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Abstract

In this article Russell’s paradox and Cantor’s paradox resolved successfully using intuitionistic
logic with restricted modus ponens rule.
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1 Introduction

Considering only pure sets, the naive set comprehension principle says, for any condition, that there

is a set containing all and only the sets satisfying this condition. In first-order logic, this can be

formulated as the following schematic principle, where ϕ may be any formula in whichy does not

occur freely:
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∃y∀x(x ∈ y ↔ ϕ). (1.1)

Russell’s paradox shows that the instance obtained by letting ϕ be x /∈ x is inconsistent in classical

logic. One response to the paradox is to restrict naive set comprehension by ruling out this and other

problematic instances: only for each of some special conditions is it claimed there is a set containing

all and only the sets satisfying the condition. Many well known set theories can be understood as

instances of this generic response,differing in how they understand special.For example,the axiom

schema of separation (1.1) in Zermelo-Fraenkel set theory (ZF ) restricts set comprehension to

conditions which contain, as a conjunct, the condition of being a member of some given set:

∃y∀x(x ∈ y ↔ ϕ ∧ x ∈ z). (1.2)

Similarly, in Quine’s New Foundations (NF) set comprehension is restricted to conditions which

are stratified, where ϕ is stratified just in case there is a mapping f from individual variables to

natural numbers such that for each subformula of ϕ of the form x ∈ y, f(y) = f(x) + 1 and for each

subformula of ϕ of the form x = y, f(x) = f(y). Both of these responses block Russell’s paradox

by ruling out the condition x /∈ x. Must every restriction of naive comprehension take the form of

simply ruling out certain instances? In this article, I have suggest and explore a different approach.

As we have seen,standard set comprehension axioms restrict attention to some special conditions:

for each of these special conditions, they provide for the existence of a set containing all and only

the sets which satisfy it.

Instead of restricting the conditions one is allowed to consider, we propose restricting the way in

which the sets in question satisfy a given condition: for every condition, our comprehension axiom

will assert the existence of a set containing all and only the sets satisfying that condition in a special

way using intuitionistic first-order logic with restricted modus ponens rule.

2 Russell’s Paradox Resolution using Intuitionistic First-
order Logic with Restricted Modus Ponens Rule

2.1 Russell’s Paradox

The comprehension principle (1.1) for the condition x /∈ x gives

∃ℜ∀x(x ∈ ℜ ⇐⇒ x /∈ x). (2.1)

Thus ℜ is the set whose members are exactly those sets that are not members of themselves. It

follows from (2.1)

ℜ ∈ ℜ ⇐⇒ ℜ /∈ ℜ. (2.2)

Is ℜ a member of itself? If it is,i.e.ℜ ∈ ℜ then it must satisfy the condition of not being a member

of itself and so it is not,i.e.ℜ /∈ ℜ. If it is not, then it must not satisfy the condition of not being a

member of itself, and so it must be a member of itself. Since by classical logic only one case or the

other one must hold – either ℜ is a member of itself or it is not – it follows that the theory implies

a contradiction known as Russell’s paradox discovered by Bertrand Russell in 1901, see [1]-[6].
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Remark 2.1. Remind classical logic mandates that any contradiction trivializes a theory by making

every sentence of the theory provable. This is because, in classical logic, the following is a theorem:

Ex Falso Quodlibet : A =⇒ (¬A =⇒ B). (2.3)

Remark 2.2. Now, virtually the only way to avoid EFQ is to give up disjunctive syllogism also

known as disjunction elimination :

P ∨ ¬Q
Q

(2.4)

that is, given the usual definitions of the connectives, modus ponens! So altering basic sentential

logic in this way is radical indeed – but possible.

Remark 2.3. Unfortunately, even giving up EFQ is not enough to retain a semblance of naive

Cantor set theory (NC). One also has to give up the following additional theorem of basic sentential

logic:

Contraction: (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B). (2.5)

It can then be argued that NC leads directly, not merely to an isolated contradiction, but to

triviality. For the argument that this is so,see Curry’s paradox [7].

Thus it seems that the woes of NC are not confined to Russell’s paradox but also include a negation-

free paradox due to Curry.

Remark 2.4. Another suggestion might be to conclude that the paradox depends upon an instance

of the principle of Excluded Middle, that either ℜ is a member of ℜ or it is not. This is a principle

that is rejected by some non-classical approaches to logic, including intuitionism [8].

Remind that in classical logic, we often discuss the truth values that a formula can take the values

are usually chosen as the members of a Boolean algebra. The meet and join operations in the

Boolean algebra are identified with the ∧ and ∨ logical connectives, so that the value of a formula

of the form A ∧ B is the meet of the value of A and the value of B in the Boolean algebra. Then

we have the useful theorem that a formula is a valid proposition of classical logic if and only if its

value is 1 for every valuation-that is, for any assignment of values to its variables. A corresponding

theorem is true for intuitionistic logic, but instead of assigning each formula a value from a Boolean

algebra, one uses values from an Heyting algebra, of which Boolean algebras are a special case. A

formula is valid (or holds) in intuitionistic logic if and only if it receives the value of the top element

for any valuation on any Heyting algebra. It can be shown that to recognize valid formulas, it is

sufficient to consider a single Heyting algebra whose elements are the open subsets of the real line

R [8]. In this algebra we have:

(1) Value [⊥] = ∅,

(2) Value [⊤] = R,

(3) Value [A ∧B] = Value [A] ∩Value [B] ,

(4)Value [A ∨B] = Value [A] ∪Value [B] ,
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(5) Value [A =⇒ B] = Int
(
Value [A]{ ∪Value [B]

)
,

(6) Value [¬A] = Int
(
Value [A]{

)
,where Int(X) is the interior of X and X{ its complement.

Remark 2.5. With these assignments (1)-(6), intuitionistically valid formulas are precisely those

that are assigned the value of the entire line [8]. For example, the formula ¬ (A ∧ ¬A) is valid,since

Value [¬ (A ∧ ¬A)] = R.So the valuation of this formula is true, and indeed the formula is valid.

But the law of the excluded middle, A ∨ ¬A, can be easily shown to be invalid by using a specific

value of the set of positive real numbers for A : Value [A] = {x|x > 0} = R+.For such A one obtains

Value [¬ (A ∧ ¬A)] ̸= R.

We do now as follows:

Case I. Assume now that: (a) ℜ ∈ ℜ holds,i.e.Value [ℜ ∈ ℜ] = R and therefore ℜ /∈ ℜ is not

holds,since Value [ℜ /∈ ℜ] = ∅.

From (2.2) it follows that (b) ℜ ∈ ℜ =⇒ ℜ /∈ ℜ.From (a) and (b) by modus ponens rule it follows

that

ℜ ∈ ℜ,ℜ ∈ ℜ =⇒ ℜ /∈ ℜ ⊢ ℜ /∈ ℜ. (2.6)

From (2.6) and (a) one obtains the following formula ℜ ∈ ℜ ∧ ℜ /∈ ℜ. But by the Law of Non-

contradiction we know that ¬(ℜ ∈ ℜ∧ℜ /∈ ℜ).Thus we obtain a contradiction and therefore ℜ ∈ ℜ
is not holds.

Case II. Assume now that:

(a) ℜ /∈ ℜ holds,i.e.Value [ℜ /∈ ℜ] = R and therefore ℜ ∈ ℜ is not holds,since Value [ℜ ∈ ℜ] = ∅.

From (2.2) it follows that (b) ℜ /∈ ℜ =⇒ ℜ ∈ ℜ.From (a) and (b) by modus ponens rule it follows

that

ℜ /∈ ℜ,ℜ /∈ ℜ =⇒ ℜ ∈ ℜ ⊢ ℜ ∈ ℜ. (2.7)

From (2.7) and (b) one obtains the following formula ℜ ∈ ℜ ∧ ℜ /∈ ℜ. But by the Law of Non-

contradiction we know that ¬(ℜ ∈ ℜ∧ℜ /∈ ℜ).Thus we obtain a contradiction and therefore ℜ /∈ ℜ
is not holds. Thus bouth ℜ ∈ ℜ and ℜ /∈ ℜ is not holds, but by absent the Excluded Middle but

by absent the law Excluded Middle this does not pose any problems.

Remark 2.6. However it well known that it is possible to derive the contradiction only from the

statement (2.2) i.e., ℜ ∈ ℜ ⇐⇒ ℜ /∈ ℜ. We do so as follows:

Assume now that: ℜ ∈ ℜ ⇐⇒ ℜ /∈ ℜ holds and therefore ℜ ∈ ℜ =⇒ ℜ /∈ ℜ.

But we also know that ℜ ∈ ℜ =⇒ ℜ ∈ ℜ.So ℜ ∈ ℜ =⇒ ℜ ∈ ℜ ∧ ℜ /∈ ℜ.

But by the Law of Non-contradiction we know that ¬ (ℜ ∈ ℜ ∧ ℜ /∈ ℜ)

So by modus tollens we conclude that ℜ /∈ ℜ.

At the same time we also know that ℜ /∈ ℜ =⇒ ℜ ∈ ℜ, and thus by modus ponens we conclude

that ℜ ∈ ℜ.
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So we can deduce both ℜ ∈ ℜ and its negation ℜ /∈ ℜ using only intuitionistically acceptable

methods.

Remark 2.7. Another suggestion might be to conclude that the paradox depends upon an

instance of the Law of Non-contradiction, that ¬ (ℜ ∈ ℜ ∧ ℜ /∈ ℜ). This is a principle that is

rejected by some non-classical approaches to logic,including paraconsistent logic [9]. Nevertheless

even paraconsistent logic can not safe NC from a triviality [9].

Da Costa’s paraconsistent set theories of type NFC
ω and NFC

n , 1 ≤ n ≤ ω. has been studying A.I.

Arruda [9].

Remind that the main postulates of NFC
ω are the following [9]:

I. Extensionality

∀α∀β∀x [x ∈ α ⇐⇒ x ∈ β =⇒ α = β] . (2.8)

II. Abstraction

∃α∀x [x ∈ α ⇐⇒ F (x)] , (2.9)

where α does not occur free in F (x) and F (x) is stratified or it does not contain any formula of

the form A =⇒ B.

A.I. Arruda has been proved that da Costa’s formulation of the axiom schema of abstraction (2.9)

for the systems NFn, 1 ≤ n < ω, leads to the trivialization of the systems, see [9].

Remark 2.8. Note that in NFC
ω , the restrictions regarding the use of non-stratified formulas

obstruct a direct proof of the paradox of Curry. Russell’s set ℜ, defined as x̂¬ (x ∈ x), exists as well

as many other non-classical sets. The paradox of Russell in the form ℜ ∈ ℜ∧¬ (ℜ ∈ ℜ) is derivable

but apparently, it causes no ham to the system.

Due to its weakness, the primitive negation of NFC
ω ,¬, is almost useless for set-theoretical purposes.

Thus, let us define

˜A for A =⇒ ∀x∀y [x ∈ y ∧ x = y] . (2.10)

The universal set V is defined as x̂ (x = x) , the empty set ∅ as {x|˜(x = x)} ,and the complement

of a set α, α, as {x|˜(x ∈ a)} .

Theorem 2.1.[8]. In NFC
ω , ˜ is a minimal intuitionistic negation.

Corollary 2.1. ⊢ A =⇒ (˜A =⇒ ˜B) , ⊢ (A =⇒ B) =⇒ (˜B =⇒ ˜A) .

Corollary 2.2. All the theorems of NF whose proofs depend only on the laws of the minimal

intuitionistic first-order logic with equality and on the postulates of extensionality and abstraction

of NF are valid in NFC
ω .

Theorem 2.2.[9].(Cantor’s Theorem) NFC
ω ⊢ ˜(α ≤ P (α)).

Corollary2.3[9].(Cantor’s Paradox) NFC
ω ⊢ (V ≤ P (V)) ∧ ˜(V ≤ P (V)).

Remark 2.9.Note that Cantor’s paradox does not trivialize NFC
ω , since from A and ¬A we cannot
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obtain any formula B whatsoever. For instance, apparently, we cannot obtain any formula of the

form ¬B, where B is a nonatomic formula.

Theorem 5.3.(Paradox of identity) [9].(i) NFC
ω ⊢ ∀α∀β [(α = β) ∧ ˜ (α = β)] ,

(ii) NFC
ω ⊢ [(α ∈ β) ∧ ˜ (α ∈ β)] ,

(iii) NFC
ω ⊢ [(α ∈ α) ∧ ˜ (α ∈ α)] .

Proof. By the corollaries 2.1 and 2.2, we obtain

x = x =⇒ δ,
δ ⇐⇒ ∀α∀β [(α ∈ β) ∧ (α = β)]

(2.11)

Thus, as x = x, then ∀α∀β (α = β). By the same corollaries we also obtain ∀α∀β [˜ (α = β)] .The

proof of part (ii) is similar to that of part (i). Part (iii) is an immediate consequence of part (ii).

Remark 2.10. The paradox of identity obviously trivialized paraconsistent set theory NFC
ω .

Thus paraconsistent logics cannot resolved the problem.

2.2 The restricted rules of inference

The restricted modus ponens rule

The canonical (unrestricted) modus ponens rule may be written in sequent notation as

P, P =⇒ Q ⊢MP Q, (2.12)

where P,Q and P =⇒ Q are statements (or propositions) in a formal language and ⊢MP is a
metalogical symbol meaning that Q is a syntactic consequence of P and P → Q in some logical
system,see [10]-[11].

Truth Table 1.

P Q P =⇒ Q
T T T
T F F
F T T
F F T

The validity of modus ponens in classical two-valued logic can be clearly demonstrated by use of a

truth table.In instances of modus ponens we assume as premises that P =⇒ Q is true and P is

true. Only one line of the truth table1-the first-satisfies these two conditions: P and P =⇒ Q.

On this line, Q is also true. Therefore, whenever P =⇒ Q is true and P is true, Q must also be

true.

Let wff =wff () be a set of the all wff’s corresponding to formal language .

The restricted modus ponens rule ⊢RMP may be written in sequent notation as

P, P =⇒ Q ⊢RMP Q iff P /∈ ∆1and (P =⇒ Q) /∈ ∆2, (2.13)

where ∆1,∆2 ⊂wff .Therefore the restricted modus ponens rule ⊢RMP meant that
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P, P =⇒ Q 0RMP Q (2.14)

if P ∈ ∆1or (P =⇒ Q) ∈ ∆2 or (P ∈ ∆1) ∧ ((P =⇒ Q) ∈ ∆2) .

The restricted disjunction elimination rule.

In propositional logic, canonical (unrestricted) disjunctive syllogism or modus tollendo ponens

(MTP) also known as disjunction elimination rule. The rule makes it possible to eliminate a

disjunction from a logical proof. It is the rule that:

P ∨Q,¬P ⊢MTP Q (2.15)

and can be expressed by truth-functional tautology of propositional logic:

((P ∨Q) ∧ ¬P ) =⇒ Q (2.16)

The restricted disjunction elimination rule ⊢RMTP may be written in sequent notation as

P ∨Q,¬P ⊢RMTP Q iff P /∈ ∆1and Q /∈ ∆2, (2.17)

where ∆1,∆2 ⊂wff .In additional we set ((P ∨Q) ∧ ¬P ) ∈ ∆1and

(((P ∨Q) ∧ ¬P ) =⇒ Q) ∈ ∆2 iff P ∈ ∆1and Q ∈ ∆2.

Therefore the restricted disjunction elimination rule ⊢RMTP meant that

P ∨Q,¬P 0RMTP Q (2.18)

iff P ∈ ∆1or Q ∈ ∆2 or
(
P ∈ ∆1

)
∧
(
Q ∈ ∆2

)
.

The restricted modus tollens rule.

The canonical (unrestricted) modus tollens rule may be written in sequent notation as

P =⇒ Q,¬Q ⊢MT ¬ P, (2.19)

where ⊢MT is a metalogical symbol meaning that ¬P is a syntactic consequence of P =⇒ Q and

¬Q in some logical system; or by the statement of a functional tautology of propositional logic:

((P =⇒ Q) ∧ ¬Q) =⇒ ¬P. (2.20)

The validity of modus tollens can be clearly demonstrated through a truth table1.

In instances of the canonical modus tollens we assume as premises that P =⇒ Q is true and Q is

false. There is only one line of the truth table1-the fourth line-which satisfies these two conditions.

In this line, P is false. Therefore, in every instance in which P =⇒ Q is true and Q is false, P

must also be false.The restricted modus tollens rule may be written in sequent notation as

P =⇒ Q,¬Q ⊢RMT ¬ P iff (P =⇒ Q) /∈ ∆′
1and Q /∈ ∆′

2, (2.21)

where ∆′
1,∆

′
2 $wff .Therefore the restricted modus tollens rule meant that

P =⇒ Q,¬Q 0RMT ¬ P (2.22)

if (P =⇒ Q) ∈ ∆′
1or Q ∈ ∆′

2 or ((P =⇒ Q) ∈ ∆′
1)∧ (Q ∈ ∆′

2) .
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2.3 Curry’s paradox resolution using bivalent logic with restricted
modus ponens rule

In set theories that allow unrestricted comprehension, we can nevertheless prove any logical statement

Φ by examining the set

X = {x|x ∈ x =⇒ Φ}.
Assuming that ∈ takes precedence over both =⇒ and ⇐⇒ , the proof proceeds as follows:

1. X = {x|x ∈ x =⇒ Φ} [Definition of X]

2. x = X =⇒ (x ∈ x ⇐⇒ X ∈ X) [Substitution of equal sets in membership]

3. x = X =⇒ ((x ∈ x =⇒ Φ) ⇐⇒ (X ∈ X =⇒ Φ))

[Addition of a consequent to both sides of a biconditional (from 2)]

4. X ∈ X ⇐⇒ (X ∈ X =⇒ Φ) [Law of concretion (from 1 and 3)]

5. X ∈ X =⇒ (X ∈ X =⇒ Φ) [Biconditional elimination (from 4)]

6. X ∈ X =⇒ Φ [Contraction (from 5)]

7. (X ∈ X =⇒ Φ) =⇒ X ∈ X [Biconditional elimination (from 4)]

8. X ∈ X [Unrestricted modus ponens ⊢UMP (from 6 and 7)]

9.Φ [Unrestricted Modus ponens ⊢UMP (from 8 and 6)] since

X ∈ X,X ∈ X =⇒ Φ ⊢UMP Φ.

Curry’s paradox violated NC since any Φ statement is provable.Therefore, in a consistent set theory,

the set {x | x ∈ x → Φ} does not exist for false Φ such that 0 = 1,etc.Some proposals for set theory

have attempted to deal with Curry’s paradox not by restricting the rule of comprehension, but by

restricting the deduction rules of canonical logic [7]. The existence of proofs like the one above

shows that at least one of the deduction rules used in the proof above must be restricted.

It is clear that in order to avoid Curry’s paradox only modus ponens rule must be restricted as

mentioned above in subsection 2.2.

Let LP# be bivalent predicate calculus with restricted modus ponens rule. Let NC# be Cantor

set theory with unrestricted comprehension and equiped with bivalent predicate calculus LP#.Let
# =#

(
NC#

)
be formal lenguage corresponding to set theory NC#. Let #

wff =#
wff

(
#
)

be a set of

the all closed wff’s of the lenguage #.

Let X [Φ] be a set X [Φ] = {x|x ∈ x =⇒ Φ},where Φ ∈#
wff .

X = {x|x ∈ x =⇒ Φ}.

Assuming that ∈ takes precedence over both =⇒ and ⇐⇒ , the proof proceeds as follows:

1. X [Φ] = {x|x ∈ x =⇒ Φ} [Definition of X]

2. x = X [Φ] =⇒ (x ∈ x ⇐⇒ X [Φ] ∈ X [Φ]) [Substitution of equal sets in membership]

3. x = X [Φ] =⇒ ((x ∈ x =⇒ Φ) ⇐⇒ (X [Φ] ∈ X [Φ] =⇒ Φ))

[Addition of a consequent to both sides of a biconditional (from 2)]

4. X [Φ] ∈ X [Φ] ⇐⇒ (X [Φ] ∈ X [Φ] =⇒ Φ) [Law of concretion (from 1 and 3)]
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5. X [Φ] ∈ X [Φ] =⇒ (X [Φ] ∈ X [Φ] =⇒ Φ) [Biconditional elimination (from 4)]

6. X [Φ] ∈ X [Φ] =⇒ Φ [Contraction (from 5)]

7. (X [Φ] ∈ X [Φ] =⇒ Φ) =⇒ X [Φ] ∈ X [Φ] [Biconditional elimination (from 4)]

8. X [Φ] ∈ X [Φ] [Unrestricted modus ponens ⊢UMP (from 6 and 7)]

Let ∆̃1be a set of the all closed wff’s corresponding to a set #
wff such that

∆̃ = {(0 = 1)} ∪ {Φ|Φ ⇐⇒ (0 = 1)} .

Let ∆1be a set of the all closed wff’s Ψ [Φ] corresponding to a set #
wff such that Ψ [Φ] =

(X [Φ] ∈ X [Φ]) with Φ ∈ ∆̃.Let ∆2 be a set of the all closed wff’s Ϝ [Φ] corresponding to a set #
wff

such that Ϝ [Φ] = X [Φ] ∈ X [Φ] =⇒ Φ with Φ ∈ ∆̃.

Thus from X [Φ] ∈ X [Φ] and X [Φ] ∈ X [Φ] =⇒ Φ, we conclude Φ if and only if

(X [Φ] ∈ X [Φ]) /∈ ∆1and (X [Φ] ∈ X [Φ] =⇒ Φ) /∈ ∆2,where ∆1,∆2 $#
wff

3 Russell’s Paradox Resolution using Intuitionistic First-
order Logic with Restricted Modus Ponens Rule

3.1 The intuitionistic propositional calculus Pp# with restricted
modus ponens rule

The first step in the metamathematical study of any part of logic or mathematics is to specify a

formal language . For propositional or sentential logic, the standard language has denumerably

many distinct proposition letters P0, P1, P2, ... and symbols &,∨,→,¬,⊥ for the propositional

connectives “and,” “or,” “if ...then,” and “not” respectively, with left and right parentheses (, )

(sometimes written “[, ]” for ease of reading). Classical logic actually needs only two connectives

(since classical ∨ and → can be defined in terms of & and ¬), but the four intuitionistic connectives

are independent. The classical language is thus properly contained in the intuitionistic, which is

more expressive. The most important tool of metamathematics is generalized induction, a method

Brouwer endorsed. The class of wff’s (well-formed formulas) of the language
(
Pp#

)
of Pp# is

defined inductively by the rules:

(i) Each proposition letter is a (prime) formula.

(ii) If A,B are formulas so are (A&B), (A ∨B), (A → B) and (¬A).

(iii) Nothing is a formula except as required by (i) and (ii).

(iv)The class of wff’s of the language
(
Pp#

)
we will denoted by wff

(
Pp#

)
.

As in classical logic, (A ↔ B) abbreviates ((A → B)&(B → A)).

The axioms are all formulas of the following forms:

Pp# 1. A → (B → A).
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Pp# 2. (A → B) → ((A → (B → C)) → (A → C)).

Pp# 3. A → (B → A&B).

Pp# 4. A&B → A.

Pp# 5.A&B → B.

Pp# 6. A → A ∨B.

Pp# 7. B → A ∨B.

Pp# 8. (A → C) → ((B → C) → (A ∨B → C)).

Pp# 9. (A → B) → ((A → ¬B) → ¬A).

Pp#10. ¬A → (A → B).

Pp#11. ⊥ → A.

Remark 3.1. The system of classical logic is obtained by adding any one of the following axioms:

1.ϕ ∨ ¬ ϕ (Law of the excluded middle. May also be formulated as

(ϕ → χ) → ((¬ ϕ → χ) → χ))

2.¬ ¬ ϕ → ϕ (Double negation elimination)

((ϕ → χ) → ϕ) → ϕ (Peirce’s law)

(¬ ϕ → ¬ χ) → (χ → ϕ) (Law of contraposition)

The rules of inference of Pp# is

R#1.RMP (Restricted Modus Ponens).

From A and A → B, conclude B iff A /∈ ∆1and (A → B) /∈ ∆2,where ∆1,∆2 $wff

(
Pp#

)
We abbraviate by A,A → B ⊢RMP B.

R#2.MT (Restricted Modus Tollens)

P → Q,¬Q ⊢RMT ¬P iff P /∈ ∆′
1and (P → Q) /∈ ∆′

2,where ∆′
1,∆

′
2 $wff

(
Pp#

)
If Γ is any collection of formulas and E1, ..., Ek any finite sequence of formulas each of which is a

member of Γ, an axiom, or an immediate consequence by RMP of two preceding formulas, then

E1, ..., Ek is a derivation in Pp# of its last formula Ek from the assumptions Γ. We write Γ ⊢Pp# E

to denote that such a derivation exists with Ek = E. The following theorem is proved by induction

over the definition of a derivation; its converse follows from R#1.

Deduction Theorem. If Γ is any collection of formulas and A,B are any formulas such that

Γ ∪ {A} ⊢RMP B, then also Γ ⊢RMP (A → B).

3.2 The intuitionistic first-order predicate calculus Pd# with restric-
ted modus ponens rule

The pure first order language
(
Pd#

)
has individual variables a1, a2, a3, ..., and countably infinitely

many distinct predicate letters P1(...), P2(...), P3(...), ... of arity n for each n = 0, 1, 2, ..., including

the 0-ary proposition letters. There are two new logical symbols ∀ (“for all”) and ∃ (“there exists”).

The terms of the language
(
Pd#

)
of Pd# are the individual variables. The well formed formulas

are defined by by the rules:

(i) If P (...) is an n-ary predicate letter and t1, ..., tn are terms then P (t1, ..., tn) is a (prime) formula.
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(ii) If A, B are formulas so are (A&B), (A ∨B), (A → B) and (¬A).

(iii) If A is a formula and x an individual variable, then (∀xA) and (∃xA) are formulas.

(iv) Nothing else is a formula.

(v) The class of wff’s of the language
(
Pd#

)
we will denoted by wff

(
Pd#

)
We use x, y, z, w, x1, y1, ... and A,B,C, ..., A(x), A(x, y), ... as metavariables for variables and formulas,

respectively. Anticipating applications (e.g. to arithmetic), s, t, s1, t1, ... vary over terms. In

omitting parentheses, ∀x and ∃x are treated like ¬. The scope of a quantifier, and free and bound

occurrences of a variable in a formula, are defined as usual. A formula in which every variable is

bound is a sentence or closed formula.

If x is a variable, t a term, and A(x) a formula which may or may not contain x free, then A(t)

denotes the result of substituting an occurrence of t for each free occurrence of x in A(x). The

substitution is free if no free occurrence in t of any variable becomes bound in A(t); in this case we

say t is free for x in A(x).

In addition to Pp1 - Pp11, Pd# has two new axiom schemas, where A(x) may be any formula and

t any term free for x in A(x) :

Pd#12. ∀xA(x) → A(t).

Pd#13. A(t) → ∃xA(x).

The rules of inference are:

R#1.RMP (Restricted Modus Ponens).

From A and A → B, conclude B iff A /∈ ∆1and (A → B) /∈ ∆2,where ∆1,∆2 $wff

(
Pd#

)
We abbraviate R#1 by A,A → B ⊢RMP B.

R#2.MT (Restricted Modus Tollens)

P → Q,¬Q ⊢RMT ¬P iff P /∈ ∆′
1and (P → Q) /∈ ∆′

2,where ∆′
1,∆

′
2 $wff

(
Pd#

)
R#3. From C → A(x) where x does not occur free in C, conclude C → ∀xA(x).

R#4. From A(x) → C where x does not occur free in C, conclude ∃xA(x) → C.

A deduction (or derivation) in Pd# of a formula E from a collection Γ of assumption formulas is

a finite sequence of formulas, each of which is an axiom by Pd#1 - Pd#13, or a member of Γ,

or follows immediately by R#1, R#2 or R#3 from one or two formulas occurring earlier in the

sequence. A proof is a deduction from no assumptions. If Γ is a collection of sentences and E a

formula, the notation Γ ⊢RMP E means that a deduction of E from Γ exists. If Γ is a collection of

formulas, we write Γ ⊢RMP E only if there is a deduction of E from Γ in which neither R#2 nor

R#3 is used with respect to any variable free in Γ. With this restriction, the deduction theorem

extends to Pd#: If Γ∪ {A} ⊢RMP B then Γ ⊢RMP (A → B).such that Γ∪ {A} ⊢RMP B, then also

Γ ⊢RMP (A → B).
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3.3 Russell’s paradox resolution using first-order predicate calculus
Pd# with restricted modus ponens rule

Assume now that: ℜ ∈ ℜ ⇐⇒ ℜ /∈ ℜ holds and therefore ℜ ∈ ℜ =⇒ ℜ /∈ ℜ.

Remark 3.2.We set now (ℜ /∈ ℜ) ∈ ∆1and (ℜ /∈ ℜ =⇒ ℜ ∈ ℜ) ∈ ∆2.

We also know that ℜ ∈ ℜ =⇒ ℜ ∈ ℜ.So ℜ ∈ ℜ =⇒ ℜ ∈ ℜ ∧ ℜ /∈ ℜ.

But by the Law of Non-contradiction we know that ¬ (ℜ ∈ ℜ ∧ ℜ /∈ ℜ)

So by canonical (unrestricted) modus tollens we conclude that ℜ /∈ ℜ.

At the same time we also know that ℜ /∈ ℜ =⇒ ℜ ∈ ℜ, and thus by restricted modus ponens we

can not conclude that ℜ ∈ ℜ.

From ℜ ∈ ℜ ⇐⇒ ℜ /∈ ℜ we obtain ℜ /∈ ℜ =⇒ ℜ ∈ ℜ.We also know that ℜ /∈ ℜ =⇒ ℜ /∈ ℜ.So

ℜ /∈ ℜ =⇒ ℜ ∈ ℜ∧ℜ /∈ ℜ.But by the Law of Non-contradiction we know that ¬ (ℜ ∈ ℜ ∧ ℜ /∈ ℜ) ,

So by unrestricted modus tollens we conclude that ¬ (ℜ /∈ ℜ) and therefore we obtain that

¬ (ℜ /∈ ℜ) & ℜ /∈ ℜ.We set now (ℜ /∈ ℜ) ∈ ∆′
1and (ℜ /∈ ℜ =⇒ ℜ ∈ ℜ) ∈ ∆′

2, and thus by

restricted modus tollens we can not conclude that ¬ (ℜ /∈ ℜ) .

Thus by using calculus Pd# with restricted modus ponens rule and restricted modus tollens

Russell’s paradox dissipears.

4 Intuitionistic Set Theory INC# Based on First-order
Predicate Calculus Pd# with Restricted Modus Ponens
Rule

AXIOMS AND BASIC DEFINITIONS

Intuitionistic set theory INC# is formulated as a system of axioms in the same first order language

as its classical counterpart, only based on intuitionistic logic with restricted modus ponens rule..

The language of set theory is a first-order language # with equality =, which includes a binary

symbol ∈. We write x ̸= y for ¬ (x = y) and x /∈ y for ¬(x¬y). Individual variables x, y, z, ...of #

will be understood as ranging over classical sets. The unique existential quantifier ∃! is introduced

by writing, for any formula φ(x),∃!xφ(x) as an abbreviation of the formula ∃x[φ(x) & ∀y(φ(y) =⇒
x = y)].# will also allow the formation of terms of the form {x|φ(x)}, for any formula φ containing

the free variable x. Such terms are called nonclassical sets; we shall use upper case letters A,B, ...

for such sets. For each nonclassical set A = {x|φ(x)} the formulas ∀x [x ∈ A ⇐⇒ φ (x)] and

∀x [x ∈ A ⇐⇒ φ (x,A)]is called the defining axioms for the nonclassical set A.

Remark 4.1. Note that (1) the formula ∀x [x ∈ A ⇐⇒ φ (x)] and ∀x [x ∈ a ⇐⇒ φ (x) ∧ x ∈ u]

is not always asserts that ∀x [x ∈ A ⊢RMP φ (x)] and (or) ∀x [φ (x) ⊢RMP x ∈ A] even for a classical

set since for some y possible y ∈ A =⇒ φ (y) 0RMP φ (y) and (or)

φ (y) =⇒ y ∈ A 0RMP x ∈ A and y ∈ a =⇒ φ (y) ∧ y ∈ u 0RMP φ (y) ∧ y ∈ u,etc.In order to

84



Foukzon; JAMCS, 36(2): 73-88, 2021; Article no.JAMCS.66071

emphasize this fact we often vrite the defining axioms for the nonclassical set in the following form
∀x [x ∈ A ⇐⇒ wφ (x)]

Remark 4.2.(1) Two nonclassical sets A,B are defined to be equal and we write A = B if
∀x [x ∈ A ⇐⇒ x ∈ B] . (2) A is a subset of B, and we write A j B, if ∀x [x ∈ A =⇒ x ∈ B] .

(3) We also write Cl.Set(A) for the formula ∃u∀x [x ∈ A ⇐⇒ x ∈ u]. (4) We also write NCl.Set(A)
for the formulas ∀x [x ∈ A ⇐⇒ φ (x)] and ∀x [x ∈ A ⇐⇒ φ (x,A)] .

Remark 4.3.Cl.Set(A)) asserts that the set A is a classical set. For any classical set u, it follows
from the defining axiom for the classical set {x|x ∈ u} that Cl.Set({x : x ∈ u}).

We shall identify {x|x ∈ u} with u, so that sets may be considered as (special sorts of) nonclassical
sets and we may introduce assertions such as u ⊂ A, u j A, u = A, etc.

If A is a nonclassical set, we write ∃x ∈ A φ (x,A) for ∃x [x ∈ A ∧ φ (x,A)] and ∀x ∈ Aφ (x,A) for
∀x [x ∈ A =⇒ φ (x,A)] .

We define now the following sets:

1.{u1, u2, ..., un} = {x|x = u1 ∨ x = u2 ∨ ... ∨ x = un} .

2. {A1, A2, ..., An} = {x|x = A1 ∨ x = A2 ∨ ... ∨ x = An} .

3.∪A = {x|∃y [y ∈ A ∧ x ∈ y]} .

4.∩A = {x|∀y [y ∈ A =⇒ x ∈ y]} .5.A ∪B = {x|x ∈ A ∨ x ∈ B} .
5.A ∩B = {x|x ∈ A ∧ x ∈ B} .
6.A−B = {x|x ∈ A ∧ x /∈ B} .

7.u+ = u ∪ {u} .
8.P (A) = {x|x ⊆ A}.
9.{x ∈ A|φ (x,A)} = {x|x ∈ A ∧ φ (x,A)} .

10.V = {x| : x = x} .

11.∅ = {x|x ̸= x} .

The system INC# of set theory is based on the following axioms:

Extensionality1: ∀u∀v [∀x (x ∈ u ⇐⇒ x ∈ v) =⇒ u = v]

Extensionality2: ∀A∀B [∀x (x ∈ A ⇐⇒ x ∈ B) =⇒ A = B]

Universal Set: NCl.Set (V)

Empty Set: Cl.Set (∅)

Pairing1: ∀u∀v Cl.Set({u, v})

Pairing2: ∀A∀B NCl.Set({A,B})

Union1: ∀u Cl.Set(∪u)

Union2: ∀A NCl.Set(∪A)

Powerset1: ∀u Cl.Set(P (u))

Powerset2: ∀A NCl.Set(P (A))

Infinity ∃a
[
∅ ∈ a ∧ ∀x ∈ a

(
x+ ∈ a

)]
Separation1∀u1∀u2, ...∀unCl.Set ({x ∈ a|φ (x, u1, u2, ..., un)})

Separation2∀u1∀u2, ...∀unNCl.Cl.Set ({x ∈ A|φ (x,A;u1, u2, ..., un)}) .
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4.1 Cantor paradox resolution

Theorem 4.1. If the domain T of function F is contained in a set A and if the values of F are

subsets of A, then the set Z = {t ∈ T : t /∈ F{t)} is not a value of the function F.

Proof. We have to show that for every t ∈ T, F (t) ̸= Z. From the definition of the set Z it follows

that if t ∈ T , then t ∈ Z ⇐⇒ t /∈ F{t).Thus if F (t) = Z one obtains t ∈ Z ⇐⇒ t /∈ Z and by

using unrestricted rules of inference one obtains the contradiction:t ∈ Z ∧ t /∈ Z.

Theorem 4.2. The set P (A) is not equipollent to A nor to any subset of A.

For otherwise there would exist a one-to-one function whose domain is a subset of A and whose

range is the family of all subsets of A. But this contradicts Theorem 1.

Theorem 4.3. No two of the sets A,P(A),P(P(A)),etc. are equipollent, i.e.

A < P(A) < P(P(A)), etc. (4.1)

Cantor paradox. For universal set from Theorem 4.3 one obtains V < P(V) .But other hand

one obtains P(V) ≤ V,since P(V) ⊂ V, but this is a contradiction [12].

Remark 4.4. Note that in order to avoid Cantor paradox one needs to avoid the inequalities

(4.1). The canonical proof of the Theorem 4.3 can to blocked only by using logic with restricted

rules of inference.

I. We assume now that there exists a function F (t) such that ∃t̄
[
F (t̄) = Z

]
,i.e.there exists t̄

such that the following statement holds

t̄ ∈ Z ⇐⇒ t̄ /∈ Z. (4.2)

where Z = {t ∈ T : t /∈ F{t)}.

We set now (i)
(
t̄ /∈ Z

)
∈ ∆1and (ii)

(
t̄ /∈ Z =⇒ t̄ ∈ Z

)
∈ ∆2.From (4.1) we know that

t̄ ∈ Z =⇒ t̄ /∈ Z. (4.3)

So from (4.3) we obtain

t̄ ∈ Z =⇒ t̄ ∈ Z ∧ t̄ /∈ Z (4.4)

since t̄ ∈ Z =⇒ t̄ ∈ Z.But by the Law of Non-contradiction we know that ¬
(
t̄ ∈ Z ∧ t̄ /∈ Z

)
.

So by canonical (unrestricted) modus tollens rule we conclude that

t̄ /∈ Z. (4.5)

At the same time we also know that t̄ /∈ Z =⇒ t̄ ∈ Z, but by using restricted modus ponens rule

[under conditions (i)-(ii) mentioned above] we can not conclude that t̄ ∈ Z.

II. From t̄ /∈ Z ⇐⇒ t̄ ∈ Z we obtain t̄ /∈ Z =⇒ t̄ ∈ Z.We also know that t̄ /∈ Z =⇒ t̄ /∈ Z.So

t̄ /∈ Z =⇒ t̄ ∈ Z∧ t̄ /∈ Z.But by the Law of Non-contradiction we know that ¬ (t̄ ∈ Z ∧ t̄ /∈ Z) .Thus

by unrestricted modus tollens we conclude that

¬ (t̄ /∈ Z) (4.6)

86



Foukzon; JAMCS, 36(2): 73-88, 2021; Article no.JAMCS.66071

and therefore from (4.5)-(4.6) we obtain that ¬ (t̄ /∈ Z) ∧ t̄ /∈ Z but this is a contradiction. In

order to avoid the contradiction, we set now (t̄ /∈ Z) ∈ ∆′
1and (t̄ /∈ Z =⇒ t̄ ∈ Z) ∈ ∆′

2, and thus

by restricted modus tollens we can not conclude that ¬ (t̄ /∈ Z) .Thus finally we obtain that only

(4.5) holds.Thus by using calculus Pd# with restricted modus ponens rule and restricted modus

tollens Cantor paradox disappears sinse the inequality V < P(V) no longer holds.

5 Conclusion

In this paper set theory INC# based on intuitionistic logic with restricted modus ponens rule is

proposed. It proved that intuitionistic logic with restricted modus ponens rule can to safe Cantor

naive set theory from a triviality. Similar results for paraconsistent set theories were obtained in

papers [13]-[16].
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