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Abstract : In this article we proved so-called strong reflection principles corresponding to

formal theories Th which has omega-models or nonstandard model with standard part.
An posible generalization of Lob’s theorem is considered.Main results are:

(i) =Con(ZFC + IMZ©), (i) =Con(ZF + (V = L)), (iii) =Con(NF + IMJF),

(iv) =Con(ZFC,),

(v) let k be inaccessible cardinal then —Con(ZFC + 3k).
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1.Introduction.

1.1.Main results.

Let us remind that accordingly to naive set theory, any definable collection is a set. Let
R be the set of all sets that are not members of themselves. If R qualifies as a member
of itself, it would contradict its own definition as a set containing all sets that are not
members of themselves. On the other hand, if such a set is not a member of itself, it
would qualify as a member of itself by the same definition. This contradiction is Russell's
paradox. In 1908, two ways of avoiding the paradox were proposed, Russell’s type
theory and Zermelo set theory, the first constructed axiomatic set theory. Zermelo’s
axioms went well beyond Frege’s axioms of extensionality and unlimited set abstraction,
and evolved into the now-canonical Zermelo—Fraenkel set theory ZFC."But how do we
know that ZFC is a consistent theory, free of contradictions? The short answer is that we
don't; it is a matter of faith (or of skepticism)"— E.Nelson wrote in his paper [1].
However, it is deemed unlikely that even ZFC, which is significantly stronger than ZFC
harbors an unsuspected contradiction; it is widely believed that if ZFC and ZFC, were
consistent, that fact would have been uncovered by now. This much is certain —ZFC
and ZFC; is immune to the classic paradoxes of naive set theory: Russell’s paradox, the
Burali-Forti paradox, and Cantor’s paradox.

Remark 1.1.1.The inconsistency of the second order set theory ZFC, originally have
been uncovered in [2] and officially announced in [3],see also ref.[4],[5],[6].



Remark 1.1.2.In order to derive a contradiction in second order set theory ZFC, with
the Henkin semantics [7],we remind the definition given in P.Cohen handbook [8],
(see [8] Ch.lll,sec.1,p.87). P.Cohen wroted: "A set which can be obtained as the result
of a transfinite sequence of predicative definitions Godel called "constructible”. His
result then is that the con-structible sets are a model for ZF and that in this model
GCH and AC hold.The notion of a predicative construction must be made more
precise,of course, but there is essentially only one way to proceed. Another way to
explain constructibility is to remark that the constructible sets are those sets which
jnust occur in any model in which one admits all ordinals.The definition we now give

is the one used in [9].

Definition 1 .1.1. [8]. Let X be a set. The set X' is defined as the union of X and the set
Y of all sets y for which there is a formula A(zt1,...,t) in ZF such that if Ax denotes A
with all bound variables restricted to X, then for some t;,i = 1,...,k. in X,

y={ze X|Ax(zt,....t) }. (1.1.1)

Observe X' < P(x) UX, X = X if X is infinite (and we assume AC). It should be clear to
the reader that the definition of X', as we have given it, can be done entirely within ZF
and that Y = X' is a single formula A(X,Y) in ZF. In general, one’s intuition is that all
normal definitions can be expressed in ZF, except possibly those which involve
discussing the truth or falsity of an infinite sequence of statements. Since this is a very
important point we shall give a rigorous proof in a later section that the construction of
X' is expressible in ZF."

Remark 1.1.3.We will say that a set y is definable by the formula A(zty,...,t)

relative to a given set X.

Remark 1.1.4.Note that a simple generalsation of the notion of of the definability
which has been by Definition1.1.1 immediately gives Russell’'s paradox in second
order set theory ZFC, with the Henkin semantics [7].

Definition 1 .1.2.[6].()\We will say that a set y is definable relative to a given set X iff
there is a formula A(z ty,...,t) in ZFC then for some t; € X,i = 1,...,k. in X there
exists a set z such that the condition A(zt,...,1) is satisfied and y = z or symbolically

I4Azt1,..., tk) AY = Z]. (1.1.2)

It should be clear to the reader that the definition of X', as we have given it, can be
done entirely within second order set theory ZFC, with the Henkin semantics [7]
denoted by ZFCHs and that Y = X' is a single formula A(X,Y) in ZFCEs.

(i)we will denote the set Y of all sets y definable relative to a given set X by Y £ 34
Definition 1 .1.3. Let kY be a set of the all sets definable relative to a given set X by
the first order 1-place open wff’'s and such that

Vx(x € IF9)[x € RS = x ¢ x]. (1.1.3)

Remark 1.1.5.(a) Note that R4S € 34 since R4S is a set definable by the first order
1-place open wif W(Z,359) :

P(Z,355) £ vx(x e IH)[x e Z = x ¢ X], (1.1.4)

Theorem 1 .1.1.[6].Set theory ZFCYS is inconsistent.
Proof. From (1.1.3) and Remark 1.1.2 one obtains

RES € RYS = RES ¢ RS (1.1.5)



From (1.1.5) one obtains a contradiction
(RES e RYS) A (RYS ¢ RES). (1.1.6)
Remark 1.1.6.Note that in paper [6] we dealing by using following definability

condition:
a set y is definable if there is a formula A(z) in ZFC such that

AZA(Z) AY = Z]. (L.1.7)
Obviously in this case a set Y = R4S is a countable set.

Definition 1 .1.4. Let kY be the countable set of the all sets definable by the first
order 1-place open wiff's and such that

Vx(x € 3F9)[x € RS = x ¢ x]. (1.1.8)

Remark 1.1.7.(a) Note that R4S € 34 since RYS is a ZFC-set definable by the first
order 1-place open wff ¥(Z,3%) :

P(Z,355) 2 vx(x e 3P)[xe Z = x ¢ X], (1.1.9)
one obtains a contradiction (RYS € RYS) A (RES ¢ RES).
In this paper we dealing by using following definability condition.
Definition 1 .1.5.(i) Let Mg = M4 be a standard model of ZFC. We will say that a
set y is definable relative to a given standard model Mg of ZFC if there is a formula
A(z11,...,t) in ZFC such that if Ay, denotes A with all bound variables restricted to
Mg, then for some t; € Mg,i = 1,...,k. in Mg there exists a set z such that the

condition
Awmg(z11,...,1) is satisfied and y = z or symbolically
A4 Aue (Zt1,..., T) AY = Z]. (1.1.10)

It should be clear to the reader that the definition of Mg, as we have given it, can be

done entirely within second order set theory ZFC, with the Henkin semantics.
(i) In this paper we assume for simplicity but without loss of generality that
Ame(Z11,...,T) = Aug(2). (1.1.112)

Remark 1.1.8.Note that in this paper we view (i) the first order set theory ZFC under
the

canonical first order semantics (ii) the second order set theory ZFC, under the Henkin

semantics [7] and (iii) the second order set theory ZFC,under the full second-order

semantics [8],[9],[10],[11],[12] but also with a proof theory bused on formal Urlogic
[13].

Remark 1.1.9.Second-order logic essantially differs from the usual first-order
predicate

calculus in that it has variables and quantifiers not only for individuals but also for
subsets

of the universe and variables for n-ary relations as well [7]-[13].The deductive calculus

DED., of second order logic is based on rules and axioms which guarantee that the

guantifiers range at least over definable subsets [7]. As to the semantics, there

are two tipes of models: (i) Suppose U is an ordinary first-order structure and

Sis a set of subsets of the domain A of U. The main idea is that the set-variables

range over S,i.e. (U,S) E IX®(X) < IS e S)[(U,S) = O(9)].

We call (U,S) a Henkin model, if (U, S) satisfies the axioms of DED, and



truth in (U, S) is preserved by the rules of DED». We call this semantics

of second-order logic the Henkin semantics and second-order logic with the

Henkin semantics the Henkin second-order logic. There is a special class of

Henkin models, namely those (U, S) where Sis the set of all subsets of A.

We call these full models. We call this semantics of second-order logic the full
semantics and second-order logic with the full semantics the full second-order logic.
Remark 1.1.10.We emphasize that the following facts are the main features of
second-order logic:

1.The Completeness Theorem : A sentence is provable in DED; if and only if it holds

all Henkin models [7]-[13].

2.The Lowenheim -Skolem Theorem : A sentence with an infinite Henkin model has a
countable Henkin model.

3.The Compactness Theorem : A set of sentences, every finite subset of

which has a Henkin model, has itself a Henkin model.

4.The Incompleteness Theorem : Neither DED> nor any other effectively

given deductive calculus is complete for full models, that is, there are

always sentences which are true in all full models but which are unprovable.

5.Failure of the Compactness Theorem for full models.

6.Failure of the Lowenheim-Skolem Theorem for full models.

7.There is a finite second-order axiom system Z, such that the semiring

N of natural numbers is the only full model of Z, up to isomorphism.

8. There is a finite second-order axiom system RCF, such that the field

R of the real numbers is the only full model of RCF, up to isomorphism.

Remark 1.1.11.For let second-order ZFC be, as usual, the theory that results obtained

from ZFC when the axiom schema of replacement is replaced by its second-order

universal closure,i.e.

VX[Func(X) = YuavVr[r e v <= 3s(s€ UA (5,r) € X)]], (1.1.12)

where X is a second-order variable, and where Func(X) abbreviates " X is a functional

relation",see [12].

Thus we interpret the wif’s of ZFC, language with the full second-order semantics as

required in [12],[13] but also wit a proof theory bused on formal urlogic [13].

Designation 1 .1.1. We will denote: (i) by ZFC5® set theory ZFC, with the Henkin

semantics, (i) by ZFCfZss set theory ZFC; with the full second-order semantics,(iii) by

ZFC5® set theory ZFCHs + EIMiFC?S and (iv) by ZFCg set theory ZFC + IM§C, where
M

is a standard model of the theory Th.

Remark 1.1.12.There is no completeness theorem for second-order logic with the full
second-order semantics. Nor do the axioms of ZFC5® imply a reflection principle which
ensures that if a sentence Z of second-order set theory is true, then it is true in some
model MZFCZ" of ZFC™ [11]. Let Z be the conjunction of all the axioms of ZFC'. we
assume now that: Z is true,i.e. Con(ZFC‘(ZSS . Itis known that the existence of a model

for Z requires the existence of strongly inaccessible cardinals, i.e. under ZFC it can be
shown that « is a strongly inaccessible if and only if (H,, <) is a model of ZFC5®. Thus



—Con(ZFC5®) = —Con(ZFC + 3x)). (1.1.13)

In this paper we prove that:

(i) ZFCq £ ZFC + 3IMZC (ji) ZFCH® £ ZFCYs + IMT?" and (iii) ZFC is inconsistent,
where M is a standard model of the theory Th.

Axiom 3IMZC [8]. There is a set M?~C and a binary relation e £ M#¢ x MZ¢ which

makes M4C a model for ZFC.

Remark 1.1.13.()) We emphasize that it is well known that axiom IM#F¢ a single

statement in ZFC see [8],Ch.ll,section 7.We denote this statement throught all this
paper

by symbol Con(ZFC; M%7¢).The completness theorem says that IM%¢ < Con(ZFC).

(i) Obviously there exists a single statement in ZFCYS such that
IMZCE = Con(ZFCh9).

We denote this statement throught all this paper by symbol Con(ZFCYs; M#*¢:*) and
there

exists a single statement IMZ" in Z5s. We denote this statement throught all this
paper by

symbol Con(Z5s; M%),

Axiom IMEC.[8].There is a set M5© such that if Ris
{xy)xeyrxe MFC Ay e MFC}

then M4 ¢ is a model for ZFC under the relation R.

Definition 1 .1.6.[8].The model M5 is called a standard model since the relation <
used

is merely the standard e- relation.

Remark 1.1.14.Note that axiom IM?C doesn’'t imply axiom IMZC, see ref. [8].

Remark 1.1.15.We remind that in Henkin semantics, each sort of second-order
variable has a particular domain of its own to range over, which may be a proper subset
of all sets or functions of that sort. Leon Henkin (1950) defined these semantics and
proved that Gédel's completeness theorem and compactness theorem, which hold for
first-order logic, carry over to second-order logic with Henkin semantics. This is because
Henkin semantics are almost identical to many-sorted first-order semantics, where
additional sorts of variables are added to simulate the new variables of second-order
logic. Second-order logic with Henkin semantics is not more expressive than first-order
logic. Henkin semantics are commonly used in the study of second-order
arithmetic.Vaananen [13] argued that the choice between Henkin models and full
models for second-order logic is analogous to the choice between ZFC and V (V is von
Neumann universe), as a basis for set theory: "As with second-order logic, we cannot
really choose whether we axiomatize mathematics using V or ZFC. The result is the
same in both cases, as ZFC is the best attempt so far to use V as an axiomatization of
mathematics."

Remark 1.1.16.Note that in order to deduce: (i) ~Con(ZFC%s) from Con(ZFC9),

(i) ~Con(ZFC) from Con(ZFC), by using Godel encoding, one needs something more
than

the consistency of ZFCYS, e.g., that ZFCYS has an omega-model MﬁFC?S or an standard

model MéFCE'S i.e., a model in which the integers are the standard integers and the all

wif




of ZFCYs, ZFC, etc. represented by standard objects.To put it another way, why should

we believe a statement just because there’s a ZFCEs-proof of it? It's clear that if ZFCY's
is

inconsistent, then we won't believe ZFCYs-proofs. What's slightly more subtle is that
the

mere consistency of ZFC; isn’t quite enough to get us to believe arithmetical theorems
of

ZFCYs; we must also believe that these arithmetical theorems are asserting something

about the standard naturals. It is "conceivable" that ZFCYS might be consistent but that
the

Hs
only nonstandard models Mf,';C2 it has are those in which the integers are
nonstandard, in
which case we might not "believe" an arithmetical statement such as "ZFCYs is

inconsistent" even if there is a ZFC5S-proof of it.

Remark 1.1.17. Note that assumption EIMiFC?S is not necessary if nonstandard model

ZFCls . . zls zls
Mg 2 IS a transtive or has an standard part Mg < M\%&,see [14],[15].

Remark 1.1.18.Remind that if M is a transitive model, then o™ is the standard . This
implies that the natural numbers, integers, and rational numbers of the model are also
the same as their standard counterparts. Each real number in a transitive model is a

standard real number, although not all standard reals need be included in a particular

transitive model. Note that in any nonstandard model Mﬁa of the second-order
arithmetic  Zs the terms 0, SO = 1,SS0 = 2,... comprise the initial segment isomorphic
to M?S c Mﬁf:f. This initial segment is called the standard cut of the Mﬁ;. The order
type of

any nonstandard model of Mﬁa is equal to N + A x Z,see ref. [16], for some linear
order A

Thus one can to choose Godel encoding inside the standard model M?S.

Remark 1.1.19. However there is no any problem as mentioned above in second
order

set theory ZFC; with the full second-order semantics because corresponding second

order arithmetic Zfzss is categorical.

Remark 1.1.20. Note if we view second-order arithmetic Z, as a theory in first-order
predicate calculus. Thus a model M? of the language of second-order arithmetic Z,
consists of a set M (which forms the range of individual variables) together with a
constant 0 (an element of M), a function Sfrom M to M, two binary operations + and x on
M, a binary relation < on M, and a collection D of subsets of M, which is the range of the
set variables. When D is the full powerset of M, the model M?2 is called a full model. The
use of full second-order semantics is equivalent to limiting the models of second-order
arithmetic to the full models. In fact, the axioms of second-order arithmetic have only
one full model. This follows from the fact that the axioms of Peano arithmetic with the
second-order induction axiom have only one model under second-order semantics, i.e.
Z,, with the full semantics, is categorical by Dedekind’s argument, so has only one
model up to isomorphism. When M is the usual set of natural numbers with its usual
operations, M#2 is called an w-model. In this case we may identify the model with D, its
collection of sets of naturals, because this set is enough to completely determine an



fss
w-model. The unique full omega-model M%Z , which is the usual set of natural numbers
with its usual structure and all its subsets, is called the intended or standard model of
second-order arithmetic.

2.Generalized LOb’s theorem.Remarks on the Tarski’s
undefinability theorem.

2.1.Remarks on the Tarski's undefinability theorem.
Remark 2 .1.1.In paper [17] under the following assumption
Con(ZFC + IMF©) (2.1.1)

has been proved that there exists countable Russell's set R, such that the followng
statement is satisfied:

ZFC + 3IM5C
ARL(Ro € MFC) A (card(R,) = Ro) A [Euze VXX € R, < X & X) |
From (2.1.2) immediately follows a contradiction
Fmzre (Ro € Ru) ARy € Ro). (2.1.3)
From (2.1.3) and (2.1.1) by reductio ad absurdum it follows

(2.1.2)

—Con(ZFC + IMZC) (2.1.4)

Theorem 2 .1.1.(Tarski’'s undefinability theorem) Let Thy be first order theory with
formal language £, which includes negation and has a Gddel numbering g(e) such that
for

every £-formula A(x) there is a formula B such that B — A(g(B)) holds. Assume that
The

has a standard model M3

and Con(Thy«) where
Thyeg 2 Thye +3IME™. (2.1.5)

Let T*be the set of Godel numbers of £-sentences true in M;hf. Then there is no
L-formula True(n) (truth predicate) which defines T*. That is, there is no £-formula
True(n) such that for every £-formula A,

True(g(A) < [A]M;hx, (2.1.6)

where the abbraviation [A],,m.means that A holds in standard model M3 i.e.
[Al e < =y A.Therefore Con(Th,g) implies that

—3Truex) (True(g(A)) = [A]MW) (2.1.7)
Thus Tarski’'s undefinability theorem reads
Con(Theg) = —3True(x) (True(g(A)) = [A]M;hx). (2.1.8)

Remark 2.1.2.(i) By the other hand the Theorem 2.1.1 says that given some really
consistent formal theory Th¢ 4 that contins formal arithmetic, the concept of truth in
that



formal theory The g is not definable using the expressive means that that arithmetic

affords. This implies a major limitation on the scope of "self-representation.” It is
possible

to define a formula True(n),but only by drawing on a metalanguage whose expressive

power goes beyond that of £.To define a truth predicate for the metalanguage would

require a still higher metametalanguage, and so on.

(i) However if formal theory The« is inconsistent this is not surpriising if we

define a formula True(n) = True(n; The¢ ) by drawing only on a language £.

(iii) Note that if under assumption Con(Th¢«) we define a formula True(n; The ) by

drawing only on a language £ by reductio ad absurdum it follows

—~Con(Theg). (2.1.9)

Remark 2.1.3. (i) Let ZFCq be a theory ZFC4 = ZFC + 3IMZC. In this paper under

assumption Con(ZFC«) we define a formula True(n; ZFCg) by drawing only on a
language

£Lzrcy by using Generalized Lob’s theorem [4],[5]. Thus by reductio ad absurdum it

follows

—~Con(ZFC + IMFC). (2.1.10)

(i) However note that in this case we obtain —Con(ZFCs) by using approach that
completely different in comparison with approach based on derivation of the countable
Russell’'s set R, with conditions (2.1.2).

2.2.Generalized L6b’s theorem.

Definition 2 .2.1. Let Th% be first order theory and Con(Th%). A theory Th% is
complete

if, for every formula A in the theory’s language £, that formula A or its negation —A is

provable in Th%,i.e., for any wff A, always Th% - Aor Th ~ —A.

Definition 2 .2.2.Let Thy be first order theory and Con(Th,).We will say that a theory

Th’ is completion of the theory Thy if (i) Thy < Th%,(ii) a theory Th% is complete.

Theorem 2 .2.1.[4],[5]. Assume that:Con(ZFC«),where ZFCy 2 ZFC + IMZ . Then

there exists completion ZFC% of the theory ZFCq such that the following condtions
holds:

(i) For every formula A in the language of ZFC that formula [A]pzec OF formula [—A]yzee

is provable in ZFC§ i.e., for any wif A, always ZFC§ + [A]yzc Or ZFCE F [=A]yzec.

(i) ZFC% = Umen Thim,where for any ma theory Thp,; is finite extension of the theory
Thn.

(iii) Let Prii(y,x) be recursive relation such that: y is a Gddel number of a proof of the
wif

of the theory Thp, and x is a Godel number of this wff. Then the relation Prii(y,x) is

expressible in the theory Th, by canonical Gédel encoding and really asserts
provability in  Thp,.

(iv) Let Pr&(y,x) be relation such that: y is a Gédel number of a proof of the wff



of the theory ZFC% and x is a Godel number of this wff.Then the relation Pr&(y,x)
is expressible in the theory ZFC% by the following formula

Pré(y,x) < Idm(m e N) Prii(y,x)) (2.2.1)

(v) The predicate Pr(y, x) really asserts provability in the set theory ZFC%.

Remark 2 .2.1.Note that the relation Pr§(y, x) is expressible in the theory Thy, since a

theory Thp is an finite extension of the recursively axiomatizable theory ZFC and

therefore the predicate Prii(y,X) exists since any theory Thp, is recursively
axiomatizable.

Remark 2.2.2.Note that a theory ZFC% obviously is not recursively axiomatizable

nevertheless Godel encoding holds by Remark 2.2.1.

Theorem 2 .2.2.Assume that:Con(ZFC«),where ZFCg 2 ZFC + 3IM4™C. Then truth

predicate True(n) is expressible by using only first order language by the following
formula

True(g(A)) < 3y(y € N)Im(m e N)Pri(y,g(A)). (2.2.2)
Proof.Assume that:
ZFCE + [A]MéFc. (2.2.3)

It follows from (2.2.3) there exists m* = m*(g(A)) such that Thy + [Alpzee and
therefore by (2.2.1) we obtain

Pré(y, 9(A) < Pri (v,9(A)). (2.2.4)

From (2.2.4) immediately by definitions one obtains (2.2.2).
Remark 2 .2.3.Note that Theorem 2.1.1 in tis case reads

Con(ZFCs) = —3True(X) (True(g(A) < [Alyzc ). (2.2.5)

Theorem 2 .2.3. —-Con(ZFCy).

Proof.Assume that: Con(ZFC«).From (2.2.2) and (2.2.5) one obtains a condradiction

Con(ZFCg) A —=Con(ZFCg«) (see Remark 2.1.3) and therefore by reductio ad absurdum
it

follows —Con(ZFCy).

Theorem 2 .2.4.[4],[5]. Let M&E be a nonstandard model of ZFC and let ME” be a

standard model of PA.We assume now that M§* < M{EC and denote such
nonstandard

model of the set theory ZFC by MZEE = MEEC[PA]. Let ZFCng be the theory ZFCng =

ZFC + MZE[PA]. Assume that:Con(ZFCng ), Where ZFCg 2 ZFC + IMEEE. Then there

exists completion ZFCf of the theory ZFCng such that the following condtions holds:

(i) For every formula A in the language of ZFC that formula [A]yzc or formula [—A]yzec

is provable in ZFC{ i.e., for any wff A, always ZFCfq + [Alyzes OF ZFCig + [—A]yze-

(i) ZFC{gy = Umen Thm,where for any m a theory Thp,, is finite extension of the theory

Thm.

(iii) Let Pri&(y,x) be recursive relation such that: y is a Godel number of a proof of the
wif

of the theory Thy, and x is a Godel number of this wff.Then the relation Pri¥(y,x) is

expressible in the theory Th, by canonical Gédel encoding and really asserts
provability in  Thp,.




(iv) Let Pri(y,x) be relation such that: y is a Gédel number of a proof of the wff
of the theory ZFC{4 and x is a Godel number of this wff. Then the relation Pri(y,X)
is expressible in the theory ZFC{4 by the following formula

Pri«(y,X) < Im(m e M) Pri®(y,x)) (2.2.6)

(v) The predicate Prf4(y,x) really asserts provability in the set theory ZFC{.

Remark 2 .2.4.Note that the relation Pri&(y, x) is expressible in the theory Thy, since a

theory Thp, is an finite extension of the recursively axiomatizable theory ZFC and
therefore

the predicate Pri¥(y,x) exists since any theory Thy, is recursively axiomatizable.

Remark 2.2.5.Note that a theory ZFC{ obviously is not recursively axiomatizable

nevertheless Godel encoding holds by Remark 2.2.1.

Theorem 2 .2.5.Assume that:Con(ZFCng ), where ZFCng 2 ZFC + IMEEE, MEA < MEE

Then truth predicate True(n) is expressible by using first order language by the
following

formula

True(g(A) < 3Fy(y € MF)Im(m € M) Priss(y, g(A)). (2.2.7)
Proof.Assume that:
ZFCiy + [Alyzze- (2.2.8)
It follows from (2.2.6) there exists m* = m*(g(A)) such that Thy + [A]Mﬁgc and
therefore by (2.2.8) we obtain
Pris(y,9(A)) = Priz(y,g(A)). (2.2.9)
From (2.2.9) immediately by definitions one obtains (2.2.7).
Remark 2 .2.6.Note that Theorem 2.1.1 in tis case reads
Con(ZFCng) = —3True(®) (True(g(A) < [Alyzec). (2.2.10)

Theorem 2 .2.6. —Con(ZFCng ).

Proof.Assume that: Con(ZFCng).From (2.2.15) and (2.2.10) one obtains a
condradiction

Con(ZFCns) A —Con(ZFCng ) and therefore by reductio ad absurdum it follows

—Con(ZFChs).-

Theorem 2 .2.7.Assume that:Con(ﬁ:';s> ,where ZFC5® £ ZFCHs + IMZY Then

there exists completion ﬁ'ﬁ of the theory ﬁ:?s such that the following condtions

holds:

(i) For every first order wif formula A (wff, A) in the language of ZFCS that formula

[A]MZFCQS or formula [—.A]MZchsis provable in ZFCE'S# i.e., for any wff; A, always ZFC?Sqé
st st

= [A] ey OF ZFCy¥ (AT zrcte.

(i) ZFC5¥ = Umen Thm,where for any ma theory Thp, is finite extension of the theory

Thn.

(iii) Let Pri(y,x) be recursive relation such that: y is a Gddel number of a proof of the
wifq

of the theory Thy, and x is a Godel number of this wff;.Then the relation Pri(y, x) is

expressible in the



theory Thy by canonical Godel encoding and really asserts provability in Thp,.

(iv) Let Pr&(y,x) be relation such that: y is a Gédel number of a proof of the wff

of the set theory ﬁ'ﬁ and x is a Godel number of this wff;.Then the relation Pr(y, x)
is expressible in the set theory ﬁ'ﬁ by the following formula

Pré(y,x) < Im(m e N) Prii(y,x)) (2.2.11)

(v) The predicate Pr(y, x) really asserts provability in the set theory ﬁ:?s#.

Remark 2 .2.7.Note that the relation Pr§(y, x) is expressible in the theory Thy, since a
theory Thp, is an finite extension of the finite axiomatizable theory ZFCYs and therefore
the predicate Pri¥(y,x) exists since any theory Thy, is recursively axiomatizable.
Remark 2 .2.8.Note that a theory ZFC{4 obviously is not recursively axiomatizable
nevertheless Godel encoding holds by Remark 2.2.1.

Theorem 2 .2.8.Assume that:Con(ﬁ:';s> ,where ZFC5® 2 ZFCHs + 3MZ Y Then truth
predicate True(n) is expressible by using first order language by the following formula

True(g(A)) < Jy(y € N)dm(m € N) Prii(y,g(A)), (2.2.12)

where A is wff;.
Proof.Assume that:

ZFCy¥ - [A] e (2.2.13)

2
It follows from (2.2.11) there exists m* = m*(g(A)) such that Thy, + [A]MZchs and
therefore by (2.2.13) we obtain
Pré(y,9(A) < Pri-(v,9(A)). (2.2.14)

From (2.2.22) immediately by definitions one obtains (2.2.12).
Remark 2.2.13.Note that in considerd case Tarski's undefinability theorem reads

Con(ZFC,™) = —3True(x) (True(g(A)) = [A]Mmgs), (2.2.15)
where A is wif;.
Theorem 2 .2.9. ﬂCon<ZTC§S#>.

Proof.Assume that: Con(ﬁ?5#>.From (2.2.12) and (2.2.15) one obtains a
condradiction
Con(ﬁ:'ﬁ) A ﬁCon<ZTC§S#> and therefore by reductio ad absurdum it follows

—Con (ﬁ? Sﬁ) )

3.Derivation of the inconsistent provably definable set in
set theory ZFC, ", ZFC4 and ZFChg.

3.1.Derivation of the inconsistent provably definable set
in set theory ZFCy"°.

Definition 3 .1.1. Let 528 be the countable set of the all first order provable definable
sets  X,i.e. a sets such that ZFC5® + JIX¥(X),where ¥(X) = ¥y, (X) is a first order
1-place

open wif that contains only first order variables (we will be denoted such wff for short



by
wff1), with all bound variables restricted to standard model Mg = MéFCE'S,i.e.

~Hs
VY{Y 3, =
3.1.1)
ZFCH® k- 3%, OOL(Pus 0] € TH50./ ~x ) A BIXw(X) A Y = X]11},

or in a short notatons

VY{Y e ¥ o
(3.1.1.a)
ZFCH® F 3PCO(Y0] € TH ~ ) ABIXF) A Y = X]11}-

Notation 3 .1.1. In this subsection we often write for short ¥(X), F s, 'S instead
Fma (X),

F s T, but this should not lead to a confusion.

Assumption 3 .1.1.We assume now for simplicity but without loss of generality that

FK. € Mg (3.1.1.b)

and therefore by definition of model Mg = MﬁFC?S one obtains FQM € MiFC?S.

P NH
Let X éFf Y be a predicate such that X ﬁﬁHs Y ZFC?S X ¢ Y.Let SRZS be the
2

Hs
)

countable set of the all sets such that
~H ~H
wX(xe T ) xe W e xe, o X] (3.1.2)
2

From (3.1.2) one obtains

~Hs ~Hs ~Hs ~~Hs

R, ey, o Ry, 2, Ry . (3.1.3)

But obviously (3.1.3) immediately gives a contradiction
~Hs ~Hs ~Hs ~Hs
(37« %27) A (iRz e, T, ) (3.1.3)
ZFCy
Remark 3.1.1.Note that a contradiction (3.1.3') in fact is a contradiction inside ZFC>®
for

the reason that predicate X £

e Y is expressible by first order lenguage as

predicate of

- ~H
ZFC?S(see subsectionl1.2,Theorem 1.2.8 (ii)-(iii) and therefore countable sets st and
~Hs

Ry

are sets in the sense of the set theory ZTC?S.

Remark 3.1.2.Note that by using Godel encoding the above stated contradiction can
be

shipped in special completion ﬁ'ﬁ of ﬁ:?s, see subsectionl.2, Theorem 1.2.8.

Remark 3.1.3.(i) Note that Tarski’s undefinability theorem cannot bloked the
equivalence

(3.1.3) since this theorem is no longer holds by Proposition 2.2.1.(Generalized Lobs

Theorem).

(ii) In additional note that: since Tarski's undefinability theorem has been proved under



Hs
the same assumption 3M§FC2 by reductio ad absurdum it follows

again —Con(ZFCng),

see Theorem 1.2.10.

Remark 3.1.4.More formally | can to explain the gist of the contradictions deriveded in
this

paper (see Proposition 2.5.(i)-(ii)) as follows.

Let M be Henkin model of ZFCEs. Let ’iﬁgs be the set of the all sets of M provably
definable

_ ~H ~H
in ZFC?S, and let *RZS = {x € st cO(x ¢ x)} where LJA means ‘sentence A derivable

in

ZTC?S’, or some appropriate modification thereof. We replace now formula (3.1.1) by
the

following formula

VY{Y e %5° o PO[[POO] € THS ~x ) ACHXPX) AY = xn}. (3.1.4)
and we replace formula (3.1.2) by the following formula
vX(x e 37 )[xe e = Ox e 0] (3.1.5)
Definition 3 .1.2.We rewrite now (3.1.4) in the following equivalent form
VY{Y e Ty = IYOOIMPO)], € T ~x ) A (Y = X)]}, (3.1.6)
where the countable set '3/ ~x is defined by the following formula
VYX){[P(X)] € T3 ~x = [((PXK)]s € TRY ~x ) ACAXY(X)]F  (B.1.7)
Definition 3 .1.3.Let '*J‘{’;S be the countable set of the all sets such that
vx(x e %25)[x e Ty o OX ¢ x]. (3.1.8)
Remark 3.1.5.Note that fﬁgs € ’525 since 25{";5 is a set definable by the first order

1-place
open wff; :

W(Z,%ES) s vx(x e %23)[x e Z o OX g X)]. (3.1.8)
From (3.1.8) and Remark 3.1.4 one obtains
~Hs ~Hs ~Hs ~Hs
Ry e Wy o D(mz ¢ %, ) (3.1.9)
But (3.1.9) immediately gives a contradiction
=——=Hs '~Hs ~~Hs ~Hs ~~Hs
ZFCHs (mz e 5, )/\ (iRz ¢ %, ) (3.1.10)
Remark 3.1.6.Note that contradiction (3.1.10) is a contradiction inside ZFC,"® for the

reason that the countable set 528 is a set in the sense of the set theory ﬁ?s.

In order to obtain a contradiction inside ZTC?S without any refference to Assumption
3.1.1 we introduce the following definitions.

Definition 3 .1.4.We define now the countable set I';HS/ ~, by the following formula



~H
VY{Wles € T~ (Wlug € T~ ) AP () A [BIXH, 001}, (1.4

Definition 3 .1.5.We choose now [IA in the following form
DA 2 Bewyres(#A) A [ BeWgas(#A) = A (3.1.12)

ZFC5 ZFC;

Here Be\NzTcgs(#A) is a canonycal Godel formula which says to us that there exists
proof

in ZFC5"° of the formula A with Godel number #A.

Remark 3.1.7. Note that the Definition 3.1.5 holds as definition of predicate really

asserting provability of the first order sentence Ain ﬁ:?s.

Definition 3 .1.7.Using Definition 3.1.5, we replace now formula (3.1.7) by the
following

formula

VYX){[Y(X)] € TS ~x <= FPX)([PX)] € TS ~x ) A
A BeW s HAIXIP(X) A Y = X)) ] A (3.1.13)
AL BeWes HEAIX[PX) A Y = X])) = AXPX)AY = X] | }.

Definition 3 .1.8.Using Definition 3.1.5, we replace now formula (3.1.8) by the
following
formula

~Hs ~Hs
vx(x €3, )[x € Ry < [BeWgras(#X & X)) | A

(3.1.14)

A BeWees (#(X € X)) = X & X].
Definition 3 .1.9.Using Definition1.3.5,we replace now formula (3.1.11) by the
following
formula

VY{[Ylys € T3™/ ~, <=

(Vs € TH ~ ) A FIEW) A [ BeWorgs BEIXIP, () AY = XD ] A (3.1.15)
N[ BeWaress (HIX[ Py, (X) A Y = X]) = FIXW,, () AY = X] ]}

ZFCy

~*H
Definition 3 .1.10.Using Definitions 3.1.4-3.1.7, we define now the countable set 3, °

by
formula

vv{v e 3 = W) € T ~ ) A (GgreeX) = v) ]}. (3.1.16)

Remark 3.1.8.Note that from the second order axiom schema of replacement (1.1.12)
it

follows directly that ngS is a set in the sense of the set theory ZFC?S.

Definition 3 .1.11.Using Definition 3.1.8 we replace now formula (3.1.14) by the
following

formula



~xHs
vx(x c %, )

o (3.1.17)
[Xe T = [Bowgrey#(X 2 X)) ] A [Bawggs#(X & X)) = X ¢ X] |
Remark 3.1.9. Notice that the expression (3.1.18)
[ Bewszes (#(X & X)) | A [ BeWgeas(#(X 2 X)) = X ¢ X] (3.1.18)

obviously is a well formed formula of ZFC2 and therefore a set '*J‘%’z is a set in the
sense of ZFCy".

~~*H ~xH ~~*H
Remark 3.1.10.Note that R, * e 3, Ssince R, ° is a set definable by 1-place open

wif
$(25") -
x(x e, )[x cZ = (3.1.19)
[ Bewres (#(X 2 X)) | A [ BewWyres(#(X € X)) = X ¢ X] ].

Theorem 3 .1.1.Set theory ZFCHs 2 ZFCHs + EIMZFCZ is inconsistent.
Proof. From (3.1.17) we obtain

~*Hs ~*Hs ~*Hs ~*Hs

W e o [Bewgep(#(F € %)) ] A
~*Hs ~*Hs ~*Hs ~*Hs

N Bowgpep(#(F: " e 30)) =T e W,

(a) Assume now that:

(3.1.20)

~xHs ~*Hs

- (3.1.21)
~xH ~xH
Then from (3.1.20) we obtain reaps Bewﬁ;s(#@?z T Ry s)) and

:V*HS :V*HS :V*HS :V*HS :V*HS
'_ZFCZ ZFC?S(#(RZ ¢ R, )) =R, ¢ R, , therefore '_ZFCHS .Rz ¢ Ry and
SO
~xHs ~xHs ~xHs ~xHs
Fﬁ?s R, €Ry, =R, ¢ R, . (3 1. 22)
From (3.1.21)-(3.1.22) we obtain
~xHs ~*Hs ~~xHs ~xHs ~xHs ~xHs ~xHs ~xHs

R, €eRy, MRy eRy, =R, €R, Ry ¢ Ry,
~Hs ~Hs ~Hs ~Hs
and thus - zrchs (iRz € R, ) A (9{2 ¢ Ro )

(b) Assume now that
'~ *Hs ~*Hs
[ Bewes (#(32" € 5.7°) ) |
~~*xHs ~~*xHs ~~*xHs ~~*xHs
N Bewgep (#(F: " e T ) ) = T e .

~*H ~*H
Then from (3.1.23) we obtain + 9{2 ‘e R, °.From (3.1.23) and (3.1.20) we obtain
~*Hs ~*Hs ~*HS ~~xHs

~xHs i . i i
Hs Rz ¢ Ry ,R, € R, whichimmediately gives us a

(3.1.23)

)
[ Fchs .Rz € SRZ ,SO l_ZFC



contradiction Fzqys (ﬁisz e %’;HS) A (%ZHS ¢ %’;HS).
Definition 3 .1.12.We choose now LA in the following form
LA £ Bewges(#A), (3.1.24)
or in the following equivalent form
CA 2 BeWyeeys(#A) A | BeWgreis(#A) = A

similar to (3.1.5).Here WNZFCQS(#A) is a Godel formula (see Chapt. Il section 2,
Definition)

which really asserts provability in ﬁ:?s of the formula A with G6del number #A.

Remark 3.1.11. Notice that the Definition 3.1.12 with formula (3.1.24) holds as
definition

of predicate really asserting provability in ZFC5°.

Definition 3 .1.13.Using Definition 3.1.12 with formula (3.1.24), we replace now
formula

(3.1.7) by the following formula

VOO {¥0] € TX™ ~x = I¥OO[F)] € THY ~x ) A

(3.1.25)
e HAXIP) A Y = X]) |}

A| Bew

Definition 3 .1.14.Using Definition 3.1.12 with formula (3.1.24), we replace now
formula
(3.1.8) by the following formula

vx(x e %25)[x e Ty o [ By (X £ X))]] (3.1.26)

Definition 3 .1.15.Using Definition 3.1.12 with formula (3.1.24),we replace now formula
(3.1.11) by the following formula

VY{[Ylys € T3™ ~, <=

_Hs o (3.1.27)
([Yls € T~ ) AFr2 (v,V) A [ BeWgess(H3IX[ Py, (X) A Y = X])]}.

Definition 3 .1.16.Using Definitions 3.1.13-3.1.17, we define now the countable set
~*xHs
32

by formula
VY{Y e 35" o [l e T3~ ) A (gree ) = v) ]}. (3.1.28)

Remark 3.1.12.Note that from the axiom schema of replacement (1.1.12) it follows

directly that ngS is a set in the sense of the set theory ZFCh®.
Definition 3 .1.17.Using Definition 3.1.16 we replace now formula (3.1.26) by the
following formula

~*xHs ~*Hs -
vx(x e, )[x e T o [ By (HX ¢ X))]]. (3.1.29)

Remark 3.1.13. Notice that the expressions (3.1.30)



[Bew

(X 2 X)) |
and (3.1.30)
[ BeWres (#(X 2 X)) | A [ BeWyrs(#(X € X)) = X ¢ X]

- . ~gxHs .
obviously is a well formed formula of ZFC?S and therefore collection *R; ° is a set in the
sense of ZFCy".

~~*H ~xH ~~*H
Remark 3.1.14.Note that R, = Ry “since R, is a set definable by 1-place open
wifq

N*H N*H —_
‘P(Z,iﬂz s) 2 vx(x e, s)[x € Z = Bl (#(X 2 X)) |. (3.1.31)

Theorem 3 .1.2.Set theory ZFC';Is 2 ZFCHs + EIMﬁFC?S is inconsistent.
Proof. From (3.1.29) we obtain

~~*xHs ~~xHs - ~*Hs ~xHs
W e o [Banp(#(F e %)) ] (3.1.32)
(a) Assume now that:
~x*Hs ~xHs
R, €N, . (3.1.33)
- N*H N*H
Then from (3.1.32) we obtain r s Bewﬁgs(#@{z i R, s)) and therefore
~*Hs ~*Hs
'_ZFCE‘S 9{2 & 9{2

thus we obtain

~*Hs ~xHs ~xHs ~xHs

Foras K2 € Ry = Ry ¢ Ry (3.1.34)

~xHs ~xHs ~xHs

~~*H ~~*H ~~*H
From (3.1.33)-(3.1.34) we obtain %, e %, and Ry e Ry = R, & Ry  thus
~xHs ~xHs . . ~Hs ~Hs ~Hs ~Hs
- zrchs R, ¢ R, and finally we obtain - zrchs (iRz € R, ) A (9{2 ¢ Ro )

(b) Assume now that

~*Hs ~*Hs
[ Bewes (#(F " e 7)) | (3.1.35)
~*H ~*H
Then from (3.1.35) we obtain Fz s Ry “ e R, °.From (3.1.35) and (3.1.32) we obtain

~x*Hs

~*Hs .
Zrehs R, € Ry which

~*Hs ~*Hs ~*Hs ~*Hs

immediately
. - ~*xHs ~xHs ~xHs ~xHs
gives us a contradiction Forchs (iRz e R, ) A (9{2 ¢ R, )

3.2.Derivation of the inconsistent provably definable set in
ZFCyg.

Let 34 be the countable set of all sets X such that ZFCy + 3!XW¥(X),where ¥(X) is a
1-place open wif of ZFC i.e.,

VY{Y € Tq & ZFCq - IPOO[PX)] € T/ ~ ) AIXFOOAY = X]T}. (3.2.1)

Let X ¢ Y be a predicate such that X ¢ Y < ZFCq + X ¢ Y.Let R be the

FzFcy

countable set of the all sets such that

FzFCcy



VX[Xe e = XeI)A(Xe . X)] (3.2.2)
From (3.2.2) one obtains

Rg € Rg = Rg & Ry. (3 23)

FzFCcy
But (3.2.3) immediately gives a contradiction
(Re € Ra) A (Ra & Ra). (3.2.4)

Remark 3.2.1.Note that a contradiction (3.2.4) is a contradiction inside ZFCg for the
reason that predicate X ¢ Y is expressible by using first order leguage as

FzFcg
predicate

of ZFCg« (see subsectionl1.2,Theorem 1.2.2(ii)-(iii)) and therefore countable sets J«
and

Ry are sets in the sense of the set theory ZFCg.

Remark 3.2.2.Note that by using Godel encoding the above stated contradiction can
be

shipped in special completion ZFC#% of ZFCg«, see subsection1.2,Theorem 1.2.2 (i).

Designation 3 .2.1 (i) Let M4© be a standard model of ZFC and

(ii) let ZFCq« be the theory ZFCq = ZFC + IM%°,

(iii) let I« be the set of the all sets of M4 provably definable in ZFCg,and let

Ra = {X € I« : Ua(X ¢ X)} where LlgA means: ‘'sentence A derivable in ZFCg’, or
some

appropriate modification thereof.

We replace now (3.2.1) by formula

VY{Y € g < Og[FP(+)AIX[VY(X) AY = X]]}, (3.2.5)
and we replace (3.2.2) by formula
VX[X e Ra « (X e I) AD«(X 2 X)]. (3.2.6)

Assume that ZFCgq + Rg € J4. Then, we have that: Ry € Ry if and only if
Us(Ra € R«), Which immediately gives us Rg € Ry if and only if Ry ¢ Rg.But thisis a
contradiction, i.e., ZFCq + (R« € Ra) A (R € R«).We choose now LIgA in the
following form

CgA = Bewzrc, (#A) A [Bewzec,(H#A) = Al. (3.2.7)

Here Bewzrc, (#A) is a canonycal Godel formula which says to us that there exists proof
in ZFCgq of the formula A with Godel number #A € MEA.

Remark 3.2.2. Notice that definition (3.2.7) holds as definition of predicate really
asserting provability in ZFCg.

Definition 3 .2.2.We rewrite now (3.2.5) in the following equivalent form

vY{Y € 5 = IPOOLIPX)]g € T ~x ) A (Y = X)]}, (3.2.8)

where the countable collection I'{HS/ ~x is defined by the following formula
VEX){[YX)]g € T ~x <= [((PX)]g € TR ~x ) ALOIXP(X)]} - (3.2.9)

Definition 3 .2.3.Let R« be the countable collection of the all sets such that
vx(x e %a)[x e Ma = Oa(X 2 X) |. (3.2.10)



Remark 3.2.2.Note that 9%25 € SZS since 9%25 is a collection definable by 1-place open
wif

\P(z,’iﬁg) 2 vx(x = %'sg)[x e Z = Og(X ¢ X)]. (3.2.11)

Definition 3 .2.4.By using formula (3.2.7) we rewrite now (3.2.8) in the following
equivalent form

VY{Y e Jg = IPX)[(FX)]y € T ~x YA (Y = X)]}, (3.2.12)
where the countable collection T'{"S/ ~x is defined by the following formula
VYX){[P(X)]g € T3 ~x =
[((P(X)]g € T ~x ) A BeWzrc, (#IIXP(X))] A (3.2.13)
A[Bewzrc, (FAIXY(X)) = XY (X)]}

Definition 3 .2.5.Using formula (3.2.7), we replace now formula (3.2.10) by the
following
formula

vx(x e %a)[x e Ry = [Bewzrc, (X & X))] A
A[Bewzec, (#(X & X))].

(3.2.14)

Definition 3 .2.6.Using Definition1.3.5,we replace now formula (3.2.11) by the
following formula

VY{lylg e I7¥ ~ <=
([Ylg € TS/ ~ ) AFTa(y,V) A [BeWzrc, BIX[ Py, ) AY = XA (32.15)
ABewzrc, (FAIX[Wy, (X) A Y = X]) = IX[Fy, (X) AY = X]]}.
Definition 3 .2.7.Using Definitions 3.2.4-3.2.6, we define now the countable set ’5; by
formula
wY{Y e s = WYl € T3 ~ ) A @zrca(X) = )]} (3.2.16)

Remark 3.2.3.Note that from the axiom schema of replacement it follows directly that

5; is a set in the sense of the set theory ZFCg.
Definition 3 .2.8.Using Definition 3.2.7 we replace now formula (3.2.14) by the
following formula

vx(x e E's;)

~* (3.2.17)
[x e Ry = [Bewzrc, (#(X 2 X))] A [Bewze, (#(X 2 X)) = X ¢ xﬂ
Remark 3.2.4. Notice that the expression (3.2.18)
[Bewzrc, (#(X ¢ X))] A [Bewzrcy(#(X ¢ X)) = X ¢ X] (3.2.18)

obviously is a well formed formula of ZFCg and therefore collection zﬁ; is a set in the
sense of ZFCy".

Remark 3.2.5.Note that %4 € 4 since Ry is a collection definable by 1-place open
wif



v(z %) 2
vx(x c %;)[x cZ o (3.2.19)
[Bewzrcs (#(X ¢ X))] A [Bewzrc,(#(X g X)) = X ¢ X]].

Theorem 3.2.1.Set theory ZFCy £ ZFC + M4 C is inconsistent.
Proof. From (3.2.17) we obtain

~x

Ry € 'iﬁ; = [Be\Nchg (#(Eﬁ; 3 %ﬁ;)) } A

~* ~ox ~ox ~ox (3' 2' 20)
A[BMZFCQ(#(&RQ & iRg)) = ERS( & SRS(i|
(a) Assume now that:
Ry e Ra. (3.2.21)
Then from (3.2.20) we obtain - Bewzrcy (#@?; ¢ ?ﬁ;)) and
+ Bewzrc, (#(fj{'; & ﬁ;)) = fﬁ'; & ’iﬁ;, therefore + fﬁ'; & ’iﬁ; and so
Forc, Ny € Ry = Ry 2 Ra. (3.2.22)
From (3.2.21)-(3.2.22) we obtain Ry € Ry, Ry € Ry = Ry & Ry - Ry & Ry
and therefore +zrcg (5%’; € %;) A ('iﬁ; ¢ %;)
(b) Assume now that
|:Be\Nz|:CS( (#(ij{; & ﬁ;)) i| A
(3.2.23)

/\[BeWchg (#(fj{; ¢ gﬁ;)) = fj{; ¢ ’iﬁ;}

Then from (3.2.23) we obtain + :J?;HS ¢ :J?;HS. From (3.2.23) and (3.2.20) we obtain

~*Hs ~*Hs ~*Hs ~*Hs ~~xHs ~*Hs . . . .
Forcs R € Ry ;SO ke Ry € Ry Ry €Ny which immediately gives us a

L. ~xHs ~xHs ~xHs ~xHs
contradiction ek (9%2 € R, )/\ (SRZ ¢ R, )

3.3.Derivation of the inconsistent provably definable set in
ZFChns:.

Designation 3 .3.1.(i) Let PA be a first order theory which contain usual postulates of

Peano arithmetic [8] and recursive defining equations for every primitive recursive
function

as desired.

(i) Let MZE be a nonstandard model of ZFC and let ME” be a standard model of
PA.We

assume now that MEA = MZC and denote such nonstandard model of ZFC by
MRE[PA].
(iii) Let ZFCng be the theory ZFCng = ZFC + MEE[PA].



(iv) Let Ing be the set of the all sets of MZ ©[PA] provably definable in ZFCng,and let

Rne = {X € Ing - Lnae(X 2 X)} where LngA means ‘sentence A derivable in ZFCg',
or

some appropriate modification thereof. We replace now (3.1.4) by formula

VY{Y € Ing « Ung[FY(CE)IXPX) AY = X]]7, (3.3.1)
and we replace (3.1.5) by formula
VX[ X € Rng < (X € Ing) ADa(X 2 X) . (3.3.2)

Assume that ZFCng - Rne € Ins. Then, we have that: Ryg € Rng if and only if
Cnst(Rnse 2 Rnst), Which immediately gives us Rns € Rng if and only if Rng & Rng. But
this is a contradiction, i.e., ZFCns + (Rnst € Rns) A (Rns € R ). We choose now LngA
in the following form

OngA 2 Bewzecy, (HA) A [BeWzre,, (HA) = Al. (3.33)

Here Bewzec,, (#A) is a canonycal Godel formula which says to us that there exists
proof
in ZFCng of the formula A with Godel number #A € MEA.
Remark 3.3.1. Notice that definition (3.3.3) holds as definition of predicate really
asserting provability in ZFCpg.
Designation 3 .3.2.(i) Let gzec,\y (U) be a Godel number of given an expression u of
ZFCns.
(i) Let Frng(y, V) be the relation : y is the Godel number of a wff of ZFCng that
contains
free occurrences of the variable with Gédel number v [10].
(iii) Let @ ne(Y,V,v1) be a Godel number of the following wiff:
IXY(X) AY = X],where
9zrcns (P(X)) = ¥, 9zrcye (X) = v, Gzrey(Y) = vi.
(iv) Let Przec,,(2) be a predicate asserting provability in ZFCng, which defined by
formula (2.6), see Chapt. I, section 2, Remark 2.2 and Designation 2.3.
Remark 3.3.2.Let 3ng be the countable collection of all sets X such that
ZFCng + I'XY(X),where ¥(X) is a 1-place open wff i.e.,

VYLY € Ing < ZFCng - IPX)IAXPX) A Y = X]}. (3.3.4)
We rewrite now (3.3.4) in the following form
vY{Y € J{q &
(Gzrcne(Y) = V1) A IYFT s (VW) A (Gzrcra(X) = v) A [Przrcae (@ ns(iVive)) A (3.3.5)
AN[Przecya (9 nst(Ys v, ve)) = FIX[P(X) AY = X]]]}
Designation 3 .3.3.Let ¢ n«(2) be a Godel number of the following wff: Z ¢ Z, where

Ozren(£) = Z
Remark 3.3.3.Let Rng above by formula (3.3.2), i.e.,

VZ[Z e Rng © (Ze Ina) NOna(Z 2 Z) ] (3.3.6)

We rewrite now (3.3.6) in the following form



VZ[Z € Rg < (£ € IRa) AN Gzrcns(Z) = ZA Przecy (o nst(2))] A

3.3.7
/\[PrZFCNst(SONst(Z)) =7Z¢ Z:|_ ( )

Theorem 3.3.1.ZFCns + Rig € Rig A R € Rig-

3.4.Generalized Tarski's undefinability lemma.

Remark 3.4.1.Remind that: (i) if Th is a theory, let T+, be the set of Godel numbers of

theorems of Th,[10],(ii) the property x € T+, is said to be is expressible in Th by wif

True(xz) if the following properties are satisfies [10]:

(@) ifn e Ty then Th + True(n),(b) if n ¢ Ttn then Th + —True(n).

Remark 3.4.2.Notice it follows from (a)A(b) that
—=[(Th &+ True(n)) A (Th #+ =True(n))].

Theorem 3 .4.1. (Tarski's undefinability Lemma) [10].Let Th be a consistent theory
with

equality in the language £ in which the diagonal function D is representable and let
grh(U)

be a Godel number of given an expression u of Th. Then the property x € T+, is not

expressible in Th.

Proof .By the diagonalization lemma applied to —True(x1) there is a sentence & such

that: (c)Th - & < —True(q),where qis the Godel number of F,i.e. grh(F) = q.

Case 1.Suppose that Th + &, then q € T+. By (@), Th + True(q). But, from Th + &

and (c), by biconditional elimination, one obtains Th - —True(g).Hence Th is
inconsistent,

contradicting our hypothesis.

Case 2. Suppose that Th + &F. Then q ¢ Ttn. By (b), Th + —True(q@). Hence, by (c)
and

biconditional elimination, Th ~ &.Thus, in either case a contradiction is reached.

Definition 3 .4.1.If Th is a theory, let Tty be the set of Godel numbers of theorems of

Th and let gtn(u) be a Gddel number of given an expression u of Th. The property
X € Ttn

is said to be is a strongly expressible in Th by wif True*(x;) if the following properties
are

satisfies:

(@) if n € Tty then Th + True*(n) A (True*(n) = g7i(n)),

(b)if n ¢ Tty then Th - —True*(n).

Theorem3 .4.2.(Generalized Tarski's undefinability Lemma).Let Th be a consistent
theory

with equality in the language £ in which the diagonal function D is representable and
let

grth(u) be a Godel number of given an expression u of Th.Then the property x € Tty is
not

strongly expressible in Th.

Proof .By the diagonalization lemma applied to —True*(x1) there is a sentence F*
such

that: (c)Th - F* < —True*(Q),where g is the Godel number of F*,i.e. grn(F*) = q.

Case 1.Suppose that Th + F*, then q € Tt. By (@), Th + True*(g). But, from



Thr F*
and (c), by biconditional elimination, one obtains Th + —True*(Q).Hence Th is
inconsistent, contradicting our hypothesis.
Case 2. Suppose that Th + F*. Then q ¢ Ttn. By (b), Th + —True*(g). Hence, by (c)
and biconditional elimination, Th - F*.Thus, in either case a contradiction is reached.
Remark 3.4.3.Notice that Tarski’'s undefinability theorem cannot blocking the
biconditionals

ReR=NRe R Re € Re & Ry 2 Ra, .41
Rnst € Rt <& Rnge € R o

3.5.Generalized Tarski’'s undefinability theorem.

Remark 3.5.1.(I) Let Th be the theory Th¥ 2 ZFC5®.

In addition under assumption &ﬁ(Th’f), we establish a countable sequence of the

consistent extensions of the theory Th¥ such that:

()Thi <...2 Thf ¢ Thi,; <...Th%, where

(ii) Thi,is a finite consistent extension of Thf,

(iii) Th% = Uien ThY,

(iv) ThZ proves the all sentences of Thj, which valid in M,i.e.,M = A = Th% A,

see Part II, section 2,Proposition 2.1.(i).

(I) Let Thi4 be Thig 2 ZFCyq.

In addition under assumption %(Thfg), we establish a countable sequence of the

consistent extensions of the theory Thf such that:

() Thig &...& Thiy € Thi1 4 &...Thi ¢, where

(ii) Thf,1 4 is a finite consistent extension of Thg,

(iii) Th% g = Uien Thig,

(iv) Thi & proves the all sentences of Thig, which valid in M§©, i.e.,

MZFC = A= Thig A

see Part I, section 2, Proposition 2.1.(ii).

(1) Let Thi g be Thi\g 2 ZFCns.

In addition under assumption %(Thf,\,g), we establish a countable sequence of the

consistent extensions of the theory Thf such that:

O\Thing E...€ Thing & Thiiig S...Thi g, Where

(i) Th,1ng is a finite consistent extension of Thi\g,

(iii) Th% ¢ = Uien Thig

(iv) Thi & proves the all sentences of Thi g, which valid in MZEE[PA], i.e.,

MEEIPA] E A = Thi g - A,

see Part II, section 2, Proposition 2.1.(iii).

Remark 3.5.2.(I)Let Ji,i = 1,2,... be the set of the all sets of M provably definable in
Tht,

VY{Y € 3 o L3V ()AIXYX) AY = X]}. (3.5.1)
and let R = {x € TJ; : Ti(x ¢ x)} where [J;A means sentence A derivable in Th. Then
we have that R; € R; if and only if LT (Ri ¢ Ri), which immediately gives us R; € R; if
and only if R; ¢ Ri.We choose now LJiA,i = 1,2,... in the following form



LA £ Bew;(#A) A [Bewi(#A) = Al. (3.5.2)
Here Bew;(#A),i = 1,2,... is a canonycal Godel formulae which says to us that there
exist
proof in Th,i = 1,2,...0f the formula A with Gddel number #A.
(I) Let Jig,i = 1,2,... be the set of the all sets of MZC provably definable in Thiy,

YY{Y € Tig < DigdPIXFX) AY = X]}. (3.5.3)

and let Ri« = {X € Ji« : Uig(X ¢ X)} where L sA means sentence A derivable in
This.

Then we have that R« € Rig if and only if L «(Ris ¢ Ri«), which immediately gives
us

Ris € Rig ifand only if Ris ¢ Ris.We choose now L] ¢A,i = 1,2,... in the following
form

Ui«A = Bew; «(#A) A [Bew; g (#A) = Al. (3.5.4)
Here Bew; «(#A),1 = 1,2,... is a canonycal Godel formulae which says to us that there
exist proof in Thiq,i = 1,2,...0f the formula A with Godel number #A.
(1) Let Jing,i = 1,2,... be the set of the all sets of M{EC[PA] provably definable in
Thins,
VY{Y € Sing < UingIV(E)IXPX) AY = X]}. (3.5.5)

and let Rinse = {X € Jing : Line(X € X)} where Ll n«A means sentence A derivable in
Thiwg. Then we have that Ring € Ring if and only if i ne(Ring € Ring), Which
immediately gives us Rins € Ring if and only if Ring € Rine.

We choose now LingA I = 1,2,... in the following form

CingA 2 Bewi g (FA) A [Bewi ng(#A) = Al (3.5.6)

Here Bew;ns(#A),1 = 1,2,... is a canonycal Gddel formulae which says to us that there
exist proof in Thing,i = 1,2,...0f the formula A with Godel number #A.
Remark 3.5.3 Notice that definitions (3.5.2),(3.5.4) and (3.5.6) hold as definitions of
predicates really asserting provability in Th?, Thfg and Thi\g,i = 1,2,...
correspondingly.
Remark 3.5.4.0f course the all theories Th¥, Thiy, Th\g,i = 1,2,... are
inconsistent,see
Part Il,Proposition 2.10.(i)-(iii).
Remark 3.5.5.(l)Let 3., be the set of the all sets of M provably definable in Th#,
VY{Y € 3 o LAY ()IXYX) AY = X]}. (3.5.7)

and let R, = {x € I, : Uo(X ¢ X)} where L1,A means ‘sentence A derivable in
Th¥.Then, we have that R., € R.. if and only if (..(R. ¢ R..), which immediately gives
us R, € R, if and only if R, ¢ R..We choose now L1.Ai = 1,2,... in the following
form

[.A 2 Ji[Bew;(#A) A [Bew;(#A) = A]]. (3.5.8)
(I) Let 3.« be the set of the all sets of M4 provably definable in Th? 4,
YYLY € Fog © DuogdP()IXFX) AY = X1 (3.5.9)

and let R« be the set R g = {X € Tug : Uog(X € X)}, where [, <A means ‘sentence
A derivable in Th% 4. Then, we have that R« € Ro« if and only if o g(Rog & Rosg),



which immediately gives us R g € Ruog if and only if R & ¢ Reog. We choose now
UesAl = 1,2,... in the following form

MgA 2 Ji[Bew; 4 (#A) A [Bew g(#A) = A]]. (3.5.10)
(1) Let J.ns be the set of the all sets of MEEC[PA] provably definable in Thf g,
VYYLY € Fung © DoonsgIP()IIX[PX) AY = X1 (3.5.11)

and let R nat be the set Rong = {X € Tong - Uwonst(X € X)} where L, neA means
‘sentence A derivable in Th% . Then, we have that R.ng € Rone if and only if
Uonst(Ronst & Roonst), Which immediately gives us Rons € Roone if @and only if
Ronst € Ronst- We choose now Lo ngA, i = 1,2,... in the following form

CoonsA 2 Ji[Bew; g (HA) A [Bewi g (HA) = A]]. (3.5.12)

Remark 3.5.6.Notice that definitions (3.5.8),(3.5.10) and (3.5.12) holds as definitions
of a

predicate really asserting provability in Th%, Th% ¢ and Th \q correspondingly.

Remark 3.5.7.0f course all the theories Th#, Th% 4 and Th# g are inconsistent,see

Part 1l,Proposition 2.14.(i)-(iii).

Remark 3.5.8.Notice that under naive consideration the set 3., and R., can be defined

directly using a truth predicate,which of couse is not available in the language of ZFC4s

(but iff ZFCYs is consistent) by well-known Tarski's undefinability theorem [10].

Theorem 3 .5.1. Tarski's undefinability theorem : (I) Let Th. be first order theory
with

formal language £, which includes negation and has a Godel numbering g(e) such that
for

every £-formula A(x) there is a formula B such that B — A(g(B)) holds. Assume that
Thy

has a standard model M}"* and Con(Theg) where

Thyeg 2 Thye +3IME. (3.5.13)
Let T*be the set of Gédel numbers of £-sentences true in M;hf. Then there is no

L-formula True(n) (truth predicate) which defines T*.That is, there is no £-formula
True(n) such that for every £-formula A,
True(g(A)) < A (3.5.14)

holds.

(I) Let Th'® be second order theory with Henkin semantics and formal language £,
which

includes negation and has a Godel numbering

g(e) such that for every £-formula A(x) there is a formula B such that B « A(g(B))
holds.

Assume that Th'}® has a standard model M;hgs and Con(Th';), where

ThY, 2 Thi + amy'™ (3.5.15)

Let T*be the set of Godel numbers of the all £-sentences true in M. Then there is no
L-formula True(n) (truth predicate) which defines T*.That is, there is no £-formula
True(n) such that for every £-formula A,

True(g(A)) < A (3.5.16)



holds.

Remark 3.5.9.Notice that the proof of Tarski's undefinability theorem in this form is
again by simple reductio ad absurdum. Suppose that an £- formula True(n) defines T*.
In particular, if Ais a sentence of The then True(g(A)) holds in N if and only if Ais true in
M;hi. Hence for all A, the Tarski T-sentence True(g(A)) < Aistruein M;hi. But the
diagonal lemma yields a counterexample to this equivalence, by giving a "Liar" sentence
Ssuch that S < —True(g(S) holds in M;hf. Thus no £L-formula True(n) can define T*.

Remark 3.5.10.Notice that the formal machinery of this proof is wholly elementary
except for the diagonalization that the diagonal lemma requires. The proof of the
diagonal lemma is likewise surprisingly simple; for example, it does not invoke recursive
functions in any way. The proof does assume that every £-formula has a Gédel number,
but the specifics of a coding method are not required.

Remark 3.5.11.The undefinability theorem does not prevent truth in one consistent
theory

from being defined in a stronger theory. For example, the set of (codes for) formulas
of

first-order Peano arithmetic that are true in N is definable by a formula in second order

arithmetic. Similarly, the set of true formulas of the standard model of second order

arithmetic (or n-th order arithmetic for any n) can be defined by a formula in first-order

ZFC.

Remarkl .3.5.12.Notice that Tarski's undefinability theorem cannot blocking the

biconditionals

Rie R < Ri ¢ Ri,l €N,

(3.5.17)

Re € Ry <= R & R, EtC.

Remark 3.5.13.(I) We define again the set 3., but now by using generalized truth
predicate True?(g(A),A) such that

True,(g(A),A) < 3i[Bew;(#A) A [Bew;(#A) = A]] &

Truec(g(A)) A[Trues(g(A) = Al = A, (3.5.18)

Truex(g(A)) < JiBew;(#A).

holds.
(Il) We define the set 3.« using generalized truth predicate True?, 4(g(A),A) such that

True,«(g(A),A) < Ji[Bew;«(#A) A [Bew;«(#A) = A]] <
True,«(g(A)) A[Trues«(g(A)) = Al < A, (3.5.19)
True,«(g(A)) < JiBew;«(#A)

holds.Thus in contrast with naive definition of the sets 3., and R., there is no any
problem

which arises from Tarski’s undefinability theorem.

(1) We define the set J.ns USing generalized truth predicate True? y«(g(A),A) such
that



True,ns(g(A),A) < Ji[Bewins(#A) A [Bewing(HA) = A]] <
Trueons(9(A) A[Truesns(g(A) = Al < A (3.5.20)
Trueons(g(A)) < JiBew;ng(#A)

holds.Thus in contrast with naive definition of the sets 3. n& and R ns there is no any

problem which arises from Tarski's undefinability theorem.

Remark 3.5.14.In order to prove that set theory ZFCHS + IMZCE* is inconsistent
without

any refference to the set 3.,,notice that by the properties of the extension Th? follows
that

definition given by formula (3.5.18) is correct, i.e.,for every ZFCYs-formula ® such that

MZ €3 = @ the following equivalence ® < True,(g(®),®) holds.

Theorem 3 .5.2.(Generalized Tarski 's undefinability theorem ) (see subsection 4.2,

Proposition 4.2.1).Let Th, be a first order theory or the second order theory with
Henkin

semantics and with formal language £, which includes negation and has a Gddel
encoding

g(+) such that for every £-formula A(x) there is a formula B such that the equivalence

B < A(g(B))holds. Assume that Th, has an standard Model M§". Then there is no

L-formula True(n),n € N, such that for every £-formula A such that

M = A, the following equivalence

A <= True(g(A)) (3.5.21)

holds.
Theorem 3 .5.3. (i) Set theory Th¥= ZFC}s + IMZFC%* is inconsistent;
(i) Set theory Thf 4= ZFC + IMFC is inconsistent;(iii) Set theory Th% yg= ZFC + IMZEE
is
inconsistent; (see subsection 4.2, Proposition 4.2.2).
Proof .(i) Notice that by the properties of the extension Th’ of the theory
ZFCYs + IMZFCE® — Thf follows that
MZCE = @ = Th + ©. (3.5.22)
Therefore formula (3.5.18) gives generalized "truth predicate" for the set theory
Th%.By
Theorem 3.5.2 one obtains a contradiction.
(i) Notice that by the properties of the extension Th \ of the theoryZFC + IMZC =
Thi 4 follows that
MFC E ® = Thig + . (3.5.23)
Therefore formula (3.5.19) gives generalized "truth predicate" for the set theory
Thig.By
Theorem 3.5.2 one obtains a contradiction.

(iii) Notice that by the properties of the extension Th? \ of the theory
ZFC + 3MZEL = Thi4 follows that

MEE E @ = Thi g - ©. (3.5.24)
Therefore (3.5.20) gives generalized "truth predicate" for the set theory Thf \g.By



Theorem 3.5.2 one obtains a contradiction.

3.6. Avoiding the contradictions from set theory ZFC5",
ZFCg4 and set theory ZFCng using Quinean approach.

In order to avoid difficultnes mentioned above we use well known Quinean approach.

3.6.1.Quinean set theory NF.

Remind that the primitive predicates of Russellian unramified typed set theory (TST),
a streamlined version of the theory of types, are equality = and membership €. TST has
a linear hierarchy of types: type 0 consists of individuals otherwise undescribed. For
each (meta-) natural number n, type n+ 1 objects are sets of type n objects; sets of type
n have members of type n— 1. Objects connected by identity must have the same type.
The following two atomic formulas succinctly describe the typing rules: x" = y" and
X" e yn+l.

The axioms of TST are:

Extensionality : sets of the same (positive) type with the same members are equal,

Axiom schema of comprehension

If ®(x") is a formula, then the set {x" | ®(x")}™! exists i.e., given any formula ®(x"),
the

formula

FAMLYX X" € AL o O(x")] (3.6.1)

is an axiom where A™! represents the set {x" | ®(x")}™! and is not free in ®(x").

Quinean set theory.(New Foundations) seeks to eliminate the need for such

superscripts.

New Foundations has a universal set, so it is a non-well founded set theory.That is to
say, it is a logical theory that allows infinite descending chains of membership such as

Xn € Xn-1 €...X3 € X2 € X1. It avoids Russell's paradox by only allowing stratifiable

formulae in the axiom of comprehension. For instance x € y is a stratifiable formula, but
X € xis not (for details of how this works see below).

Definition 3 .6.1.In New Foundations (NF) and related set theories, a formula @ in the
language of first-order logic with equality and membership is said to be stratified if and
only if there is a function o which sends each variable appearing in ® [considered as an
item of syntax] to a natural number (this works equally well if all integers are used) in
such a way that any atomic formula x € y appearing in ® satisfies o(x) + 1 = o(y) and
any atomic formula x = y appearing in ® satisfies a(x) = o(y).

Quinean set theory NF.

Axioms and stratification are

The well-formed formulas of New Foundations (NF) are the same as the well-formed
formulas of TST, but with the type annotations erased. The axioms of NF are:

Extensionality : Two objects with the same elements are the same object;

A comprehension schema: All instances of TST Comprehension but with type indices
dropped (and without introducing new identifications between variables).

By convention, NF's Comprehension schema is stated using the concept of stratified
formula and making no direct reference to types.Comprehension then becomes.



Stratified Axiom schema of comprehension

{X | ®%} exists for each stratified formula ®s.

Even the indirect reference to types implicit in the notion of stratification can be
eliminated. Theodore Hailperin showed in 1944 that Comprehension is equivalent to a
finite conjunction of its instances,so that NF can be finitely axiomatized without any
reference to the notion of type.Comprehension may seem to run afoul of problems
similar to those in naive set theory, but this is not the case. For example, the existence
of the impossible Russell class {x | x ¢ X} is not an axiom of NF, because x ¢ x cannot
be stratified.

3.6.2.Set theory ZFC5°, ZFCq4 and set theory ZFCng With

stratified axiom schema of replacement.

The stratified axiom schema of replacement asserts that the image of a set under any
function definable by stratified formula of the theory ZFC« will also fall inside a set.

Stratified Axiom schema of replacement

Let ®S(x,y,w1,Wo,...,Wn) be any stratified formula in the language of ZFC4 whose free
variables are among x,y,A,w1,W2,...,Wy, SO that in particular B is not free in ®s. Then

VAVW1VW,. .. VWh[VX(X € A = FlyDS(X,y,W1,Wo,...,Wy)) =

(3.6.2)
= ABVX(X € A = 3y(y € BA ®5(X,y,W1,W2, ..., Wn)))],

i.e.,if the relation ®5(x,y,...) represents a definable function f, A represents its domain,
and f(x) is a set for every x € A, then the range of f is a subset of some set B.
Stratified Axiom schema of separation
Let dS(x,w1, W2, ..., W) be any stratified formula in the language of ZFC« whose free
variables are among x,A, w1, Wz, ...,Wp, SO that in particular B is not free in ®°. Then

VYW1VWsa...VW,VAIBVX[X € B <= (X € AA O5(X,W1,W2,...,Wn))], (3.6.3)

Remark 3.6.1. Notice that the stratified axiom schema of separation follows from the
stratified axiom schema of replacement together with the axiom of empty set.

Remark 3.6.2. Notice that the stratified axiom schema of replacement (separation)
obviously violeted any contradictions (2.1.20),(2.2.18) and (2.3.18) mentioned above.
The existence of the countable Russell sets R3S, R4 and Ry impossible,because x ¢ x
cannot be stratified.

IV.Generalized Lobs Theorem.

IVV.1.Generalized L6bs Theorem. Second-Order theories

with Henkin semantics.

Remark 4.1.1.In this section we use second-order arithmetic Z4's with Henkin

semantics. Notice that any standard model Migs of second-order arithmetic Z5 consists
of a set N of usual natural numbers (which forms the range of individual variables)
together with a constant O (an element of N), a function Sfrom N to N, two binary
operations + and - on N, a binary relation < on N, and a collection D < 2" of subsets of
N, which is the range of the set variables. Omitting D produces a model of the first order
Peano arithmetic.

When D = 2V is the full powerset of N, the model M%? is called a full model. The use of



full second-order semantics is equivalent to limiting the models of second-order
arithmetic to the full models. In fact, the axioms of second-order arithmetic ZfzSS have only
one full model. This follows from the fact that the axioms of Peano arithmetic with the
second-order induction axiom have only one model under second-order semantics, see
section 3.

Let Th be some fixed, but unspecified, consistent formal theory. For later
convenience, we assume that the encoding is done in some fixed formal second order
theory S and that Th contains S.We assume throughout this paper that formal second
order theory S has an w-model M3. The sense in which S is contained in Th is better
exemplified than explained: if S is a formal system of a second order arithmetic Z5's and
Th is, say, ZFCEs, then Th contains S in the sense that there is a well-known
embedding, or interpretation, of S in Th. Since encoding is to take place in M3, it will
have to have a large supply of constants and closed terms to be used as codes. (e.g. in
formal arithmetic, one has 0,1,... .) S will also have certain function symbols to be
described shortly.To each formula, @, of the language of Th is assigned a closed term,
[@]°, called the code of ®. We note that if ®(x) is a formula with free variable x, then
[@(x)]¢is a closed term encoding the formula ®(x) with x viewed as a syntactic object
and not as a parameter. Corresponding to the logical connectives and quantifiers are the
function symbols, neg(-), imp(-), etc., such that for all formulae

®,¥ : S+ neg([®]°) = [—D@]°, S+ imp([@]°,[¥]°) = [® —» ¥]° etc. Of particular
importance is the substitution operator, represented by the function symbol sub(-,-). For
formulae ®(x), terms t with codes [t]° :

S + sub([®(x)]°,[t]¢) = [®(t)]°. (4.1.1)
It well known that one can also encode derivations and have a binary relation
Provrh(X,y) (read "x proves y " or "x is a proof of y") such that for closed t;,t> : S

+ Provrn(ty, t2) iff t1 is the code of a derivation in Th of the formula with code t, . It
follows that

Th + @ iff S - Prov(t,[@]°) (4.1.2)
for some closed term t. Thus we can define
Prrn(y) < IxProvra(X,y), (4.1.3)

and therefore we obtain a predicate really asserting provability.
Remark 4.1.2. (I)We note that it is not always the case that:

Th - @ iff S - Pro([@]°), (4.1.4)

unless Sis fairly sound,e.g. this is a case when Sand Th replaced by S, = S| M!" and
Th, = Th} MI" correspondingly (see Designation 2.1 below).
(INNotice that it is always the case that:

Thy, + @, iff S, = Prn, ((®s]°), (4.1.5)
i.e. that is the case when predicate Prr, (y),y € MI" :
Prrh, (y) < 3x(x € MIMProvry, (X,y) (4.1.6)

really asserts provability.
It well known that the above encoding can be carried out in such a way that the
following important conditions D1,D2 and D3 are meet for all sentences:



D1.Th + ® implies S+ Prrp([®]%),
D2.S + Prrn([®]°) - Prn([Pr([®]1°)1°), (4.1.7)
D3.S + Pron([®]°) A Pron([®@ - W1°) > Proa([¥]°).

Conditions D1,D2 and D3 are called the Derivability Conditions.
Remark 4 .1.3.From (2.5)-(2.6) follows that

D4.Th, - ®iff S, + Pron, (($u]°),
D5.S,, + Pron, ([®0]°) < Pron, ((Pro, ((9u]®)]1%), (4.1.8)
D6.S, F Prn, ((®0]®) A Prom, ((®o > ¥Yul°) = Pron, ((Wol©).

Conditions D4,D5 and D6 are called the Strong Derivability Conditions.

Definition4 .1.1. Let ® be well formed formula (wff) of Th. Then wiff @ is called
Th-sentence iff it has no free variables.

Designation 4 .1.1.(i) Assume that a theory Th has an w-model M!" and @ is a
Th-sentence, then:

Oy £ @ 1 M (we will write @, instead ®ym) is a Th-sentence @ with all quantifiers
relativized to o-model M [11] and

Th, 2 Th MM is a theory Th relativized to model M/",i.e., any Th,-sentence has the
form @, for some Th-sentence ©.

(i) Assume that a theory Th has a standard model M§" and @ is a

Th-sentence, then:

(iii) Assume that a theory Th has a non-standard model M and @ is a Th-sentence,
then:

Oy = @ | M5 (we will write dng instead ®ym) is a Th-sentence with all quantifiers

relativized to non-standard model M, and

Thne 2 Th MG is a theory Th relativized to model M{%,i.e., any Thyg-sentence has a

form dng for some Th-sentence O.

(iv) Assume that a theory Th has a model M = M™ and ® is a Th-sentence, then:

®,,m is a Th-sentence with all quantifiers relativized to model M™, and

Thy is a theory Th relativized to model M™,i.e. any Thy-sentence has a form @, for

some Th-sentence ©.

Designation 4 .1.2. (i) Assume that a theory Th with a lenguage £ has an o-model
MJh

and there exists Th-sentence S, such that: (a) Sy expressible by lenguage £ and (b)

S, asserts that Th has a model M]";we denote such Th-sentence S; by
Con(Th; M[M).

(i) Assume that a theory Th with a lenguage £ has a non-standard model M} and
there

exists Th-sentence S¢ such that: (a) S, expressible by lenguage £ and (b) S, asserts
that Th has a non-standard model M{%; we denote such Th-sentence S; by
Con(Th; M{%).

(iii) Assume that a theory Th with a lenguage £ has an model M™ and there exists

Th-sentence S, such that: (a) S¢ expressible by lenguage £ and (b) S, asserts that
Th

has a model M™;we denote such Th-sentence S, by Con(Th;M™")



Remark 4 .1.4. We emphasize that: (i) it is well known that there exist a ZFC-sentence
Con(ZFC; M?°) [8],(ii) obviously there exists a ZFC5s-sentence Con(ZFCs; MZC:)

and there exists a Zb-sentence Con(Z5; M%").
Designation 4 .1.3.Assume that Con(Th;M™).Let %(Th; MTh) be the formula:

Con(Th;MTh) 2
Vii(ts € MIMVEL(t) € MIMVta(t: € MIMVEL(t, € MIM)
—[Provry(ty, [®]°) A Provra(tz, neg([®]%))],
(4.1.9)
ty = [@]°1; = neg([®]°)
or
Con(Th;MTh) 2
VOVt (ty € MIM)Vta(ta € MIM)—[Provrn(ty, [®]%) A Provrn(tz, neg([®]1°))]
and where ty,t),1,,t, is a closed term.
Lemma 4.1.1. (I) Assume that: (i) a theory Th is recursively axiomatizable.
(i) Con(Th; MTh), (iii) MT" = Con(Th;M™) and
(iv) Th = Prrh([@]°),where @ is a closed formula.
Then Th & Proh([—®]°),
(I1) Assume that: (i) a theory Th is recursively axiomatizable.
(i) Con(Th; MIh) (iii) MI" = Con(Th;M™) and
(iv) Thy, + Pron, ([©,]°), where @, is a closed formula.
Then Thy, # Prop, ([P0 ]°).

Proof . (1) Let Conrn(®;MT") be the formula :

Conry(@;M™) 2
Vii(ts € MTMVita(t, € MTM)—[Provrn(ty, [@]°) A Provri(tz, neg((®]°))],
ie. (4.1.10)
Vii(ts € MTMVia(t, € MTM)—[Provrn(ty, [®]%) A Provrn(tz, neg([@]°))]«
{3ty (ty € MTM)—3ta(t2 € MTM)[Provrn(ty, [@]%) A Provrn(tz, neg([®]1%))]}.

where t1,t, is a closed term. From (i)-(ii) follows that theory Th +653(Th; MTh) is

consistent. We note that Th +Con(Th; M™") + Conrn(®; M™) for any closed ®. Suppose
that Th + Prrn([—®]°), then (iii) gives

Th = Proa([@]°) A Pron([—2]°). (4.1.11)
From (4.1.3) and ( 4.1.11) we obtain
Ity 3to[Provrn(ty, [@]°) A Provra(tz, neg([®]°))]. (4.1.12)

But the formula (4.1.10) contradicts the formula (4.1.12). Therefore Th & Prn([—®]°).
Remark 4 .1.5.In additional note that under the following conditions:

(i) a theory Th is recursively

axiomatizable,

(ii) Con(Th;MZ"), and



(i) MM = %(Th; MEM) predicate Prrn([W]°) really asserts provability, one obtains
Th - ® A . (4.1.13)

and therefore by reductio ad absurdum again one obtains Th & Prp([—®]°).
(1) Let Conrn(®; MIN) be the formula :

Conm (®;MI") £
Vti(ts € MIMVta(t2 € MIM)—[Provrn(ts, [®]%) A Provrn(tz, neg([®]1°))],
ie. (4.1.14)
Vti(ts € MIMVta(t2 € MIM)—[Provrn(ts, [®]°) A Provrn(tz, neg([®]°)) ]«
o{=3tu(ts € MIM=3ta(tz € MEM[Proven(ts, [®]°) A Provra(tz, neg([®]%))]}

This case is trivial becourse formula Pr 1y, ([—®,]¢) by the Strong Derivability

Condition

a

D4,see formulae ( 4.1.8),really asserts provability of the Th,-sentence —®,,.But this is

contradiction.

Lemma 4.1.2. (I) Assume that: (i) a theory Th is recursively axiomatizable.

(ii) Con(Th; M™), (iii) M™" |= Con(Th) and

(iv) Th + Prh([—®]°),where @ is a closed formula.Then Th + Prr,([®]°),

(I1) Assume that: (i) a theory Th is recursively axiomatizable.

(ii) Con(Th; MJIM) (iii) MM = &E(Th) and (iv) Th, + Prrp, ([—®,]°),

where ®,, is a closed formula.Then Th,, v Prrn, ([®s]°).

Proof . Similarly as Lemma 4.1.1 above.

Example 4 .1.1. (i) Let Th = PA be Peano arithmeticand ® < 0 = 1.

Assume that: (i) Con(PA: MPA) (ii) MPA = Con(PA; MPA) where MPA is a model of PA.
Then obviously PA + Prpa(0 + 1) since PA +0 # 1 and therefore by Lemma 4.1.1
PA t+ Prpa(0 = 1).

(ii) Let Con(PA; MPA) MPA = —Con(PA;MPA) and let PA* be a theory

PA*= PA +—Con(PA;MP*) and ® < 0 = 1. Then obviously

PA* - [Prpa(0 = 1)] A [Prpa(0 = 1)]. (4.1.15)
and therefore
PA* + Prpa+(0 # 1), (4.1.16)
and
PA* + Prpa+(0 = 1). (4.1.17)

However by L6bs theorem
PA* 0= 1. (4.1.18)

(iii) Let Con(PA*; MPA*) \MPA* = Con(PA*;MPA*) and ® < 0 = 1. Then obviously
PA*  Prpa+(0 = 1) since PA* 0 #= 1 and therefore by Lemma 4.1.1 we obtain.
PA* 1+ Prpa+(0 = 1).

Remark 4 .1.6.Notice that there is no standard model of PA*.

Assumption 4 .1.1. Let Th be a second order theory with Henkin

semantics. We assume now that:



(i) the language of Th consists of:

numerals 0,1,...

countable set of the numerical variables: {vo,v1,...}

countable set & of the first order variables, i.e.

a set of variables: 1 = {x,¥,2z X,Y,Z,3,R,...}

countable set F;, of the first order variables, i.e.

a set of variables: #, = {f§,R;,f},R],...}

countable set of the n-ary function symbols: 3, f1,...

countable set of the n-ary relation symbols: Rj, R, ...

connectives: —,—

quantifier:V.

(i) A theory Th is recursively axiomatizable.

(iii) Th contains ZFCYs or ZFC or NF and Con(Th;M™) is expressible in Th by a single

statement of Th;

(iv) Th has an w-model MTh and MJP &= Con(Th; MI"); or

(v) Th has an nonstandard model M{% = M{Z[PA] > M% and M = Con(Th; MI&).

Definition 4 .1.1. A Th-wff ® (well-formed formula ®) is closed, i.e. ® is a sentence,
ie.

if it has no free variables; a wif is open if it has free variables.We’'ll use the slang
‘k-place

open wiff’ to mean a wif with k distinct free variables.

Definition 4 .1.2.We will say that Th% is a nice theory or a nice extension of the Th iff
the

following properties holds:

(i) Th contains Th;

(i) Let @ be any first order closed formula of Th, then Th  Pry([®]¢) implies
Th?  @;

(iii) Let @., be any first order closed formula of Th%, then MI" = ®@., implies
Th? - @, i.e.

Con(Th + @.,; MIM) implies Th% - @.,.

(iv) Let @, be any first order closed formula of Th#, thenformulae Con(Th + ®..,; MI")

and Con(Th” + @..; M) are expressible in Th.

Definition 4 .1.3.Let L be a classical propositional logic L. Recall that a set A of L-wff’s
is

said to be L-consistent, or consistent for short, if A + L and there are other equivalent

formulations of consistency:(1) A is consistent, (2) Ded(A) .= {A | A + A} is not the
set

of all wff’s,(3) there is a formula such that A «+ A.(4) there are no formula A such that

AFAand A+ —-A

Definition 4 .1.4.We will say that,Th% is a maximally nice theory or a maximally nice

extension of the Th iff Th¥ is consistent and for any consistent nice extension Th¥

of the Th : Ded(Th%) < Ded(Th¥) implies Ded(Th%) = Ded(Th%).

Remark 4.1.7. We note that a theory Th’ depend on model M or M{%, i.e.

Th% = ThZ[MI"] or Th% = Th%Z[M]4] correspondingly. We will consider now the case

Thf 2 Th%[MJ"] without loss of generality.




Remark 4.1.8. Notice that in order to prove the statements: (i) —Con(NF4S; MJ"),

(i) =Con(NF; M[M) the following Proposition 4.1.1 is necessary.

Proposition 4 .1.1.(Generalized Lobs Theorem ).

(I) Assume that:

(i) A theory Th is recursively axiomatizable.

(i) Th is a second order theory with Henkin semantics.

(iii) Th contains ZFCs,

(iv) Th has an o-model M/",and

(v) the statement 3M]" is expressible by lenguage of Th as a single sentence of Th.

(vi) MIP = Con(Th; MIM),where predicate Con(Th; MI") is defined by formula 4.1.9.

Then theory Th can be extended to a maximally consistent nice theory

Th# ¢ = Th¥ J[MI"].Below we write for short Th% ¢ 2 Th# = Th#[MJP].

Remark 4.1.9. We emphasize that (v) valid for ZFC despite the fact that the axioms

of ZFC are infinite, see [8] Chapter Il,section 7,p.78.

(1) Assume that:

(i) A theory Th is recursively axiomatizable.

(i) This a first order theory.

(ii)) Th contains ZFC.

(iv) Th has an w-model MJ" and

(v) the statement IM" is expressible by lenguage of Th as a single sentence of Th.

(vi) MI" = Con(Th;MIn) ,where predicate Con(Th;MJ") defined by formula 4.1.9,

Then theory Th,, 2 Th M can be extended to a maximally consistent nice theory
Th.

(111) Assume that:

(i) A theory Th is recursively axiomatizable.

(ii) This a first order theory.

(iii) Th contains ZFC.

(iv) Th has a nonstandard model M} = M{%[PA] and

(v) the statement IM[3[PA] is expressible by lenguage of Th as a single sentence of
Th.

(vi) MI = Con(Th; M) ,where predicate Con(Th; M) defined by formula 4.1.10.

Then theory Th can be extended to a maximally consistent nice theory

Thins = Thi na[MEL].

Remark 4.1.10. We emphasize that (v) valid for ZFC despite the fact that the axioms

of ZFC are infinite, see [8] Ch.ll,section 7,p.78.

Proof .(I) Let ®4... ®;... be an enumeration of the all first order closed wff's of the
theory

Th (this can be achieved if the set of propositional variables,etc. can be enumerated).

Define a chainp = {Thg|i € N}, Thi4 = Th of consistent theories inductively as
follows:

assume that theory Thf is defined. Notice that below we write for short Thfy 2 Thf.

(i) Suppose that the following statement (4.1.19) is satisfied

[Th # Proye (@) ] A[Th # Prog((=@0) JAMIN = @ (4.1.19)

Note that



Th 1 Props([@i]°) < Thi @,

(4.1.19.2)
Th 1 Prope([~®i]%) < Thi v -,

since predicate PrThﬁ([d)i]C) really aserts provability in Th{. Then we define a theory

Th|+l
as follows

Th?, 2 Thi U {®;}. (4.1.19.b)

Remark 4.1.11.Note that the predicate Prr,: ([® i1°) is expressible in Th,; since a

theory Thf, is an finite extension of the recursively axiomatizable theory Th.
We will rewrite the conditions (4.1.19)-(4.1.19.b) using predicate Pr# Th, (+) symbolically

as
follows:

Thiy - Pri. (@19,
Priys (@]9 =
I:—'PrTh#( ):| A [_‘PrTh#([_‘(D'] )] AME" = @i,
MIM = @; < Con(Th# +®;;MIM),
ie.
Priy: (@) =
[—Prope([@119) ] A [ =Pr e ((=®i1°) ] A Con(Thi+®i; M),
Prie, (011°) = [—Proe (@119 ] A [-Pro (=019 ]
prTh# ([@i1°) = Thi, - @,
Thia - Prip. ([@i]°) = @i

(4.1.20)

(i) Suppose that the following statement (2.2.21) is satisfied
[Thi & Pros([@19) ] A [Thi # Progs((=@i11%) ] AMIP = =@ (4.1.21)

Note that
Th v Prop«([9i]°) < Thi v @;,

4.1.21.a
Thf# H PrTh:#([ﬁ(Di]c) f—4 Thﬁ H —|(Di, ( )

since predicate PrThi#([ﬁCDi]°) really aserts provability in Thi. Then we define a theory
Th, as follows

Thi, 2 Th? U {—®;}. (4.1.21.b)
We will rewrite the conditions (4.1.21)-(4.1.21.b) using predicate Prﬁfhﬁl(-),

symbolically
as follows:



Thils = Pri. ([=®i]°),
Prie, (®i1%) & —Props((=0i1%) A MI" E -],
M = —®; = Con(Thi+(—d;);MIM),
ie.
Prips ([(—®i]%) & —Props([=@i1°) A Con(Thi+(=®i); Mg"),
Priye ([=®i]°) < Prog ([=®i]°),
Prope ((-@i]°) = —@;,
Th?, + Pr#h# ([~Di]°) = —®;.

(4.1.22)

(iii) Suppose that the following statement (4.1.23) is satisfied
Thi - Pr s ([©i]°) (4.1.23)
and therefore [Thf - ®;] A [MI" = ®;].Then we define a theory Thf,; as follows
Th#, 2 Th?. (4.1.24)

Remark 4.1.12.Note that predicate Prf,. ([®i]°) is expressible in Th¥ because Th? is

a
finite extension of the recursive theory Th and Con(Th{+®;;MI") € Th#,.

(iv) Suppose that the following statement (4.1.25) is satisfied
Thi + Prop((—@i1%) (4.1.25)

and therefore [Th? 1 —®;] A [MIP = —®;].
Then we define theory Th?,; as follows:

Thf,, 2 Th?, (4.1.26)
We define now a theory Th¥ as follows:
Th £ |JTh!. (4.1.27)

ieN
(1) First, notice that each Th{ is consistent. This is done by induction on i and by
Lemmas
4.1.1-4.1.2. By assumption, the case is true when i = 1.Now, suppose Th¥ is
consistent.
Then its deductive closure Ded(Th{) is also consistent.
(2) If a statements (4.1.19)-(4.1.19.b) is satisfied,i.e. Th?; Pr#h# ([@i]°) and

Thf,; - @;,then clearly a theory Th,; 2 Thi U {®;} is consistent since it is a subset of
closure Ded(Th¥,).
(3) If a statements (4.1.21)-(4.1.21.b) is satisfied,i.e. Th?; Pr#h# ([—®i]°) and
Thf,, - —®;, then clearly Th?; 2 Th¥ U {—®;} is consistent since it is a subset of
closure Ded(Th¥,).
(4) If the statement (4.1.23) is satisfied,i.e. Th - Pr«([®i]°) then clearly Th{,; £ Th
is
consistent
(5) If the statement (4.1.25) is satisfied,i.e. Thf - PrThi#([ﬂCDi]C) then clearly
Thf,, 2 Thf



is consistent.
(6) Next, notice Ded(Th%) is maximally consistent nice extension of the Ded(Th).
Ded(Th%) is consistent because, by the standard Lemma 4.1.3 below, it is the union of

a
chain of consistent sets. To see that Ded(Th¥ ) is maximal, pick any wff ®. Then @ is
some @; in the enumerated list of all wff’'s. Therefore for any ® such that
Thi + Prom ([@]°) or Thi = Pry«([—@]°), either ® € Th} or —® € Th.Since
Ded(Thf.;) < Ded(Th%), we have ® € Ded(Th%) or —=® € Ded(Th%),which implies

that
Ded(Th%) is maximally consistent nice extension of the Ded(Th).

Definition 4 .1.5.We define now predicate Pr,: ([®]°) really asserting provability in
Th
by the following formula
Pr oy ([01°) < Fi(@ e Th)[ Pré, . ((@]°) ]. (4.1.28)

Proof .(I1) and (III) similarly to (1).

Lemma 4.1.3. The union of a chain ¢ = {I'i|i € N} of consistent sets I';, ordered by <
is consistent.

Definition 4 .1.6.Let ¥ = ¥(x) be one-place open Th-wif such that the following
condition:

Th 2 Th{ - 3xe[¥P(Xy)] (4.1.29)
is satisfied.
Remark 4.1.13.We rewrite now the condition (4.1.28) using only the language of the
theory Th :
{Thi - 3xe[¥(xe)]} = Progg((3xe[¥(xe)]1%) A

4.1.30
AP (B0 [P (xe)]]%) = xe[P(xe)]}. ( :

Definition 4 .1.7. We will say that, a set y is a Th{-set if there exist one-place open
wff ¥(x) such that y = x¢. We will be write y[Th¥] iff y is a Th}-set.

Remark 4.1.14. Note that

Y[Thi] & 3y = xw) A Pr (3 [ (x9)]1%)

(4.1.31)
{Prons (3% [¥(xe)]]%) = Ixe[P(xe)]} }.
Definition 4 .1.7.Let 3 be a set such that :
Vx[x € 31 < xis a Thi-set]. (4.1.32)

Proposition 4 .1.2. 3, is a Thi-set.

Proof . Let us consider an one-place open wff ¥(x) such that conditions (2.41) are

satisfied, i.e. Thf ~ 31x¢[¥(x¢)]. We note that there exists countable collection & of
the

one-place open wif's Fy = {¥n(X)} . Such that: (i) ¥(x) € Fy and (ii)

neN



Th 2 Th - 3xe[[P(Xe)] A {¥Vn(n € N)[¥(Xy) < Pn(Xe)]}]
or in the equivalent form
Th £ Thi
Pr s (3w [P (xw) 1) A (4.1.33)
{Pr s ([Axe[¥(x$)]]°%) = xe[P(xw)]} A
[Prons([¥n(n € N)[¥(xw) = Wa(xe)]]%) ] A
Prons([VN(n € N)[¥(xy) < Pn(xe)]]?) = Vn(n € N)[¥(xy) < ¥n(xy)]

or in the following equivalent form

Thi - A [[P1(x1)] A {Vn(n € N)[¥1(X1) < ¥n1(X1)]}]
or
Thi +
PrThi#([H!XllP(Xl)]C) A (4.1.34)
{Prone (3% ¥(x1)]1°) = ¥ (x1) } A
[Prong([7n(n € N)[¥(x1) = Fa(x)]]9) ] A
Prons([Vn(n € N)[P(x1) < ¥n(x1)]]%) = vn(n € N)[¥(x1) < Pn(x1)],

where we have set Y(X) = W1(X1),Vn(X1) = Yn1(X1) and xy = X;. We note that any
collection F v, = {¥nk(X)} K = 1,2,... such as mentioned above, defines an unique
set xy,,i.e. Fy, N Fy,, = T iff Xy, * xy,,.We note that collections Fy,,k = 1,2,.. are
not a part of the ZFCYs or ZFC,i.e. collection ¥y, is not a set in sense of ZFCYs or ZFC.
However this is no problem, because by using Godel numbering one can to replace any

collection Fy,,k = 1,2,.. by collection ®x = g(F v,) of the corresponding Gédel numbers
such that

Ok = 9(Fv) = {9(F¥nk(Xk)) e K= 1,2,... . (4.1.35)
It is easy to prove that any set O = g(F v, ),k = 1,2,.. is a Th{-set.This is done by
Godel

encoding (4.1.35), by the statament (4.1.33) and by axiom schemata of separation.
Let

Onk = 9(Wnk(Xk)),k = 1,2,.. be a Godel number of the wif W, k(Xk). Therefore
9(Fk) = {Onk) pen» Where we have set Fx = Fy,, k=1,2,.. and

VKNkz[{gn,kl}neN N A{Onks ey = D < Xig # Xk (4.1.36)
Let {{Onk} nen f oy 0€ @ family of the sets {gnk} o K = 1,2,....By the axiom of choice
one
obtains unique set 3] = {Qk} ., such that Vk[gk € {gnk} - Finally one obtains a set
31
from the set 3’ by the axiom schema of replacement.
Proposition 4 .1.3. Any set Ok = g(F v, ),k = 1,2,.. is a Thi-set.

Proof . We define gnk = g(Wnk(Xk)) = [Pnk(Xk)]¢, vk = [Xk]¢. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk,Vvk). Let us define now predicate I1(gnk, Vk)



TI(Gnk, Vi) < Py ([3[W1i(X0)]1) A

(4.1.37)
A3k = X[ VNN € N)[Pr s ([[¥ 1x(X)]1%) = Proye(Fr (gni Vi) ] .
We define now a set ® such that
{ O = O U 4w (4.1.38)
vn(n € N)[gnk € O < T1(gnk, Vk)]

Obviously definitions (4.1.37) and (4.1.38) are equivalent.
Definition 4 .1.8.We define now the following Thi-set R; & 31 :

VXX € R1 < (xe I1) APrs(lx € XI) AJ. (4.1.39)

Proposition 4 .1.4. (i) Thi ~ 3Ry, (i) N1 is a countable Thj-set.
Proof .(i) Statement Th{ - 3% follows immediately from the statement 33; and the
axiom schema of separation, (ii) follows immediately from countability of a set
3J1.Notice that R1 is nonempty countable set such that N < R1, because for any
neN:
Thirnegn.
Proposition 4 .1.5. A set R, is inconsistent.
Proof .From formula (4.1.39) we obtain
Thi - R e R = Prope([R1 & R11°). (4.1.40)
From (4.1.40) we obtain
ThirF Rie Ry = Ry ¢ Ry (4.1.41)
and therefore
Thi - (R1 € R1) A (R1 ¢ R). (4.1.42)
But this is a contradiction.
Definition 4 .1.9. Let ¥ = W(x) be one-place open Th-wff such that the following
condition is satisfied:
Th - 3xe[P(Xy)] (4.1.43)
Remark 4.1.15.We rewrite now the condition (4.1.43) in the following equivalent form
using only the lenguage of the theory Th? :
{Thf F 3xe[P(xy)]} = Pr s ([31 % [P (xw)]]°) (4.1.44)

Definition 4 .1.10. We will say that, a set y is a Th-set if there exist one-place open
witf
¥(x) such that y = x¢. We will be write for short y[Th?] iff y is a Thi-set.

Remark 4.1.16. Note that

Y{Th{] = 3¥L(y = xw) A Props (3w [P (xe)]19) ). (4.1.45)
Definition 4 .1.11.Let J; be a set such that :
Vx[ x € 3j « xis aThf-set]. (4.1.46)

Proposition 4 .1.6. 3; is a Th/-set.
Proof . Let us consider an one-place open wff ¥(x) such that conditions (4.1.43) are
satisfied, i.e. Th¥ ~ 31xe[¥(x¢)]. We note that there exists countable collection & of



the
one-place open Wif's Fy = {¥n(X)} o Such that: (i) ¥(x) € Fv and (ii)
Thi - 3xe[[P(xe)] A {¥Yn(n € N)[¥(Xy) < Pn(Xy)]}]
or in the equivalent form
Thi k Pr o (3% [¥(xe)11) A

{Pr (B[P O)]T®) = 3xe[F )]} A (4147
[PrThi#([‘v’n(n € N)[W(xy) « ‘Pn(XW)]]C)] A
Props([VN(n € N)[P(xy) < Pa(xw)]]®) = Vn(n € N)[P(Xy) < Pn(Xw)]
or in the following equivalent form
Th# F X [[Yi(X1)] A {vVn(n € N)[VY1(X1) < Yn1(X1)]}]
or
Th
Pr e ([31x1 ¥ (x1)]%) A (4.1.48)

{Props(Ax¥(x1)]%) = Ixa¥(xa) } A
[Props([vn(n € N)[¥(x1) < ¥a(xa)]1%) ] A
Props([VN(n € N)[P(x1) < Pa(x1)]1]%) = vn(n € N)[¥(X1) < Pn(x1)].

where we have set W(x) £ ¥1(X1), ¥n(X1) = ¥n1(X1) and xy = x1. We note that any
collection F v, = {¥nk(X)} K = 1,2,... such as mentioned above, defines an unique
set xy,,i.e. Fy, N Fy,, = T iff Xy, * xy,,.We note that collections Fy,,k = 1,2,.. are
not a part of the ZFCYS,i.e. collection &y, there is no set in the sense of ZFCYs. However
that is no problem, because by using Gédel numbering one can to replace any collection
Fw,k=1,2,.. by collection ®x = g(F v,) of the corresponding Gddel numbers such that

Ok = 9(Fw,) = {I(¥nk(X))} penr kK =1,2,... . (4.1.49)
It is easy to prove that any collection @ = g(F v, ),k = 1,2,.. is a Th{-set.This is done
by
Godel encoding, by the statament (4.1.43) and by the axiom schema of separation
Let

Onk = 9(Wnk(Xk)),k = 1,2,.. be a Godel number of the wif W, k(Xk). Therefore
9(Fk) = {Onk) pern» Where we have set Fx = Fy,, k=1,2,.. and

VKNkz[{gn,kl}neN N {gn,kz}neN = o X * Xy - (4.1.50)

Let {{Onk} nen f ko D€ @ family of the all sets {gnk} - By axiom of choice one obtains a
unique set J; = {Qk} .y Such that Vk{gk € {Onk}J- Finally for any i € N one obtains a
set J; from the set J; by the axiom schema of replacement.

Proposition 4 .1.8. Any collection O = g(Fy,),k = 1,2,.. is a Th{-set.
Proof . We define gnk = g(¥nx(X)) = [Pnx(X)]% vk = [X]°. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk, Vk). Let us define now predicate IT;(gnk, Vk)



ITi (Onk, Vk) < PrThf‘([E”Xk[\Pl,k(Xl)]]C) A

(4.1.51)
ABXK(Vk = [ ) [ VNN € N)[Props ([[¥16(6)]1%) & Py (Fr (Gnk, Vi) ] -
We define now a set ® such that
Ok = O U 4G}, (4.1.52)
Vn(n € N)[gn,k € @L P Hi(gn,kyvk)]-

Obviously definitions (4.1.51) and (4.1.52) are equivalent.
Definition 4 .1.12.We define now the following Thi-set ®; ¢ J; :

VX[x € Ri = (X e Ti) AProps(ix & x]% . (4.1.53)

Proposition 4 .1.9. (i) Th¥ ~ 3R, (i) |, is a countable Th¥-set, i € N.

Proof .(i) Statement Th? - 3%R; follows immediately by using statement 33; and axiom
schema of separation. (ii) follows immediately from countability of a set ;.
Proposition 4 .1.10. Any set ‘R;,i € N is inconsistent.

Proof .From the formula (4.1.53) we obtain

Thi - Ri € Ri = Progs([Ri g RiI°). (4.1.54)
From the formla (2.66) we obtain
Th*  FRi e R = R ¢ R (4.1.55)
and therefore
Th? - (Ri € R)A R ¢ Ri). (4.1.56)
But this is a contradiction.

Definition 4 .1.13. A Th’ -wff @, that is: (i) Th-wff ® or (i) well-formed formula ®.,
which

contains predicate Pr,: ([®]°) given by formula (4.1.28).An Th%-wff ®., (well-formed

formula @) is closed - i.e. @, is a sentence if @, has no free variables; a wff is open
if it

has free variables.

Definition 4 .1.14.Let ¥ = W(x) be one-place open Th%-wif such that the following
condition:

Th? - 3xe[¥(xy)] (4.1.57)

is satisfied.

Remark 4.1.16.We rewrite now the condition (4.1.57) in the following equivalent form
using only the lenguage of the theory Th¥ :

{Thi + Ixe[Y(X¢)]} < Prop: (3w [P(xe)]]°) (4.1.58)
Definition 4 .1.15.We will say that, a set y is a Th#-set if there exists one-place open
wif
¥(x) such that y = x¢. We write y[Th% ] iff y is a Th%-set.
Definition 4 .1.16. Let 3., be a set such that : Vx[x € 3., < xis a Th}-set].
Proposition 4 .1.11. A set 3., is a Th%-set.

Proof . Let us consider an one-place open wff W(x) such that condition (4.1.57) is
satisfied,i.e. Th% + JIxy[¥(xy)].We note that there exists countable collection F ¢ of



th(E)ne-place open wWif's Fy = {¥n(X)} . Such that: (i) ¥(x) € Fv and (ii)
Th? F Axe[[P(Xe)] A {VN(N € N)[P(Xy) < Pn(Xy)]}]
or in the equivalent form
Th% = Prog: ([3xe[P(xe)]]9) A
{Pr1hs (3% [F(xe)]]%) = Ixe[F(xe)]} A
[Prrnz ([VN(N € N)[¥(Xy) < ¥n(xe)]])]A
Proy: ([VN(N € N)[¥(Xy) < ¥n(x¢)]]®) = Vn(n € N)[¥(xy) © Pn(Xy)]

(4.1.59)

or in the following equivalent form

Th? X [[P1(X1)] A{VNn(n € N)[WY1(X1) < Wn1(X1)]}]
or
Th? + PrTh?([EI!xl‘P(xl)]C) A
{PrThi([EI!xl‘P(xl)]C) = XV (X1)} A
[Props([YN(N € N)[W(x1) < ¥n(x1)]1%) ] A
Pr s ([VN(N € N)[¥(X1) « Wa(x1)]1%) = Vn(n € N)[¥(x1) © Pn(x1)].

(4.1.60)

where we set ¥(X) = W1(X1),¥n(X1) = ¥n1(X1) and xy = X3. We note that any collection
Fy, = {¥nk(X)} o, K= 1,2,... such as mentioned above defines a unique set Xy, i.e.
Fw, NFwi, = D iff Xe, # X,,.We note that collections Fv,,k = 1,2,.. are not a part of
the ZFCHS,i.e. collection F v, there is no set in sense of ZFCYS. However that is not a
problem, because by using Gddel numbering one can to replace any collection
Fy,k=1,2,.. by collection ®x = g(F v, ) of the corresponding Gddel numbers such that

Ok = 9(Fw) = {I(¥nk(X))} park = 1,2, . (4.1.61)

It is easy to prove that any set Oy = g(F v, ),k = 1,2,.. is a Th*-set.This is done by Godel
encoding and by axiom schema of separation. Let gnk = 9(Wnk(Xk)),k = 1,2,.. be a
Godel number of the wif Wnx(Xk). Therefore g(Fk) = {Onk} o Where we have set
FizFy, k=12,.. and
VK1Vk2[{gn,k1}neN n{gn,kz}neN =D © Xig * Xie]- (4.1.62)
Let {{9nk} nen /ey D€ @ family of the sets {gnk} o K = 1,2,... . By axiom of choice one
obtains an unique set 3’ = {gk} ., such that Vk{gk € {Onk} . ]- Finally one obtains a

set
3., from the set 3., by axiom schema of replacement.Thus we can define Th%-set

Ro & T ©
VXX € Rop = (X € Too) A [Prope ([X & X]9)]]. (4.1.63)
Proposition 4 .1.12. Any collection @ = g(F v, ),k = 1,2,.. is a Th¥-set.

Proof . We define gnk = g(Wnk(Xx)) = [Pnk(Xk)]¢, vk = [Xk]¢. Therefore
Onk = 9(Wnk(Xk)) < Fr(gnk,Vvk). Let us define now predicate I, (gnk, Vk)



[T (Onk, Vi) <
Pr g ([3[ ¥ 1k(X0)1]) A [Pr iz (3P 16(X1)1]%) = X1 ¥ (X1)] (4.1.64)
AFX(Vk = [X]E) VNN € N)[Pr s ([P 1k(X)1]€) < Props (Fr(Gnk, Vi) 1]

We define now a set O such that

Ok = O, U {0k},

/ (4.1.65)
vn(n € N)[gnk € O < T1(Gnk, Vk) ]

Obviously definitions (4.1.64) and (4.1.65) are equivalent by Proposition 4.1.1.

Proposition 4 .1.13. (i) Th% ~ 3R.,, (i) R., is a countable Th#-set.

Proof .(i) Statement Th” - 3R., follows immediately from the statement 33., and
axiom

schema of separation [9], (ii) follows immediately from countability of the set J...

Proposition 4 .1.14. Set R, is inconsistent.

Proof .From the formula (4.1.63) we obtain

Thi - Re € R & Prope([Ree 2 R]). (4.1.66)
From (4.1.66) one obtains
Thi - R, € Re = R 2 Rao (4.1.67)
and therefore
Th% - (R € Ro) A (R € Roo). (4.1.68)

But this is a contradiction.

Remark 4 .1.17.Note that a contradictions mentioned above can be avoid using
canonical

Quinean approach,see subsection 3.6.

I\VV.2.Proof of the inconsistensy of the set theory
ZFCHs + IMZ % using Generalized Tarski’s undefinability
theorem.

In this section we will prove that a set theory ZFCYs + IMZFC2* is inconsistent, without

any
refference to the sets 31,32,..., 3, and corresponding inconsistent sets
Ri,Ro,..n, Reoe

Remark 4 .2.1.Note that a contradiction mentioned above is a strictly stronger then

contradictions derived in subsection 4.1, and these contradiction impossible avoid by

using Quinean approach,see subsection 3.6.

Proposition 4 .2.1.(Generalized Tarski’s undefinability theorem).Let Th'/* be second
order

theory with Henkin semantics and with formal language £, which includes negation
and

has a Gddel encoding g(-) such that for every £-formula A(x) there is a formula B
such

that B < A(g(B)) holds. Assume that Th® has an standard Model MZ7C%.



Then there is no £-formula True(n) such that for every £-formula A such that
MZFCE = A,
the following equivalence holds

(MZFE = A) = True(gA). (4.2.1)

Proof .The diagonal lemma yields a counterexample to this equivalence, by giving a
"Liar"

sentence Ssuch that S< —True(g(S)) holds.

Remark 4.2.2. Above we has been defined the set 3..(see Definition 4.1.63) in fact
using

generalized truth predicate True? ([®]°) such that

Truel,([0]°) & Proy: ([9]°). (4.2.2)

In order to prove that set theory ZFCYs + IMZC:* is inconsistent without any refference
to

the set J.,,notice that by the properties of the nice extension ThZ follows that definition

given by biconditional (4.2.3) is correct, i.e.,for every first order ZFCYs-formula ® such
that

MZC* = @ and the following equivalence holds
<M2Fc95 = q;) & Progs ([@]9), (4.2.3)
where Pr: ([©]°) = ®.

Proposition 4 .2.2.Set theory Th¥ = ZFCHs + IMZC:* is inconsistent.
Proof .Notice that by the properties of the nice extension Th¥ of theTh# follows that

(MZFCE = @) = Thi + @. (4.2.4)

Therefore (4.2.2) gives generalized "truth predicate” for set theory Th%.By Proposition

4.2.1 one obtains a contradiction.

Remark 4.2.3.A cardinal « is inaccessible if and only if ¥ has the following reflection

property: for all subsets U c V,, there exists a < «x such that (V,,€,UNV,) is an

elementary substructure of (V,,<,U). (In fact, the set of such « is closed unbounded in
K.)

Equivalently, « is I19 -indescribable for all n > 0.

Remark 4 .2.5.Under ZFC it can be shown that « is inaccessible if and only if (V,,€) is
a

model of second order ZFC, [5].

Remark 4 .2.6. By the reflection property, there exists o < x such that (V,,€) is a
standard

model of (first order) ZFC. Hence, the existence of an inaccessible cardinal is a
stronger

hypothesis than the existence of the standard model of ZFC5s.

I\VV.3.Derivation inconsistent countable set in set theory

ZFC> with the full semantics.

Let Th = Th™ be an second order theory with the full second order semantics.We
assume now that Th contains ZFCESS.We will write for short Th, instead Th',
Remark 4 .3.1.Notice that M is a model of ZFC';SS if and only if it is isomorphic to a



model

of the form V,,e N(V, x V,), for k a strongly inaccessible ordinal.

Remark 4 .3.2.Notice that a standard model for the language of first-order set theory is
an ordered pair {D, I} .Its domain, D, is a nonempty set and its interpretation function, I,
assigns a set of ordered pairs to the two-place predicate " €" . A sentence is true in {D, |}
just in case it is satisfied by all assignments of first-order variables to members of D and
second-order variables to subsets of D; a sentence is satisfiable just in case it is true in
some standard model; finally, a sentence is valid just in case it is true in all standard
models.

Remark 4 .3.3.Notice that:

(DThe assumption that D and | be sets is not without consequence. An immediate
effect of this stipulation is that no standard model provides the language of set theory
with its intended interpretation. In other words, there is no standard model {D, I} in which
D consists of all sets and | assigns the standard element-set relation to "€". For itis a
theorem of ZFC that there is no set of all sets and that there is no set of ordered-pairs
{x,y} for x an element of y.

(INThus, on the standard definition of model:

(1) itis not at all obvious that the validity of a sentence is a guarantee of its truth;

(2) similarly, it is far from evident that the truth of a sentence is a guarantee of its

satisfiability in some standard model.

(3)If there is a connection between satisfiability, truth, and validity, it is not one that
can be

“read off” standard model theory.

(111) Nevertheless this is not a problem in the first-order case since set theory provides
us

with two reassuring results for the language of first-order set theory. One result is the
first

order completeness theorem according to which first-order sentences are provable, if

true in all models. Granted the truth of the axioms of the first-order predicate calculus

and the truth preserving character of its rules of inference, we know that a sentence

of the first-order language of set theory is true, if it is provable. Thus, since valid

sentences are provable and provable sentences are true, we know that valid
sentences

are true. The connection between truth and satisfiability immediately follows: if ¢ is

unsatisfiable, then —¢, its negation, is true in all models and hence valid. Therefore,

—¢ is true and ¢ is false.

Definition 4 .3.1. The language of second order arithmetic Z, is a two-sorted

language: there are two kinds of terms, numeric terms and set terms.

0 is a numeric term,

1.There are in nitely many numeric variables, Xo,X1,...,Xn,... €ach of which

IS & numeric term;

2.1f sis a numeric term then Ssis a numeric term;

3.If s,t are numeric terms then +st and -st are numeric terms (abbreviated

s+tands-t);

3.There are infinitely many set variables, Xo, X1,...,Xn... each of which is

a set term;



4.1f tis a numeric term and Sthen e tSis an atomic formula (abbreviated
te9);

5.1f s and t are numeric terms then = st and < st are atomic formulas

(abbreviated s = t and s < t correspondingly).

The formulas are built from the atomic formulas in the usual way.

As the examples in the definition suggest, we use upper case letters for

set variables and lower case letters for numeric terms. (Note that the only

set terms are the variables.) It will be more convenient to work with

functions instead of sets, but within arithmetic, these are equivalent: one can

use the pairing operation, and say that X represents a function if for each

n there is exactly one m such that the pair (n,m) belongs to X.

We have to consider what we intend the semantics of this language to

be. One possibility is the semantics of full second order logic: a model

consists of a set M, representing the numeric objects, and interpretations

of the various functions and relations (probably with the requirement that

equality be the genuine equality relation), and a statement VX®(X) is satisfied by the

model if for every possible subset of M, the corresponding statement holds.

Remark 4 .3.4.Full second order logic has no corresponding proof system. An easy

way to see this is to observe that it has no compactness theorem. For example, the
only

model (up to isomorphism) of Peano arithmetic together with the second order
induction

axiom: VX(0 € XA VX(X € X = Sx € X) = VX(X € X)) is the standard model N. This
is

easily seen: any model of Peano arithmetic has an initial segment isomorphic to N;

applying the induction axiom to this set, we see that it must be the whole of the model.

Remark 4 .3.5.There is no completeness theorem for second-order logic. Nor do the

axioms of second-order ZFC imply a reflection principle which ensures that if a
sentence

of second-order set theory is true, then it is true in some standard model. Thus there

may be sentences of the language of second-order set theory that are true but

unsatisfiable, or sentences that are valid, but false. To make this possibility vivid, let Z

be the conjunction of all the axioms of second-order ZFC. Z is surely true. But the

existence of a model for Z requires the existence of strongly inaccessible cardinals.

The axioms of second-order ZFC don’t entail the existence of strongly inaccessible

cardinals, and hence the satisfiability of Z is independent of second-order ZFC. Thus,

Z is true but its unsatisfiability is consistent with second-order ZFC [5].

Thus with respect to ZFCS, thisis a semantically defined system and thus it is not

standard to speak about it being contradictory if anything, one might attempt to prove
that

it has no models, which to be what is being done in section 2 for ZFCYs,

Definition 4 .3.2. Using formula (2.3) one can define predicate Pr#,(y) really asserting

provability in Th = ZFC5®



Pri.(y) < Prin(y) A[Pra(y) = @],

Pron(y) < ElX(X € M?)Provw(x,y), (4.3.1)
y = [@]°.
Theorem 4 .3.1.[12].(L6b’s Theorem for ZFszss) Let ® be any closed formula with code
y = [®]¢ € MZ, then Th + Prry([®]°) implies Th - ®.
Proof . Assume that
#) Th + Proa([@]°).
Note that
(1) Th # —®. Otherwise one obtains Th + Pr1,([—®]°) A Prrn([®]°), but this is a
contradiction.
(2) Assume now that (2.i) Th + Prrh([®]°) and (2.i)) Th » @.
From (1) and (2.ii) follows that
(3) Th #+ —® and Th » .
Let Th_¢ be a theory
(4)Th_e = ThU{—®}.From (3) follows that
(5) Con(Th_g).
From (4) and (5) follows that
(6) Thoo + Prrn_, ([—®]°).
From (4) and (#) follows that
(7) Thﬁ(p = PrThﬁq,([d)]C).
From (6) and (7) follows that
(8) Th_o F Prrn_o([®]°) A Prrn_, ([—®]°), but this is a contradiction.
Definition 4 .3.3. Let ¥ = ¥(Xx) be one-place open wff such that:

Th + 3xe[¥(xe)] (4.3.2)

Then we will says that, a set y is a Th-set iff there is exist one-place open wiff ¥(x)
such

thaty = xy. We write y[Th] iff y is a Th-set.

Remark 4.3.2. Note that

y[Th]
FP[(y = xw) A Pron([3xe[P(xe)]1]1)]

Definition 4 .3.4. Let 3 be a collection such that : ¥x[x € I < xis a Th-set ].
Proposition 4 .3.1. Collection J is a Th-set.
Definition 4 .3.4. We define nowa Th-set R & I :

VXX € Re « (X € I) APrrn([x ¢ x]9)]. (4.3.4)

Proposition 4 .3.2. (i) Th + 3R, (ii) Rc is a countable Th-set.

Proof .(i) Statement Th + 3R follows immediately by using statement 33 and axiom
schema of separation [4], (ii) follows immediately from countability of a set 3.
Proposition 4 .3.3. A set R is inconsistent.

Proof .From formla (4.3.4) one obtains

Th - Re € Re < Pron((Re 2 Rel©). (4.3.5)

(4.3.3)



From formula (4.3.4) and definition 4.3.5 one obtains
Th+ Re € Re & Re ¢ Re (4.3.6)
and therefore
Th + (Rc € Re) A (Re € Re). (4.3.7)

But this is a contradiction.
Thus finally we obtain:
Theorem 4 .3.2.[5].—Con(ZFC5®).
It well known that under ZFC it can be shown that « is inaccessible if and only if (Vy,€)
is a model of ZFC, [12].Thus finally we obtain.
Theorem 4 .3.3.[5],[6].—Con(ZFC + IMZFC(MZC = Hy)).

5.Discussion. How can we safe the set theory
ZFC + 3IMF°C.

5.1.The set theory ZFC,, with a weakened axiom of infinity

We remind that a major part of modern mathematical analysis and related areas
based not only on set theory ZFC but on strictly stronger set theory: ZFC + 3MZC.In
order to avoid difficultnes which arises from —Con(ZFC + 3M4 ) in this subsection we
introduce set theory ZFC,, with a weakened axiom of infinity. Without loss of generality
we consider second-order arithmetic Z, with an restricted induction schema.

Second-order arithmetic Z, includes, but is significantly stronger than, its first-order
counterpart Peano arithmetic. Unlike Peano arithmetic, second-order arithmetic allows
guantification over sets of natural numbers as well as numbers themselves. Because
real numbers can be represented as (infinite) sets of natural numbers in well-known
ways, and because second order arithmetic allows quantification over such sets, it is
possible to formalize the real numbers in second-order arithmetic. For this reason,
second-order arithmetic is sometimes called “analysis".

Induction schema of second -order arithmetic Z».

If p(n) is a formula of second-order arithmetic Z, with a free number variable n and
possible other free number or set variables (written m and X), the induction axiom for ¢ is
the axiom:

vmvX((¢(0) A VN(p(n) - p(n+1))) — Vne(n)). (5.1.1)

The (full) second-order induction scheme consists of all instances of this axiom, over
all second-order formulas. One particularly important instance of the induction scheme is
when ¢ is the formula “n € X ” expressing the fact that n is a member of X (X being a free
set variable): in this case, the induction axiom for ¢ is

VX((0e XAVN(ne X->n+1e X)) - VvVn(n e X)). (5.1.2)

This sentence is called the second-order induction axiom.
Comprehension schema of second -order arithmetic 7,

If p(n) is a formula with a free variable n and possibly other free variables, but not the
variable Z, the comprehension axiom for ¢ is the formula

3Zvn(n € Z < o(n)). (5.1.3)



This axiom makes it possible to form the set Z = {n|p(n)} of natural numbers
satisfying ¢(n). There is a technical restriction that the formula ¢ may not contain the
variable Z.

Designation 5 .1.1.Let Wff,(Z>) be a set of the all k-place open wff’s of the
second-order arithmetic Z, and let R(Z2) be a set of the all primitive recursve k-place
open wff's w g, of the second-order arithmetic Z,.Let 2¢(Z2) be a set of the all k-place
open wif's w, of the second-order arithmetic Z, such that

R = Ri(Z2) < Z(Z2) & WIT(Z2). (5.1.4)
Let lex be a set of the all sets definable by 1-place open wif's y(X) € Wff,,(Z>),

let £, be a set of the all sets definable by 1-place open wif's yz,(X) € Z1(Z2) and

let R1be a set of the all sets definable by 1-place open wif's yg,(X) € Ri1(Z2)
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If s, (N) € Zx = Z(Z2) is a formula of second-order arithmetic Z, with a free number
variable n and possible other free number and set variables (written mand X), the
induction axiom for ¢y is the axiom:

vmyX(X € £1)(95.0) A Y(ps, (M) ~ ps,(n+ D)) > ¥ngs, (). (5.1.5)
The restricted second-order induction scheme consists of all instances of this axiom,
over all second-order formulas. One particularly important instance of the induction
scheme is when g3, € X is the formula (n € X) A (X € §1> expressing the fact that nis a

member of X and X € Z; (X being a free set variable): in this case, the induction axiom
for ¢y, IS

vx(x = “z'l)((o e XAVN((ne X) » (N+1e X)) - Vn((neX)). (51.6)

Restricted comprehension schema of second  -order arithmetic  Z3*.

If p5,(n) € X1 is a formula with a free variable n and possibly other free variables, but
not

the variable Z, the comprehension axiom for ¢s, is the formula
3zvn(n € Z < ¢3,(n)). (5.1.7)

Remark 5.1.1.Let Z,* be a theory 7 + IMg[ Z5* ] where Mg[ Z5* ] is an standard
model
of 73.
We assume now that
Con(Z5* +3IMs[ Z5* ]). (5.1.8)
Definition 5 .1.1. Let g(X) : R —» R be any real analytic function such that: (i)

ga(X¥) = D anx" x| < T, (5.1.9)
n=0

where ¥n(a, € Q) and where (ii) the sequence {an},., € M«[Z3] (in particular

{an} oy € Mg Z3* ] if the sequence {an} is primitive recursive .

Then we will call any function given by Eq.(5.1.9) Q-analytic Z-function and denoted
such

functions by g3(x). In particular we will call any function gi*(x) constructive Q-analytic



function.
Definition 5 .1.2. A transcendental number z € R is called X-transcendental number
over field Q, if there does not exist Q-analytic Z-function g3(x) such that g5(z) = O.
In particular a transcendental number z € R is called #-transcendental number
over field Q, if there does not exist constructive Q-analytic function gi*(x) such that
ga(2) = 0,i.e. for every constructive Q-analytic function gi*(x) the inequality

gal(z) # Ois
satisfied.
Example 5.1.1. Number = is transcendental but number 7 is not #-transcendental
number over field Q since
(2) function sinx is a Q-analytic and

2) sin(%) ~lie.
Y r° r’ (=1)* g 2wt
I T osy T osm 2 T Ry 1

(_1)2n+1
220120 4+ 1)1

- 0. (5.1.10)

Remark 5.1.5.Note that a sequence a, = n=012.... obviously is

primitive recursive and therefore
{an} oy € Ms[ 254 ], (5.1.11)

since we assume Con(Z5* + IMg[ 251 ]).
Propostion 5 .1.1.Let vo = 1. For each n > 0 choose an rational number v, inductively
such that

1-> vl — ()™ < vee < 1- 2 viek. (5.1.12)
The rational number v, exists because the rational numbers are dense in R. Now the
power series f(x) = 1-)_" vqe" has the radius of convergence «

and f(e) = 0.However
any sequence {vn} ., Obviously is not primitive recursive and therefore

Winbnn € Ma[Z50]. (5.1.13)

Theorem 5.1.1.[21] Assume that Con(Z3* + IMg[ Z5* ]).Then number eis

#-transcendental over the field Q.

Theorem 5.1.2.[21] Number e® is transcendental over the field Q.

Proof.Immediately from Theorem 5.1.2.

Theorem 5.1.3.[21] Assume that Con(Z% + IMg[Z3]). Then number eis
Y-transcendental

over the field Q.

5.2.The set theory ZFC* with a nonstandard axiom of
infinity
We remind that a major part of modern set theory involves the study of different

models of ZF and ZFC. It is crucial for the study of such models to know which
properties of a set are absolute to different models [8]. It is common to begin with a fixed



model of set theory and only consider other transitive models containing the same
ordinals as the fixed model.

Certain fundamental properties are absolute to all transitive models of set theory,
including the following:(i) x is the empty set, (ii) x is an ordinal,(iii) x is a finite ordinal,(iv)
X = w, (V) Xis (the graph of) a function. Other properties, such as countability, x = 2¥ are
not absolute, see [8].

Remark 5.2.1.Note that for nontransitive models the properties (ii)-(v) no longer holds.

Let (M,€) be a non standard model of ZFC.lt follows from consideration above that
any

such model (M, €) is substantially non standard model of ZFC, i.e., there does not exist
an

standard model (Mg, €) of ZFC such that Mg < M where

glMst = elMSt- (52 1)
and
w ¢ (M,E). (5.2.2)

Theorem 5.2.1.[9].Let (M, €) be a non standard model of ZF. A necessary and
sufficient

condition for (M, €) to be isomorfic to a standard model (M, €) is that there does not
exist a

countable sequence {Xn},, of elements in M such that Xn,1&Xn.

Definition 5 .2.1.Let Mng = (M, €) be a non standard model of ZFC.We will say that:

(i) element ZM is a non standard relative to N and abraviate Nsty(2), if there exist a

sequence {Xn},0f elements in M such that X,1€x, and z = Xo ,and

(i) element ZMyg is a standard standard relative to N and abraviate st(z) if there does
not

exist a countable sequence {xn}, ., of elements in M such that xn.1&xn and z = Xy, i.€.,

st(z) < —Nstn(2).

Remark 5.2.2.We denote by ZFC: set theory which is obtained from set theory ZFC
by

using wff’s of ZFC with quantifiers bounded on a non standard model (M, €). The first-

order lenguage corresponding to set theory ZFC: we denote by L.

Let Wff(ZFCz) be a set of the all wff's of ZFC:. Note that
stn(z),Nsty(z) ¢ WIf(ZFCz),i.e.,

predicates sty(z) and Nsty(z) are not well defined in ZFCz since N ¢ Mpyg.

Definition 5 .2.2.In set theory, an ordinal number « is an admissible ordinal if L, is an

admissible set (that is, a transitive model of Kripke—Platek set theory); in other words,
o is

admissible when « is a limit ordinal and L, = Xo-collection.

Definition 5 .2.3.Let (M,€) be a non standard model of ZF. Assume that ordinal of
(M,)

have a largest minimal segment isomorfic to some standard ordinal & € M,which is
called

the standard part of (M, &), see ref.[14]-[15]. We shall assume that o = M, and that for

B<a:



ERM(B) = RM(B), (5.2.3)

where RM(B) is the set of all elements of M with M rank is less then p.

Which standard ordinal o can be standard part of (M, €)?It well-known that a necessary

condition is that a is admissible ordinal. A well-known Friedman theorem (see ref.[14]-

[15]) implies that for countable a the admissibility is also sufficient condition. Thus
there is

no admissible countable ordinal « in any non standard model of ZFC.

Remark 5.2.3.We introduce now in consideration an conservative extension of the
theory

ZFC: by adding to lenguage £z the atomic predicate Nst(z) which satisfies the
following condition

VZ[Nst(z) = 3IX[(X€z) A Nst(x)]]. (5.2.4)

1. Axioms of non standartness
(a) There exists at least one non standard set

3Z[Nst(2)]. (5.2.5)
(b) There exists at least one non standard transitive set
3Z[Nst(z) A TR(2)], (5.2.6)

where: TR(z) < VX[(X€Z A\ a€X) = a&z].
2. Axiom of extensionality

VXVY[VZ(ZEX <= Z&Y) = X =Y]. (5.2.7)
3. Axiom of regularity

Vxda[(Fa(a€x)) = Iy(YEX) A —3Z(ZEY) A (ZEX)]]. (5.2.8)
4. Axiom schema of specification

Let ¢% be any formula in the language of ZFCz such that (i) formula ¢ free from
occurrence of the atomic predicate Nst(z),i.e.,¢%
can not contain the atomic predicate Nst(z) and (ii) ¢% is a formula with all free variables

among X,z,Wi, ..., Wy (y is not free in ¢% ). Then:

VZYW;1... VWnIYVX[XEY < (XE2Z) A ¢X(X,Z,W1,...,Wn)]. (5.2.9)
4'. Axiom of empty set
xvy[ - (ye x) ]. (5.2.10)

We will denote the empty set by 2.
5. Axiom of pairing

VXVYAZXEZ A YEZ]. (5.2.11)
6. Axiom of union

vFIAVYYX[ ((xEY) A (Y&F)) = x2A]. (5.2.12)

7. Axiom schema of replacement
The axiom schema of replacement asserts that the image of a set under any definable



in ZFC¢ function will also fall inside a set.

Let ¢% be any formula in the language of ZFCz such that (i) formula ¢ free from
occurrence of the atomic predicate Nst(z),i.e.,¢%
can not contain the atomic predicate Nst(z) and (ii) % is a formula whose free variables

are among X,Yy,A, Wi, ...,Wn, SO that in particular B is not free in ¢%. Then:

VAYW;... YWi[ VX(X EA = TlygS(A Wy, ..., Wn,X,Y)) =

5.2.13
IBYX(X EA = Jy(YEB A ¢34 (A W1, ..., Wn,X,Y))) ]. ( )

8. Axiom of infinity
Let Sz(x) abbreviate x Uz {X}z,where w is some set.Then:

al[(’é a) AN (xUz = 2l) |- (5.2.14)

Such a set as usually called an inductive set.
Definition 5 .2.4. We will say that x is a non standard set and abraviate xN iff x
contain at
least one non standard element,i.e.,
XN = Ja[a@x A Nst(a)]. (5.2.15)

Remark 5.2.4.1t follows from Axiom schema of specification and Axiom schema of
replacement (5.2.13) we can not extract from a non standard set the standard and non
standard elements separately,i.e. for any non standard set x\* there is no exist a set
y and z such that

XN =y Uz z, (5.2.16)

where y contain only standard sets and z contain only standard sets!

As it follows from Theorem 5.3.1 any inductive set is a non standard set.
Thus Axiom of infinity can be written in the following form

8'. Axiom of infinity

Let Sz(x) abbreviate x Uz {X}z,where w is some set.Then:
3| (’6 z| Nst) AVEIN (X Uz {xp= 81N . (5.2.17)

Such a set as usually called a non standard inductive set.
9. Strong axiom of infinity
Let Sz(x) abbreviate x Uz {x}z,where w is some set.Then:

ANJTTRIMOIA [ (B 21™) A @™ (xUz 0= 81 ]} (5.2.18)

5.3.Extracting the standard and non standard natural

numbers from the infinite non standard set | N,

Definition 5 .3.1. We will say that x\% is inductive if there is an formula ®(x) of ZFCz
that
says: XN is Z-inductive’; i.e.

o) = (T2 X A vy(y & X = Su(y) 2x*)). (5.3.1)

Thus we wish to prove the existence of a unique non standard set W  such that



vX[xaVst‘ o VIN(D(INS) = x| Nst)] (5.3.2)

(1) For existence, we will use the Axiom of Infinity combined with the Axiom schema of
specification. Let IN* be an inductive (non standard) set guaranteed by the Axiom of

Infinity. Then we use the Axiom Schema of Specification to define our set

W = {xe IN; wINS(@IN) > x&IN)), (5.3.3)

i.e. W is the set of all elements of IN* which happen also to be elements of every other

inductive set. This clearly satisfies the hypothesis of (5.3.2), since if €W , then xis in
every inductive set, and if x is in every inductive set, it is in particular in IN¥, so it must

also be in VNVNS.
(2) For uniqueness, first note that any set which satisfies (5.3.2) is itself inductive,

since & is in all inductive sets, and if an element x is in all inductive sets, then by the

. , . . ~Nsto -

inductive property so is its successor. Thus if there were another set W; which satisfied
~~Nst ~Nst . L. ) ~Nst ~Nst |

(5.3.2) we would have that W; <z W since W is inductive, and W <z W; since

Wi %is inductive. Thus Wh- == W . Let & denote this unique set.
(3) For non stardarntness we assume that @ is a standard set, i.e. there is no
nonstandard element in @.Then @ == Nz where Nz isomorphic to N, but this is a
contradiction, since N ¢z (M, €).
Theorem 5 .3.1.There exist unique non stardard set @ such that (5.3.2) holds,i.e.

VX[XE @ < VIN(D(INY) = x&IN%) ] (5.3.4)

Definition 5 .3.2. We will say that a set S is E-finite if every surjective €-function from S

onto itself is one-to-one.

Theorem 5 .3.2. There exist E-finite non standard natural numbers in @.

Proof. Assuming that any non standard natural number is not €-finite one obviously

obtains a contradiction.

Remark 5.3.1.Assuming that @ is standard set then this method mentioned above

produce system which satisfy the axioms of second-order arithmetic Zfzss, since the
axiom

of power set allows us to quantify over the power set of @ , as in second-order logic.
Thus

it completely determine isomorphic systems, and since they are isomorphic under the

identity map, they must in fact be equal.

6.Conclusion.

In this paper we have proved that the second order ZFC with the full second-order
semantic is inconsistent,i.e. ﬁCon(ZFszss). Main result is: let k be an inaccessible cardinal
and Hy is a set of all sets having hereditary size less then k, then
—Con(ZFC + IMFC(MZC = Hy)). This result also was obtained in [3],[4],[5] essentially
another approach. For the first time this result has been declared to AMS in [22],[23].
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