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Abstract. One of the Bell’s assumptions in the original derivation of his inequalities was the
hypothesis of locality, i.e., the absence of the influence of two remote measuring instruments
on one another. That is why violations of these inequalities observed in experiments are often
interpreted as a manifestation of the nonlocal nature of quantum mechanics, or a refutation
of a local realism. It is well known that the Bell’s inequality was derived in its traditional
form, without resorting to the hypothesis of locality and without the introduction of hidden
variables, the only assumption being that the probability distributions are nonnegative. This
can therefore be regarded as a rigorous proof that the hypothesis of locality and the hypothesis
of existence of the hidden variables not relevant to violations of Bell’s inequalities. The physical
meaning of the obtained results is examined. Physical nature of the violation of the Bell
inequalities is explained under new EPR-B nonlocality postulate.We show that the correlations
of the observables involved in the Bohm–Bell type experiments can be expressed as correlations
of classical random variables. The revisited Bell type inequality in canonical notatons reads
〈AB〉+ 〈A′B〉+ 〈AB′〉 − 〈A′B′〉 ≤ 6.

1. Introduction
One of the Bell’s assumptions in the original derivation of his inequalities was the hypothesis of
locality, i.e., of the absence of the influence of two remote measuring instruments on one another.
That is why violations of these inequalities observed in experiments are often interpreted as a
manifestation of the nonlocal nature of quantum mechanics, or a refutation of local realism.
However in papers [1], [2], [3] Bell’s inequality is derived in its traditional form, without resorting
to the hypothesis of locality, the only assumption being that the probability distributions are
nonnegative. This can therefore be regarded as a rigorous proof that the hypothesis of locality is
not relevant to violations of Bell’s inequalities. The physical meaning of the obtained results is
examined. In a typical “Bell experiment”, two systems which may have previously interacted –
for instance they may have been produced by a common source – are now spatially separated and
are each measured by one of two distant observers, Alice and Bob. Alice may choose one out of



several possible measurements to perform on her system and we let x denote her measurement
choice. For instance, x may refer to the position of a knob on her measurement apparatus.
Similarly, we let y denote Bob’s measurement choice. Once the measurements are performed,
they yield outcomes a and b on the two systems.

Remark 1.1. The actual values assigned to the measurement choices x, y and outcomes
a, b are purely conventional; they are mere macroscopic labels distinguishing the different
possibilities.

Remark 1.2. From one run of the experiment to the other, the outcomes a and b that are
obtained may vary, even when the same choices of measurements x and y are made.

Assumption 1.1. These outcomes a and b are thus in general governed by a Kolmogorovian
probability distribution p(ab|xy),which can of course depend on the particular experiment being
performed. By repeating the experiment a sufficient number of times and collecting the observed
data, one can get a fair estimate of such Kolmogorovian probabilities [4], [5].

Assumption 1.2. When such an experiment is actually performed – say, by generating pairs
of spin −1/2 particles and measuring the spin of each particle in different directions – it will in
general be found that

p(ab|xy) 6= p(a|x)p(b|y), (1.1)
implying that the outcomes on both sides are not statistically independent from each other. Even
though the two systems may be separated by a large distance – and may even be space-like sep-
arated – the existence of such correlations is nothing mysterious. In particular, it does not
necessarily imply some kind of direct influence of one system on the other, for these correlations
may simply reveal some dependence relation between the two systems which was established
when they interacted in the past. This is at least what one would expect in a local theory. Let
us formulate the idea of a local theory more precisely.

Assumption 1.3. The assumption of locality implies that we should be able to identify a set
of past factors, described by some variables λ, having a joint causal influence on both outcomes,
and which fully account for the dependence between a and b. Once all such factors have been
taken into account, the residual indeterminacies about the outcomes must now be decoupled,
that is, the Kolmogorovian probabilities for a and b should factorize:

p(ab|xy, λ) = p(a|x, λ)p(b|y, λ). (1.2)
Remark 1.3. This factorability condition simply expresses that we have found an

explanation according to which the probability for a only depends on the past variables λ and
on the local measurement x, but not on the distant measurement and outcome, and analogously
for the probability to obtain b. The variable λ will not necessarily be constant for all runs of
the experiment, even if the procedure which prepares the particles to be measured is held fixed,
because λ may involve physical quantities that are not fully controllable. The different values
of λ across the runs should thus be characterized by a probability distribution q(λ). Combined
with the above factorability condition, we can thus write

p(ab|xy) =
∫
Λ dλq (λ) p(a|x, λ)p(b|y, λ), (1.3)

where we also implicitly assumed that the measurements x and y can be freely chosen in a way
that is independent of λ, i.e., that q(λ|x, y) = q(λ). This decomposition now represents a precise
condition for locality in the context of Bell experiments.

Remark 1.4. Note that no assumptions of determinism or of a “classical behaviour” are
being involved in the condition (1.3): we assumed that a (and similarly b) is only probabilistically
determined by the measurement x and the variable λ, with no restrictions on the physical laws
governing this causal relation. Locality is the crucial assumption behind (1.3). In relativistic
terms, it is the requirement that events in one region of space-time should not influence events
in space-like separated regions.

Let us consider for simplicity an experiment where there are only two measurement choices
per observer x, y ∈ {0, 1} and where the possible outcomes take also two values labelled



a, b ∈ {−1,+1}. Let 〈axby〉 be the expectation value of the product ab for given measurement
choices (x, y) :

〈axby〉 =
∑
a,b abp(ab|xy). (1.4)

Consider the following expression
S = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 , (1.5)

which is a function of the probabilities p(ab|xy). If these probabilities satisfy the locality decom-
position (1.3), we necessarily have that

S = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 ≤ 2, (1.6)
which is known as the Clauser-Horne-Shimony-Holt (CHSH) inequality [5]. To derive this in-
equality, we can use (1.3) in the definition (1.4) of 〈axby〉 , which allows us to express this
expectation value as an average

〈axby〉 =
∫
Λ dλq (λ) dλq (λ) 〈ax〉λ 〈by〉λ (1.7)

of a product of local expectations
〈ax〉λ =

∑
a ap(a|x, λ) (1.8)

and
〈by〉λ =

∑
b bp(b|y, λ) (1.9)

taking values in [−1, 1]. Inserting this expressions (1.7)-(1.9) in Eq.(1.5), we can write
S =

∫
Λ dλq (λ)Sλ, (1.10)

where
Sλ = 〈a0〉λ 〈b0〉λ + 〈a0〉λ 〈b1〉λ + 〈a1〉λ 〈b0〉λ − 〈a1〉λ 〈b1〉λ . (1.11)

Since 〈a0〉λ , 〈b0〉λ ∈ [−1, 1], this last expression is smaller than S′λ
Sλ ≤ S′λ = |〈b0〉λ + 〈b1〉λ|+ |〈b0〉λ − 〈b1〉λ| . (1.12)

Without loss of generality, we can assume that 〈b0〉λ ≥ 〈b1〉λ ≥ 0 which yields Sλ ≤ 2 〈b0〉λ ≤ 2
and thus S ≤ 2.

Consider now the quantum predictions for an experiment in which the two systems measured
by Alice and Bob are two qubits in the singlet state Ψ− = 1√

2
(|01〉 − |10〉) , where we have used

the shortcut notation |ab〉 = |a〉⊗|b〉 , and where |0〉 and |1〉 are conventionally the eigenstates of
σz for the eigenvalues +1 and−1 respectively. Let the measurement choices x and y be associated
with vectors −→x and −→y corresponding to measurements of −→x · −→σ on the first qubit and of −→y · −→σ
on the second qubit, where −→σ = (σ1, σ2, σ3) denotes the Pauli vector. According to quantum
theory we then have the expectations 〈axby〉 = − −→x ·−→y . Let the two settings x ∈ {0, 1}
correspond to measurements in the orthogonal directions ê1 and ê2 respectively and the settings
y ∈ {0, 1} to measurements in the directions − 1√

2
(ê1 + ê2) and 1√

2
(−ê1 + ê2). We then have

〈a0b0〉 = 〈a0b1〉 = 〈a1b0〉 = 1√
2

and −〈a1b1〉 = − 1√
2

whence S = 2
√

2in contradiction with

CHSH inequality (1.6).

2. Experimental violation of Bell’s inequality under strict Einstein locality
conditions. Bell theorem without the hypothesis of locality
Remind that the assumption of locality in the derivation of Bell’s theorem requires that the
measurement processes of the two observers are space-like separated (Fig.1). This means that
it is necessary to freely choose a direction for analysis, to set the analyzer and finally to register
the particle such that it is impossible for any information about these processes to travel via any
(possibly unknown) channel to the other observer before he, in turn, finishes his measurement.
Selection of an analyzer direction has to be completely unpredictable which necessitates a
physical random number generator. A numerical pseudo-random number generator can not
be used, since its state at any time is predetermined. Furthermore, to achieve complete
independence of both observers, one should avoid any common context as would be conventional
registration of coincidences as in all previous experiments. Rather the individual events should



be registered on both sides completely independently and compared only after the measurements
are finished.

This requires independent and highly accurate time bases on both sides. In our experiment
for the first time any mutual influence between the two observations is excluded within the realm
of Einstein locality. To achieve this condition the observers “Alice” and “Bob” were spatially
separated by 400 m across the Innsbruck university science campus.

Remark 2.1.The difference in fiber length was less than 1m which means that the photons
were registered simultaneously within interval 5ns.

Figure 1. Spacetime diagram of Bell experiment [6].

Remark 2.2. Assume that photon ν1 collapses in polarizer I at instant t1 and photon ν2

collapses in polarizer II at instant t2 respectively. Note that in general case t1 6= t2 even if
photons ν1 and ν2 were registered simultaneously (within interval 5ns, see Remark 2.1).

Notice that obviously there exist only three possibilities:(i) t1 − t2 = 0,(ii) t1 − t2 = τmin =
δ > 0,(iii) t1 − t2 = −τmin = −δ < 0. We have choose here τmin = const = δ = 5ns.

Remark 2.3. Events where both photomultipliers register a photon within ∆t ≤ 5ns are
ignored [6].

Figure 2. A down-converter (one way to produce an entangled pair) throws two entangled
photons ν1 and ν2 in opposite directions. Polarization of the photons ν1 and ν2 measures by
polarizers I and II respectively.
(i)t1 − t2 = 0, (ii)t1 − t2 = δ > 0, (iii)t1 − t2 = −δ < 0.

In paper [1], Bell inequality was derived in its traditional form, without resorting to
the hypothesis of locality, the only assumption being that the probability distributions are
nonnegative. This can therefore be regarded as a rigorous proof that the hypothesis of locality
is not relevant to violations of Bell inequalities.

Let A,A′, B,B′ be random variables with values in the set {−1,+1},i.e.,
A = ±1, A′ = ±1, B = ±1, B′ = ±1. (2.1)

Assume that there exist joint probability distribution functions W (A,A′, B,B′) , of
A,A′, B,B′ defined probabilities for each possible set of outcomes such that:

(i) P (A,A′, B,B′) ≥ 0, P (A,B,B′) ≥ 0, P (A′, B,B′) ≥ 0, etc., (2.2)
(ii) ∑
A,A′,B,B′

P (A,A′, B,B′) = 1,
∑

A,A′,B,B′
P (A,B,B′) = 1,

∑
A,A′,B,B′

P (A′, B,B′) = 1, etc., (2.3)

(iii)
P (A,A′, B,B′) + P (−A,A′, B,B′) = P (A′, B,B′) ≥ P (A,A′, B,B′) ,

P (A,A′, B,B′) + P (A,−A′, B,B′) = P (A′, B,B′) ≥ P (A,A′, B,B′) , etc.
(2.4)

Note that the following representatons of the quantities 〈AB〉 , 〈A′B〉 , 〈AB′〉 , 〈A′B′〉 holds [1]
〈AB〉 = PAB (++) + PAB (−−)− PAB (+−)− PAB (−+) , etc., (2.5)

where
PAB (++) = P (A = 1, B = 1) , PAB (−−) = P (A = −1, B = −1) , etc. (2.6)

It has been proved that under assumptions (2.1)-(2.4) the following Bell inequality holds [1]



|〈AB〉+ 〈A′B〉+ 〈AB′〉 − 〈A′B′〉| ≤ 2. (2.7)
3. The EPR Paradox Resolution.
In order to resolve the EPR Paradox [7] we apply a new quantum mechanical formalism

based on the probability representation of continuous observables [8], [9], [10]. We remind
that in accordance with a new quantum formalism any given n-dimensional quantum system is
identified with a set Q :

Q 〈H,=,<,2,1 ,=∗ (H) ,G, |ψt〉〉 (3.1)
where:
(i) H that is some infinite-dimensional complex Hilbert space,
(ii) = = (Ω, ,P) that is complete probability space,
(iii) < = (Rn,Σ) that is measurable space,
(iv) L2,1 (Ω) that is complete space of complex valued random variables X : Ω → Cn such

that

Ω ‖X (ω)‖ dP <∞,Ω ‖X (ω)‖2 dP <∞, (3.2)
(see [8], Ch. I, sec. II.1 postulate Q.I.1 and [9]).

Remark 3.1. Let BM4 be a Boolean algebra of physical events in Minkowski spacetime [8]

and let F phM4
= (BM4 ,P) be measure algebra of physical events in Minkowski spacetime, i.e.,

F phM4
that is a Boolean algebra BM4 with a probability measure P, (see [8], Ch.I sec. III.2,

Def. 3.2.3). We remind that we denote such physical events by A (x) , B (x) , ... etc.,where x =
(t, x1, x2, x3) ∈M4 or A,B, ...etc., and we write for a short AOc (x) , BOc (x) , ... iff there physical
events A (x) , B (x) ... were occured.

Remark 3.2. We assume that particle A is initially in the state |ψA〉 ∈ H. Let

A (q, t)A
(
|ψA〉 , Q̂, q, δq, t

)
∈ BM4 be a physical event which consists on performing a

measurement of the observable Q̂ =
∫ q2
q1
q |q〉 〈q| dq with an accuracy δq, and the result is obtained

in the range (q − δq, q + δq) at instant t.We assume that A
(
|ψA〉 , Q̂, q, δq, t

)
∈phM4

.

Remark 3.3. Note that: if there physical event A
(
|ψA〉 , Q̂, q, δq, t

)
was occurred then

immediately after the measurement at instant t unconditional measure P collapses to conditional

measure P
(
X|A

(
|ψA〉 , Q̂, q, δq, t

))
, where X ∈phM4

:

P
(
X|A

(
|ψA〉 , Q̂, q, δq, t

))
=

P
(
X∧A

(
|ψA〉,Q̂,q,δq,t

))
P
(
A
(
|ψA〉,Q̂,q,δq,t

)) . (3.3)

Remark 3.4. Remind if we suppose that a particle at a definite position x is assigned a
state vector |x〉 ∈ H, and if further we suppose that the possible positions are continuous over
the range (−∞,∞) and that the associated states are complete, then we are lead to requiring
that any state |ψA〉 of the particle must be expressible as

|ψA〉 =
∫∞
−∞ |x〉 〈x|ψA〉 dx (3.4)

with the states |x〉 by δ-function normalised, i.e. 〈x|x′〉 = δ (x− x′) .
Definition 3.1. Let B∞ = ∪[a,b]⊂RΣa,b where Σa,b = B ([a, b]) is the Borel algebra on a set

[a, b] . Let |ψ〉 ∈ H. We define now a signed measure P|ψA〉 : B∞ → R by formula

P|ψA〉 (A) =
∫
A xp|ψA〉 (x) dµ (x) , (3.5)

where p|ψA〉 (x) = |〈x|ψA〉|2 .
Remark 3.5. We assume now that (Ω, ,P) = (R,B∞,PB∞) and P|ψ〉 � PB∞ , i.e. P|ψ〉

is absolutely continuous with respect to P. By Radon-Nicodym theorem we obtain for any
A ∈ Σa,b :

P|ψ〉 (A) =
∫
AX|ψ〉 (ω) dP (ω) , (3.6)

i.e.

X|ψ〉 (ω) = dP|ψ〉dP. (3.7)



Remark 3.6. We assume now that: (i) measure algebra F phM4
= (BM4 ,P) admit a

representation < [·] : F phM4
→ (R,B∞,PB∞) of the measure algebra F phM4

= (BM4 ,P) in measure
algebra B∞ =: (R,B∞,PB∞) , such that

(ii) PB∞ (X) = P
(
<−1 [X]

)
for any X ∈ B∞ and

(iii) for any physical event such that A
(
|ψA〉 , Q̂, q, δq, t

)
∈ F phM4

(see Remark 2.6.2) the

following condition holds

<
[
A
(
|ψA〉 , Q̂, q, δq, t

)]
=
{
ω|q − δq ≤ X|ψA〉 (ω) ≤ q + δq

}
, (3.8)

where
{
ω|q − δq < X|ψA〉 (ω) < q + δq

}
∈ B∞.

3.1.The classical weak EPR argument
We briefly remind now the EPR argument [7], [8]. Suppose that a system of two identical

particles is prepared in a state such that their relative distance is large and constant |r1 − r2| =
L = x0, i.e., they are space-like separated, and the total momentum is zero −→p 1 + −→p 2 = 0 (see
Fig. 3.1). This preparation is in principle possible because the two observables say x1 − x2 and
−→p 1 + −→p 2 are compatible, i.e., both of them can be set to certain values with certainty on the
same state. Correspondingly according to quantum mechanics they are in fact represented by
commuting operators [8].

Figure 3. Schematic representation of EPR thought experiment.

Remark 3.7. Then one can measure the value of either of the two incompatible single
particle observables, say x1 or p1 and correspondingly deduce the value of either x2 = x0 − x1

or p2 = −p1 without interacting with particle 2. Because of this they correspond, according
to the EPR argument, to elements of reality of the state of particle 2 that are independent of
measurements and should be predictable by the theory [7], [8]. On the other hand, quantum
mechanics cannot predict the value of both x2 and p2 on the same state, because they are
incompatible observables and this would be in contrast to Heisenberg uncertainty principle.

Remark 3.8. Thus, conclude EPR, there are elements of reality of a state that cannot be
predicted by the theory and therefore the theory is incomplete [7], [8].

Remark 3.9. Note then in additional to canonical EPR thought experiment: (i) one can
measure at instant t the value of single particle 1 observable, say xt1 and deduce the value
xt2 = x0 − xt1 of particle 2 at instant t without interacting with particle 2 which at instant t in
state say ψt2. Such a measurement however is not disturbs the particle 2 and thus is not alters
its state ψt2 and therefore the value of single particle 2 observable say p2 the same as before
measurement on particle 1. Therefore one can measure the value pt2 in state ψt2 exactly without
any uncertainty. On the other hand, Heisenberg uncertainty principle predicts that the position
xt2 and the momentum pt2 of any particle cannot both be measured or predict exactly, at the
same time t, even in theory.

Let A and B be two particles with a state vector |ψA〉
|ψA〉 =

∫∞
−∞ |x〉 〈x|ψA〉 dx (3.9)

and with a state vector |ψB〉
|ψB〉 =

∫∞
−∞ |x〉 〈x|ψB〉 dx (3.10)

respectively, and with perfectly correlated position
xB = xA + x0 (3.11)

and perfectly anti-correlated momentum
pB = −pA. (3.12)



We define now a signed measures P|ψA〉 : B∞ → R and P|ψB〉 : B∞ → R by formulas

P|ψA〉 (A) =
∫
A
xp|ψA〉 (x) dµ (x) , (3.13)

and
P|ψB〉 (A) =

∫
A
xp|ψB〉 (x) dµ (x) , (3.14)

where p|ψA〉 (x) = |〈x|ψA〉|2 and p|ψB〉 (x) = |〈x|ψB〉|2 respectively.
Remark 3.7. We assume now that (Ω, ,P) = (R,B∞,P) and (i) P|ψA〉 � P,(ii)P|ψB〉 � P.
We define now random variables X|ψA〉 (ω) and X|ψB〉 (ω) by formulas

X|ψA〉 (ω) = dP|ψA〉dP, X|ψB〉 (ω) = dP|ψB〉dP (3.15)
respectively. Notice that from Eq.(3.11), Eq.(3.13)-Eq.(3.14) and Eqs.(3.15) it follows that

X|ψB〉 (ω) = X|ψA〉 (ω) + x0, a.s. (3.16)

Let B
(
|ψB〉 , X̂, xB, δx, t

)
∈ BM4 be a physical event which consists on performing a

measurement of the observable X̂ =
∫ x2
x1
x |x〉 〈x| dx with an accuracy δx, and the result is

obtained in the range (xB − δx, xB + δx) at instant t.

Remark 3.8. Note that: if there physical event B
(
|ψB〉 , X̂, xB, δx, t

)
was oc-

curred then immediately after the measurement at instant t unconditional measure

P collapses to conditional measure P
(
X|B

(
|ψB〉 , X̂, xB, δx, t

))
, where X ∈ F phM4

:

P
(
X|B

(
|ψB〉 , X̂, xB, δx, t

))
=

P
(
X∧B

(
|ψB〉,X̂,xB,δx,t

))
P
(
B
(
|ψB〉,X̂,xB,δx,t

)) , (3.17)

see Remark 3.3.
Notice that: (i) from Eq.(3.8) it follows that

<
[
B
(
|ψB〉 , X̂, xB, δx, t

)]
= ΣX|ψB〉

(xB, δx) , (3.18)

where we write for short ΣX|ψB〉
(xB, δx) instead

{
ω|xB − δx ≤ X|ψB〉 (ω) ≤ xB + δx

}
,i.e.

ΣX|ψB〉
(xB, δx)

{
ω|xB − δx ≤ X|ψB〉 (ω) ≤ xB + δx

}
, (3.19)

see Remark 3.2,
(ii) from Eq. (3.11), Eq. (3.16) and Eq. (3.19) it follows that

ΣX|ψB〉
(xB, δx)

{
ω|xB − δx ≤ X|ψB〉 (ω) ≤ xB + δx

}
={

ω| (xB − x0)− δx ≤ X|ψB〉 (ω)− x0 ≤ (xB − x0) + δx
}

={
ω|xA − δx ≤ X|ψA〉 (ω) ≤ xA + δx

}
ΣX|ψB〉

(xA, δx) ,

(3.20)

and thus
ΣX|ψB〉

(xB, δx) = ΣX|ψB〉
(xA, δx) (3.21)

(iii) from Eq. (3.17)-Eq. (3.19) it follows that: (i) unconditional measure PB∞ immediately

after the measurement at instant t collapses to conditional measure PB∞

(
X|Σ|ψB〉 (xB, δx)

)
,

where X ∈ B∞ :

PB∞

(
X|Σ|ψB〉 (xB, δx)

)
=

PB∞

(
X∧ΣX|ψB〉

(xB,δx)

)
PB∞

(
ΣX|ψB〉

(xB,δx)

) . (3.22)

Remark 3.9.(i) From Eq.(3.22) it follows that unconditional probability density function
pB (x) = |〈x|ψB〉|2 immediately after the measurement at instant t collapses to the following
conditional probability density function as

pB
(
x|ΣX|ψB〉

(xB, δx)
)

=

pB(x)

PB∞

(
ΣX|ψB〉

(xB,δx)

) ⇐⇒ x ∈ ΣX|ψB〉
(xB, δx)

0 ⇐⇒ x /∈ ΣX|ψB〉
(xB, δx) ,

(3.23)

see [8] appendix B.



(ii) From Eq.(3.21) and Eq.(3.22) it follows that unconditional probability density function
pA (x) = |〈x|ψA〉|2 immediately after the measurement at instant t collapses to the following
conditional probability density function as

pA
(
x|ΣX|ψA〉

(xA, δx)
)

=

pA(x)

PB∞

(
ΣX|ψA〉

(xA,δx)

) ⇐⇒ x ∈ ΣX|ψA〉
(xA, δx)

0 ⇐⇒ x /∈ ΣX|ψA〉
(xA, δx) .

(3.24)

From Eq.(3.23) it follows that a wave function ψB (x) = 〈x|ψB〉 immediately after the
measurement at instant t collapses to the following wave function

ψcoll
B (x) =


ψB(x)√

PB∞

(
ΣX|ψB〉

(xB,δx)

) ⇐⇒ x ∈ ΣX|ψB〉
(xB, δx)

0 ⇐⇒ x /∈ ΣX|ψB〉
(xB, δx)

(3.25)

From Eq.(3.24) it follows that immediately after the measurement on particle B at instant t
a wave function ψA (x) = 〈x|ψA〉 collapses to the following wave function

ψcoll
A (x) =


ψA(x)√

PB∞

(
ΣX|ψA〉

(xA,δx)

) ⇐⇒ x ∈ ΣX|ψA〉
(xA, δx)

0 ⇐⇒ x /∈ ΣX|ψA〉
(xA, δx)

(3.26)

Thus measurement on particle B alters a wave function ψA (x) even if par-
ticles A and B are space-like separatedand and therefore EPR paradox disap-
pears.

4. Bell inequalities revisited
In a typical “Bell experiment”, two systems which may have previously interacted – for

instance they may have been produced by a common source – are now spatially separated and
are each measured by one of two distant observers, Alice and Bob (see Fig.1). Alice may choose
one out of several possible measurements to perform on her system and we let xt1 denote her
measurement choice at instant t1. For instance, xt1 may refer to the position of a knob on her
measurement apparatus at instant t1. Similarly, we let yt2 denote Bob’s measurement choice.
Once the measurements are performed, they yield outcomes at1 and bt2 on the two systems.

Remark 4.1. The actual values assigned to the measurement choices xt1 , yt2 and outcomes
at1 , bt2 are purely conventional; they are mere macroscopic labels distinguishing the different
possibilities.

Remark 4.2. From one run of the experiment to the other, the outcomes at1 and bt2 that
are obtained may vary, even when the same choices of measurements xt1 and yt2 are made.

Remark 4.3. Let
{
at1xt1 , bt2yt2

}
be the random event which consists that the definite

values of the outcomes at1 and bt2 were obtained under choices of measurements xt1 and yt2
are made. We denote (i)

{
at1xt1 , bt2yt2

}
:= {axby}= if t1 = t2,(ii)

{
at1xt1 , bt2yt2

}
:= {axby}> if

t1 > t2,
{
at1xt1 , bt2yt2

}
:= {axby}< if t1 < t2.

Remark 4.4. We remind that in probability theory, events E1, E2, ..., En are said to be
mutually exclusive if the occurrence of any one of them implies the non-occurrence of the
remaining n− 1 events. Therefore, two mutually exclusive events cannot both occur.

Formally said, the intersection of each two of them is empty (the null event): Ei ∩ Ej = ∅
and therefore p (E1 ∨ E2 ∨ ... ∨ En) =

∑n
m=1 p (Em) .

Remark 4.5. Note that events Θ1 = {axby}= ,Θ2 = {axby}> ,Θ3 = {axby}< obviously are
mutually exclusive. Let {axby} be the event {axby} := Θ1 ∨Θ2 ∨Θ3 and therefore
p ({axby}) = p (Θ1) + p (Θ2) + p (Θ3) .
Remark 4.6. Note that only these events {axby} were really observed in Bell test experiment,

see section 2, Remark 2.2.



Assumption 4.1. These outcomes at1 and bt2 are thus in general governed by a
Kolmogorovian probability distribution

p(a, t1; b, t2|xt1yt2), (4.1)
which can of course depend on the particular experiment being performed. By repeating the
experiment a sufficient number of times and collecting the observed data, one can get a fair
estimate of such Kolmogorovian probabilities.

Remark 4.7. Note that in contrast with canonical formula (1.3) Kolmogorovian probability
distribution depends on instants t1 and t2. These dependencies arise from EPR-B nonlocality
postulate (see [8], Ch. I) and also based on accounting of the conditions of the Bell test
experiment, see section 2, Remark 2.1-2.2.

Assumption 4.2. The assumption of locality implies that we should be able to identify a set
of past factors, described by some variables λ, having a joint causal influence on both outcomes,
and which fully account for the dependence between at1 and bt2 . Once all such factors have been
taken into account, the residual indeterminacies about the outcomes must now be decoupled,
that is, the Kolmogorovian joint probabilities for at2 and bt2 should factorize:

p(a, t1; b, t2|xy, λ) = p(a, t1|x, λ)p(b, t2|y, λ). (4.2)
Remark 4.8. This factorability condition simply expresses that we have found an

explanation according to which the probability for at1 only depends on the past variables λ
and on the local measurement xt1 , but not on the distant measurement and outcome, and
analogously for the probability to obtain bt2 .

The variable λ will not necessarily be constant for all runs of the experiment, even if the
procedure which prepares the particles to be measured is held fixed, because λ may involve
physical quantities that are not fully controllable. The different values of λ across the runs
should thus be characterized by a probability distribution q(λ, t1, t2). Combined with the above
factorability condition, we can thus write

p(a, t1; b, t2|xy) =
∫

Λ dλq (λ, t1, t2) p(a, t1|x, λ)p(b, t2|y, λ), (4.3)
where we also implicitly assumed that the measurements xt1 and yt2 can be freely chosen in a
way that is independent of λ, i.e., that q(λ, t1, t2|xt1 , yt2) = q(λ, t1, t2). This decomposition now
represents a precise condition for locality in the context of Bell experiments.

Let us consider for simplicity an experiment where there are only two measurement choices
per observer xt1 , yt2 ∈ {0, 1} and where the possible outcomes take also two values labelled
at1 , bt2 ∈ {−1,+1}.

Let
(
at1xt1 , bt2yt2

)
be the random variable with value of the product at1 · bt2 for given

measurement choices (xt1 , yt2),i.e.
(
at1xt1 , bt2yt2

)
= at1 · bt2 .

Let
〈(
at1xt1 bt2yt2

)〉
=
〈
at1xt1 · bt2yt2

〉
be the expectation value of the product at1 · bt2 for

given measurement choices (xt1 , yt2) :〈(
at1xt1 , bt2yt2

)〉
=
〈
at1xt1 bt2yt2

〉
=
∑
a,b abp(ab, t1, t2|xt1yt2). (4.4)

Remark 4.9. We denote (i)
(
at1xt1 , bt2yt2

)
:= (axby)=if t1 = t2,(ii)

(
at1xt1 , bt2yt2

)
:=

(axby)>if t1 > t2,(iii)
(
at1xt1 , bt2yt2

)
:= (axby)<if t1 < t2.

Definition 4.1. Let (axby) be the random variable defined as follows (i) (axby) = (axby)=if
t1 = t2,(ii) (axby) = (axby)> if t1 > t2, (iii) (axby) = (axby)< if t1 < t2.

Assumption 4.3. We assume now that (t1, t2) ∈ Z2
+δ, Z+δ = Z+ × δ, 0 < δ � 1,

p(ab, t1, t2|xt1yt2) = p(ab, t1 − t2|xt1yt2) ⇐⇒ (|t1 − t2| = δ) ∧ (|t1 − t2| = 0) ,
q (λ, t1, t2) = q (λ, t1 − t2) ⇐⇒ (|t1 − t2| = δ) ∧ (|t1 − t2| = 0) .

. (4.5)

Remark 4.10. We denote (i) p(ab, t1 − t2|xt1yt2) := p=(ab, t1 − t2|xt1yt2) if t1 = t2,
(ii) p(ab, t1 − t2|xt1yt2) := p>(ab, t1 − t2|xt1yt2) if t1 > t2,
(iii) p(ab, t1 − t2|xt1yt2) := p<(ab, t1 − t2|xt1yt2) if t1 < t2.



Thus 〈(
at1xt1 , bt2yt2

)〉
=
〈
at1xt1 bt2yt2

〉
=
∑
a,b a · b · p(ab, t1 − t2|xt1yt2)

and
〈(axby)〉 = 〈axby〉 =

∑
a,b a · b · p=(ab, t1 − t2|xt1yt2)+

+
∑
a,b a · b · p>(ab, t1 − t2|xt1yt2) +

∑
a,b a · b · p<(ab, t1 − t2|xt1yt2) =∑

a,b a · b · [p=(ab, t1 − t2|xt1yt2) + p>(ab, t1 − t2|xt1yt2) +
p<(ab, t1 − t2|xt1yt2)] ,

(4.6)

see Remark 4.5.
Remark 4.11.We denote〈

at1xt1 bt2yt2

〉
=: 〈axby〉= (4.7)

iff |t1 − t2| = 0. We abbreviate〈
at1xt1 bt2yt2

〉
=: 〈axby〉> (4.8)

iff |t1 − t2| = δ and t1 > t2. We abbreviate〈
at1xt1 bt2yt2

〉
=: 〈axby〉< (4.9)

iff |t1 − t2| = δ and t1 < t2. We abbreviate
〈axby〉 =: 〈axby〉= + 〈axby〉> + 〈axby〉< . (4.10)

Consider the following expression
S = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 , (4.11)

which is a function of the probabilities p(ab, t1, t2|xt1yt2). If these probabilities satisfy the locality
decomposition (4.3) and Eq. (4.5), we necessarily have that

S = S= + S> + S< = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 ≤ 6, (4.12)
where

〈a0b0〉 = 〈a0b0〉= + 〈a0b0〉> + 〈a0b0〉< ,
〈a0b1〉 = 〈a0b1〉= + 〈a0b1〉> + 〈a0b1〉< ,
〈a1b0〉 = 〈a1b0〉= + 〈a1b0〉> + 〈a1b0〉< ,
〈a1b1〉 = 〈a1b1〉= + 〈a1b1〉> + 〈a1b1〉< ,

and
S= = 〈a0b0〉= + 〈a0b1〉= + 〈a1b0〉= − 〈a1b1〉= ,
S> = 〈a0b0〉> + 〈a0b1〉> + 〈a1b0〉> − 〈a1b1〉> ,
S> = 〈a0b0〉< + 〈a0b1〉< + 〈a1b0〉< − 〈a1b1〉< .

(4.13)

To derive this inequality, we can use (4.3) and Eq. (4.5) in the definitions (4.7)-(4.9) of
〈a0b0〉= , 〈axby〉> and 〈axby〉< which allows us to express these expectation values as an averages:

〈axby〉= =
∫
Λ dλq (λ, t1 − t2) (λ) 〈ax〉=λ 〈by〉

=
λ , (4.14)

where t1 − t2 = 0, and where we abbreviate
〈
at1xt1

〉
λ

=: 〈ax〉=λ ,
〈
bt2yt2

〉
λ

=: 〈by〉=λ ,
〈axby〉> =

∫
Λ dλq (λ, t1 − t2) (λ) 〈ax〉>λ 〈by〉

>
λ , (4.15)

where t1 > t2 and t1 − t2 = δ, and where we denote
〈
at1xt1

〉
λ

=: 〈ax〉>λ ,
〈
bt2yt2

〉
λ

=: 〈by〉>λ ,
〈axby〉< =

∫
Λ dλq (λ, t1 − t2) (λ) 〈ax〉<λ 〈by〉

<
λ , (4.16)

where t1 < t2, t1 − t2 = −δ, and where we denote
〈
at1xt1

〉
λ

=: 〈ax〉<λ ,
〈
bt2yt2

〉
λ

=: 〈by〉<λ ,of a

product of corresponding local expectations:
〈ax〉=λ =

∑
a ap(a, t1|x, λ), 〈by〉=λ =

∑
b bp(b, t2|y, λ), (4.17)

and
〈ax〉>λ =

∑
a ap(a, t1|x, λ), 〈by〉>λ =

∑
b bp(b, t2|y, λ), (4.18)

and
〈ax〉<λ =

∑
a ap(a, t1|x, λ), 〈by〉<λ =

∑
b bp(b, t2|y, λ), (4.19)

taking values in [−1, 1]. Inserting this expressions (4.17)-(4.19) in Eqs.(4.13), one obtains
S= =

∫
Λ dλq (λ, 0)S=

λ , S> =
∫

Λ dλq (λ, δ)S>λ , S< =
∫

Λ dλq (λ,−δ)S<λ , (4.20)
where



S=
λ = 〈a0〉=λ 〈b0〉

=
λ + 〈a0〉=λ 〈b1〉

=
λ + 〈a1〉=λ 〈b0〉

=
λ − 〈a1〉=λ 〈b1〉

=
λ ,

S>λ = 〈a0〉>λ 〈b0〉
>

λ + 〈a0〉>λ 〈b1〉
>

λ + 〈a1〉>λ 〈b0〉
>

λ − 〈a1〉>λ 〈b1〉
>

λ ,
S<λ = 〈a0〉<λ 〈b0〉

<
λ + 〈a0〉<λ 〈b1〉

<
λ + 〈a1〉<λ 〈b0〉

<
λ − 〈a1〉<λ 〈b1〉

<
λ .

(4.21)

Since 〈a0〉λ , 〈b0〉λ ∈ [−1, 1], these last expressions is smaller than S̃=
λ , S̃

>

λ and S̃<λ
correspondingly, where

S=
λ ≤ S̃=

λ = |〈b0〉=λ + 〈b1〉=λ |+ |〈b0〉
=
λ − 〈b1〉

=
λ | ,

S>λ ≤ S̃
>

λ =
∣∣〈b0〉>λ + 〈b1〉>λ

∣∣+ ∣∣〈b0〉>λ − 〈b1〉>λ ∣∣ ,
S<λ ≤ S̃

<

λ =
∣∣〈b0〉<λ + 〈b1〉<λ

∣∣+ ∣∣〈b0〉<λ − 〈b1〉<λ ∣∣ . (4.22)

Without loss of generality, we can assume that
〈b0〉=λ ≥ 〈b1〉

=
λ ≥ 0, 〈b0〉>λ ≥ 〈b1〉

>

λ ≥ 0, 〈b0〉<λ ≥ 〈b1〉
<

λ ≥ 0, (4.23)
which yields

S=
λ ≤ 2 〈b0〉=λ ≤ 2, S>λ ≤ 2 〈b0〉>λ ≤ 2, S<λ ≤ 2 〈b0〉<λ ≤ 2 (4.24)

and thus
S= ≤ 2, S> ≤ 2, S< ≤ 2. (4.25)

From (4.25) by summation we obtain
S = S= + S> + S< ≤ 6. (4.26)

The inequality (4.26) finalized the proof [8].
5.The canonical Leggett inequality.
Leggett have introduced the class of non-local models and formulated an incompatibility the-

orem [11]. Such models were extended so as to make it applicable to real experimental situations
and also to allow simultaneous tests of all local hidden-variable models. Finally, an experiment
was performed that violates the new inequality and hence excludes for the first time a broad class
of non-local hidden-variable theories [12]. These theories are based on the following assumptions:
(1) all measurement outcomes are determined by pre-existing properties of particles independent
of the measurement (realism); (2) physical states are statistical mixtures of subensembles with
definite polarization, where (3) polarization is defined such that expectation values taken for
each subensemble obey Malus’ law (that is, the well-known cosine dependence of the intensity
of a polarized beam after an ideal polarizer).

These assumptions are in a way appealing, because they provide a natural explanation of
quantum mechanically separable states, e.g., polarization states indeed obey Malus’ law. In
addition, they do not explicitly demand locality; that is, measurement outcomes may very well
depend on parameters in space-like separated regions.

Remark 5.1. Note that assumption (1) requires that an individual binary measurement
outcome A for a polarization measurement along direction ~a (that is, whether a single photon
is transmitted or absorbed by a polarizer set at a specific angle) is predetermined by some set
of hidden-variables λ, and a three-dimensional vector ~u, as well as by some set of other possibly
non-local parameters η (for example, measurement settings in space-like separated regions) -
that is, A = A(λ, ~u,~a, η). According to assumption (3), particles with the same ~u but with dif-
ferent λ build up subensembles of ’definite polarization’ described by a probability distribution
ρ~u(λ). The expectation value A(~u), obtained by averaging over λ, fulfils Malus’ law, that is,
A(~u) =

∫
dλρ~u(λ)A(λ, ~u,~a, η) = ~u · ~a. Finally, with assumption (2), the measured expectation

value for a general physical state is given by averaging over the distribution F (~u) of subensembles,
that is, 〈A〉 =

∫
d~uF (~u)A(~u). Let us consider a specific source, which emits pairs of photons with

well-defined polarizations ~u and ~v to laboratories of Alice and Bob, respectively. The local polar-
ization measurement outcomes A and B are fully determined by the polarization vector, by an
additional set of hidden variables λ specific to the source and by any set of parameters η outside
the source. For reasons of clarity, we choose an explicit non-local dependence of the outcomes on
the settings ~a and ~b of the measurement devices. Note, however, that this is just an example of a



possible non-local dependence, and that one can choose any other set out of η. Each emitted pair
is fully defined by the subensemble distribution ρ~u,~v(λ). In agreement with assumption (3) we
impose the following conditions on the predictions for local averages of such measurements (all
polarizations and measurement directions are represented as vectors on the Poincaré sphere [10]):

A(~u) =
∫
dλρ~u,~v(λ)A(~a,~b, λ) = ~u · ~a,B(~v) =

∫
dλρ~u,~v(λ)B(~b,~a, λ) = ~v ·~b. (5.1)

It is important to note that the validity of Malus’ law imposes the non-signalling condition
on the investigated non-local models, as the local expectation values do only depend on local pa-
rameters. The correlation function of measurement results for a source emitting well-polarized
photons is defined as the average of the products of the individual measurement outcomes:

AB(~u,~v) =
∫
dλρ~u,~v(λ)A(~a,~b, λ)B(~b,~a, λ). (5.2)

For a general source producing mixtures of polarized photons the observable correlations are
averaged over a distribution of the polarizations F (~u,~v), and the general correlation function E
is given by:

E = 〈AB〉 =
∫
d~ud~vF (~u,~v)AB(~u,~v) (5.3)

It is a very important trait of this model that there exist subensembles of definite polarizations
(independent of measurements) and that the predictions for the subensembles agree with Malus’
law. It is clear that other classes of non-local theories, possibly even fully compliant with all
quantum mechanical predictions, might exist that do not have this property when reproducing
entangled states. There the non-local correlations are a consequence of the non-local quantum
potential, which exerts suitable torque on the particles leading to experimental results compliant
with quantum mechanics. In that theory, neither of the two particles in a maximally entangled
state carries any angular momentum at all when emerging from the source. In contrast, in the
Leggett model, it is the total ensemble emitted by the source that carries no angular momentum,
which is a consequence of averaging over the individual particles’ well defined angular momenta
(polarization).

The theories described here are incompatible with quantum theory. Remind the basic idea
of the incompatibility theorem [11] uses the following identity, which holds for any numbers
A = ±1 and B = ±1:

−1 + |A+B| = AB = 1− |A−B|. (5.4)

One can apply this identity to the dichotomic measurement results A = A(~a,~b, λ) = ±1 and

B = B(~b,~a, λ) = ±1. The identity holds even if the values of A and B mutually depend on each
other. For example, the value of a specific outcome A can depend on the value of an actually
obtained result B. In contrast, in the derivation of the CHSH inequality it is necessary to assume
that A and B do not depend on each other. Therefore, any kind of non-local dependencies used
in the present class of theories are allowed. Taking the average over the subensembles with
definite polarizations we obtain:

−1 +
∫
dλρ~u,~v(λ)|A+B| =

∫
dλρ~u,~v(λ)AB = 1−

∫
dλρ~u,~v(λ)|A−B| (5.5)

Denoting these averages by 〈·〉, one arrives at the shorter expression:
−1 + 〈|A+B|〉 = 〈AB〉 = 1− 〈|A−B|〉 . (5.6)

As the average of the modulus is greater than or equal to the modulus of the averages, we get
the inequalities:

−1 + | 〈A〉+ 〈B〉 | ≤ 〈AB〉 ≤ 1− | 〈A〉 − 〈B〉 |. (5.7)
By inserting Malus’ law, equations (5.1), in equation (5.7), and by using expression (5.3), one

gets at a set of inequalities for experimentally accessible correlation functions [12]. In particular,
if we let Alice choose her observable from the set of two settings ~a1 and ~a2, and Bob from the set
of three settings ~b1, ~b2 and ~b3 = ~a2, the following generalized Leggett-type inequality is obtained
[12]:



SNLHV = |E11(ϕ) + E23(0)|+ |E22(ϕ) + E23(0)| ≤ 4− 4
π | sin

ϕ
2 |, (5.8)

where Ekl(ϕ) is a uniform average of all correlation functions, defined in the plane of ~ak and
~bl, with the same relative angle ϕ; the subscript NLHV stands for ’non-local hidden- variables’.
For the inequality to be applied, vectors ~a1 and ~b1 necessarily have to lie in a plane orthogonal
to the one defined by ~a2 and ~b2. This contrasts with the standard experimental configuration
used to test the CHSH inequality, which is maximally violated for settings in one plane.

Figure 4. Testing non-local hidden-variable theories [12].

It is well known that quantum theory violates inequality (5.8). Consider the
quantum predictions for the polarization singlet state of two photons, |Ψ−〉AB =

1√
2

[|H〉A|V 〉B − |V 〉A|H〉B], where, for example, |H〉A denotes a horizontally polarized photon

propagating to Alice. The quantum correlation function for the measurements ~ak and ~bl
performed on photons depends only on the relative angles between these vectors, and therefore
Ekl = −~ak ·~bl = − cosϕ. Thus the left hand side of inequality (5.8), for quantum predictions,
reads |2(cosϕ + 1)|. The maximal violation of inequality (5.8) is for ϕmax = 18.8◦. For this
difference angle, the bound given by inequality (5.8) equals 3.792 and the quantum value is
3.893. Although this excludes canonical the non-local models, it might still be possible that
the obtained correlations could be explained by a local realistic model. In order to avoid that,
we have to exclude both local realistic and non-local realistic hidden-variable theories. Note
however that such local realistic theories need not be constrained by assumptions (1)-(3). The
violation of the CHSH inequality invalidates the all canonical local realistic models. If one takes

SCHSH = |E11 + E12 − E21 + E22| ≤ 2 (5.9)
the quantum value of the left hand side for the settings used to maximally violate inequality
(5.8) is 2.2156, see [12]. The correlation function determined in an actual experiment is typically
reduced by a visibility factor V to Eexp = −V cosϕ owing to noise and imperfections. Thus to
observe violations of inequality (5.8) (and inequality (5.9)) in the experiment, one must have a
sufficiently high experimental visibility of the observed interference. For the optimal difference
angle ϕmax = 18.8◦, the minimum required visibility is given by the ratio of the bound (3.792)
and the quantum value (3.893) of inequality (5.8), or ∼ 97.4%. We note that in standard
Bell-type experiments, a minimum visibility of only ∼ 71% is sufficient to violate the CHSH
inequality, inequality (5.9), at the optimal settings. For the settings used here, the critical visi-
bility reads 2/2.2156 ≈ 90.3%, which is much lower than 97.4%.

Figure 5. Experimental set-up [12].

A 2-mm-thick type-II -barium-borate (BBO) crystal is pumped with a pulsed frequency-
doubled Ti-sapphire laser (180 fs) at λ= 395 nm wavelength and ˜150 mW optical c.w.
power. The crystal is aligned to produce the polarization-entangled singlet state |Ψ−〉AB =



1√
2

[|H〉A|V 〉B − |V 〉A|H〉B]. Spatial and temporal distinguishability of the produced photons

(induced by birefringence in the BBO) are compensated by a combination of half-wave plates
(λ/2) and additional BBO crystals (BBO/2), while spectral distinguishability (due to the broad
spectrum of the pulsed pump) is eliminated by narrow spectral ltering of 1 nm bandwidth in
front of each detector.

In addition, the reduced pump power diminishes higher-order SPDC emissions of multiple
photon pairs. This allows us to achieve a two-photon visibility of about 99%, which is well beyond
the required threshold of 97:4%. The arrows in the Poincare spheres indicate the measurement
settings of Alice’s and Bob’s polarizers for the maximal violation of inequality (3.3.9). Note

that setting
−→
b 2 lies in the y − z plane and therefore a quarter-wave plate has to be introduced

on Bob’s side. The coloured planes indicate the measurement directions for various difference
angles ϕ for both inequalities.

In terms of experimental count rates, the correlation function E(~a,~b) for a given pair of
general measurement settings is defined by

E(~a,~b) = N+++N−−−N+−−N−+

N+++N−−+N+−+N−+
, (5.10)

where NAB denotes the number of coincident detection events between Alice’s and Bob’s
measurements within the integration time. We ascribe the number +1, if Alice (Bob) detects

a photon polarized along ~a
(
~b
)
, and −1 for the orthogonal direction ~a⊥

(
~b⊥
)
. For example,

N+− denotes the number of coincidences in which Alice obtains ~a and Bob ~b⊥. Note that

E(~ak,~bl) = Ekl(ϕ), where ϕ is the difference angle between the vectors ~a and ~b on the Poincaré

sphere. To test inequality (5.8), three correlation functions (E(~a1,~b1, ), E(~a2,~b2), E(~a2,~b3)) have

to be extracted from the measured data. We choose observables ~a1 and ~b1 as linear polarization
measurements (in the x-z plane on the Poincaré sphere; see Fig. 5) and ~a2 and ~b2 as elliptical

polarization measurements in the y-z plane. Two further correlation functions (E(~a2,~b1) and

E(~a1,~b2)) are extracted to test the CHSH inequality (5.9).

Figure 6 shows the experimental violation of inequalities (5.8) and (5.9) for various differ-
ence angles. Maximum violation of inequality (5.8) is achieved, for example, for the settings
{α1, α2, β1, β2, β3} = {45◦, 0◦, 55◦, 10◦, 0◦}.

Figure 6. Experimental violation of the inequalities
for non-local hidden-variable theories (NLHV) and for local

realistic theories (CHSH) [12].

(a) Dashed line indicates the bound of inequality (5.8) for the investigated class of nonlocal
hiddenvariable theories. The solid line is the quantum theoretical prediction reduced by the
experimental visibility. The shown experimental data were taken for various difference angles
ϕ (on the Poincaré sphere) of local measurement settings. The bound is clearly violated for
4◦ < ϕ < 36◦. Maximum violation is observed for ϕmax = 20◦.

(b) At the same time, no local realistic theory can model the correlations for the investigated
settings as the same set of data also violates the CHSH inequality (5.9). The bound (dashed
line) is overcome for all values ϕ around ϕmax, and hence excludes any local realistic explanation
of the observed correlations in a.



6.Leggett inequality revisited. Validity of the revised Leggett inequality.
In [10] we have introduced the new class of non-local models. Such models were extended

so as to make it applicable to real experimental situations and also to allow simultaneous
tests of all local hidden-variable models considered in sect 4. A general framework of
such nonclassical models is the following: assumption (1) requires that an individual binary
measurement outcome At1 for a polarization measurement at instant t1 along direction ~a
(that is, whether a single photon is transmitted or absorbed at instant t1 by a polarizer
set at a specific angle) is predetermined by some set of hidden-variables λ, and a three-
dimensional vector ~u, as well as by some set of other possibly non-local parameters η (for
example, measurement settings in space-like separated regions) - that is, At1(λ, ~u,~a, η) =
A(λ, ~u,~a, η, t1). According to assumption (3), particles with the same ~u but with different λ build
up subensembles of ’definite polarization’ described by a probability distribution ρ~u(λ, t1). The
expectation value 〈At1(~u)〉 = 〈A(~u, t1)〉 , obtained by averaging over λ, fulfils Malus’ law, that
is, 〈At1(~u)〉 =

∫
dλρ~u(λ, t1)A(λ, ~u,~a, η, t1) = ~u · ~a. Finally, with assumption (2), the measured

expectation value for a general physical state is given by averaging over the distribution F (~u, t1)
of subensembles, that is, 〈At1〉 =

∫
d~uF (~u, t1) 〈At1(~u)〉. Let us consider a specific source, which

emits pairs of photons with well-defined polarizations ~u and ~v to laboratories of Alice and Bob,
respectively. The local polarization measurement outcomes At1 and Bt2 are fully determined by
the polarization vector, by an additional set of hidden variables λ specific to the source and by
any set of parameters η outside the source. For reasons of clarity, we choose an explicit non-local
dependence of the outcomes on the settings ~a and ~b of the measurement devices. Note, however,
that this is just an example of a possible non-local dependence, and that one can choose any other
set out of η. Each emitted pair is fully defined by the subensemble distribution ρ~u,~v(λ, t1, t2). In
agreement with assumption (3) we impose the following conditions on the predictions for local
averages of such measurements (all polarizations and measurement directions are represented as
vectors on the Poincaré sphere):

〈At1(~u)〉 =
∫
dλρ~u,~v(λ, t1, t2)A(~a,~b, λ, t1) = ~u · ~a, (6.1)

〈Bt2(~v)〉 =
∫
dλρ~u,~v(λ, t1, t2)B(~b,~a, λ, t2) = ~v ·~b. (6.2)

It is important to note that the validity of Malus’ law imposes the non-signalling condition
on the investigated non-local models, as the local expectation values do only depend on local pa-
rameters. The correlation function of measurement results for a source emitting well-polarized
photons is defined as the average of the products of the individual measurement outcomes:
〈At1Bt2(~u,~v)〉 = 〈AB(~u,~v, t1, t2)〉 =

∫
dλρ~u,~v(λ, t1, t2)A(~a,~b, λ, t1)B(~b,~a, λ, t2) (6.3)

For a general source producing mixtures of polarized photons the observable correlations
are averaged over a distribution of the polarizations F (~u,~v, t1, t2), and the general correlation
function E (t1, t2) is given by:

E (t1, t2) = 〈At1Bt2〉F =
∫
d~ud~vF (~u,~v, t1, t2) 〈AB(~u,~v, t1, t2)〉 . (6.4)

Assumption 6.1. We assume now that |t1 − t2| = δ > 0, and
〈AB(~u,~v, t1, t2)〉 = 〈AB(~u,~v, t1 − t2)〉 ,

F (~u,~v, t1, t2) = F (~u,~v, t1 − t2),
E (t1, t2) = E (t1 − t2) .

(6.5)

Remark 6.1.We abbreviate now for short
〈At1Bt2(~u,~v)〉 〈AB(~u,~v)〉> ifft1 − t2 = δ > 0,
〈At1Bt2(~u,~v)〉 〈AB(~u,~v)〉< ifft1 − t2 = −δ < 0,

E (t1, t2)E>ifft1 − t2 = δ > 0, E (t1, t2)E<ifft1 − t2 = −δ < 0.
(6.6)

We take a source which distributes pairs of well-polarized photons. Different pairs can
have different polarizations. The size of a subensemble in which photons have polarizations
~u and ~v is described by the weight function F (~u,~v, t1, t2) = F (~u,~v, t1 − t2). All polarizations
and measurement directions are represented as vectors on the Poincaré sphere. In every such



subensemble individual measurement outcomes are determined by hidden variables λ. The
hidden variables are distributed according to the distribution ρ~u,~v(λ, t1, t2) = ρ~u,~v(λ, t1 − t2).
For any dichotomic measurement results, At1 = ±1 and Bt2 = ±1, the following identity holds:

−1 + |At1 +Bt2 | = At1Bt2 = 1− |At1 −Bt2 |. (6.7)
If the signs of At1 and Bt2 are the same |At1 +Bt2 | = 2 and |At1−Bt2 | = 0, and if At1 = −Bt2

then |At1 + Bt2 | = 0 and |At1 − Bt2 | = 2. Any kind of non-local dependencies is allowed,

i.e. At1 = A(~a,~b, ~u,~v, λ, t1....) and Bt2 = B(~a,~b, ~u,~v, λ, t2....). Taking ther average over the
subensemble with definite polarizations gives

−1 +
∫
dλρ~u,~v(λ, t1, t2)|At1 +Bt2 | =∫

dλρ~u,~v(λ, t1, t2)At1Bt2 = 1−
∫
dλρ~u,~v(λ, t1, t2)|At1 −Bt2 |,

(6.8)

which in an abbreviated notation, where the averages are denoted by 〈·〉, is
−1 + 〈|At1 +Bt2 |〉 = 〈At1Bt2〉 = 1− 〈|At1 −Bt2 |〉 . (6.9)

As the average of the modulus is greater than or equal to the modulus of the averages, we
get the inequalities:

−1 + | 〈At1〉+ 〈Bt2〉 | ≤ 〈At1Bt2〉 ≤ 1− | 〈At1〉 − 〈Bt2〉 |. (6.10)
From now on only the upper bound will be considered, however all steps apply to the lower

bound as well. With the assumption that photons with well defined polarization obey Malus’
law

〈At1〉 = ~u · ~a, 〈Bt2〉 = ~v ·~b, (6.11)
the upper bound of the inequality (6.10) becomes

〈At1Bt2〉 ≤ 1− |~u · ~ak − ~v ·~bl|, (6.12)

where ~ak and ~bl are unit vectors associated with the k-th measurement setting of Alice and the
l-th of Bob, respectively. Taking the average over arbitrary polarizations we obtain

Ekl (t1, t2) ≤ 1−
∫
d~ud~vF (~u,~v, t1, t2)|~u · ~ak − ~v ·~bl|. (6.13)

Remark 6.2. We assume now that t1 − t2 = δ > 0 and by using (6.5)-(6.6) we rewrite now
the inequalities (6.12) and (6.13) as

〈AB〉> ≤ 1− |~u · ~ak − ~v ·~bl| (6.14)

and E>kl ≤ 1−
∫
d~ud~vF (~u,~v, δ)|~u · ~ak − ~v ·~bl|. (6.15)

respectively.
Remark 6.3. We assume now that t1 − t2 = −δ < 0 and by using (6.5)-(6.6) we rewrite

now the inequalities (6.12) and (6.13) as
〈AB〉< ≤ 1− |~u · ~ak − ~v ·~bl| (6.16)

and
E<kl ≤ 1−

∫
d~ud~vF (~u,~v,−δ)|~u · ~ak − ~v ·~bl|. (6.17)

respectively.
Remark 6.4. We define now the full avereges EGHV Tkl as

EGHV Tkl = E>kl + E<kl, (6.18)

where EGHV Tkl is the correlation function which can be experimentally measured when Alice

chooses to measure ~ak and Bob chooses ~bl. Let us denote by ukl and vkl the length of projections
of vectors ~u and ~v onto the plane spanned by ~ak and ~bl.

Thus from the inequalities (6.15) and (6.17) by using Eq.(6.18) we obtain

EGHV Tkl ≤ 2−
∫
d~ud~vF̃ (~u,~v)|~u · ~ak − ~v ·~bl|,

F̃ (~u,~v, δ) = F (~u,~v, δ) + F (~u,~v,−δ).
(6.19)

Let us denote by ukl and vkl the length of projections of vectors ~u and ~v onto the plane
spanned by ~ak and ~bl. Since one can decompose vectors ~u and ~v into a vector orthogonal to the
plane of the settings and a vector within the plane the scalar products read



~u · ~ak = ukl cos(φak − φu), ~v ·~bl = vkl cos(φbl − φv), (6.20)
where all φ angles are relative to some axis within the plane of the settings; Angles φu and φv
describe the position of the projections of vectors ~u and ~v, respectively, whereas angles φak and
φbl describe the position of the setting vectors. With this notation the inequality (6.19) becomes
to

EGHV Tkl ≤ 2−
∫
d~ud~vF̃ (~u,~v, δ)|ukl cos(φak − φu)− vkl cos(φbl − φv)|. (6.21)

The magnitudes of the projections can always be decomposed into the sum and the difference
of two real numbers ukl = n1 + n2 and vkl = n1− n2. We insert this decomposition into the last
inequality, and hence the terms multiplied by n1 and n2 are

cos(φak − φu)− cos(φbl − φv) =

= 2 sin
φak+φbl−(φu+φv)

2 sin
−(φak−φbl )+φu−φv

2

(6.22)

and
cos(φak − φu)− cos(φbl − φv) =

= 2 cos
φak+φbl−(φu+φv)

2 cos
φak−φbl−(φu−φv)

2 ,
(6.23)

respectively. We make the following substitution for the measurement angles

ξkl =
φak+φbl

2 , ϕkl = φak − φbl , (6.24)
and parameterize the position of the projections within their plane by

ψuv = φu+φv
2 , χuv = φu − φv. (6.25)

Using these new angles one obtaines that

EGHV Tkl (ξkl, ϕkl) ≤ 2−
2
∫
d~ud~vF̃ (~u,~v, δ)|n2 cos ϕkl−χuv2 cos(ξkl − ψuv)− n1 sin ϕkl−χuv

2 sin(ξkl − ψuv)|,
(6.26)

where in the correlation function Ekl(ξkl, ϕkl) we explicitly state the angles it is dependent on.
The expression within the modulus is a linear combination of two harmonic functions of ξkl−ψuv,
and therefore is a harmonic function itself. Its amplitude reads√

n2
2 cos2

(
ϕkl−χuv

2

)
+ n2

1 sin2
(
ϕkl−χuv

2

)
, (6.27)

and the phase is some fixed real number α
EGHV Tkl (ξkl, ϕkl) ≤

2− 2
∫
d~ud~vF̃ (~u,~v, δ)

√
n2

2 cos2
(
ϕkl−χuv

2

)
+ n2

1 sin2
(
ϕkl−χuv

2

)
×

×| cos(ξkl − ψuv + α)|.

(6.28)

In the next step we average both sides of this inequality over the measurement angle ξkl =
φak+φbl

2 . This means an integration over ξkl ∈ [0, 2π) and a multiplication by 1
2π . The integral

of the ξkl dependent part of the right-hand side of (6.28) reads:
1

2π

∫ 2π
0 dξkl |cos(ξkl − ψuv + α)| = 2

π . (6.29)
By denoting the average of the correlation function over the angle ξkl as:

EGHV Tkl (ϕkl) ≡ 1
2π

∫ 2π
0 dξklE

GHV T
kl (ξkl, ϕkl), (6.30)

one can write (6.28) as

EGHV Tkl (ϕkl) ≤ 2− 4
π

∫
d~ud~vF̃ (~u,~v, δ)

√
n2

2 cos2
(
ϕkl−χuv

2

)
+ n2

1 sin2
(
ϕkl−χuv

2

)
(6.31)

This inequality is valid for any choice of observables in the plane defined by ~ak and ~bl. One
can introduce two new observable vectors in this plane and write the inequality for the averaged
correlation function EGHV Tk′l′ (ϕ′k′l′) of these new observables. The sum of these two inequalities
is

EGHV Tkl (ϕkl) + EHV Tk′l′ (ϕ′k′l′) ≤ 4− 4
π

∫
d~ud~vF̃ (~u,~v, δ)

×
(√

n2
2 cos2

(
ϕkl−χuv

2

)
+ n2

1 sin2
(
ϕkl−χuv

2

)
+

+

√
n2

2 cos2

(
ϕ′
k′l′−χuv

2

)
+ n2

1 sin2

(
ϕ′
k′l′−χuv

2

)
.

(6.32)



One can use the triangle inequality
||~x+ ~y|| ≤ ||~x||+ ||~y||,√

(x1 + y1)2 + (x2 + y2)2 ≤
√
x2

1 + x2
2 +

√
y2

1 + y2
2,

(6.33)

for the two-dimensional vectors ~x = (x1, x2) and ~y = (y1, y2), with components defined by

x1 =
∣∣∣n2 cos ϕkl−χuv2

∣∣∣ , y1 =

∣∣∣∣n2 cos
ϕ′
k′l′−χuv

2

∣∣∣∣ , (6.34)

and x2 =
∣∣∣n1 sin ϕkl−χuv

2

∣∣∣ , y2 =

∣∣∣∣n1 sin
ϕ′
k′l′−χuv

2

∣∣∣∣ . (6.35)

One can further estimate this bound by using the following relations∣∣∣cos
(
ϕkl−χuv

2

)∣∣∣+ ∣∣∣∣cos

(
ϕ′
k′l′−χuv

2

)∣∣∣∣ ≥ ∣∣∣∣sin(ϕkl−ϕ′k′l′2

)∣∣∣∣ (6.36)

and
∣∣∣sin (ϕkl−χuv2

)∣∣∣+ ∣∣∣∣sin(ϕ′k′l′−χuv2

)∣∣∣∣ ≥ ∣∣∣∣sin(ϕkl−ϕ′k′l′2

)∣∣∣∣ . (6.37)

This estimate follows if one uses the formula for the sine of the difference angle to the right-hand

side argument
ϕkl−ϕ′k′l′

2 = ϕkl−χuv
2 − ϕ′

k′l′−χuv
2 . Namely,∣∣∣∣sin ϕkl−ϕ′k′l′

2

∣∣∣∣ =

∣∣∣∣sin ϕkl−χuv
2 cos

ϕ′
k′l′−χuv

2 − cos ϕkl−χuv2 sin
ϕ′
k′l′−χuv

2

∣∣∣∣
≤
∣∣∣sin ϕkl−χuv

2

∣∣∣ ∣∣∣∣cos
ϕ′
k′l′−χuv

2

∣∣∣∣+ ∣∣∣cos ϕkl−χuv2

∣∣∣ ∣∣∣∣sin ϕ′
k′l′−χuv

2

∣∣∣∣ . (6.38)

After these estimates, the lower bound of EGHV Tkl + EGHV Tk′l′ (following form the left-hand
side inequality in (6.10)) is equal to minus the upper bound, and thus one can can apply the
upper bound to the modulus of the left hand side of (6.16). This is because the only formal
difference between expressions in the estimates seeking the lower bound of the averaged Eq. (6.10)
compared to those seeking the upper bound boils down to the interchange between n1 and n2.
After applying (6.36) and (6.37), this makes no difference anymore. One can shortly write∣∣∣EGHV Tkl (ϕkl) + EGHV Tk′l′ (ϕ′k′l′)

∣∣∣ ≤ 4− 4
π

∣∣∣∣sin ϕkl−ϕ′k′l′
2

∣∣∣∣ ∫ d~ud~vF̃ (~u,~v, δ)
√
n2

2 + n2
1. (6.39)

Going back to the magnitudes:

|EGHV Tkl (ϕkl) + EGHV Tk′l′ (ϕ′k′l′)| ≤ 4− 2
√

2
π

∣∣∣∣sin ϕkl−ϕ′k′l′
2

∣∣∣∣ ∫ d~ud~vF̃ (~u,~v, δ)
√
u2
kl + v2

kl. (6.40)

This inequality is valid for any choice of the plane of observables. The bound involves only
the projections of vectors ~u and ~v onto the plane of the settings. The integrations in the bound

can be thought of as a mean value of expression
√
u2
kl + v2

kl averaged over the distribution of

the vectors. For the plane orthogonal to the initial one the inequality (6.40), where upq and vpq
denote the projections of vectors ~u and ~v, respectively, onto the plane spanned by the settings
~ap and ~bq (which is by construction orthogonal to the plane spanned by ~ak and ~bl). We add the
inequalities for orthogonal observatin planes,(6.40) and (6.41), and choose ϕ′k′l′ = ϕ′p′q′ = 0 and
ϕkl = ϕpq = ϕ. This gives∣∣∣EGHV Tkl (ϕ) + EGHV Tk′l′ (0)|+ |E⊥GHV Tpq (ϕ) + E⊥GHV Tp′q′ (0)

∣∣∣ | ≤
8− 2

√
2

π

∣∣sin ϕ
2

∣∣ ∫ d~ud~vF̃ (~u,~v, δ)
(√

u2
kl + v2

kl +
√
u2
pq + v2

pq

) (6.41)

We apply the triangle inequality (6.33) to the expression within the bracket. This time vectors
~x and ~y have the following components:

~x = (ukl, upq), ~y = (vkl, vpq). (6.42)
The integrand is bounded by:√

u2
kl + v2

kl +
√
u2
pq + v2

pq ≥
√

(ukl + upq)2 + (vkl + vpq)2. (6.43)

Let us consider the term involving vector ~u only. Since the lengths are positive
(ukl + upq)

2 ≥ u2
kl + u2

pq. (6.44)
Recall that ukl and upq are projections onto orthogonal planes. One can introduce normal

vectors to these planes, ~nkl and ~npq, respectively, and write



(~nkl · ~u)2 + u2
kl = 1, (~npq · ~u)2 + u2

pq = 1. (6.45)
Note that the scalar products are two components of vector ~u in the Cartesian frame build out

of vectors ~nkl, ~npq, and the one which is orthogonal to these two. Since vector ~u is normalized
one has:

(~nkl · ~u)2 + (~npq · ~u)2 ≤ 1, (6.46)
which implies for the sum of equations (6.45)

u2
kl + u2

pq ≥ 1. (6.47)
The same applies to vector ~v and one can conclude that√

u2
kl + v2

kl +
√
u2
pq + v2

pq ≥
√

2. (6.48)

Since the weight function F (~u,~v) is normalized, the final Laggett’s tipe inequality is∣∣∣EGHV Tkl (ϕ) + EGHV Tk′l′ (0)|+ |E⊥GHV Tpq (ϕ) + E⊥GHV Tp′q′ (0)
∣∣∣ ≤ 8− 4

π

∣∣sin r̊ϕ2 ∣∣ . (6.49)

Note that in contrast with canonical Leggett inequality (5.8) quantum theory cannot violate
the inequality (6.48).

Conclusion
In this paper EPR paradox resolved successfully under new EPR nonlocality postulate. In

order to resolve the EPR paradox [7] we apply a new quantum mechanical formalism based on the
probability representation of continuous observables [8], [9], [10]. In addition in this paper the
fundamental physics nature of the violation of the Bell inequalities is explained successfully under
new EPR-B nonlocality postulate [8]. We show that the correlations of the observables involved
in the Bohm-Bell type experiments can be expressed as correlations of classical random variables.
The revised Bell type inequality in canonical notations reads 〈AB〉+〈A′B〉+〈AB′〉−〈A′B′〉 ≤ 6.
In contrast with canonical Bell inequalities the conventional quantum theory cannot violate the
revisited Bell type inequalities.
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