u  v
2

,
7.4.18

 

respectively. We make the following substitution for the 

measurement angles 

 

kl 
a k  b l

2
,kl  a k  b l

, 7.4.19

 

and parameterize the position of the projections within their plane by 
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uv 
u  v

2
, uv  u  v. 7.4.20

 

Using these new angles one obtains that 

 

Ekl
HVTkl,kl 

1  2  dudvFu,v|n2 cos
kl  uv

2
coskl  uv  n1 sin

kl  uv

2
sinkl  uv|,

7.4.21

 

where in the correlation function Eklkl,kl  we explicitly state the 

angles it is dependent on. The expression within the modulus is a 

linear combination of two harmonic functions of kl  uv , and 

therefore is a harmonic function itself. Its amplitude reads 

 

n2
2 cos2 kl  uv

2
 n1

2 sin2 kl  uv

2
, 7.4.22

 

and the phase is some fixed real number   

 

Ekl
HVTkl,kl 

1  2  dudvFu,v n2
2 cos2 kl  uv

2
 n1

2 sin2 kl  uv

2


|coskl  uv  |.

7.4.23

 

In the next step we average both sides of this inequality over the 

measurement angle 
kl 

a k  b l

2 . This means an integration over 

kl  0,2  and a multiplication by 
1

2 . The integral of the kl  

dependent part of the right-hand side of (7.4.23) reads: 

 

1
2


0

2
dkl|coskl  uv  | 2

 . 7.4.24

 

By denoting the average of the correlation function over the angle 

kl  as: 
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Ekl
HVTkl  1

2


0

2
dklEklkl,kl, 7.4.25

 

one can write (7.4.23) as 

 

Ekl
HVTkl  1  4

  dudvFu,v n2
2 cos2 kl  uv

2
 n1

2 sin2 kl  uv

2
7.4.26

 

This inequality is valid for any choice of observables in the plane 

defined by ak  and bl . One can introduce two new observable vectors 

in this plane and write the inequality for the averaged correlation 

function E
k l
HVT

k l
   of these new observables. The sum of these two 

inequalities is 

 

Ekl
HVTkl  E

k l 
HVT

k l 
   2  4

  dudvFu,v

 n2
2 cos2 kl  uv

2
 n1

2 sin2 kl  uv

2


 n2
2 cos2


k l
 uv

2
  n1

2 sin2


k l
 uv

2


7.4.27

 

One can use the triangle inequality 

 

||x  y|| ||x||||y||,

x 1  y12  x 2  y22  x 1
2  x 2

2  y1
2  y2

2 ,
7.4.28

 

for the two-dimensional vectors x  x1 ,x2  and y  y1 ,y2 , with 

components defined by 

 

x 1  n2 cos
kl  uv

2
, y1  n2 cos


k l
  uv

2
, 7.4.29

 

and 
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x 2  n1 sin
kl  uv

2
, y2  n1 sin


k l
  uv

2
. 7.4.30

 

One can further estimate this bound by using the following relations 

 

cos
kl  uv

2
 cos


k l
  uv

2
 sin

kl  k l


2
7.4.31

 

and 

 

sin
kl  uv

2
 sin


k l
  uv

2
 sin

kl  k l


2
. 7.4.32

 

This estimate follows if one uses the formula for the sine of the 

difference angle to the right-hand side argument 

kl  k l


2

kl  uv

2



k l
  uv

2 . Namely, 

 

sin
kl  k l



2
 sin

kl  uv

2
cos


k l 
  uv

2
 cos

kl  uv

2
sin


k l
  uv

2

 sin
kl  uv

2
cos


k l
  uv

2
 cos

kl  uv

2
sin


k l 
  uv

2
.

7.4.33

 

After these estimates, the lower bound of Ekl  Ek l  (following form the 

left-hand side inequality in (7.4.8)) is equal to minus the upper 

bound, and thus one can apply the upper bound to the modulus of 

the left hand side of (7.4.27). This is because the only formal 

difference between expressions in the estimates seeking the lower 

bound of the averaged Eq. (7.4.8) compared to those seeking the 

upper bound boils down to the interchange between n1  and n2 . After 

applying (7.4.31) and (7.4.32), this makes no difference anymore. 

One can shortly write 
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|Ekl
HVTkl  E

k l
HVT

k l
 | 2  4

 sin
kl  k l



2
 dudvFu,v n2

2  n1
2 . 7.4.34

 

Going back to the magnitudes: 

 

|Ekl
HVTkl  E

k l
HVT

k l
 | 2  2 2

 sin
kl  k l



2
 dudvFu,v ukl

2  v kl
2 . 7.4.35

 

This inequality is valid for any choice of the plane of observables. 

The bound involves only the projections of vectors u  and v  onto the 

plane of the settings. The integrations in the bound can be thought 

of as a mean value of expression ukl
2  v kl

2

 averaged over the 

distribution of the vectors. For the plane orthogonal to the initial one 

the inequality is 

 

|Epq
HVTpq  E

p q 
HVT

p q 
 |  2  2 2

 sin
pq  p q 



2
 dudvFu,v upq

2  v pq
2 , 7.4.36

 

where upq  and v pq  denote the projections of vectors u  and v , 

respectively, onto the plane spanned by the settings ap  and bq  

(which is by construction orthogonal to the plane spanned by ak  and 

bl ). We add the inequalities for orthogonal observation planes, 

(7.4.35) and (7.4.36), and choose k l
  

p q 
  0  and kl  pq   . 

This gives 

 

|Ekl
HVT  E

k l 
HVT0||Epq

HVT  E
p q 
HVT0|

4  2 2
 sin


2
 dudvFu,v ukl

2  v kl
2  upq

2  v pq
2

7.4.37

 

We apply the triangle inequality (7.4.28) to the expression within the 

bracket. These time vectors x and y have the following components: 
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x  ukl,upq,y  v kl,vpq. 7.4.38

 

The integrand is bounded by: 

 

ukl
2  v kl

2  upq
2  v pq

2  ukl  upq2  v kl  v pq2 . 7.4.39

 

Let us consider the term involving vector u  only. Since the lengths 

are positive 

 

ukl  upq2  ukl
2  upq

2 . 7.4.40

 

Recall that ukl  and upq  are projections onto orthogonal planes. One 

can introduce normal vectors to these planes, nkl  and npq , 

respectively, and write 

 

nkl  u2  ukl
2  1,npq  u2  upq

2  1. 7.4.41

 

Note that the scalar products are two components of vector u  in the 

Cartesian frame build out of vectors nkl , npq , and the one which is 

orthogonal to these two. Since vector u  is normalized one has: 

 

nkl  u2  npq  u2  1, 7.4.42

 

which implies for the sum of equations (7.4.41) 

 

ukl
2  upq

2  1. 7.4.43

 

The same applies to vector v and one can conclude that 

 

ukl
2  v kl

2  upq
2  v pq

2  2 . 7.4.44
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Since the weight function Fu,v is normalized, the final Laggett type 

inequality is 

 

Ekl
HVT  E

k l
HVT0||Epq

HVT  E
p q 
HVT0  4  4

 sin

2

. 7.4.45

 

 

VII.4.3. Leggett inequality revisited. Validity of revised 

Leggett inequality 

 

A general framework of such models is the following: assumption (1) 

requires that an individual binary measurement outcome A t1  for a 

polarization measurement at instant t1  along direction a  (that is, 

whether a single photon is transmitted or absorbed at instant t1  by a 

polarizer set at a specific angle) is predetermined by some set of 

hidden-variables , and a three-dimensional vector u , as well as by 

some set of other possibly non-local parameters   (for example, 

measurement settings in space-like separated regions) - that is, 

At1,u,a,  A,u,a,, t1 . According to assumption (3), particles with 

the same u  but with different   build up subensembles of 'definite 

polarization' described by a probability distribution u, t1 . The 

expectation value At1u  Au, t1,  obtained by averaging over  , 

fulfils Malus' law, that is, At1u   du, t1A,u,a,, t1  u  a . 

Finally, with assumption (2), the measured expectation value for a 

general physical state is given by averaging over the distribution 

Fu, t1 of subensembles, that is, At1   duFu, t1At1u . 

Let us consider a specific source, which emits pairs of photons with 

well-defined polarizations u  and v  to laboratories of Alice and Bob, 

respectively. The local polarization measurement outcomes A t1  and 

Bt2  are fully determined by the polarization vector, by an additional 

set of hidden variables   specific to the source and by any set of 

parameters   outside the source. For reasons of clarity, we choose 

an explicit non-local dependence of the outcomes on the settings a  
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and b  of the measurement devices. Note, however, that this is just 

an example of a possible non-local dependence, and that one can 

choose any other set out of  . Each emitted pair is fully defined by 

the subensemble distribution u,v, t1 , t2 . In agreement with 

assumption (3) we impose the following conditions on the 

predictions for local averages of such measurements (all 

polarizations and measurement directions are represented as 

vectors on the Poincaré sphere [10]): 

 

At1u   du,v, t1 , t2Aa,b,, t1  u  a, 7.4.46

 

Bt2v   du,v, t1 , t2Bb,a,, t2  v  b. 7.4.47

 

It is important to note that the validity of Malus' law imposes the non-

signalling condition on the investigated non-local models, as the 

local expectation values do only depend on local parameters. The 

correlation function of measurement results for a source emitting 

well-polarized photons is defined as the average of the products of 

the individual measurement outcomes: 

 

At1 Bt2u,v  ABu,v, t1 , t2   du,v, t1 , t2Aa,b,, t1Bb,a,, t2 7.4.48

 

For a general source producing mixtures of polarized photons the 

observable correlations are averaged over a distribution of the 

polarizations Fu,v, t1 , t2 , and the general correlation function Et1 , t2   

is given by: 

 

Et1 , t2   At1Bt2F   dudvFu,v, t1 , t2ABu,v, t1 , t2 7.4.49

 

It is a very important trait of this model that there exist 

subensembles of definite polarizations (independent of 

measurements) and that the predictions for the subensembles agree 

with Malus' law. There the non-local correlations are a consequence 
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of the non-local quantum potential, which exerts suitable torque on 

the particles leading to experimental results compliant with quantum 

mechanics. In that theory, neither of the two particles in a maximally 

entangled state carries any angular momentum at all when 

emerging from the source [11]. In contrast, in the Leggett model, it is 

the total ensemble emitted by the source that carries no angular 

momentum, which is a consequence of averaging over the individual 

particles' well defined angular momenta (polarization). 

 

Assumption 7.4.1. We assume now that |t1  t2 |    0,  and 

 

ABu,v, t1 , t2  ABu,v, t1  t2,

Fu,v, t1 , t2  Fu,v, t1  t2,

Et1 , t2   Et1  t2 .

7.4.50

 

Remark 7.4.1. We abbreviate now for short 

 

A t1 Bt2u,v  ABu,v iff t1  t2    0,

A t1 Bt2u,v  ABu,v iff t1  t2    0,

Et1 , t2   E iff t1  t2    0,

Et1 , t2   E iff t1  t2    0.

7.4.51

 

We take a source which distributes pairs of well-polarized photons. 

Different pairs can have different polarizations. The size of a 

subensemble in which photons have polarizations u  and v  is 

described by the weight function Fu,v, t1 , t2  Fu,v, t1  t2 . All 

polarizations and measurement directions are represented as 

vectors on the Poincaré sphere. In every such subensemble 

individual measurement outcomes are determined by hidden 

variables . The hidden variables are allocated according to the 

distribution u,v, t1 , t2  u,v, t1  t2 . 

For any dichotomic measurement results, At1  1  and Bt2  1 , the 

following identity holds: 
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1  |At1  Bt2 | At1Bt2  1  |At1  Bt2 |. 7.4.52

 

If the signs of A t1  and Bt2  are the same |At1  Bt2 | 2  and |At1  Bt2 | 0 , 

and if At1  Bt2  then |At1  Bt2 | 0  and |At1  Bt2 | 2 . Any kind of non-

local dependencies is allowed, i.e. At1  Aa,b,u,v,, t1 . . . .  and 

Bt2  Ba,b,u,v,, t2 . . . . . Taking the average over the subensemble 

with definite polarizations gives 

 

1   du,v, t1 , t2|A t1  Bt2 |

  du,v, t1 , t2A t1 Bt2  1   du,v, t1 , t2|A t1  Bt2 |,
7.4.53

 

which in an abbreviated notation, where the averages are denoted 

by , is 

 

1  |At1  Bt2 |  At1Bt2   1  |At1  Bt2 |. 7.4.54

 

As the average of the modulus is greater than or equal to the 

modulus of the averages, one gets the set of inequalities: 

 

1  |At1   Bt2 |  At1Bt2   1  |At1   Bt2 |. 7.4.55

 

From now on only the upper bound will be considered, however all 

steps apply to the lower bound as well. With the assumption that 

photons with well defined polarization obey Malus' law 

 

At1   u  a, Bt2   v  b, 7.4.56

 

the upper bound of the inequality (7.4.55) becomes 

 

At1Bt2   1  |u  ak  v  bl|, 7.4.57
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where ak  and bl  are unit vectors associated with the k -th 

measurement setting of Alice and the l -th of Bob, respectively. 

Taking the average over arbitrary polarizations we obtain 

 

Eklt1 , t2   1   dudvFu,v, t1 , t2|u  ak  v  bl|. 7.4.58

 

Remark 7.4.2. We assume now that t1  t2    0  and by using 

(7.4.50) – (7.4.51) we rewrite now the inequalities (7.4.57) and 

(7.4.58) as 

 

AB  1  |u  ak  v  bl| 7.4.59

 

and 

 

Ekl
  1   dudvFu,v,|u  ak  v  bl|. 7.4.60

 

respectively. 

Remark 7.4.3. We assume now that t1  t2    0  and by using 

(7.4.50)-(7.4.51) we rewrite now the inequalities (7.4.57) and 

(7.4.58) as 

 

AB  1  |u  ak  v  bl| 7.4.61

 

and 

 

Ekl
  1   dudvFu,v,|u  ak  v  bl|. 7.4.62

 

respectively. 

Remark 7.4.4. We define now the full avereges Ekl
GHVT

 as 

 

Ekl
GHVT  Ekl

  Ekl
 , 7.4.63
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where Ekl
GHVT

 is the correlation function which can be experimentally 

measured when Alice chooses to measure ak  and Bob chooses bl . 

Let us denote by ukl  and v kl  the length of projections of vectors u  

and v onto the plane spanned by ak  and bl . 

Thus from the inequalities (7.4.60) and (7.4.62) by using Eq. (7.4.63) 

we obtain 

 

Ekl
GHVT  2   dudvFu,v|u  ak  v  bl|,

Fu,v,  Fu,v,  Fu,v,.
7.4.64

 

Сompare the inequality (7.4.64) with the inequality (7.4.14). Let us 

denote by ukl  and v kl  the length of projections of vectors u  and v  

onto the plane spanned by ak  and bl . Since one can decompose 

vectors u  and v  into a vector orthogonal to the plane of the settings 
and a vector within the plane the scalar products read 
 

u  ak  ukl cosa k  u,v  bl  v kl cosb l
 v, 7.4.65

 

where all the   angles are relative to some axis within the plane of 

the settings; angles u  and v  describe the position of the projections 

of vectors u  and v , respectively, whereas angles a k  and b l  

describe the position of the setting vectors. With this notation the 

inequality (7.4.64) becomes 

 

Ekl
GHVT  2   dudvFu,v,|ukl cosa k  u  v kl cosb l

 v|. 7.4.66

 

Сompare the inequality (7.4.66) with the inequality (7.4.16). The 

magnitudes of the projections can always be decomposed into the 

sum and the difference of two real numbers ukl  n1  n2  and 

v kl  n1  n2 .  We insert this decomposition into the last inequality, and 

hence the terms multiplied by n1  and n2  are 
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cosa k  u  cosb l
 v 

 2sin
a k  b l

 u  v
2

sin
a k  b l

  u  v

2

7.4.67

 

and 

 

cosa k  u  cosb l
 v 

 2cos
a k  b l

 u  v
2

cos
a k  b l

 u  v
2

,
7.4.68

 

respectively. We make the following substitution for the 

measurement angles 

 

kl 
a k  b l

2
,kl  a k  b l

, 7.4.69

 

and parameterize the position of the projections within their plane by 

 

uv 
u  v

2
,uv  u  v. 7.4.70

 

Using these new angles one obtains that 

 

Ekl
GHVTkl,kl 

2  2  dudvFu,v,|n2 cos
kl  uv

2
coskl  uv  n1 sin

kl  uv

2
sinkl  uv|,

7.4.71

 

where in the correlation function Eklkl,kl  we explicitly state the 

angles it is dependent on. Сompare the inequality (7.4.71) with the 

inequality (7.4.21). The expression within the modulus is a linear 

combination of two harmonic functions of kl  uv,  and therefore is a 

harmonic function itself. Its amplitude reads 

 

n2
2 cos2 kl  uv

2
 n1

2 sin2 kl  uv

2
, 7.4.72
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and the phase is some fixed real number   

 

Ekl
GHVTkl,kl 

2  2  dudvFu,v, n2
2 cos2 kl  uv

2
 n1

2 sin2 kl  uv

2


|coskl  uv  |.

7.4.73

 

In the next step we average both sides of this inequality over the 

measurement angle 
kl 

a k  b l

2 . This means an integration over 

kl  0,2  and a multiplication by 
1

2 . The integral of the kl  

dependent part of the right-hand side of (7.4.73) reads: 

 

1
2


0

2
dkl|coskl  uv  |  2

 . 7.4.74

 

By denoting the average of the correlation function over the angle kl  

as: 

 

Ekl
GHVTkl  1

2


0

2
dklEkl

GHVTkl,kl, 7.4.75

 

one can write (7.4.73) as 

 

Ekl
GHVTkl  2  4

  dudvFu,v, n2
2 cos2 kl  uv

2
 n1

2 sin2 kl  uv

2
7.4.76

 

This inequality is valid for any choice of observables in the plane 

defined by ak  and bl . One can introduce two new observable vectors 

in this plane and write the inequality for the averaged correlation 

function E
k l
GHVT

k l
   of these new observables. The sum of these two 

inequalities is 
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Ekl
GHVTkl  E

k l 
HVT

k l 
   4  4

  dudvFu,v,

 n2
2 cos2 kl  uv

2
 n1

2 sin2 kl  uv

2


 n2
2 cos2


k l 
  uv

2
 n1

2 sin2


k l 
  uv

2
.

7.4.77

 

One can use the triangle inequality 

 

||x  y|| ||x||||y||,

x 1  y12  x 2  y22  x 1
2  x 2

2  y1
2  y2

2 ,
7.4.78

 

for the two-dimensional vectors x  x1 ,x2  and y  y1 ,y2 , with 

components defined by 

 

x 1  n2 cos
kl  uv

2
, y1  n2 cos


k l
  uv

2
, 7.4.79

 

and 

 

x 2  n1 sin
kl  uv

2
, y2  n1 sin


k l
  uv

2
. 7.4.80

 

One can further estimate this bound by using the following relations 

 

cos
kl  uv

2
 cos


k l
  uv

2
 sin

kl  k l


2
7.4.81

 

and 

 

sin
kl  uv

2
 sin


k l
  uv

2
 sin

kl  k l


2
. 7.4.82

 

This estimate follows if one uses the formula for the sine of the 
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difference angle to the right-hand side argument 

kl  k l


2

kl  uv

2



k l
  uv

2 . Namely, 

 

sin
kl  k l



2
 sin

kl  uv

2
cos


k l 
  uv

2
 cos

kl  uv

2
sin


k l
  uv

2

 sin
kl  uv

2
cos


k l
  uv

2
 cos

kl  uv

2
sin


k l 
  uv

2
.

7.4.83

 

After these estimates, the lower bound of Ekl
GHVT  E

k l
GHVT

 (following 

form the left-hand side inequality in (7.4.55)) is equal to minus the 

upper bound, and thus one can apply the upper bound to the 

modulus of the left hand side of (7.4.27). This is because the only 

formal difference between expressions in the estimates seeking the 

lower bound of the averaged Eq. (7.4.55) compared to those 

seeking the upper bound boils down to the interchange between n1  

and n2 . After applying (7.4.81) and (7.4.82), this makes no difference 

anymore. One can shortly write 

 

Ekl
GHVTkl  E

k l
GHVT

k l
   4  4

 sin
kl  k l



2
dudvFu,v, n2

2  n1
2 . 7.4.84

 

Going back to the magnitudes: 

 

|Ekl
GHVTkl  E

k l
GHVT

k l
 | 4  2 2

 sin
kl  k l



2
 dudvFu,v, ukl

2  v kl
2 . 7.4.85

 

The inequality (7.4.85) is valid for any choice of the plane of 

observables. The bound involves only the projections of vectors u 

and v onto the plane of the settings. The integrations in the bound 

can be thought of as a mean value of expression ukl
2  v kl

2

 averaged 

over the distribution of the vectors. For the plane orthogonal to the 

initial one the inequality is 

 



 

328 

 

|Epq
GHVTpq  E

p q 
GHVT

p q 
 |  2  2 2

 sin
pq  p q 



2
 dudvFu,v, upq

2  v pq
2 , 7.4.86

 

where upq  and v pq  denote the projections of vectors u  and v , 

respectively, onto the plane spanned by the settings ap  and bq  

(which is by construction orthogonal to the plane spanned by ak  and 

bl ). We add the inequalities for orthogonal observatin planes, 

(7.4.85) and (7.4.86), and choose k l
  

p q 
  0  and kl  pq   . 

This gives 

 

Ekl
GHVT  E

k l 
GHVT0||Epq

GHVT  E
p q 
GHVT0 | 

8  2 2
 sin


2
 dudvFu,v, ukl

2  v kl
2  upq

2  v pq
2

7.4.87

 

We apply the triangle inequality (7.4.78) to the expression within the 

bracket. These time vectors x and y have the following components: 

 

x  ukl,upq, y  v kl,vpq. 7.4.88

 

The integrand is bounded by: 

 

ukl
2  v kl

2  upq
2  v pq

2  ukl  upq2  v kl  v pq2 . 7.4.89

 

Let us consider the term involving vector u  only. Since the lengths 

are positive 

 

ukl  upq2  ukl
2  upq

2 . 7.4.90

 

Recall that ukl  and upq  are projections onto orthogonal planes. One 

can introduce normal vectors to these planes, nkl  and npq , 

respectively, and write 
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nkl  u2  ukl
2  1,npq  u2  upq

2  1. 7.4.91

 

Note that the scalar products are two components of vector u  in the 

Cartesian frame build out of vectors nkl , npq , and the one which is 

orthogonal to these two. Since vector u  is normalized one has: 

 

nkl  u2  npq  u2  1, 7.4.92

 

which implies for the sum of equations (7.4.90) 

 

ukl
2  upq

2  1. 7.4.93

 

The same applies to vector v  and one can conclude that 

 

ukl
2  v kl

2  upq
2  v pq

2  2 . 7.4.94

 

Since the weight function Fu,v is normalized, the final Laggett type 

inequality is 

 

Ekl
GHVT  E

k l
GHVT0||Epq

GHVT  E
p q 
GHVT0  8  4

 sin

2

. 7.4.95
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APPENDICES 

 

Appendix A 

 

HEISENBERG’S NOISE-DISTURBANCE UCERTAINTY 

PRINCIPLE 

 

In the wave description of a photon, polarization can be visualized 

as the way the wave is rotated. A photon possesses horizontal |H or 

vertical |V polarization, but until its polarization is measured, these 

two states are said to be in a superposition, described by 

 

|  |H  |V A.1

 

where ,   and ||2  is the probability of finding the photon in state 

|H and ||2  in state |V. The horizontal and the vertical polarization 

jointly define a basis denoted by 

z , which can take on the values |H  

or |V. However, the polarization can be described in an additional 

basis as well, the 

x  basis, which is shifted 45  in positive direction, 

see Fig. A.1. 

 

 

Fig. A.1. A graphical representation of the bases 

z  and 


x  
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Just like the particle superposition consists of |H  and |V in 

z  basis, 

the two new states |H  and |V  will describe the particle 

superposition in the 

x  basis as 

 

|  |H   |V  A.2

 

where ||2  describes the probability of finding the photon in state |H  

and ||2  is state |V .  

 

An analogy to the intrinsic property spin is the polarization of 

photons. Since the polarization is just another example of an 

intrinsic property a particle could exhibit, one can repeat the Stern-

Gerlach experiment with the use of photons. Like the spin of the 

electron, one can write a polarization state of one basis as a 

superposition constituting the eigenstates of the other basis. 

 

The eigenstates obtained in the 

z  basis are given by 

 

|H  1

2
|H   |V ,

|V  1

2
|H   |V .

A. 3

 

while polarization states in the 

x  basis are described by 

 

|H   1

2
|H  |V,

|V   1

2
|H  |V.

A. 4

 

Every SG (Stern-Gerlach) - apparatus is replaced by three half wave 

plates (HWP) and a polarizing beam splitter (PBS) in between, see 

Fig. A.2. This setup will have the same effect on a photon as the 

SG-apparatus had on the electrons since it measures the 

polarization of the photon which thereby collapses into one of the 

eigenstates. A mathematical description of the setup, in order to 
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explain the expectation value which will make us able to predict the 

paths of the photons throughout the measurements, follows below. 

 

 

Fig. A.2. A representation of a setup corresponding to a SG-

apparatus 

 

The HWP rotates the polarization of the transmitted light and 

thereby shifts between the two bases. The HWP is described 

mathematically by the operator 

 


R 

cos2 sin2

sin2 cos2
A. 5

 

and when set to basis 

z :  0 , and when set to 


x :   22.5.  The 

PBS divides the incident beam into two output beams and can 

mathematically be described as the operator 

 

P 
1 0

0 1
. A. 6
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In this instance the matrix representing the measurement operator 

 z  in the 

z  basis is derived by 

 

z 

R0 P


R0  . A. 7

 

Similarly, the matrix representing the measurement operator x  in 

the 

x  basis is derived by 

 

x 

R22.5 P


R22.5  . A. 8

 

Though the expressions above look alike, note that does not take on 

the same values when set to measure 

z  and 


x . The measurement 

operator  z  measures the polarization in the z  -direction. Hence the 

photon will always be thrown into one of the eigenstates |H  or |V. 

When measured in x , it will always be thrown into |H  or |V . Thus, 

one can say that the states are eigenstates to the respective 

operator. The two operators  z  and x  are represented by 

 

z 
1 0

0 1
,x 

0 1

1 0
. A. 9

 

Notice that 

 

z,x   2
0 1

1 0
 2C. A. 10

 

The Robertson uncertainty relation is given by 

 

z x   1

2
|z,x |  C. A. 11

 

Or in general case 
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A,B,  1

2
||A,B|| A. 12

 

for any observables A,B and any state ,  where the standard 

deviation X,  of an observable X  in state   is defined by 

 

2X,  |X2 |  |X|2
. 

 

This relation was proven mathematically from fundamental 

postulates of quantum mechanics. Nevertheless, this relation 

describes the limitation on preparing microscopic objects but has no 

direct relevance to the limitation of accuracy of measuring devices. It 

is a common understanding that the uncertainty principle implies or 

is implied by a limitation on measuring a system without disturbing it 

as a position measurement typically disturbs the momentum. 

However, the limitation has eluded a correct quantitative expression 

on the trade-off between noise and disturbance. 

 

Heisenberg noise-disturbance uncertainty relation 

 

By the  -ray thought experiment, Heisenberg [10, 16] argued that 

the product of the noise in a position measurement and the 

momentum disturbance caused by that measurement should be no 

less than /2.  This relation is generally formulated as follows: for any 

apparatus A to measure an observable A,  the relation 

 

A,,AB,,A  1

2
||A,B|| A. 13

 

holds for any input state   and any observable B, where A,,A  

stands for the noise of the A measurement in state   using 

apparatus A and B,,A  stands for the disturbance of B in state   

caused by apparatus A. We refer to the above relation as the 

Heisenberg noise-disturbance uncertainty relation. 
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Heisenberg uncertainty relation for joint measurements 

 

Very similarly to the above relation (A.13), the Heisenberg 

uncertainty relation for joint measurements is generally formulated 

as follows: for any apparatus A with two outputs for the joint 

measurement of A  and B,  the relation 

 

A,,AB,,A  1

2
||A,B|| A. 14

 

holds for any input state, where X,,A  stands for the noise of the 

X  measurement in state   using apparatus A for X  A,B . This 

relation was proven under the joint unbiasedness condition requiring 

that the (experimental) mean values of the outcome x A  of the A  

measurement and the outcome yB  of the B measurement should 

coincide with the (theoretical) mean values of observables A  and B,  

respectively, on any input state  . It is a common opinion that 

currently available measuring devices satisfy this relation [12]-[14]. 
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Appendix B 

 

CONDITIONAL PROBABILITY DENSITY FUNCTIONS 

 

If X  is given to be a continuous random variable with a defined 

density function say f(x) and E is an event which has positive 

probability then we define the conditional density function as 

 

fx|E 

fx
PE

 x  E

0  x  E

B. 1
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Appendix C 

 

FOURIER TRANSFORM AND HEISENBERG 

UNCERTAINTY PRINCIPLE 

 

Definition C.1. Given any 1,2  function f, where 

1,2  1 2,  we define two operators as follows: 

 

(1) 
fx 


f p  fp  


fxexp2ixpdx,

 

 

(2) 
fp  1fx  


fpexp2ixpdp.

 

 

Theorem C.1. (Heisenberg's Uncertainty Principle). Let   1,2  

with the condition 



|x|2dx  1.
 Then 

 




x 2 |x|2dx 


p2

f p

2
 1

162
, C. 1

 

and 

 



x  x 0 2 |x|2dx 


p  p0 2


f p

2
 1

162
. C. 2

 

Thinking of x  x0 x2  as the standard deviation of the 

displacement written x  and similarly for p  p0 p2  written p  

we may write 

xp  const. C.3

 

which is the usual quantum-mechanical way of Heisenberg's 

uncertainty principle.  
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