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Abstract. In this paper we argue that the current paradigm for AGN and quasars is essentially
incomplete and a rivision is needed. Remind that the current paradigm for AGN and quasars is
that their radio emission is explained by synchrotron radiation from relativistic electrons that
are Doppler boosted through bulk motion. In this model, the intrinsic brightness temperatures
cannot exceed 1011 to 1012 K. Typical Doppler boosting is expected to be able to raise this
temperature by a factor of 10. The observed brightness temperature of the most compact
structures in BL Lac, constrained by baselines longer than 5.3Gλ, must indeed exceed 2×1013K
and can reach as high as ˜ 3 × 1014K. This is difficult to reconcile with current incoherent
synchrotron emission models from relativistic electrons, requiring alternative models such as
emission from relativistic protons. However the proton, as we know, is 1836 times heavier than
an electron and absolutely huge energy is required to accelerated it to sublight speed. These
alternative models such as emission from relativistic protons can be suported by semiclassical
gravity effect finds its roots in the singular behavior of quantum fields on curved distributional
space- times presented by rotating gravitational singularities.

1. Introduction
The classical Cartan’s structural equations show in a compact way the relation between a
connection and its curvature, and reveals their geometric interpretation in terms of moving
frames [1]-[2]. In order to study the mathematical properties of singularities, we need to study
the geometry of manifolds endowed on the tangent bundle with a symmetric bilinear form
which is allowed to become degenerate or singular (or both degenerate and singular) on semi
Riemannian manifold (M, g) or on submanifolds of semi Riemannian manifold (M, g). But if
the fundamental tensor is allowed to be degenerate or singular, there are some obstructions
in constructing the geometric objects normally associated to the fundamental tensor. Also,
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local orthonormal frames and coframes no longer exist, as well as the metric connection and its
curvature operator.

Degenerate semi Riemannian manifolds arise naturally in the semi-Riemannian category: for
example the restriction of a non-degenerate metric to a degenerate submanifold is a degenerate
metric and the Killing-Cartan form on a non-semi- simple Lie Group is a degenerate metric.

Definition 1.1. (i) Semi Riemannian manifold (M, g) is nonclassical if the fundamental
tensor g is allowed to be degenerate or singular,

(ii) semi Riemannian manifold (M, g) is internally nonclassical if the fundamental tensor
g is not allowed to be degenerate or singular but there exists semi Riemannian submanifold
(M ′, g′) ,M ′M, g′ = g|M ′ such that the fundamental tensor g′ is allowed to be degenerate or
singular,

(iii) otherwise we will say that (M, g) is classical. In nonclassical case the main problem arises
from the degeneracy of the det (gij (x̂)) on some isolated points: det

(
gij
(
x̂0
))

= 0, x̂0 ∈ M
or some submanifold det (gij (x̂)) = 0 for all x̂ ∈ M ′M and consequantly the corresponding
Christoffel symbols become infinity. Let (M, g) be a nonclassical semi Riemannian manifold.
Let Γx̂0be a closed contour and let ΣΓx̂0

⊂ M be a surface spanning by Γx̂0 , We assume now

that Christoffel symbols Γikl (x̂) are smooth on ΣΓ ∪ Γ\
{
x̂0
}

and Γikl (x̂) → ∞ if x̂ → x̂0. The
classical formula for the change in a smooth vector Ai (x̂) after parallel displacement around
infinitesimal closed contour Γ

∆Ak (Γ) =
∮
Γ
δAk =

∮
Γ

Γikl (x̂)Akdx
l. (1.1)

no longer hold since ∆Ak (Γ) =∞.
In mathematical literature more than 50 years it was accepted that a nonclassical semi

Riemannian manifold mentioned above is impossible to treate classically, i.e. by using canonical
apparatus of the Riemannian geometry. However in the contemporary mathematical literature,
manifolds with degenerate metric tensors have been studied only fore some special case called a
Reinhart manifold [3]-[4].

In order to avoid these difficultness with divergence ∆Ak (Γx̂0) = ∞,etc. we consider the
canonical imbedding (M, gi,j,0 (x̂)) ↪→

(
M, (gi,j,ε (x̂))ε

)
, and we extend the classical formula

(1.1) from a nonclassical semi Riemannian manifold (M, gi,j,0 (x̂)) up to Colombeau manifold(
M, (det(gij,ε))ε

)
, [5-9] where (gij,ε) ∈ Gδ (Rn) , i, j = 1, ..., n by using Eq. (1.17), [10]-[11].

In contemporary mathematics, a Colombeau algebra of Colombeau generalized functions is
an algebra of a certain kind containing the space of Schwartz distributions. While in classical
distribution theory a general multiplication of distributions is not possible, classical Colombeau
algebras provide a rigorous frame work for this [9]-[11].

Through whole this paper we shall apply the following definitions and notations [1].
Definition 1.2. The algebra moderate functions C∞M (Rn) on Rn is the alge-

bra of families of smooth functions (fε (x))ε (fε (x))ε , x ∈ Rn, ε ∈ (0, δ] , δ ≤ 1
(smooth ε-regularisations, where ε is the regularization parameter), such that: (i)
for all compact subsets K of Rn and all multiindices α, there is an N > 0 such that

supx∈K

∣∣∣ ∂|α|fε(x)
(∂x1)α1 ···(∂xn)αn

∣∣∣ = O
(
ε−N

)
, ε→ 0, (1.2)

with addition and multiplication defined by natural way
(fε (x))ε + (gε (x))ε = (fε (x) + gε (x))ε (1.3)

and
(fε (x))ε × (gε (x))ε = (fε (x)× gε (x))ε . (1.4)

Definition 1.3.The ideal Nδ (Rn) of negligible functions is defined in the same way

but with the partial derivatives instead bounded by O
(
εN
)

for all N > 0, i.e.

supx∈K

∣∣∣ ∂|α|fε(x)
(∂x1)α1 ···(∂xn)αn

∣∣∣ = O
(
εN
)
, ε→ 0. (1.5)

Definition 1.4. The Colombeau algebra Gδ (Rn) [1] is defined as the quotient algebra
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Gδ(Rn) = C∞M (Rn) /Nδ (Rn) . (1.6)
Elements of calGδ(R

n) are denoted by
u = cl[(uε)ε](uε)ε +Nδ(Rn). (1.7)

Embedding of distributions
The space of Schwartz distributions D′ (Rn) can be embedded into the Colombeau algebra

Gδ (Rn) by (component-wise) convolution with any element (ϕε)ε of the algebra Gδ (Rn) having
as representative a ε-net, i.e. a family of smooth functions ϕε (δ-net) such that ϕε → δ in
D′ (Rn) as ε → 0. Note that the embedding ι : D′ (Rn) ↪→ Gδ (Rn) is non-canonical, because it
depends on the choice of the δ-net.

However note that embedding D′ (Rn) ↪→ Gδ (Rn) does not meant the full equivalence of
the Schwartz distributions and corresponding by embedding Colombeau generalized functions.
In contrast with the Schwartz distributions Colombeau generalized functions has well defined
value at any point x ∈ Rn, these point values of the Colombeau generalized functions are the
Colombeau generalized numbers R̃δ [1].

Designation 1.1. (I) We denote by R̃δ, δ ≤ 1 the ring of real Colombeau generalized

numbers. Recall that by definition R̃δ = Eδ (R) /Nδ (R) where

Eδ (R ) =
{

(xε)ε ∈ R(0,δ)
∣∣∣ (∃a ∈ R+) (∃ε0 ∈ (0, 1)) (∀ε ≤ ε0) [|xε| ≤ ε−a]

}
,

Nδ (R) =
{

(xε)ε ∈ R(0,δ)
∣∣∣ (∀a ∈ R+) (∃ε0 ∈ (0, 1)) (∀ε ≤ ε0) [|xε| ≤ εa]

}
.

(1.8)

(II) We often write for short R̃ instead R̃δ.

Notice that the ring R̃ arises naturally as the ring of constants of the Colombeau algebras
Gδ (Ω) . Recall that there exists natural embedding r̃ : R ↪→ R̃ such that for all r ∈ R, r̃ = (rε)ε
where rε ≡ r for all ε ∈ (0, 1] . We say that r is the standard number and abbreviate r ∈ R for

short. The ring R̃ can be endowed with the structure of a partially ordered ring: for r, s ∈ R̃
η ∈ R+, η ≤ δ we abbreviate r ≤

R̃,η
s or simply r ≤

R̃
s if and only if there are representatives

(rε)ε and (sε)ε with rε ≤ sε for all ε ∈ (0, η] .

Colombeau generalized number r ∈ R̃ with representative (rε)ε we abbreviate cl [(rε)ε] .

Definition 1.5. (i) Let δ̆ = cl [(δε)ε] ∈ R̃. We say that δ̆ is infinite small Colombeau

generalized number and abbreviate δ̆ ≈
R̃

0̃ if there exists representative (δε)ε and some q ∈ N
such that |δε| = O (εq) as ε→ 0.

(ii) Let ∆ ∈ R̃. We say that ∆ is infinite large Colombeau generalized number and abbreviate
∆ =

R̃
∞̃ if ∆−1

R̃
≈
R̃

0̃.

(iii) Let R±∞ be R ∪ {±∞} . We say that Θ ∈ R̃±∞ is infinite Colombeau generalized
number and abbreviate Θ =

R̃
±∞

R̃
if there exists representative (Θε)ε where |Θε| = ∞ for all

ε ∈ (0, 1] . Here we abbreviate Eδ (R±∞) = Eδ (R ∪ {±∞}) , Nδ (R±∞) = Nδ (R ∪ {±∞}) and

R̃±∞ = Eδ (R±∞) /Nδ (R±∞) .

Definition 1.6. (Standard Part Mapping). (i) The standard part mapping st : R̃ → R is
defined by the formula:

st (x) = sup
{
r ∈ R|r ≤

R̃
x
}
. (1.9)

If x ∈ R̃, then st (x) is called the standard part of x.

(ii) The mapping st : R̃ → R ∪ {±∞} is defined by (i) and by st (x) = ±∞ for x ∈ R̃ and

for x ∈ R̃±∞,respectively.
Definition 1.7. Let (fε (x))ε ∈ Gδ(Rn) and x̆ ∈ R, then cl [(fε (x̆))ε] ∈ R̃. We shall say that

Colombeau generalized numbers cl [(fε (x̆))ε] are point values of Colombeau generalized function
(fε (x))ε at point x̆ ∈ Rn.

Definition 1.8. (i) Let u = cl [(uε (x))ε] be the Colombeau generalized function
such that (uε (x))ε ∈ Gδ(Rn) and let µ be a vector (µε)ε = (µ1,ε, ..., µi,ε, ..., µn,ε)ε =
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(
(µ1,ε)ε , ..., (µi,ε)ε , ..., (µn,ε)ε

)
, where cl

[
(µi,ε)ε

]
∈ R̃δ, i = 1, ..., n are Colombeau generalized

numbers with the representatives (µi,ε)ε ∈ Eδ (R) .

Thus, we have a mapping ũµ : Gδ(Rn)→ R̃δ that is defined in a natural way by the following
formula:

ũµ [(uε)ε] = cl [(uε (µε))ε] ∈ Eδ (R) . (1.10)
(ii) Let u1 = (u1,ε (x))ε and u2 = (u2,ε (x))ε Colombeau generalized functions such that

u1, u2 ∈ E∞δ (Rn). The algebra moderate function E∞δ
(
R̃nδ

)
on R̃nδ is the algebra of functions

ũ : E∞δ
(
R̃nδ

)
→ Eδ

(
R̃δ
)

defined by Eq. (1.10) such that, for all compact subsets K of R̃nδ and

all multi indices α = (α1, ..., αi, ..., αn) , there are N > 0 and ε0 ∈ R+ such that, for ε ≤ ε0(
supµε∈K

∂|α|u(µ1,ε,...,µi,ε,...,µn,ε)
(∂µ1,ε)

α1 ...(∂µi,ε)
αi ...(∂µn,ε)

αn

)
ε

= O
((
ε−N

)
ε

)
(1.11)

and with the addition and multiplication defined by a natural way by the following formulas:
(ũ1,µ + ũ2,µ) ((µε)ε) = (ũ1,µ,ε (µε) + ũ2,µ,ε (µε))ε = (u1,ε (µε) + u2,ε (µε))ε (1.12)

and
(ũ1,µ · ũ2,µ) ((µε)ε) = (ũ1,µ,ε (µε) · ũ2,µ,ε (µε))ε = (u1,ε (µε) · u2,ε (µε))ε (1.13)

correspondingly.

(iii) The ideal N∞δ
(
R̃δ
)

of negligible functions on R̃δ is defined in the similar way but with

the derivatives bounded by O
((
εN
)
ε

)
for all N > 0; i.e.,(

supµε∈K
∂|α|u(µ1,ε,...,µi,ε,...,µn,ε)

(∂µ1,ε)
α1 ...(∂µi,ε)

αi ...(∂µn,ε)
αn

)
ε

= O
((
εN
)
ε

)
(1.14)

for all ε ≤ ε0.
(iv) The point free Colombeau algebra Gδ(R̃n) defined as the quotient algebra

Gδ(R̃n) = E∞δ
(
R̃nδ

)/
N∞δ

(
R̃δ
)
. (1.15)

The elements of Gδ(R̃n) are denoted by the following: ũ = cl [(ũε)ε] (ũε)ε +N∞δ
(
R̃δ
)
.

Definition 1.9. Let (fε (x))ε ∈ Gδ(R) and cl [(x̆ε)ε] ∈ R̃δ. Assume that cl [(fε (x̆ε))ε] ∈ R̃δ.
We shall say that Colombeau generalized number cl [(fε (x̆ε))ε] is a point values of Colombeau

generalized function (fε (x))ε at point (x̆ε)ε ∈ R̃δ.
We briefly recall now the basic supergeneralized Colombeau construction [11]-[14].
Colombeau supergeneralized functions on Ω ⊆ Rn, where dim (Ω) = n are defined as

equivalence classes u = [(uε)ε] of nets of functions uε ∈ C∞(Ω\Σ), ε ∈ (0, δ] such that any
uε is a net of functions smooth on Ω\Σ and has a discontinuity on a subset Σ ⊂ Ω, where

dim (Σ) < n. We assume that for any ε ∈ (0, δ] the derivative ∂|m|uε
∂x
k1
1 ...∂xknn

,m = (k1, ..., kn) exists

in the sense of the theory of canonical generalized functions and ∂|m|uε
∂x
k1
1 ...∂xknn

∈ D′ (Ω) . The

basic idea of generalized Colombeau’s theory of nonlinear supergeneralized functions [11]-[14]
is regularization by sequences (nets) of nonsmooth functions with derivatives in D′ (Ω) and the
use of asymptotic estimates in terms of a regularization parameter ε. Let (uε)ε∈(0,δ], δ ≤ 1 with
uε such that:

(i) uε ∈ C∞(M\Σ) and
(ii) Lξ1 . . . Lξkuε ∈ D′(M), for all ε ∈ (0, δ] , where M is a separable, smooth orientable

Hausdorff manifold of dimension n.
Definition 1.10. The supergeneralized Colombeau’s algebra G̃ = G̃(M,Σ) of

supergeneralized functions on M, where Σ ⊂ M,dim (M) = n,dim (Σ) < n , is defined as
the quotient:

G̃(M,Σ)EM (M,Σ)/N (M,Σ) (1.15a)
of the space EM (M,Σ) of sequences of moderate growth modulo the space N (M,Σ) of negligible
sequences. More precisely the notions of moderateness resp. negligibility are defined by the
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following asymptotic estimates (where X(M\Σ) denoting the space of smooth vector fields on
M\Σ):

EM (M,Σ) {(uε)ε| ∀K (KM\Σ) ∀k (k ∈ N) ∃N (N ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M\Σ))
[
supp∈K |Lξ1 . . . Lξk uε(p)| = O(ε−N ), ε→ 0

]
∀K (KM) ∀k (k ∈ N) ∃N (N ∈ N) ∀ (f ∈ C∞(M))∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))[∥∥∥Lwξ1 . . . Lwξk uε∥∥∥ =

(
supf∈C∞(M)

∣∣∣Lwξ1 . . . Lwξkuε(f)
∣∣∣) = O(ε−N ), ε→ 0

]}
,

(1.16)

where Lwξk denoting the weak Lie derivative in the L. Schwartz sense.

Elements of G̃(M,Σ) are denoted by the following:

u = cl[(uε)ε](uε)ε +N (M,Σ).

With componentwise operations (·,±) G̃(M,Σ) is a fine sheaf of differential algebras with respect
to the weak Lie derivative defined by Lwξ ucl[(Lwξ uε)ε].

The spaces of moderate resp. negligible sequences and hence the algebra itself may be
characterized locally, i.e., u ∈ G̃(M,Σ) iff u ◦ ψα ∈ G̃(ψα(Vα)) for all charts (Vα, ψα), where
on the open set ψα(Vα) ⊂ Rn in the respective estimates the weak Lie derivatives are replaced
by partial derivatives.

Smooth functions f ∈ C∞(M\Σ) are embedded into G̃(M,Σ) simply by the “constant”

embedding σ, i.e., σ(f) = cl[(f)ε], hence C∞(M\Σ) is a faithful subalgebra of G̃(M,Σ).
We derive now the general formula for the change in a vector after parallel displacement

around any infinitesimal closed contour γ. This generalized change (∆Ak,ε)ε ∈ R̃δ can clearly
be written in the form (

∮
δAk,ε)ε, where the Colombeau integral is taken over the given regular

contour γ. Substituting in place of (δAk,ε)ε the expression (δAi,ε (xε))ε =
(
Γkil,εAk,ε (xε) dx

l
ε

)
ε
,

we get

(∆Ak,ε)ε =
(∮
γ Γikl,ε (xε)Ai (xε) dx

l
ε

)
ε
∈ R̃, (1.17)

where for any i, k, l = 0, 1, 2, 3 :
(
Γikl,ε (x)

)
ε
∈ G(R4), x =

(
x0, x1, x2, x3

)
, Ai (x) ∈ D (G) ,

G ⊆ R4. Note that the vector Ai which appears in the integrand obviously changes as we move
along the contour γ.

Definition 1.11.We shall say that generalized change (∆Ak,ε)ε exists in the sense of the
Schwartz distributions if for any Ai (x) ∈ D (G) the limit: limε→0 ∆Ak,ε exists. Of course in

this case obviously cl
[(

Γikl,ε (x)
)
ε

]
∈ D′ (G) and cl

[
(∆Ak,ε)ε

]
∈ R.

Theorem 1.1.( Generalized Stokes’ Theorem). Let (ωε)ε be Colombeau generalized
differential form. Then the Colombeau integral of a differential form (ωε)ε over the boundary
of some orientable manifold Σ ⊂M is equal to the integral of its exterior Colombeau derivative
(dωε)ε over the whole of Σ, i.e.,∫

∂Σ

(ωε)ε =

( ∫
∂Σ

ωε

)
ε

=

(∫
Σ
dωε

)
ε

=
∫
Σ

(dωε)ε . (1.18)

Let
(
df ikε

)
ε
be the element of two-dimensional Colombeau generalized surface spanned by two

infinitesimal Colombeau generalized displacements. Now applying generalized Stokes’ theorem
to the integral (1.17) and considering that the area enclosed by the contour has the infinitesimal
value

(
∆f imε

)
ε , we get

(∆Ak,ε (xε))ε = 1
2

[
Ai (xε)

(
∂
(
Γikm,ε(xε)

)
∂xlε

)
ε
−Ai,ε (xε)

(
∂
(
Γikl,ε(xε)

)
∂xmε

)
ε

+(
∂Ai,ε(xε)

∂xlε

) (
Γikm,ε (xε)

)
ε
−
(
∂Ai,ε(xε)
∂xmε

) (
Γikl,ε (xε)

)
ε

] (
∆f imε

)
ε .

(1.19)

Substituting the values of the derivatives into Eq.(1.19), we get
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(∆Ak,ε)ε = 1
2

(
Riklm,ε (x)Ai,ε (x) ∆f imε

)
ε
, (1.20)

where
(
Riklm,ε (xε)

)
ε

is a Colombeau generalized tensor field of the fourth rank:(
Riklm,ε (xε)

)
ε

=

(
∂
(
Γikm,ε(xε)

)
∂xl

)
ε
−
(
∂
(
Γikl,ε(xε)

)
∂xm

)
ε

+(
Γini,ε (xε) Γnkm,ε (xε)

)
ε
−
(
Γinm,ε (xε) Γnkl,ε (xε)

)
ε
.

(1.21)

Definition 1.2.The tensor field
(
Rlkim,ε (xε)

)
ε

is called the distributional curvature tensor

or the distributional Riemann tensor. Note that in general case for any i, k, l = 0, 1, 2, 3

cl
[(
Riklm,ε (xε)

)
ε

]
∈ Gδ

(
R̃4
δ

)
. (1.22)

2. Generalized Einstein’s field equations
The generalized action functional for the gravitational field is [9]-[14]

(
∫
Rε
√
−gεdΩε)ε . (2.1)

The invariant Colombeau integral (2.1) can be transformed by means of Gauss’ theorem to
the integral of an expression not containing the second derivatives.

Thus Colombeau integral (2.1) can be presented in the following form

(
∫
Rε
√
−gεdΩε)ε = (

∫
Gε
√
−gεdΩε)ε +

(∫ ∂(
√
−gεwiε)
∂xi

dΩε

)
ε
, (2.2)

where (Gε)ε contains only the tensor (gik,ε)ε and its first derivatives, and the integrand of the

second integral has the form of a divergence of a certain quantity
(
wiε
)
ε. According to Gauss’

theorem, this second integral can be transformed into an integral over a hypersurface surrounding
the four-volume over which the integration is carried out in the other two integrals. When we
vary the action, the variation of the second term on the right vanishes, since in the principle of
least action, the variations of the field at the limits of the region of integration are zero.

Consequently, we may write
δ (
∫
Rε
√
−gεdΩ)ε = (δ

∫
Rε
√
−gεdΩ)ε = (δ

∫
Gε
√
−gεdΩ)ε . (2.3)

The left side is Colombeau scalar; therefore the expression on the right is also Colombeau
scalar (the quantity (Gε)ε itself is, of course, not Colombeau scalar).

The quantity (Gε)εsatisfies the condition imposed above, since it contains only the (gik,ε)ε
and its Colombeau derivatives. Thus finally we obtain

δS [(gε)ε] = − c3

16πκ (δ
∫
Gε
√
−gεdΩ)ε = − c3

16πk (δ
∫
Rε
√
−gεdΩ)ε . (2.4)

The constant κ is called the gravitational constant. The dimensions of κ follow from (2.4).
Its numerical value is κ = 6.67 × 10−8sm3×gr−1 × sec−2 . We now proceed to the derivation of
the equations of the gravitational field. These equations are obtained from the principle of least
action δ((Sm,ε)ε + (Sgε)ε) = 0

R̃
, where (Sm,ε)ε and (Sgε)ε are the distributional actions of the

gravitational field and matter respectively. We now subject the gravitational Colombeau metric
field, that is, the quantities gik, to variation.

Calculating the variation δ (Sgε)ε, we get

δ (
∫
Rε
√
−gεdΩ)ε = (δ

∫
Rε
√
−gεdΩ)ε =

(
δ
∫
gikε Rik,ε

√
−gεdΩ

)
ε

={(∫
Rik,ε

√
−gεδgikε dΩ

)
ε

+
(∫

Rik,εg
ik
ε δ
√
−gεdΩ

)
ε

+
(∫

gikε
√
−gεδRik,εdΩ

)
ε

}
∫ {(

Rik,ε
√
−gεδgikε

)
ε

+
(
Rik,εg

ik
ε δ
√
−gε

)
ε

+
(
gikε
√
−gεδRik,ε

)
ε

}
dΩ.

(2.5)

Thus, the variation S [(gε)ε] is equal to

S [(gε)ε] = − c3

16πκ

(∫ {
Rik,ε − 1

2gik,εRε
}√
−gεδgikε dΩ

)
ε
. (2.6)

We note that if we had started from the expression

δSg [(gε)ε] = − c3

16πκ (δ
∫
Gε
√
−gεdΩ)ε (2.7)

for the action of the field, then we get
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δS [(gε)ε] =

− c3

16πκ

∫
δ
(
gikε

)
ε
dΩ

{(
∂{Gε

√
−gε}

∂gikε

)
ε
−
(

∂
∂xl

∂{Gε
√
−gε}

∂
∂gikε
∂xl

)
ε

}
.

(2.8)

Comparing Eq. (2.8) with Eq. (2.6), we get
(Rik,ε)ε −

1
2 (gik,εRε)ε ={(

1√
−gε

)
ε

}{(
∂{Gε

√
−gε}

∂gikε

)
ε
−
(

∂
∂xl

∂{Gε
√
−gε}

∂
∂gikε
∂xl

)
ε

}
.
. (2.9)

For the variation of the action of the matter we can write
(δSm,ε)ε = 1

2c

(∫
Tik,ε
√
−gεδgikε dΩ

)
ε
, (2.10)

where (Tik,ε)ε ∈ G(R4) is the generalized energy-momentum tensor of the matter fields.
Thus, from the principle of least action

δ
{
S [(gε)ε] + (Sm,ε)ε

}
= 0

R̃
(2.11)

one obtains
− c3

16πκ

(∫ {
Rik,ε − 1

2gik,εRε −
8πκ
c4
Tik,ε

}√
−gεδgikε dΩ

)
ε

= 0
R̃
. (2.12)

From Eq. (2.11), since of the arbitrariness of the
(
δgikε

)
ε
∈ G(R4) finally we get

(Rik,ε)ε −
1
2 (gik,εRε)ε = 8πκ

c4
(Tik,ε)ε (2.13)

or, in mixed components,(
Rki,ε

)
ε
− 1

2δ
k
i (Rε)ε = 8πκ

c4

(
T ki,ε

)
ε
. (2.14)

They are called the generalized Einstein equations.
Contracting (2.13) on the indices i and k,we get

(Rε)ε = −8πκ
c4

(
T ii,ε

)
ε

= −8πκ
c4

(Tε)ε . (2.15)

Therefore the generalized Einstein equations of the field can also be written in the form [6]-[7]

(Rik,ε)ε = 8πκ
c4

{
(Tik,ε)ε −

1
2 (gik,εTε)ε

}
. (2.16)

Note that the generalized Einstein equations of the gravitational field are nonlinear
Colombeau type equations.

3. The current paradigm for Active Galactic Nuclei. High energy emission from
galactic jets

The current paradigm for AGN and quasars is that their radio emission is explained by
synchrotron radiation from relativistic electrons that are Doppler boosted through bulk motion
[15]-[18].

Fig.1. Accretion of gas onto the supermassive Kerr black holes lurking at the center of active
galactic nuclei (AGN) gives rise to powerful relativistic jets.

However in this model, the intrinsic brightness temperatures cannot exceed 1011 to 1012 K.
Typical Doppler boosting is expected to be able to raise this temperature by a factor of 10.
The observed brightness temperature of the most compact structures in BL Lac, constrained by
baselines longer than 5.3Gλ, must indeed exceed 2×1013K and can reach as high as ˜ 3×1014K.
As well known, these visibilities correspond to the structural scales of 30−40 µas oriented along
position angles of 25◦ − 30◦. These values are indeed close to the width of the inner jet and the
normal to its direction. The observed, Tb,obs, and intrinsic, Tb,int, brightness temperatures are
related by [19]

Tb,obs = δ(1 + z)−1Tb,int, (3.1)

where δ = (1− β2)1/2(1− βcosϕ)−1 is the Doppler factor, β is the jet bulk velocity in units of
the speed of light, ϕ is the jet viewing angle, and z is the redshift of the source.

Variability argument and kinematical analyses yield consistent value of δ = 7.2. The estimeted
by Eq. (2.1) a lower limit of the intrinsic brightness temperature in the core component of our
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Figure 1. Jet from Black Hole in a Galaxy Pictor A. The active galaxy Pictor A lies nearly
500 million light-years from Earth and contains a supermassive black hole at its centre. This is
a composite radio and X-ray image

Radio Astron observations of Tb,int > 2.91012 K [19]. It is commonly considered that inverse
Compton losses limit the intrinsic brightness temperature for incoherent synchrotron sources,
such as AGN, to about 1012K [19]. In case of a strong flare, the ”Compton catastrophe”
is calculated to take about one day to drive the brightness temperature below 1012K [19].
The estimated lower limit for the intrinsic brightness temperature of the core in the Radio
Astron image of Tb,int > 2.91012K is therefore more than an order of magnitude larger than the
equipartition brightness temperature limit established in [19] and at least several times larger
than the limit established by inverse Compton cooling.

Figure 2. Fourier coverage (uv-coverage) of the fringe fitted data (i.e., reliable fringe detections)
of the Radio Astron observations of BL Lac on 2013 November 10-11 at 22 GHz. Color marks
the lower limit of observed brightness temperature obtained from visibility amplitudes. Adopted
from [19]
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Remark 3.1. Note that if the estimate of the maximum brightness temperature given in
[19], is closer to actual values, it would imply Tb;int = 5×1013K. This is difficult to reconcile with
current incoherent synchrotron emission models from relativistic electrons, requiring alternative
models such as emission from relativistic protons.

Remark 3.2. However the proton, as we know, is 1836 times heavier than an electron and
absolutely huge energy is required to accelerated it to sublight speed.

We argue that these alternative models such as emission from relativistic protons can be
suported by semiclassical gravity effect finds its roots in the singular behavior of quantum fields
on curved distributional spacetimes presented by rotating gravitational singularities [1], [6].

4. The Colombeau distributional Kerr spacetime in Boyer-Lindquist form
The classical Kerr metric in Boyer-Lindquist form is

ds2 = −Ξ (r, θ) dt2 − 4mra sin2 θ
ρ2

dtdφ+ ρ2

∆a
dr2 + ρ2dθ2+(

r2 + a2 + 2mra2 sin2 θ
ρ2

)
sin2 θdφ2,

(4.1)

where ρ2 = ρ2 (r) = r2 + a2 cos2 θ,∆a = ∆a (r) = r2 − 2mr + a2,
Ξ (r, θ) =

(
r2 − 2mr + a2 cos2 θ

)
/ρ2.

Note that

Ξ (r, θ) = r2−2mr+a2 cos2 θ
ρ2

=
(r−rE+

(θ))(r−rE (θ))

ρ2
, (4.2)

where rE± (θ) = m±
√
m2 − a2 cos2 θ and

∆a = r2 − 2mr + a2 = (r − r+) (r − r−) (4.3)

where r± (a) = m±
√
m2 − a2.

Let K (r, θ) be a submanifold given by equation φ = const, then the metric (3.1) restricted
on submanifold K (r, θ) is

ds2 = −Ξ (r, θ) dt2 + ρ2

∆a
dr2 + ρ2dθ2. (4.4)

Note that:
(i) the metric (4.4) is degenerates on outer ergosurface:

{
r = rE+ (θ)

}
and inner ergosurface

r = rE (θ) ,
(ii) the metric (4.4) is singular on horizon {r = r+} ,
(iii) the metric (4.4) is singular on submanifold given by equation r = r−.

Figure 3. Ergosurface, horizon,and singularity for slow Kerr black hole

We introduce now the following regularized above (below) ergosurface r = rE+ (θ) quantities

Ξ+
ε (r, θ) =

(r−rE (θ))

√
(r−rE+

(θ))
2
+ε2

ρ2(r)
, (4.5)



IC-MSQUARE 2020
Journal of Physics: Conference Series 1730 (2021) 012064

IOP Publishing
doi:10.1088/1742-6596/1730/1/012064

10

Ξ−ε (r, θ) = −Ξ+
ε (r, θ) and regularized above (below) horizon quantities

∆+
a,ε = (r − r− (a))

√
(r − r+ (a))2 + ε2. (4.6)

Thus Colombeau generalized metric corresponding to classical Kerr metric (4.1) is(
ds±2
ε

)
ε = − [(Ξ±ε (rε, θ))ε] dt

2 − 4ma sin2 θ
[(

rε
ρ2ε

)
ε

]
dtdφ+

(ρ2ε)ε
(∆a,ε(rε))ε

[(
dr2
ε

)
ε

]
+
[(
ρ2
ε

)
ε

]
dθ2 +

(
r2
ε + a2 + 2mrεa2 sin2 θ

ρ2ε

)
ε

sin2 θdφ2.
(4.7)

Remark 4.1. Note that we shall consider the distributional Kerr spacetime not as
full distributional BH spacetime with Colombeau generalized metric (4.7), but as rotatin
gravitational singularity bounded by horizon {r = r+} , see Fig. 4. Note that Colombeau
generalized metric corresponding to such gravitational singularity is(

ds±2
ε

)
ε = − [(Ξ±ε (rε, θ))ε] dt

2 − 4ma sin2 θ
[(

rε
ρ2ε

)
ε

]
dtdφ+

[(ρ2ε)ε](H(rε−r+))ε
(∆a,ε(rε))ε

[(
dr2
ε

)
ε

]
+
[(
ρ2
ε

)
ε

]
dθ2 +

(
r2
ε + a2 + 2mrεa2 sin2 θ

ρ2ε

)
ε

sin2 θdφ2,
(4.8) where

H (x) is a Heaviside step function.

Figure 4. Rotatin gravitational singularity with singular support on outer ergosurface

∪θ{r = rE+ (θ)}

and on event horizon { r=r+}

Let (Ra<m (rε, ε))ε be Colombeau generalized curvature scalar corresponding to the metric
(4.8) with a < m. By straightforward calculation from Eq. (4.8) one obtains that the
main singular part sing [(Ra<m (rε, θ, ε))ε] of the Colombeau generalized curvature scalar

(Ra<m (rε, θ, ε))ε with
(
rε − rE+ (θ)

)
ε
≈
R̃

0̃, [see Definition 1.5.(i)] corresponding to the metric
(4.8) is

sing [(Ra<m (rε, θ, ε))ε] =
R̃
−

 rε−rE (θ)
r2ε+a2 cos2 θ

ε2

∆ε(rε)

[
(rε−rE+

(θ))
2
+ε2
]3/2


ε

(4.9)

where
∆ε (rε) = (Ξ±ε (r, θ)) ρ2(rε)

(∆a,ε(r))ε
+ 8mrεa sin2 θ

r2ε+a2 cos2 θ
. (4.10)

From Eqs. (4.9)-(4.10) on outer ergosurface (rε)ε = rE+ (θ) we obtain
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sing
[(

Ra<m
(
rE+ (θ) , ε

))
ε

]
=
R̃

rE+
(θ)−rE (θ)

8marE+
(θ) sin2 θ

(
ε−1

)
ε =

R̃√
m2−a2

4marE+
(θ) sin2 θ

(
ε−1

)
ε =

R̃
c1 (m, a, θ)

(
ε−1

)
ε .

(4.11)

Note that the main singular part sing [(Ra<m (rε, θ, ε))ε] of the Colombeau generalized

curvature scalar (Ra<m (rε, θ, ε))ε with (rε − r+)ε ≈R̃ 0̃, corresponding to the metric (4.8) is

sing [(Ra<m (rε, θ, ε))ε] =
R̃

(
ε2

4(rE+
(θ))[ε2+(rε−2m)2]

3/2

)
ε

. (4.12)

Let
(
Rµν(a<m) (rε, ε) R

(a<m)
µν (rε, ε)

)
ε

be Colombeau generalized quadratic scalar

(Rµν (rε, ε) Rµν (rε, ε))ε

corresponding to the metric (4.8) with a < m. From Eq. (4.8) one obtains that the main

singular part sing
[(

Rµν(a<m) (rε, ε) R
(a<m)
µν (rε, ε)

)
ε

]
of the Colombeau generalized quadratic

scalar
(
Rµν(a<m) (rε, ε) R

(a<m)
µν (rε, ε)

)
ε

with
(
rε − rE+ (θ)

)
ε
≈
R̃

0̃, [see Definition 1.5.(i)] is

sing
[(

Rµν(a<m) (rε, ε) R
(a<m)
µν (rε, ε)

)
ε

]
=
R̃

(
ε4

4(rE+
(θ))

4
[ε2+(rε−2m)2]

3

)
ε

. (4.13)

Let
(
Rρσµν(a<m) (rε, ε) R

(a<m)
ρσµν (rε, ε)

)
ε

be Colombeau generalized quadratic scalar

(Rρσµν (rε, ε) Rρσµν (rε, ε))ε corresponding to the metric (4.8) with a < m. From Eq.

(4.8) one obtains that main singular part sing
[(

Rρσµν(a<m) (rε, ε) R
(a<m)
ρσµν (rε, ε)

)
ε

]
with(

rε − rE+ (θ)
)
ε
≈
R̃

0̃, [see Definition 1.5.(i)] is

sing
[(

Rµν(a<m) (rε, ε) R
(a<m)
µν (rε, ε)

)
ε

]
=
R̃

(
ε4

4(rE+
(θ))

4
[ε2+(rε−2m)2]

3

)
ε

. (4.14)

5. Distributional Kerr spacetime induced vacuum dominance. Classical
distributional background

Let us consider Colombeau generalized quantity (W±ε )ε , called the effective action for the
quantum matter fields in curved distributional spcetime, which, when functionally differentiated,
yields [9] (

2

(−g(ε))
1
2

δW±ε
δgµν(ε)

)
ε

=
(〈

T±µν (ε)
〉)

ε
. (5.1)

Proceeding in standard manner we get [9]

(W±ε )ε = i
2

[(∫
dnxε [−g± (xε, ε)]

1
2

)
ε

](
xε → x′εlim

∞∫
m2

G±ε
(
xε, x

′
ε;m

2
)
dm2

)
ε

. (5.2)

Interchanging now the order of integration and taking the limit x→ x′ one obtains

(W±ε )ε = i
2

(
∞∫
m2

dm2
∫
dnxε [−g± (xε, ε)]

1
2 G±ε

(
xε, xε;m

2
))

ε

. (5.3)

Colombeau generalized quantity (W±ε )ε is colled as the one-loop effective action.
In the case of fermion effective actions, there would be a remaining trace over spinorial indices.

From Eq. (5.3) we may define an effective Lagrangian density
(
L±ε;eff (xε)

)
ε

by

(W±ε )ε =

(∫
dnxε [−g± (xε, ε)]

1
2 L±ε;eff (xε)

)
ε

(5.4)

whence finally we get

(L±ε (xε))ε =

(
[−g± (xε, ε)]

1
2
ε;eff

± (xε)

)
ε

= i
2

(
limx→x′

∞∫
m2

dm2G±ε
(
xε, x

′
ε;m

2
))

ε

. (5.5)
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Note that (L±ε (xε))ε diverges at the lower end of the s integral because the (σε)ε /2s
((σε)ε = (σ (xε, x

′
ε))ε ) damping factor in the exponent vanishes in the limit xε → x′ε.

Convergence at the upper end is guaranteed by the −iε that is implicitly added to m2 in the
De Witt-Schwinger representation of (L±ε (xε))ε . In four dimensions, the potentially divergent
terms in the De Witt-Schwinger expansion of (L±ε (xε))ε are(

L±ε;div (xε)
)
ε

=

−
(
32π2

)−1

(
limx→x′

[(
∆

1/2
± (xε, x

′
ε; ε)

)
ε

] ∞∫
0

ds
s3

exp
[
−im2s+ σ(xε,x′ε)

2is

]
×

×
[
a±0 (xε, x

′
ε; ε) + isa±1 (xε, x

′
ε; ε) + (is)2 a±2 (xε, x

′
ε; ε)

])
ε

(5.6)

where the coefficients
(
a±0 (xε, x

′
ε; ε)

)
ε
,
(
a±1 (xε, x

′
ε; ε)

)
ε

and
(
a±2 (xε, x

′
ε; ε)

)
ε

are given by the

equation (
a±1 (xε, x

′
ε; ε)

)
ε

=(
1
6 − ξ

)
(R± (ε))ε −

i
2

(
1
6 − ξ

) [(
R±;α (ε)

)
ε

]
(yαε )ε −

1
3

[(
a±αβ (ε)

)
ε

] (
yαε y

β
ε

)
ε(

a±2 (xε, x
′
ε; ε)

)
ε

= 1
2

(
1
6 − ξ

) (
R±2 (ε)

)
ε + 1

3

(
a±λλ (ε)

)
ε

(5.7)

with all geometric quantities on the right-hand side of Eq. (5.7) evaluated at (x′ε)ε ∈ R̃δ.
The remaining terms in this asymptotic expansion, involving a±3 and higher, are finite in the

limit xε → x′ε.

Let us determine now the precise form of the geometrical
(
L±ε;div (xε)

)
ε

terms, to compare

them with the distributional generalization of the gravitational Lagrangian that appears in
Eq.(2.1). This is a delicate matter because (4.6) is, of course, infinite.

What we require is to display the divergent terms in the form ∞× [geometrical object].
This can be done in a variety of ways. For example, in n dimensions, the asymptotic

(adiabatic) expansion of
(
L±ε;eff (xε)

)
ε

is(
L±ε;eff (xε)

)
ε
�

2−1 (4π)−n/2
(

limx→x′
[(

∆
1/2
± (xε, x

′
ε; ε)

)
ε

] ∞∑
j=0

aj (xε, x
′
ε; ε)×

×
∞∫
0
ids (is)j−1−n/2 exp

[
−im2s+ σ(xε,x′ε)

2is

])
ε

(5.8)

of which the first n/2 + 1 terms are divergent as σε → 0. If n is treated as a variable which can
be analytically continued throughout the complex plane, then we may take the xε → x′ε limit(

L±ε;eff (xε)
)
ε
�

2−1 (4π)−n/2
(
∞∑
j=0

aj (xε; ε)
∞∫
0
ids (is)j−1−n/2 exp

[
−im2s

])
ε

=

2−1 (4π)−n/2
∞∑
j=0

(
m2
)n/2−j

Γ
(
j − n

2

)
(aj (xε; ε))ε ,

(aj (xε; ε))ε = (aj (xε, xε; ε))ε .

(5.9)

From Eq. (5.9) it follows we shall wish to retain the units of
(
L±ε;eff (xε)

)
ε

as (length)−4,

even when n 6= 4. It is therefore necessary to introduce an arbitrary mass scale µ and to rewrite
Eq. (5.9) as(

L±ε;eff (xε)
)
ε
� 2−1 (4π)−n/2 (mµ)n−4

(
∞∑
j=0

aj (xε; ε)
(
m2
)4−2j

Γ (j − n2)

)
ε

. (5.10)

If n→ 4, the first three terms of Eq. (5.10) diverge because of poles in the Γ- functions:
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Γ
(
−n

4

)
= 4

n(n−2)

(
2

4−n − γ
)

+O (n− 4) ,

Γ
(
1− n

2

)
= 4

(2−n)

(
2

4−n − γ
)

+O (n− 4) ,

Γ
(
2− n

2

)
= 2

4−n − γ +O (n− 4) .

(5.11)

Denoting these first three terms by
(
L±ε;div (xε)

)
ε
, we have(

L±ε;div (xε)
)
ε

= (4π)−n/2
{

1
n−4 + 1

2

[
γ + ln

(
m2

µ2

)]}
×([

4m4a0(xε;ε)
n(n−2) − 2m2a1(xε;ε)

n−2 + a2 (xε; ε)
])
ε
.

(5.12)

The functions (a0 (xε; ε))ε , (a1 (xε; ε))ε and (a2 (xε; ε))ε are given by taking the coincidence
limits of (5.7) (

a±0 (xε; ε)
)
ε

= 1,
(
a±1 (xε; ε)

)
ε

=
(

1
6 − ξ

)
(R± (ε))ε ,(

a±2 (xε; ε)
)
ε

=

1
180

(
R±αβγδ (xε, ε) R±αβγδ (xε, ε)

)
ε
− 1

180

(
R±αβ (xε, ε) R±αβ (xε, ε)

)
ε
−

−1
6

(
1
5 − ξ

)
(ε,xR

± (xε, ε))ε + 1
2

(
1
6 − ξ

) (
R±2 (xε, ε)

)
ε .

(5.13)

Finally one obtains [9](
L±ε;ren (xε)

)
ε
� − 1

64π2

(
∞∫
0
ids ln (is) ∂3

∂(is)3

[
±
ε (xε, xε; is) e

−ism2
])

ε

. (5.14)

All the higher order (j > 2) terms in the DeWitt-Schwinger expansion of the effective
Lagrangian (5.14) are infrared divergent at n = 4 as m → 0, we can still use this expansion to
yield the ultraviolet divergent terms arising from j = 0, 1, and 2 in the four-dimensional case.
We may put m = 0 immediately in the j = 0 and 1 terms in the expansion, because they are of
positive power for n ∼ 4.

These terms therefore vanish. The only nonvanishing potentially ultraviolet divergent term
is therefore j = 2 :

2−1 (4π)−n/2
(
m
µ

)n−4
a2 (xε, ε) Γ

(
2− n

2

)
, (5.15)

which must be handled carefully. Substituting for (a2(xε; ε))ε with ξ = ξ(n) from (5.13), and
rearranging terms, we may write the divergent term in the effective action arising from (5.14)
as follows(

W±ε,div

)
ε

= 2−1 (4π)−n/2
(
m
µ

)n−4
Γ
(
2− n

2

) (∫
dnxε [−g± (xε, ε)]

1
2 a2 (xε, ε)

)
ε

=

2−1 (4π)−n/2
(
m
µ

)n−4
Γ
(
2− n

2

)
×(∫

dnxε [−g± (xε, ε)]
1
2

[
α̃±ε (xε) + β̃G±ε (xε)

])
ε

+O (n− 4) ,

(5.16)

where
(±ε (xε))ε =(

R±αβγδ (xε, ε) R±αβγδ (xε, ε)
)
ε
− 2

(
R±αβ (xε, ε) R±αβ (xε, ε)

)
ε

+
1
3

(
R±2 (xε, ε)

)
ε ,

(G±ε (x))ε =
(
R±αβγδ (xε, ε) R±αβγδ (xε, ε)

)
ε
,

α̃ = 1
120 , β̃ = − 1

360 .

(5.17)

Finally we obtain [9] (〈
Tµµ (xε, ε)

〉
ren

)
ε

=

−
(
1/2880π2

) [
α̃
(
ε (xε)− 2

3 ε,x
R± (xε, ε)

)
ε

+ β̃ (G±ε (xε))ε

]
=

−
(
1/2880π2

)
×[(

R±αβγδ (xε, ε) R±αβγδ (xε, ε)
)
ε
−
(
R±αβ (xε, ε) R±αβ (xε, ε)

)
ε
− (ε,xR

± (xε, ε))ε

]
.

(5.18)

In order to obtain finite result from Eq. (5.18) we have applied loop quantum gravity approach
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[9]-[10]. Thus final result in general case is〈
Tµµ (x)

〉
ren

=
〈
Tµµ (x,∆)

〉
ren

= −
(
1/2880π2

)[
R±αβγδ (x,∆) R±αβγδ (x,∆)−R±αβ (x,∆) R±αβ (x,∆)−x R± (x,∆)

] (5.19)

where ∆ ∼ `Planck.

6.Quantum distributional background
In section 4 above we have considered the calculation on a classical distributional background

goes. However, the quantum distributional background introduces a principal difference. The
main difference between considering a quantum field on a distributional quantum space-time
as opposed to a classical space-time is that the field equations become ”discretized” and the
divergences naturally regulated as was considered in [1], [10].

As an appropriate simple exmple we consider now the Schwarzschild spacetime in d = 2. The
Schwarzschild metric in d = 1 + 1 its original singular form is

ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2. (6.1)

The metric (5.1) is degenerates and singular on Schwarzschild horizon r = 2m.
Following [12]-[14] using the canonical nonsmooth regularization we embed the metric

coefficients into Colombeau algebra ♥Gδ(R̃2, {r = 2m}).Thus we have to replace the nonclassical
singular metric (6.1) by the Colombeau generalized metric above horizon r ≥ 2m(

ds+2
ε

)
ε = − [(g+

ε )ε]
(
dt2ε
)
ε + [(g+

ε )ε]
−1 (

dr2
ε

)
ε . (6.2)

and below horizon (rε)ε < 2m(
ds−2
ε

)
ε = − [(g−ε )ε]

(
dt2ε
)
ε + [(g−ε )ε]

−1 (
dr2
ε

)
ε . (6.3)

correspondingly, where

(g±ε )ε = ±r−1

(√
(rε − 2m)2 + ε2

)
ε
. (6.4)

By straightforward calculation from Eqs. (6.2)-(6.4) one obtains that main singular part
sing [(R± (rε, ε))ε] of the Colombeau generalized curvature scalar (R± (rε, ε))ε corresponding
to the metric tensor (6.4) is [1]

sing [(R± (rε, ε))ε] =

(
ε2

2m[(rε−2m)2+ε2]
3/2

)
ε

. (6.5)

By straightforward calculation from Eqs. (6.2)-(6.4) one obtains that main singu-

lar part sing
[(

R±µν (rε, ε) R±µν (rε, ε)
)
ε

]
of the Colombeau generalized quadratic scalar(

R±µν (rε, ε) R±µν (rε, ε)
)
ε

corresponding to the metric tensor (6.4) is [1]:

sing
[(

R±µν (rε, ε) R±µν (rε, ε)
)
ε

]
=

(
ε4

4m2[(rε−2m)2+ε2]
3

)
ε

. (6.6)

By straightforward calculation from Eq. (6.2)-Eq.(6.4) one obtains that main singular

part sing
[(

R±ρσµν (rε, ε) R±ρσµν (rε, ε)
)
ε

]
of the Colombeau generalized quadratic scalar(

R±ρσµν (rε, ε) R±ρσµν (rε, ε)
)
ε

corresponding to the metric tensor (6.4) is [1]

sing
[(

R±ρσµν (rε, ε) R±ρσµν (rε, ε)
)
ε

]
=

(
ε4

4m2[(rε−2m)2+ε2]
3

)
ε

. (6.7)

We shall consider now the stress
(〈

T±µν (ε)
〉)

ε
tensor corresponding to the metric (6.2)-(6.4).(〈

T±µν (ε)
〉)

ε
is (〈

T±µν (ε)
〉)

ε
= 2

√
−
(
g±ε
)
ε

(
δW±ε [g±ε ]
δgµνε

)
ε
, (6.8)

where
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(δW±ε [g±ε ])ε = − i
2Tr

(
ln
[(
−G±F (g±ε , ε)

)
ε

])
(6.9)

and where
(
G±F

(
xε − x′ε, ε,m2; g±ε

))
ε

the Feynman propagator for the massive generalized scalar

field, ((
∇µ∇ν +m2 + ξR (ε)

)
G±F

(
xε, x

′
ε, ε,m

2; g±ε
))
ε

=
(
(g±ε (xε))

−1/2
δ (xε − x′ε)

)
ε
. (6.10)

Since we are interested in the infinite small distance behavior of the Green’s function we have
expand the metric in Riemann normal coordinates around a point (x′ε)ε, we can expand the
metric tensor (6.4) as [9](

g±µν (yε, ε)
)
ε

= ηµν − 1
3

(
R±µανβ (ε) yαε y

β
ε

)
ε
− 1

3

(
R±µανβ,γ (ε) yαε y

β
ε y

γ
ε

)
ε

+ ... (6.11)

with (yε)ε = (xε)ε − (x′ε)ε ,and therefore we can expand the propagator in momentum space as,(
G±F

(
kε,m

2, ε
))
ε

=
((
k2
ε

)
ε −m

2
)−1 −

(
1
6 − ξ

) ((
k2
ε

)
ε −m

2
)−2

(
R±µανβ (ε)

)
ε

+ ... (6.12)

We now rescale the propagator
(
G
±
F

(
kε,m

2, ε
))
ε

=
(
(−g±ε )1/4G±F

(
kε,m

2, ε
))
ε
, and recall

that we are in spherical symmetry so only the radial and time coordinates are involved, we get(
G
±
F

(
xε, x

′
ε, ε,m

2; g±ε
))
ε

=

(2π)−2
(∫
R̃δ×R̃δ d

2kε exp
[
i
(
−k0,εy

0
ε − k1,εy

1
ε

)]
×([

1 + a±1 (xε, x
′
ε, ε)

(
− ∂
∂m2

)
+ a±2 (xε, x

′
ε, ε)

(
− ∂
∂m2

)2
]

1
k20,ε−k

2
1,ε−m2

)
ε
,

(6.13)

where(
a±1 (xε, x

′
ε, ε)

)
ε

=
(

1
6 − ξ

)
(R± (ε))ε −

1
2

(
1
6 − ξ

) (
R±,α (ε) yαε

)
ε
− 1

3

(
a±αβ (ε) yαε y

β
ε

)
ε
. (6.14)

The Colombeau quantity
(
a±αβ (ε)

)
ε

is a geometric expression involving linear and quadratic

terms in the distributional scalar curvature, distributional Ricci and distributional Riemann

tensor.In d = 3 + 1 case the term involving
(
a±αβ (ε)

)
ε

also leads to divergent corrections that

need to be compensated introducing counterterms quadratic in the curvature. In spherical
symmetry we does not need to consider such term. In order to compute the Green’s function
we use the identity ((

k2
ε

)
ε −m

2
)−1

= −i
∫∞

0 ds exp
[
is
((
k2
ε

)
ε −m

2
)]
. (6.15)

From Eq. (6.13) and Eq. (6.15) by integrate on (kε)ε we obtain(
G
±
F

(
xε, x

′
ε, ε,m

2; g±ε
))
ε

= − i
4π

∫∞
0

ds
s exp

[
−im2s+

(σε)ε
2is

]
×[

1 + is
(
a±1 (xε, x

′
ε, ε)

)
ε

+ (is)2
(
a±2 (xε, x

′
ε, ε)

)
ε

]
.

(6.16)

Here (σε)ε is related to the geodesic distance squared between (xε)ε and (x′ε)ε , (σε)ε =(
y2
ε

)
ε /2. The condition of the quantization of the areas of symmetry leads to an effective

quantization of the radial coordinate with
(
r2
i,ε

)
ε

= `2Planck (ki,ε)ε where i the label of the

vertex of the spin network associated with the radial position (ri,ε)ε . We shall consider the
simplest case of a spin network that is equispaced in normal coordinates with lattice spacing ∆.

This imposes a cutoff in the radial integral in k1,ε of 2π/∆ as is common on a
lattice.

Then the Green’s function is (
G
±
∆

(
xε, x

′
ε, ε,m

2; g±ε
))
ε

=

− i
8π

∫∞
0

ds
s exp

(
−im2s+

(σε)ε
2is

) [
erf

(√
i

2

(
4πs−∆(y1ε)ε

∆
√
s

))
−erf

(
−
√
i

2

(
4πs+∆(y1ε)ε

∆
√
s

))]
.

(6.17)

Thus the effective action is finite and takes the form
(W±ε (xε))ε =

i
2

(∫
dx0

ε

∫
drε

√
−g(2)

ε

)
ε

(
limxε→x′

∫∞
m2 G

±
∆

(
xε, x

′
ε, ε,m

2; g±ε
)
dm2

)
(6.18)
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From Eq. (6.18) we can identify the effective Lagrangian where we study the divergence,(
L±div

effective (xε, ε)
)
ε

= − i
8π

∫∞
0

ds
s2

exp
(
−im2s

)
erf
((

2π
√
is

∆

))
×[

1 + is
(
a±1 (xε, ε)

)
ε

+ (is)2
(
a±2 (xε, ε)

)
ε

]
.

(6.19)

From Eq. (6.19) we obtain

L±div
effective (x,∆) =

− i
8π

∫∞
0

ds
s2

exp
(
−im2s

) [
1 + (is) a±1 (x,∆) + (is)2 a±2 (x,∆)

]
.

(6.20)

For the particular background quantum state we chose with an equispaced lattice with
invariant distance among vertices of the spin network given by ∆, the first two terms in the
expansion in powers of (is) would lead to divergent contributions in the limit ∆ → 0. For a
finite, sub-Planckian ∆ they are very large. They can be considered as fundamental physical
effect arises from quantum distributional background.

Conclusion
In this article, we argue that the canonical interpretation of the Kerr spacetime in

contemporary general relativity is wrong and that a revision is needed. We studied the
Kerr solution using Colombeau distributional geometry, thus without leaving singular Boyer-
Lindquist coordinates We argue that the Kerr solution is impossible to treat classically but it
can only be treated by using an embedding of the classical Kerr metric tensor into appropriate
Colombeau algebra supergeneralized functions G̃δ(R̃4, Σ̃). This meant that the classical Kerr
spacetime could be extended up to the distributional semi-Riemannian spacetime, since the
classical Levi-Civita connection is not available for the whole Kerr spacetime in singular Boyer-
Lindquist coordinates.

The observed brightness temperature of the most compact structures in BL Lac, constrained
by baselines longer than 5.3Gλ, must indeed exceed 2 × 1013K and can reach as high as ˜
3 × 1014K [19]. This is difficult to reconcile with current incoherent synchrotron emission
models from relativistic electrons, requiring alternative models such as emission from relativistic
protons.However the proton, as we know, is 1836 times heavier than an electron and absolutely
huge energy is required to accelerated it to sublight speed.These alternative models such as
emission from relativistic protons can be suported by semiclassical gravity effect finds its roots
in the singular behavior of quantum fields on curved distributional space times presented by
rotating gravitational singularities [10].
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