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Abstract 
The cosmological constant problem arises because the magnitude of vacuum 
energy density predicted by the Quantum Field Theory is about 120 orders of 
magnitude larger then the value implied by cosmological observations of ac-
celerating cosmic expansion. We pointed out that the fractal nature of the 
quantum space-time with negative Hausdorff-Colombeau dimensions can 
resolve this tension. The canonical Quantum Field Theory is widely believed 
to break down at some fundamental high-energy cutoff ∗Λ  and therefore 
the quantum fluctuations in the vacuum can be treated classically seriously 
only up to this high-energy cutoff. In this paper we argue that the Quantum 
Field Theory in fractal space-time with negative Hausdorff-Colombeau di-
mensions gives high-energy cutoff on natural way. We argue that there exists 
hidden physical mechanism which cancels divergences in canonical 

4 4,QED QCD , Higher-Derivative-Quantum gravity, etc. In fact we argue that 
corresponding supermassive Pauli-Villars ghost fields really exist. It means 
that there exists the ghost-driven acceleration of the universe hidden in 
cosmological constant. In order to obtain the desired physical result we ap-
ply the canonical Pauli-Villars regularization up to ∗Λ . This would fit in 
the observed value of the dark energy needed to explain the accelerated ex-
pansion of the universe if we choose highly symmetric masses distribution 
between standard matter and ghost matter below the scale ∗Λ , i.e.,  

( ) ( ). . eff eff, , ,s m g mf f mc cµ µ µ µ µ µ ∗− = ≤ < Λ  The small value of the cos-
mological constant is explained by tiny violation of the symmetry between 
standard matter and ghost matter. Dark matter nature is also explained using 
a common origin of the dark energy and dark matter phenomena. 
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1. Introduction 
1.1. The Formulation of the Cosmoloigical Constant Problem 

The cosmological constant problem arises at the intersection between general 
relativity and quantum field theory, and is regarded as a fundamental unsolved 
problem in modern physics. A peculiar and truly quantum mechanical feature of 
the quantum fields is reminded that they exhibit zero-point fluctuations every-
where in space, even in regions which are otherwise “empty” (i.e. devoid of mat-
ter and radiation). This vacuum energy density is believed to act as a contribu-
tion to the cosmological constant λ  appearing in Einstein’s field equations 
from 1917, 

4

1 8π
2

GR g R T
cµν µν µν′− =                       (1) 

where Rµν  and R refer to the curvature of space-time, gµν  is the metric, Tµν′  
is the the energy-momentum tensor, 

4

1 0 0 0
0 1 0 0
0 0 1 08π
0 0 0 1

cT T
Gµν µν
λ
 
 − ′ = +
 −
 
 

                (2) 

where Tµν  is the energy-momentum tensor of matter. Thus 00 00T T λε′ = + , 
T T Pαβ αβ αβ λδ′ = + , where 

4 8π .P c Gλ λε λ= − =                     (3) 

Reminding that under Lorentz transformations ( ) ( ), , ,P P Pλ λ λ λ λ λε ε ε′ ′→ →  
the quantities λε  and Pλ  are changes by the law 

2 2

2 2, .
1 1

P P
Pλ λ λ λ

λ λ
ε β β ε

ε
β β

+ +′ ′= =
− −

                  (4) 

Thus for the quantities λε  and Pλ  Lorentz invariance holds by Equation (3) 
[1]. 

In modern cosmology it is assumed that the observable universe was initially 
vacuumlike, i.e., the cosmological medium was non-singular and Lorentz inva-
riant. In the earlier, non-singular Friedmann cosmology, the Friedmann un-
iverse comes into being during the phase transition of an initial vacuumlike state 
to the state of “ordinary” matter [2] [3]. 

The Friedmann equations start with the simplifying assumption that the 
universe is spatially homogeneous and isotropic, i.e. the cosmological principle; 
empirically, this is justified on scales larger than 126, ~100 Mpc. The cosmo-
logical principle implies that the metric of the universe must be of the form Ro-
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bertson-Walker metric [2]. Robertson-Walker metric reads 

( ) ( )
2

2 2 2 2 2 2 2
2

dd d d sin d .
1

rs t a t r
kr

θ θ ϕ
 

= − + + − 
            (5) 

For such a metric, the Ricci curvature scalar is 6R k= −  and it is said that 
space has the curvature k. The scaling factor ( )a t  rescales this curvature for a 
given time t, producing a curvature ( ) ( )k t k a t= . The scaling factor ( )a t  is 
given by two independent Friedmann equations for modeling a homogeneous, 
isotropic universe reads 

( )2 2 , 3
3 6
G Ga a k a pε ε= − = − +                    (6) 

and the equation of state 

( ) ,p p ε=                           (7) 

where p is pressure and ε  is a density of the cosmological medium. For the 
case of the vacuumlike cosmological medium equation of state reads [2] [3] [4]: 

.p ε= −                            (8) 

By virtue of Friedman’s Equations (1.1.6) in the Universe filled with a va-
cuum-like medium, the density of the medium is preserved, i.e. constε = , but 
the scale factor ( )a t  grows exponentially. By virtue of continuity, it can be as-
sumed that the admixture of a substance does not change the nature of the 
growth of the latter, and the density of the medium hardly changes. This growth, 
interpreted by analogy with the Friedmann models as an expansion of the un-
iverse, but almost without changing the density of the medium! was named in-
flation. The idea of inflation is the basis of inflation scenarios [2]. 

Non-singular cosmology [2] [4] suggests that the initial state of the observable 
universe was vacuum-like, but unstable with respect to the phase transition to 
the ordinary non-Lorentz-invariant medium. This, for example, takes place if, by 
virtue of the equations of state of the medium, a fluctuation decrease in its den-
sity d violates the condition of vacuum-like degeneration, p ε= −  or, which is 
the same, 3 2 0p ε ε+ = − < , replacing it with 

2 3 0.pε ε− < + <                         (9) 

According to Friedman’s equations, it corresponds to an accelerated expan-
sion of the cosmological medium, accompanied by a drop in its density, which 
makes the process irreversible [2]. The impulse for expansion in this scenario, 
the vacuum-like environment, is not reported to itself (bloating), but to the 
emerging Friedmann environment. 

In review [5], Weinberg indicates that the first published discussion of the 
contribution of quantum fluctuations to the cosmological constant was a 1967 
paper by Zel’dovich [6]. In his article [1] Zel’dovich emphasizes that zeropoint 
energies of particle physics theories cannot be ignored when gravitation is taken 
into account, and since he explicitly discusses the discrepancy between estimates 
of vacuum energy and observations, he is clearly pointing to a cosmological con-
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stant problem. As well known zeropoint energy density of scalar quantum field, 
etc. is divergent 

( )
( )

2 2 2 2
vac 3 0

2π d .
2π

cm p m c p pε
∞

= + = ∞∫


               (10) 

In order to avoid difficulties mentioned above, in article [1] Zel’dovich has 
applied canonical Pauli-Villars regularization [7] [8] and formally has obtained a 
finite result (his formulas [1], Eqs. (VIII.12)-(VIII.13) p. 228) 

( ) ( )
4

4
vac vac 0

1 ln d ,
8 8π

cp f
G
λε µ µ µ µ

∞
= − = =∫               (11) 

where 

( ) ( ) ( )2 4
0 0 0

d d d 0.f f fµ µ µ µ µ µ µ µ
∞ ∞ ∞

= = =∫ ∫ ∫            (12) 

Remark 1.1.1. Unfortunately, Equation (11) and Equation (12) give nothing 
in order to obtain desired numerical values of the zero-point energy density ε . 

In his paper [1], Zel’dovich arrives at a zero-point energy (his formula (IX.1)) 
3

17 3 10 2
vac ~ 10 g cm , ~ 10 cm ,mcmε λ − − =  

 
           (13) 

where m (the ultra-violet cut-of) is taken equal to the proton mass. Zel’dovich 
notes that since this estimate exceeds observational bounds by 46 orders of mag-
nitude it is clear that “... such an estimate has nothing in common with reality”. 

In his paper [1], Zel’dovich wrote: Recently A. D. Sakharov proposed a theory 
of gravitation, or, more precisely, a justification GR equation based on consider-
ation of vacuum fluctuations. In this theory, the essential assumption is that 
there is some elementary length L or the corresponding limiting momentum 

0p L=  . Shorter lengths or for large impulses theory is not applicable. Sakha-
rov gets the expression of gravitational constant G through L or 0p  (his for-
mula (IX.6)) 

3 2 3

2
0

.c L cG
p

= =




                       (14) 

This expression has been known since the days of Planck, but it was read 
“from right to left”: gravity determines the length L and the momentum 0p . 
According to Sakharov, L and 0p  are primary. Substitute (IX. 6) in the expres-
sion (IX. 4), we get 

6 5 6 7

vac vac2 3 2 3
0 0

, .m c m c
p p

ρ ε= =
 

                 (15) 

That is expressions that the first members (in the formulas (VIII.10), (VIII. 
11)) which are vanishes (with 0p →∞ ). Thus, we can suggest the following in-
terpretation of the cosmological constant: there is a theory of elementary par-
ticles, which would give (according to the mechanism that has not been revealed 
at the present time) identically zero vacuum energy, if this theory is applicable 
infinitely, up to arbitrarily large momentum; there is a momentum 0p , beyond 
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which the theory is non applicable; along with other implications, modifying the 
theory gives different from zero vacuum energy; general considerations make it 
likely that the effect is portional 2

0p− . Clarification of the question of the exis-
tence and magnitude of the cosmological constant will also be of fundamental 
importance for the theory of elementary particles. 

Nonclassical Assumptions 
(I) In contrast with Zel’dovich paper [1] we assume that Poincaré group is 

deformed at some fundamental high-energy cutoff ∗Λ  [9] [10] [11] in accor-
dance with the basis of the following deformed Poisson brackets 

{ } ( ) { }
{ }

1 0 0

1 0

, , , 0,

,

x x x x p p

x p p

µ ν µ ν ν µ µ ν

µ ν µν µ ν

η η

η η

−

−

= − =

= − +




             (16) 

where , 0,1, 2,3µ ν = , ( )1, 1, 1, 1µνη = + − − −  and is a parameter identified as the 
ratio between the high-energy cutoff ∗Λ  and the light speed. The correspond-
ing to (16) momentum transformation reads [11] 

( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )

2
00

0 1 1
0 0

1 1
0 0

, ,
1 1 1 1

, ,
1 1 1 1

xx
x

x x

y z
y z

x x

p up cp up
p p

c p up c p up

p pp p
c p up c p up

γγ

γ γ γ γ

γ γ γ γ

− −

− −

−−
′ ′= =

+ − − + − −      

′ ′= =
+ − − + − −      

 

 

  (17) 

and coordinate transformation reads [11] 

( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )

2

1 1
0 0

1 1
0 0

, ,
1 1 1 1

, ,
1 1 1 1

x x

x x

t ux c x ut
t x

c p up c p up

y zy z
c p up c p up

γ γ

γ γ γ γ

γ γ γ γ

− −

− −

− −
′ ′= =

+ − − + − −      

′ ′= =
+ − − + − −      

 

 

  (18) 

where 2 21 u cγ = − . It is easy to check that the energy E c=  , identified as 
the high-energy cutoff ∗Λ , is an invariant as it is also the case for the funda-
mental length l c E

∗Λ
= =   . 

Remark 1.1.2. Note that the transformation (17) defined in p-space and the 
transformation (1.1.18) defined in x-space becomes Lorentz for small energies 
and momenta and defines a large invariant energy 1l

∗

−
Λ . The high-energy cutoff 

∗Λ  is preserved by the modified action of the Lorentz group [9] [10]. 
This meant that the canonical concept of metric as quadratic invariant col-

lapses at high energies, being replaced by the non-quadratic invariant [9]: 

( )
2

0

,
1

ab
a bp p

p
l p

η

Λ∗

=
+

                        (19) 

or by the non-quadratic invariant 

( )
2

0

,
1

ab
a bp p

p
l p

η

Λ∗

=
−

                       (20) 

where 1, , 0,1, 2,3l a b
∗

−
Λ ∗= Λ = . 

https://doi.org/10.4236/***.2019.*****


J. Foukzon et al. 
 

 

DOI: 10.4236/***.2019.***** 6 Journal of Modern Physics 
 

Remark 1.1.3. Note that: 
1) the invariant (16) is infinite for the new negative invariant energy scale of 

the theory 1l
∗

−
∗ ΛΛ = − , and it’s not quadratic for energies close or above and 

2) the invariant (17) is infinite for the new positive invariant energy scale of 
the theory 1l

∗

−
∗ ΛΛ = . 

Remark 1.1.4. It is also clear from Equation (16) and Equation (17) that the 
symmetry of positive and negative values of the energy is broken. The two theo-
ries with the two signs of lΛ  obviously are physically distinct; and we know of 
no theoretical argument which fixes the sign of lΛ  

The massive particles have a positive invariant 2 0p >  which can be identi-
fied with the square of the mass 2 2p m= , ( 1c = ). Thus in the case of the in-
variant (16) we obtain 

( )
( )

2 2
2 10

02

0

, ,
1

p p
m p l

l p
∗

∗

−
Λ

Λ

−
= ∈ − ∞

+
                (21) 

From Equation (18) we obtain 

( )
2 4 2

2 2
0 2 2 2 22 2

1 .
1 11

m l m l
p p m

m l m lm l
∗ ∗

∗ ∗∗

Λ Λ

Λ ΛΛ

= + + +
− −−

          (22) 

In the case of the invariant (17) we obtain 

( )
( )

2 2
2 10

02

0

, , .
1

p p
m p l

l p
∗

∗

−
Λ

Λ

−
= ∈ −∞

−
                (23) 

From Equation (20) we obtain 

( )
2 4 2

2 2
0 2 2 2 22 2

1
1 11

m l m l
p p m

m l m lm l
∗ ∗

∗ ∗∗

Λ Λ

Λ ΛΛ

= − − + +
− −−

         (24) 

The action for a scalar field ϕ  must be invariant under the deformed Lo-
rentz transformations. The invariant action reads [10] 

( )( ) 2
4 2

0

1 d .
2 21

ab
a b mS x
l

η ϕ ϕ
ϕ

ϕ
∗Λ

∂ ∂
= +

 + ∂ 
∫                   (25) 

Thus there is no linear field equation. 
Remark 1.1.5.Throughout this paper, we use below high-energy cutoff ∗Λ  

the perturbative expansion 

( )( ) ( )
2

4 21 d .
2 2

ab
a b

mS x O lη ϕ ϕ ϕ
∗Λ

 
= ∂ ∂ + + 

 
∫           (26) 

and dealing in Lorentz invariant approximation 

( )( )
2

4 21 d .
2 2

ab
a b

mS x η ϕ ϕ ϕ
 

∂ ∂ + 
 

∫               (27) 

since for 1l
∗Λ
  the expansion (26) holds. 
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(II) The canonical concept of Minkowski space-time collapses at a small dis-
tance 1l

∗

−
Λ ∗= Λ  to fractal space-time with Hausdorff-Colombeau negative di-

mension and therefore the canonical Lebesgue measure 4d x  being replaced by 
the Colombeau-Stieltjes measure with negative Hausdorff-Colombeau dimen-
sion D− : 

( )( ) ( )( )( )4d , d ,x v s x xεε ε
η ε =                  (28) 

where ( )( )( ) ( )
1

D
v s x s xε ε

ε

ε
− −  = +     

 and ( )s x x xµ
µ= , see Section 3 and 

[12]. 
(III) The canonical concept of momentum space collapses at fundamental 

high-energy cutoff ∗Λ  to fractal momentum space with Hausdorff-Colombeau 
negative dimension and therefore the canonical Lebesgue measure 3d k , where 

( ), ,x y zk k k=k  being replaced by the Hausdorff-Colombeau measure 

( ) ( ) ( ) 1
,

d d
d ,

D D
D D

D D

D D D p p

p
ε ε

ε ε

+ +

+ −

− −

− + − −∆ ∆ ∆
=

   + +      



k
k

k
          (29) 

where ( ) ( )22π 2DD D
±± ±∆ = Γ  and x y zp k k k= = + +k  and where 

6D D+ −− ≤ − , see Section 3 and ref. [9]. Hausdorff-Colombeau measure (29) 
avoids classical divergence (10) of the zeropoint energy ( )vac mε  and instead 
Equation (10) one obtains 

( ) ( ) ( )
2 2

3 2 2 2 4
vac 0

, d d .
p

p D

p m
p m p p m D D pp p

p
ε

ε
ε

∗

−∗

∞+ −
∗ ∗

+
= + + ∆ ∆

 + 
 

∫ ∫ 
 (30) 

See Section 5 and ref. [12]. 
Remark 1.1.6. If we take the Planck scale (i.e. the Planck mass) as a cut-off, 

the vacuum energy density ( )vac ,p mε ∗  is 10121 times larger than the observed 
dark energy density deε . Several possible approaches to the problem of vacuum 
energy have been discussed in the contemporary literature, for the review see [5], 
[12]. They can be roughly devided into four different groups: 1) Modification of 
gravity on large scales. 2) Anthropic principle. 

3) Symmetry leading to vac 0ε = . 4) Adjustment mechanism, see. 5) Hidden 
nonstandard dark matter sector and corresponding hidden symmetry leading to 

vac 0ε  , see [12]. 
(IV) We assume that there exists the nonstandard dark matter sector formed 

by ghost particles, see [12]. 

1.2. Zel’dovich Approach by Using Pauli-Villars Regularization 
Revisited. Ghosts as Physical Dark Matter 

Remind that vacuum energy density for free scalar quantum field is 
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( )
( )

( )2 2 2 2 2 2
3 0 0

1 4π d d ,
2 2π

c p p p K p p p KIε µ µ µ µ
∞ ∞

= + = + =∫ ∫


  (31) 

where 0m cµ = . From Equation (31) one obtains [1] 

( ) ( )
4

0 2 2

d .
3
K p pp KF

p
µ µ

µ

∞
= =

+
∫                 (32) 

For fermionic quantum field one obtains 

( ) ( ) ( ) ( ), 4 .KI p KFε µ µ µ µ= = −                 (33) 

Thus free vacuum energy density ε  and corresponding pressure p is 

( ) ( ), .i i i i
i i

C I P C Fε µ µ= =∑ ∑                 (34) 

From Equation (34) by using Pauli-Willars regularization [7] [8] in general 
case one obtains [1] 

( ) ( ) ( ) ( )d , d .f I P f Fε µ µ µ µ µ µ= =∫ ∫            (35) 

In order to obtain asymptotical expansion on the parameter 0p  of the quan-
tity ( ) 0 3 2 2

vac 0 0
, d

p
p m p p mε = +∫  let us evaluate now the following integral 

( )
0 0

0

2 2 2 2 2 2 2 2 2
0

0 0

2 2
2 2 2 3 3

2 2
0

, d d d

d 1 d 1 d

pp p

p

p p p

p p

I p p p p p p p p p p

p p p p p p p
p p

µ

µ

µ µ

µ µ

µ µ µ µ

µ µµ

= + = + + +

= + = + + +

∫ ∫ ∫

∫ ∫ ∫
   (36) 

and 

( )
0 0

0

4 4 4

0 2 2 2 2 2 2
0 0

4 3

2 2 2
0

2

1 d 1 d 1 d,
3 3 3

1 d 1 d ,
3 3

1

pp p

p

p p

p

p p p p p pF p
p p p

p p p p

p
p

µ

µ

µ

µ

µ
µ µ µ

µ µ

= = +
+ + +

= +
+

+

∫ ∫ ∫

∫ ∫
      (37) 

where , 1, 1 1p r r p rµ µ µ= > < < . Note that 

2 2 4 6

2 2 4 6

2 4 6
2 2 2 3 3 2

2 3

1 1 11 1
2 8 16

1 1 11
2 8 16

p p p p

p p p p p
pp p

µ µ µ µ

µ µ µµ µ

+ = + − + +

+ = + = + − + +





     (38) 

By inserting Equation (38) into Equations (36) one obtains 

( ) ( )
6

4 4 2 2 4 5 80
0 1 0 0 02

0

1 1 1 1, ln ,
4 4 8 32

p
I p C p p p O

p
µµ µ µ µ µ

µ
− 

= + + − − + 
 

 (39) 

where 4 2 2 2
1 0

d
p

C p p pµµ µ= +∫ . Note that 
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1
2 2 4 6

2 2 4 6

1 3 51 1
2 8 16p p p p

µ µ µ µ
−

 
 + = − + − +
 
 

            (40) 

By inserting Equation (40) into Equation (37) one obtains 

( ) ( )
6

4 4 2 2 4 5 80
0 2 0 0 02

0

1 1 1 5, ln .
12 12 8 32

p
F p C p p p O

p
µµ µ µ µ µ

µ
− 

= + − + + + 
 

(41) 

By inserting Equation (39) and Equation (41) into Equations (35) one obtains 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

eff eff eff

eff eff eff

eff eff eff

4 2 2 4
0 0 1 0

0 0 0

4 6 8 5
02

0 0 00

4 2 2 4
0 0 2 0

0 0 0

1 1 1d d ln d
4 4 8

1 1 1ln d d ,
8 32

1 1 1d ln d
12 12 8

1
8

p f p f C p f

f f O f p
p

p p f p f d C p f

µ µ µ

µ µ µ

µ µ µ

ε µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ

−

 = + + − 
 

  
+ − +        

 = − + + 
 

−

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

( ) ( ) ( ) ( )
eff eff eff

4 6 8 5
02

0 0 00

5 1ln d d .
32

f f O f p
p

µ µ µ

µ µ µ µ µ µ µ µ µ −  
+ +        

∫ ∫ ∫

(42) 

We choose now 

( ) ( ) ( )
eff eff eff

2 4

0 0 0

d d d 0.f f f
µ µ µ

µ µ µ µ µ µ µ µ= = =∫ ∫ ∫          (43) 

By inserting Equation (43) into. 
Equations (42) one obtains 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

eff

eff

4 2
eff 0

0

4 2
eff 0

0

1 ln d ,
8

1 ln d .
8

f O p

p f O p

µ

µ

ε µ µ µ µ µ

µ µ µ µ µ

−

−

= +

= − +

∫

∫
         (44) 

Taking the limit p →∞  in Equation (44) gives 

( ) ( ) ( )

( ) ( ) ( )

eff

eff

4
eff

0

4
eff

0

1 ln d ,
8

1 ln d .
8

f

p f

µ

µ

ε µ µ µ µ µ

µ µ µ µ µ

=

= −

∫

∫
             (45) 

Thus finally we obtain [3] 

( ) ( ) ( ) ( )
eff 4

4
eff eff

0

1 ln d .
8 8π

cp f
G

µ

ε µ µ µ µ µ µ Λ
= − = =∫         (46) 

Remark 1.2.1. Remind that Pauli-Villars regularization consists of introduc-
ing a fictitious mass term. For example, we would replace a propagator 

( )2 2
01 k m i− +  , by the regulated propagator 

( )2
2 2 2 2 2 20 0

0

1 ,N Ni i
i i

i i

a a
k

k m i k m i k m i= =
∆ = = −

− + − + − +∑ ∑  
    (47) 

where 0 1a =  and , 1, 2, ,im i N=   can be thought of as the mass of a fictitious 
heavy particle, whose contribution is subtracted from that of an ordinary particle. 
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Assume that 2 2 1im k < , if we expand each term of this sum (46) as a power se-
ries in 2k i+   we get 

( )
( ) ( )

2
2

2 2 30 0 02 2

1 .N N Ni i i
i i i

a a m
k O

k i k i k i
= = =

 
 ∆ = + +  +  + + 

∑ ∑ ∑  
     (48) 

For a renormalizable theory the maximum supercriticial power of divergence 
of any integral is quadratic, so that the ( )61O k  terms are ultraviolet finite. 
The finiteness of the regulated integral is then guaranteed by requiring that 

2
0 00, 0.N N

i i ii ia a m
= =

= =∑ ∑                  (49) 

Remark 1.2.2. Note that in order to apply Pauli-Villars regularization to QFT 
with Lagrangian ( ), , ,µ µϕ ψ ϕ ψ∂ ∂L  we would replace the Lagrangian  
( ), , ,µ µϕ ψ ϕ ψ∂ ∂L  by Lagrangian ( ), , ,µ µϕ ψ ϕ ψ∂ ∂L , where [7]: 

( ) ( ) ( ) ( ) ( ) ( )2 2, , , ,n n n n n nn nx x b x x x c xϕ ϕ ϕ µ ψ ψ ψ= + = +∑ ∑      (50) 

where commutator for nϕ
  and anticommutator for nψ  reads 

( ) ( ) ( )
( ) ( ){ } ( )

2 2 2

2 2 2

, , , , ,

, , , , .

m m n n n n mn

m m n n n n mn

x x i x x

x x i S x x

ϕ µ ϕ µ ρ µ δ

ψ ψ ε δ

 ′ ′= − ∆ − 

′ ′= − −

 

   
 

From Equations (50)-Equations (51) one obtains 

( ) ( ) ( )
( ) ( ) ( )

2 2
0

2
0

, , ,

, , .

N
n n nn

N
n n n nn

x x i b x x

x x i c c S x x

ϕ ϕ ρ µ

ψ ψ ε

=

=

 ′  ′= ∆ − 

 ′  ′= − − 

∑
∑ 

            (52) 

Assume now that 
2 2 2 2

0 0 0 00, 0, 0, 0.N N N N
n n n n n n n n n n n nn n n nb b c c c cρ ρ µ ε ε

= = = =
= = = =∑ ∑ ∑ ∑    (53) 

From Equations (53) it follows directly that QFT with Lagrangian 

( ), , ,µ µϕ ψ ϕ ψ∂ ∂L  is finite QFT with indefinite metric [4], see Remark 1.2.1. 
Remark 1.2.3. Note that “bad ghosts” represent general meaning of the word 

“ghost” in theoretical physics: states of negative norm [7] or fields with the 
wrong sign of the kinetic term, such as Pauli--Villars ghosts ϕ , whose existence 
allows the probabilities to be negative thus violating unitarity. The quadratic la-
grangian 2

ϕL  for ϕ  begins with a wrong sign kinetic term [in ( + − − − ) sig-
nature] 

2 1
2

µ
ϕ µϕ ϕ= − ∂ ∂ +L                       (54) 

Remark 1.2.4. Note that in order to obtain Equations (44), the standard 
quantum fields do not need to couple directly to the ghost sector. In this paper 
the ghost sector is considered as physical mechanism which acts only on a func-
tion ( )f µ  in Equations (43). It means that there exists the ghost-driven acce-
leration of the universe hidden in cosmological constant Λ . 

Remark 1.2.5. As pointed out in paper [13] even if the standard model fields 
have no direct couplings to the ghost sector, they will indirectly interact with it 
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through gravity, and the propagation of gravity through the ghost condensate 
gives rise to a fascinating modification of gravity in the IR. However, no modifi-
cations of gravity can be seen directly, and no cosmological experiment can dis-
tinguish the ghost-driven acceleration from a cosmological constant. 

Remark 1.2.6. In order to obtain desired physical result from Equations (45), 
i.e.,  

29 3 47 4 3 5
vac 0.7 10 g cm 2.8 10 GeV cε − − −= × ⋅ = ×            (55) 

we assume that 

( ) ( ) ( ). . . . ,s m g mf f fµ µ µ= +                  (56) 

where ( ). .s mf µ  corresponds to standard matter and where ( ). .g mf µ  corres-
ponds to a physical ghost matter. 

Remark 1.2.7. We assume now that 

( ) ( ) eff

eff

, 1

0

nO n
f

µ µ µ
µ

µ µ

− > ≤= 
>

             (57) 

From Equation (57) and Equation (45) it follows directly that 

( ) ( ) ( ) ( ) ( )
eff

4 5
eff eff eff eff

0

1 ln d ln .
8

np f O
µ

µ ε µ µ µ µ µ µ µ− += = ≤∫    (58) 

Remark 1.2.8. However serious problem arises from non-renormalizability of 
canonical quantum gravity with Einstein-Hilbert action 

41 d .
16πEHS x gR

G
= −∫                     (59) 

For example taking 3Λ  particles of energy a per unit volume gives the gravi-
tational self-energy density of order 6Λ , i.e., the density εΛ  diverges as 6Λ  

6 ,GεΛ Λ                          (60) 

where Λ  is a high-energy cutoff [5]. 
In order to avoid these difficulties we apply instead Einstein-Hilbert action 

(59) the gravitational action which includes terms quadratic in the curvature 
tensor 

( )4 2 2d 2 ,x g R R R Rµν
µνα β κ −ℑ = − − − +∫             (61) 

Remark 1.2.9. Gravitational actions (61) which include terms quadratic in the 
curvature tensor are renormalizable [14]. The requirement that the graviton 
propagator behaves like 4p−  for large momenta makes it necessary to choose 
the indefinite-metric vector space over the negative-energy states. These nega-
tive-norm states cannot be excluded from the physical sector of the vector space 
without destroying the unitarity of the S  matrix, however, for their unphysical 
behavior may be restricted to arbitrarily large energy scales ∗Λ  by an appropri-
ate limitation on the renormalized masses 2m  and 0m . 

Remark 1.2.10. We assume that 0 eff 2 eff,m c m cµ µ  . 
Remark 1.2.11. The canonical Quantum Field Theory is widely believed to 
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break down at some fundamental high-energy cutoff ∗Λ  and therefore the 
quantum fluctuations in the vacuum can be treated classically seriously only up 
to this high-energy cutoff, see for example [15]. In this paper we argue that 
Quantum Field Theory in fractal space-time with negative Hausdorff-Colombeau 
dimensions [12] gives high-energy cutoff on natural way. 

2. Ghosts as Physical Dark Matter 
2.1. Paulu-Villars Ghosts As Physical Dark Matter 

Before explaining the role of PV ghosts, etc. as physical dark matter remind the 
idea of PV regularization as a conventional UV regularization. We consider, as 
an example, the scalar field theory with the interaction 4λϕ . Lagrangian density 
of this theory reads 

2
2 401 .

2 2
mµ

µϕ ϕ ϕ λϕ= ∂ ∂ − +L                  (62) 

This theory requires UV regularization (e.g. in (2+1) and (3+1) dimensions). 
Let us show that it is sufficient to introduce N extra fields with large mass play-
ing the role of the regularization parameter. Lagrangian density can be rewritten 
as follows 

( )
2

2 4
0

0 0 0

11 : :,
2 2

, .

iN i
ii

N N
i i ii i

m

a

µ
µϕ ϕ ϕ λ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

=

= =

 
= − ∂ ∂ − + 

 

= + = =

∑

∑ ∑ 

L
         (63) 

Here the symbol “::” means that in perturbation theory we drop Feynman di-
agrams with loops containing only one vertex. The 0ϕ  is usual field with mass 

0m  and the , 1, ,i i Nϕ =   is the extra field with mass , 1, ,im i N=  . It can be 
shown that in (3+1)-dimensional theory the introduction of one PV field is suf-
ficient for the ultraviolet regularization of perturbation theory in λ . One can 
show that momentum space Feynman diagrams in the original theory with La-
grangian density (62) diverge no more than quadratically [16] [17] [18] (beside 
of vacuum diagrams) shown in Figure 1. 

If we consider now Feynman diagrams in the theory with Lagrangian density 
(63) we see that propagators of fields 0ϕ  and ϕ  sum up in corresponding di-
agrams so that we obtain the following expression which plays the role of regu-
larized propagator 

( )2
2 2 2 2 2 20 0

0

1 ,
0 0 0

N Nj j
j j

j j

a a
k

k m i k m i k m i= =
∆ = = −

− + − + − +∑ ∑      (64) 

where 2 2 2 2 2
0 1 2 3k k k k k= − + + . Integral corresponding to vacuum diagram is 

( )
( )

( )

4 4
2

4 4 2 20

d d .
02π 2π

N j
j

j

ak kk
k m i=

ℑ = ∆ =
− +

∑∫ ∫           (65) 

To do this integral, since it is convergent, we can Wick rotate. 
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Figure 1. One-loop massive va-
cuum diagram. 

 
Remark 2.1.1. All the integrals in quantum field theory are written in Min-

kowski space, however, the ultraviolet divergence appears for large values of 
modulus of momentum and it is useful to regularise it in Euclidean space [17]. 
Transition to Euclidean space can be achieved by replacing thr zeroth compo-
nent of momentum 0 4k ik→ , where the integration over the fourth component 
of momenta goes along the imaginary axis. To go to the integration along the 
real axis, one has to perform the (Wick) rotation of the integration contour by 
90˚ (see Figure 2). This is possible since the integral over the big circle vanishes 
and during the transformation of the contour it does not cross the poles. 

Then we get 
3

2 2 200
d .

8π
N j E

E E j
E j

a ki k
k m

∞

=
ℑ =

+∑∫                   (66) 

To do this integral, since it is convergent, we can deal with regularized 
integral 

( )
3

2 2 20, d ,
8π

N j E
E j

E j

a ki k
k mε

ε
Λ

=
ℑ Λ =

+
∑∫                (67) 

where 0,ε Λ ∞  , i.e. ( ), Eεℑ Λ ≈ ℑ . We assume now that Pauli-Villars con-
ditions given by Equations (48) holds. Let us consider now the quantity 

( )
3

2 2 20, d ,
8π

N j E
E j

E j

a ki k
k mη η ε

ε
η

Λ

=
ℑ ℑ Λ =

+
∑∫            (68) 

where ( ]0,1η ∈ , and therefore from Equation (68) we obtain 

2 20 00
d d 0,

8π 8π
N N

E j E j E Ej j

i ik a k a k kη ε εη

Λ Λ

= ==
ℑ = = ≡∑ ∑∫ ∫       (69) 

since Equations (48) holds. From Equation (68) by differentiation we obtain 

( )

2 3

2 20 2 2

d d ,
d 8π

N j j E
E j

E j

a m ki k
k m

η εη η

Λ

=
ℑ =

+
∑∫             (70) 

and therefore from Equation (39) we obtain 

https://doi.org/10.4236/***.2019.*****


J. Foukzon et al. 
 

 

DOI: 10.4236/***.2019.***** 14 Journal of Modern Physics 
 

 
Figure 2. The Wick rotation of the integration contour. 

 

( )

2 3

2 20 2 2
0

0

2 1
2 0

d d
d 8π

d 0,
8π

N j j E
E j

E j

N
j j E Ej

a m ki k
k m

i a m k k

η ε
η

η

ε

η η

Λ

=
=

=

Λ −
=

ℑ =
+

= ≡

∑∫

∑ ∫

           (71) 

since Equations (48) holds. From Equation (70) by differentiation we obtain 

( )
( )

( )
( )

4 32

2 2 30 0 2 2

4 3

2 32 2

d d ,
d 4π

d .
4π

N N j j E
j Ej j

E j

j j E
j E

E j

a m ki k
k m

ia m kk
k m

η ε

ε

η
η η

η
η

Λ

= =

Λ

ℑ = ℜ =
+

ℜ =
+

∑ ∑∫

∫
        (72) 

Note that 

( )
( )

4 4 23

2 3 2 2 20 2 2
d .

4π 4π 4 16π
j j j j j jE

j E
jE j

ia m ia m a mk ik
mk m

η
η ηη

∞ −
ℜ = =

+
∫

     (73) 

Thus 

( )
2

1

20 00

d d ln
d 16π

N N j j
jj j

a m
η η η η

η = =
ℑ = ℜ =∑ ∑∫            (74) 

and 

( )
2

20 ln ,
16π

N j j
j

a m
η η η η

=
ℑ = −∑                (75) 

Therefore 

( )
2

201
, 0,

16π
N j j
j

a m
η η

ε
==

ℑ Λ = ℑ = − ≡∑             (76) 

since Equations (48) holds. Thus integral (65) corresponding to vacuum diagram 
by using Pauli-Villars renormalization identically equal zero, i.e. 

( )
( )

( )
( )

4 4
2

4 4 2 20

d dRen 0.
02π 2π

N j
PV j

j

ak kk
k m i=

ℑ = ∆ = ≡
− +∑       (77) 
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Let us consider now how this method works in the case of the simplest scalar 
diagram shown in Figure 3. The corresponding Feinman integral has the form 

( )
( ) ( ) ( )

4
2

4 2 2 2 2 2
0 0

1 d .
2π 0 0

kp
k m i p k m i

ℑ =
 − + − − + 

∫         (78) 

Regularized Feinman integral (78) reads 

( )
( ) ( ) ( )

4
2

4 0 2 2 2 2 2

d1 ,
2π 0 0

N j
reg j

j j

a k
p

k m i p k m i=
ℑ =

 − + − − + 
∑∫    (79) 

where 1N = . To do this integral, since it is convergent, we can Wick rotate. 
Then we get 

( )
( ) ( ) ( )

4
2

4 0 2 2 2 2 2

d
.

2π
N j

reg j
j j

a kip
k m p k m=

ℑ =
 + − + 

∑∫        (80) 

The integral (80) can be written as 

( )
( ) ( )

( )

41
2

4 20 2 2 2
0

31

2 20 2 2 2
0

d
d

2π 1

d
d .

8π 1

N j
reg j

j

N j E E
j

E j

a kip x
k p x x m

a k ki x
k p x x m

=

=

ℑ =
 + − + 

=
 + − + 

∑∫ ∫

∑∫ ∫
       (81) 

To do this integral, since it is convergent, we can deal with regularized 
integral 

( )
( )

31
2

2 20 2 2 2
0

d
, , d .

8π 1

N j E E
reg j

E j

a k kip x
k p x x mε

ε
Λ

=
ℑ Λ =

 + − + 
∑∫ ∫      (82) 

Let us consider now the quantity 

( )
( )

31
2

2 20 2 2 2
0

d
, , d .

8π 1

N j E E
j

E j

a k kip x
k p x x m

η ε
ε

η

Λ

=
ℑ Λ =

 + − + 
∑∫ ∫      (83) 

where ( ]0,1η ∈ , and therefore from Equation (83) we obtain ( )2
0 , , 0p εℑ Λ ≡ , 

since Equations (48) holds. From Equation (83) by differentiation we obtain 
 

 
Figure 3. The simplest scalar diagram. 
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( )
( )

( )

( )
( )

( )

2 31
2

2 30 2 2 2
0

2 2
2 0

31
2

32 2 2
0

1

2 2
0

dd , , d
d 4π 1

, , , ,
4π

d
, , , d

1

1 d .
4 1

N j j E E
j

E j

N
j j jj

E E
j

E j

j

a m k kip x
k p x x m

i a m p

k kp x
k p x x m

x
p x x m

η ε
ε

η η

η ε

η ε
η

η

Λ

=

=

ℑ Λ = −
 + − + 

− ℜ Λ

ℜ Λ
 + − + 

=
− +

∑∫ ∫

∑

∫ ∫

∫





     (84) 

From Equation (84) we obtain 

( ) ( )

( )

2 2 2
2 0

1

2 2 20
0

d , , , , ,
d 4π

d .
16π 1

N
j j jj

N
jj

j

ip a m p

i xa
m p x x

η ε η ε
η

η

=

−=

ℑ Λ − ℜ Λ

= −
− +

∑

∑ ∫



         (85) 

From Equation (85) we obtain 

( ) ( )
1 1

2
2 2 20

0 0

dd .
16π 1

N
reg jj

j

ip a x
m p x x

η
η−=

ℑ = −
− +

∑ ∫ ∫        (86) 

Note that 

( )
( ) ( )

( ) ( )
( ) ( )

1 12 2 2 2
2 2 0

0

2 2 2 2

2 2 2 2

d 1 ln 1 1
1

1 1 ln 1 1

1 ln 1 1.

j j
j

j j

j j

m p x x m p x x
m p x x

m p x x m p x x

m p x x m p x x

η η η
η

− −
−

− −

− −

   = − + − + −   − +

   = − + − +   
   − − − −   

∫

(87) 

Thus 

( ) ( )

( ) ( ){

( ) ( ) }

( ) ( ){

1 1
12

2 2 20
0 0

1
1 2 2 2 2

2 0
0

12 2 2 2
2 0

1
1 2 2 2 2

2 0
0

dd
16π 1

d 1 1 ln 1 1
16π

1 ln 1
16π

d 1 1 ln 1 1
16π

N
reg jj

j

N
j j jj

N
j j jj

N
j j jj

ip a x
m p x x

i a x m p x x m p x x

im p x x m p x x a

i a x m p x x m p x x

η
η

=

−=

= − −
=

=− −
=

= − −
=

ℑ = −
− +

   = − − + − +   

   − − − +   

   = − − + − +   

∑ ∫ ∫

∑ ∫

∑

∑ ∫

( ) ( ) }2 2 2 21 ln 1j jm p x x m p x x− −   − − −   

 

( ) ( ){
( ) ( ) }

( ) ( ){
( ) ( ) }

1
2 2 2 2

0 02
0

2 2 2 2
0 0

1
2 2 2 2

1 12
0

2 2 2 2
1 1

d 1 1 ln 1 1
16π

1 ln 1

d 1 1 ln 1 1
16π

1 ln 1 .

i x m p x x m p x x

m p x x m p x x

i x m p x x m p x x

m p x x m p x x

− −

− −

− −

− −

   = − − + − +   

   − − −   

   + − + − +   

   − − −   

∫

∫
      (88) 

From Equation (88) we obtain 
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( ) ( ) ( ){
( ) ( ) }

( ) ( ){
( ) ( ) }

1
2 2 2 2 2

0 02
0

2 2 2 2
0 0

1
2 2 2 2

1 12
0

2 2 2 2
1 1

d 1 1 ln 1 1
16π

1 ln 1

d 1 1 ln 1 1
16π

1 ln 1 .

reg
ip x m p x x m p x x

m p x x m p x x

i x m p x x m p x x

m p x x m p x x

− −

− −

− −

− −

   ℑ = − − + − +   

   − − −   

   + − + − +   

   − − −   

∫

∫
    (89) 

We assume now that 2 2
1 1m p−

  and from Equation (89) finally we obtain 

( ) ( ) ( ){
( ) ( ) } ( )

1
2 2 2 2 2

0 02
0

2 2 2 2 2 2
0 0 1

d 1 1 ln 1 1
16π

1 ln 1 .

reg
ip x m p x x m p x x

m p x x m p x x O m p

− −

− − −

   ℑ = − − + − +   

   − − − +   

∫
   (90) 

Remark 2.1.2. The simple renormalizable models with finite masses 
, 1, ,im i N=   which we have considered in the section many years regarded 

only as constructs for a study of the ultraviolet problem of QFT. The difficulties 
with unitarity appear to preclude their direct acceptability as canonical physical 
theories in locally Minkowski space-time. However, for their unphysical beha-
vior may be restricted to arbitrarily large energy scales ∗Λ  mentioned above by 
an appropriate limitation on the finite masses im . 

2.2. Renormalizability of Higher Derivative Quantum Gravity 

Gravitational actions which include terms quadratic in the curvature tensor are 
renormalizable. The necessary Slavnov identities are derived from Bec-
chi-Rouet-Stora (BRS) transformations of the gravitational and Faddeev-Popov 
ghost fields. In general, non-gauge-invariant divergences do arise, but they may 
be absorbed by nonlinear renormalizations of the gravitational and ghost fields 
and of the BRS transformations [14]. The geneic expression of the action reads 

( )4 2 2d 2 ,symI x g R R R Rµν
µνα β κ −= − − − +∫          (91) 

where the curvature tensor and the Ricci is defined by Rλ λ
µαν ν µα= ∂ Γ  and 

R Rλ
µν µλν=  correspondingly, 2 32πGκ = . The convenient definition of the gra-

vitational field variable in terms of the contravariant metric density reads 

.h g gµν µν µνκ η= − −                    (92) 

Analysis of the linearized radiation shows that there are eight dynamical de-
grees of freedom in the field. Two of these excitations correspond to the familiar 
massless spin-2 graviton. Five more correspond to a massive spin-2 particle with 
mass 2m . The eighth corresponds to a massive scalar particle with mass 0m . 
Although the linearized field energy of the massless spin-2 and massive scalar 
excitations is positive definite, the linearized energy of the massive spin-2 excita-
tions is negative definite. This feature is characteristic of higher-derivative mod-
els, and poses the major obstacle to their physical interpretation. 

In the quantum theory, there is an alternative problem which may be substi-
tuted for the negative energy. It is possible to recast the theory so that the mas-
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sive spin-2 eigenstates of the free-fieid Hamiltonian have positive-definite ener-
gy, but also negative norm in the state vector space. 

These negative-norm states cannot be excluded from the physical sector of the 
vector space without destroying the unitarity of the S  matrix. The requirement 
that the graviton propagator behaves like 4p−  for large momenta makes it ne-
cessary to choose the indefinite-metric vector space over the negative-energy 
states. 

The presence of massive quantum states of negative norm which cancel some 
of the divergences due to the massless states is analogous to the Pauli-Villars re-
gularization of other field theories. For quantum gravity, however, the resulting 
improvement in the ultraviolet behavior of the theory is sufficient only to make 
it renormalizable, but not finite. 

The gauge choice which we adopt in order to define the quantum theory is the 
canonical harmonic gauge: 0hµν

ν∂ = . Corresponding Green’s functions are 
then given by a generating functional 

( ) ( )
( )

4

4 4

d d d

exp d d .sym

Z T N h C C F

i I xC F D C xT h

µν σ τ
µν τµ ν

τ µν α µν
τ µν α µν

δ

κ

≤
     =    
 × + + 

∏∫

∫ ∫


      (93) 

Here , rF F h Fτ τ µν τ
µν µν µ νδ= = ∂

 

 and the arrow indicates the direction in which 
the derivative acts. N is a normalization constant. Cσ  is the Faddeev-Popov 
ghost field, and Cτ  is the antighost field. Notice that both Cσ  and Cτ  are 
anticommuting quantities. Dµν

α  is the operator which generates gauge trans-
formations in hµν , given an arbitrary spacetime-dependent vector ( )xαξ  cor-
responding to x xµ µ µκξ′ = +  and where 

( )
( )

D x

h h h h

µν α µ ν ν µ µν α
α α

µ αν ν αµ α µν α µν
α α α α

ξ ξ ξ η ξ

κ ξ ξ ξ ξ

= ∂ + ∂ − ∂

+ ∂ + ∂ − ∂ − ∂
    (94) 

In the functional integral (93), we have written the metric for the gravitational 
field as dhµν

µ ν≤
 
 ∏  without any local factors of ( )detg gµν= . Such factors 

do not contribute to the Feynman rules because their effect is to introduce terms 
proportional to ( ) ( )4 40 d lnx gδ −∫  into the effective action and ( )4 0δ  is set 
equal to zero in dimensional regularization. 

In calculating the generating functional (93) by using the loop expansion, one 
may represent the δ  function which fixes the gauge as the limit of a Gaussian, 
discarding an infinite normalization constant 

( )4 1 4

0

1lim exp d .
2

F i xF Fτ τ
τδ −

∆→

  ∆    
∫             (95) 

In this expression, the index τ  has been lowered using the flat-space metric 
tensor µνη . For the remainder of this paper, we shall adopt the standard ap-
proach to the covariant quantization of gravity, in which only Lorentz tensors 
occur, and all raising and lowering of indices is done with respect to flat space. 
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The graviton propagator may be calculated from 1 41 d
2symI xF Fτ

τ
−+ ∆ ∫  in the 

usual fashion, letting 0∆ →  after inverting. The expression 1 41 d
2

xF Fτ
τ

−∆ ∫
contains only two derivatives. Consequently, there are parts of the graviton 
propagator which behave like 2p−  for large momenta. Specifically, the 2p−  
terms consist of everything but those parts of the propagator which are trans-
verse in all indices. These terms give rise to unpleasant infinities already at the 
one-loop order. For example, the graviton self-energy diagram shown in Figure 4 

has a divergent part with the general structure ( )24h∂ . Such divergences do cancel 

when they are connected to tree diagrams whose outermost lines are on the mass 
shell, as they must if the S  matrix is to be made finite without introducing 
counterterms for them. However, they greatly complicate the renormalization of 
Green’s functions. 

We may attempt to extricate ourselves from the situation described in the last 
paragraph by picking a different weighting functional. Keeping in mind that we 
want no part of the graviton propagator to fall off slower than 4p−  for large 
momenta, we now choose the weighting functional [12] 

( ) 1 4 2
4

1exp d ,
2

e i xe eτ τ
τω −  = ∆    

∫               (96) 

where eτ  is any four-vector function. The corresponding gauge-fixing term in 
the effective action is 

2 1 4 21 d .
2

xF Fτ
τκ −− ∆ ∫                      (97) 

The graviton propagator resulting from the gauge-fixing term (97) is derived 
in [13]. For most values of the parameters α  and β  in symI  it satisfies the 
requirement that all its leading parts fall off like 4p−  for large momenta. There 
are, however, specific choices of these parameters which must be avoided. If 

0α = , the massive spin-2 excitations disappear, and inspection of the graviton 
propagator shows that some terms then behave like 2k − . Likewise, if 
3 0β α− = , the massive scalar excitation disappears, and there are again terms 
in the propagator which behave like 2p− . However, even if we avoid the special 
cases 0α =  and 3 0β α− = , and if we use the propagator derived from (97), 
we still do not obtain a clean renormalization of the Green’s functions. We now 
turn to the implications of gauge invariance. Before we write down the BRS 
transformations for gravity, let us first establish the commutation relation for 
gravitational gauge transformations, which reveals the group structure of the 
theory. Take the gauge transformation (94) of hµν , generated by µξ  and 
 

 
Figure 4. The one-loop graviton self-energy diagram. 
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perform a second gauge transformation, generated by µη , on the hµν  fields 
appearing there. Then antisymmetrize in µξ  and µη . The result is 

( ) ( ) ,D
D D

h

µν
ρσ α β α β µν λ α α λα
β λ α αρσ

δ
ξ η η ξ κ ξ η ξ η

δ
− = ∂ − ∂      (98) 

where the repeated indices denote both summation over the discrete values of 
the indices and integration over the spacetime arguments of the functions or 
operators indexed. 

The BRS transformations for gravity appropriate for the gauge-fixing term (96) 
are [13] 

( )
( )
( )

BRS

2
BRS

3 1 2
BRS

a ,

b ,

c ,

h D C

C C C

C F

µν µν α
α

α α β
β

τ τ

δ κ δλ

δ κ δλ

δ κ δλ−

=

= − ∂

= − ∆ 

                (99) 

where δλ  is an infinitesimal anticommuting constant parameter. The impor-
tance of these transformations resides in the quantities which they leave inva-
riant. Note that 

( )BRS 0C Cσ β
βδ ∂ =                   (100) 

and 

( )BRS 0.D Cµν α
αδ =                    (101) 

As a result of Equation (101), the only part of the ghost action which varies 
under the BRS transformations is the antighost Cτ . Accordingly, the transfor-
mation (99c) has been chosen to make the variation of the ghost action just can-
cel the variation of the gauge-fixing term. Therefore, the entire effective action is 
BRS invariant: 

2 1 2
BRS

1 0.
2simI F F C F D Cτ τ µν α

τ τ µν αδ κ − − ∆ + = 
 


        (102) 

Equations (99), (100), and (102) now enable us to write the Slavnov identities 
in an economical way. In order to carry out the renormalization program, we 
will need to have Slavnov identities for the proper vertices. 

A) Slavnov identities for Green’s functions 
First consider the Slavnov identities for Green’s functions. 

( )

( )

, , , ,

d d d

exp , , , , , .

Z T K L

N h C C

i h C C K L C C C T h

τ
µν σ µν σ

µν σ
τµ ν

µν σ σ σ τ µν
τ µν σ σ σ τ µν

β β

β β β κ

≤
     =    
 × + + + 

∏∫
Σ

   (103) 

Anticommuting sources have been included for the ghost and antighost fields, 
and the effective action Σ  has been enlarged by the inclusion of BRS invariant 
couplings of the ghosts and gravitons to some external fields Kµν  (anticom-
muting) and Lσ  (commuting), 

2 1 2 21 .
2simI F F C F D C K D L C Cτ τ µν α µν σ β

τ τ µν α µν α σ βκ κ κ−= − ∆ + + + ∂


Σ   (104) 
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Σ  is BRS invariant by virtue of Equation (99), Equation (100), and Equation 
(102). We may use the new couplings to write this invariance as 

3 1 2 .F
K L Ch C τµν σ

µν σ τ

δ δ δ δ δκ
δ δ δδ δ

−+ + ∆
    Σ Σ Σ Σ Σ

            (105) 

In this equation, and throughout this subsection, we use left variational deriv-
atives with respect to anticommuting quantities: ( )f C C f Cσ τ τδ δ δ δ= . Equ-
ation (105) may be simplified by rewriting it in terms of a reduced effective ac-
tion, 

2 1 21 .
2

F Fτ
τκ −Σ = + ∆Σ                     (106) 

Substitution of (106) into (105) gives 

0,
K Lh Cµν σ

µν σ

δ δ δ δ
δ δδ δ

+ =
Σ Σ Σ Σ                  (107) 

where we have used the relation 

1 0.F
K C

τ
µν

µν τ

δ δκ
δ δ

− − =
 Σ Σ                   (108) 

Note that a measure 

d d dh C Cµν σ
τµ ν≤

        ∏                  (109) 

is BRS invariant since for infinitesimal transformations, the Jacobian is 1, be-
cause of the trace relations 

( )
( )

( )

( )

2

2

a 0,

b 0,

K h

C L

µν
µν

σ
σ

δ
δ δ

δ
δ δ

=

=





Σ

Σ
                  (110) 

both of which follow from 4d 0x Cα
α∂ =∫ . The parentheses surrounding the in-

dices in (110a) indicate that the summation is to be carried out only for µ ν≤ . 
Remark 2.2.1. Note that the Slavnov identity for the generating functional of 

Green’s functions is obtained by performing the BRS transformations (99) on 
the integration variables in the generating functional (103). This transformation 
does not change the value of the generating functional and therefore we obtain 

(
) ( )

2 2

3 1 2

d d d

exp 0.

N h C C T D C C

F h i T h C C

µν σ µν σ β
τ µν α σ βµ ν

τ µν µν σ τ
τµν µν σ τ

κ κ β

κ β κ β β

≤

−

      − ∂   
 + ∆ + + + = 

∏∫


Σ

    (111) 

Another identity which we shall need is the ghost equation of motion. To de-
rive this equation, we shift the antighost integration variable Cτ  to C Cτ τδ+ , 
again with no resulting change in the value of the generating functional: 
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( )

d d d

exp

N h C C
C

i T h C C

µν σ τ
τ σµ ν

µν σ τ
µν σ τ

δ β
δ

κ β β

≤

       +      
 × + + + 

∏∫




Σ

Σ

            (112) 

We define now the generating functional of connected Green’s functions as 
the logarithm of the functional (103), 

, , , , ln , , , , .W T K L i Z T K Lτ τ
µν σ µν σ µν σ µν σβ β β β   = −            (113) 

and make use of the couplings to the external fields Kµν  and Lσ  to rewrite 
(112) in terms of W 

2 1 2 0.W W WT F
K L T

τ
µν σ τµν

µν σ µν

δ δ δκ β κ β
δ δ δ

−− + ∆ =


         (114) 

Similarly, we get the ghost equation of motion: 

1 0.WF
K

τ τ
µν

µν

δκ β
δ

− + =


                   (115) 

B) Proper vertices 
A Legendre transformation takes us from the generating functional of con-

nected Green’s functions (113) to the generating functional of proper vertices. 
First, we define the expectation values of the gravitational, ghost, and antighost 
fields in the presence of the sources ,Tµν σβ , and τβ  and the external fields 
Kµν  and Lσ  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

a ,

b ,

c .

Wh x
T x
WC x

x
WC x

x

µν

µν

σ

σ

τ τ

δ
κδ
δ

δβ
δ

δβ

=

=

=

                   (116) 

We have chosen to denote the expectation values of the fields by the same 
symbols which were used for the fields in the effective action (104). 

The Legendre transformation can now be performed, giving us the generating 
functional of proper vertices as a functional of the new variables (116) and the 
external fields Kµν  and Lσ  

 , , , ,

, , , , .

h C C K L

W T K L T h C C

µν σ
τ µν σ

τ µν σ τ
µν σ µν σ µν σ τβ β κ β β

 Γ  
 = − − − 

    (117) 

In this equation, the quantities Tµν , σβ , and τβ  are given implicitly in terms 
of , , ,h C C Kµν σ

τ µν , and Lσ  by Equation (116). The relations dual to (116) are 

( ) ( )


( )

( ) ( )


( )

( ) ( )


( )

a ,

b ,

c .

T x
h x

x
C x

x
C x

µν µν

σ σ

τ
τ

δκ
δ

δβ
δ

δβ
δ

Γ
= −

Γ
=

Γ
= −

                 (118) 
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Since the external fields Kµν  and Lσ  do not participate in the Legendre 
transformation (116), for them we have the relations 

( )


( ) ( )

( )


( ) ( )

a ,

b .

W
K x K x

W
L x L x

µν µν

σ σ

δ δ
δ δ

δ δ
δ δ

Γ
=

Γ
=

                 (119) 

Finally, the Slavnov identity for the generating functional of proper vertices is 
obtained by transcribing (114) using the relations (116), (118), and (119) 

    

3 1 2 0.F h
K Lh C C

µν
τµνµν σ σ

µν σ

δ δ δ δ δκ
δ δδ δ δ

−Γ Γ Γ Γ Γ
+ + ∆ =



       (120) 

We also have the ghost equation of motion, 
 

1 0.F
K C

τ
µν σ

µν

δ δκ
δ δ

− Γ Γ
− =



                 (121) 

Since Equation (120) has exactly the same form as (105), we follow the exam-
ple set by (106) and define a reduced generating functional of the proper vertic-
es, 

 ( ) ( )2 1 21 .
2

F h F hµν τ ρσ
τµν ρσκ −Γ = Γ + ∆
 

            (122) 

Substituting this into (120) and (121), the Slavnov identity becomes 

0.
K Lh Cµν σ

µν σ

δ δ δ δ
δ δδ δ
Γ Γ Γ Γ

+ =                (123) 

and the ghost equation of motion becomes 

1 0.F
K C

τ
µν

µν τ

δ δκ
δ δ

− Γ Γ
− =



                 (124) 

Equations (123) and (124) are of exactly the same form as (107) and (108). 
This is as it should be, since at the zero-loop order 

( )0 .Γ = Σ                        (125) 

C) Structure of the divergences and renormalization equation 
The Slavnov identity (123) is quadratic in the functional Γ . This nonlinearity 

is reflected in the fact that the renormalization of the effective action generally 
also involves the renormalization of the BRS transformations which must leave 
the effective action invariant. 

The canonical approach uses the Slavnov identity for the generating functional 
of proper vertices to derive a linear equation for the divergent parts of the 
proper vertices. This equation is then solved to display the structure of the di-
vergences. From this structure, it can be seen how to renormalize the effective 
action so that it remains invariant under a renormalized set of BRS transfor-
mations [14]. 

Suppose that we have successfully renormalized the reduced effective action 
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up to 1n −  loop order; that is, suppose we have constructed a quantum exten-
sion of Σ  which satisfies Equations (107) and (108) exactly, and which leads to 
finite proper vertices when calculated up to order 1n − . We will denote this re-
normalized quantity by ( )1n−Σ . In general, it contains terms of many different 
orders in the loop expansion, including orders greater than 1n − . The 1n −  
loop part of the reduced generating functional of proper vertices will be denoted 
by ( )1n−Γ . 

When we proceed to calculate ( )nΓ , we find that it contains divergences. Some 
of these come from n-loop Feynman integrals. Since all the subintegrals of an 
n-loop Feynman integral contain less than w loops, they are finite by assumption. 
Therefore, the divergences which arise from w-Ioop Feynman integrals come 
only from the overall divergences of the integrals, so the corresponding parts of 

( )nΓ  are local in structure. In the dimensional regularization procedure, these 
divergences are of order ( ) 11 4d −− = − , where d is the dimensionality of space-
time in the Feynman integrals. 

There may also be divergent parts of ( )nΓ  which do not arise from loop inte-
grals, and which contain higher-order poles in the regulating parameter  . Such 
divergences come from n-loop order parts of ( )1n−Σ  which are necessary to en-
sure that (107) is satisfied. Consequently, they too have a local structure. We 
may separate the divergent and finite parts of ( )nΓ : 

( ) ( ) ( )
div finite .n n nΓ = Γ + Γ                        (126) 

If we insert this breakup into Equation (123), and keep only the terms of the 
equation which are of n-loop order, we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0
div div div div

finite finite finite finite
=0 .

n n n n

n i i n i i
n
i

K K L Lh h C C

K Lh C

µν µν σ σ
µν µν σ σ

µν σ
µν σ

δ δ δ δδ δ δ δ
δ δ δ δδ δ δ δ

δ δ δ δ
δ δδ δ

− −

Γ Γ Γ ΓΓ Γ Γ Γ
+ + +

 Γ Γ Γ Γ
= − + 

  
∑

        (127) 

Since each term on the right-hand side of (127) remains finite as 0→ , 
while each term on the left-hand side contains a factor with at least a simple pole 
in e, each side of the equation must vanish separately. Remembering the Equa-
tion (125), we can write the following equation, called the renormalization equa-
tion: 

( )
div 0,nℜΓ =                         (128) 

where 

.
K L K Lh C h Cµν σ µν σ

µν σ µν σ

δ δ δ δ δ δ δ δ
δ δ δ δδ δ δ δ

Σ Σ Σ Σ
ℜ = + + +      (129) 

Similarly by collecting the n-loop order divergences in the ghost equation of 
motion (124) we get 

( ) ( )
1 div div 0.

n n

F
K C

τ
µν

µν τ

δ δ
κ

δ δ
− Γ Γ

− =


                 (130) 
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In order to construct local solutions to Equations. (128) and (130) remind that 
the operator ℜ  defined in (129) is nilpotent [14]: 

2 0.ℜ =                           (131) 

Equation (131) gives us the local solutions to Equation (128) of the form 
( ) ( ) ( )div , , , , ,n h X h C C K Lµν µν σ

τ µν σ
 Γ = ℑ +ℜ           (132) 

where ℑ  is an arbitrary gauge-invariant local functional of hµν  and its deriv-
atives, and X is an arbitrary local functional of , , ,h C C Kµν

σ τ µν  and Lσ  and 
their derivatives. In order to satisfy the ghost equation of motion (130) we re-
quire that 

( ) ( ) ( )1
div div , , , .n n h C K C F Lµν σ τ

µν ττ µν σκ −Γ = Γ −


            (133) 

D) Ghost number and power counting 
Structure of the effective action (104) shows that we may define the following 

conserved quantity, called ghost number [14]: 

[ ]
[ ]

ghost ghost ghost

ghost ghost

0, 1, 1,

1, 2.

N h N C N C

N K N L

µν
σ τ

µν σ

   = = + = −  
  = − = − 

        (134) 

From Equations (134) follows that 

[ ] [ ]ghost ghost 0.N NΣ = Γ =                   (135) 

Since 

[ ]ghost 1,N ℜ = +                      (136) 

we require of the functional ( )X ⋅  that 

[ ]ghost 1.N X = −                      (137) 

In order to complete analysis of the structure of ( )
div
nΓ , we must supplement 

the symmetry Equations (132), (133), and (137) with the constraints on the di-
vergences which arise from power counting. Accordingly, we introduce the fol-
lowing notations: 

En  = number of graviton vertices with two derivatives, 

Gn  = number of antighost-graviton-ghost vertices, 

Kn  = number of K-graviton-ghost vertices, 

Ln  = number of L-ghost-ghost vertices, 

GI  = number of internal-ghost propagators, 

CE  = number of external ghosts, 

CE  = number of external antighosts. 
Since graviton propagators behave like 4p− , and ghost propagators like 2p− , 

we are led by standard power counting to the degree of divergence of an arbi-
trary diagram, 

4 2 2 2 3 3 .E G G L K CD n I n n n E= − + − − − −            (138) 

The last term in (2.2.48) arises because each external antighost line carries 
with it a factor of external momentum. We can make use of the topological rela-
tion 
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2 2 2G G L K C CI n n n E E− = + − −                 (139) 

to write the degree of divergence as 

4 2 2 2 .E L K C CD n n n E E= − − − − −               (140) 

Together with conservation of ghost number, Equation (140) enables us to 
catalog three different types of divergent structures involving ghosts. These are il-
lustrated in Figure 5. Each of the three types has degree of divergence 1 2 ED n= − . 
Consequently, all the divergences which involve ghosts have 0En = . Since the 
degree of divergence is then 1, the associated divergent structures in ( )

div
nΓ  have 

an extra derivative appearing on one of the fields. Diagrams whose external lines 
are all gravitons have degree of divergence 4 2 ED n= − . Combining (140) with 
(137), (133), and (132), we can finally write the most general expression for ( )

div
nΓ  

which satisfies all the constraints of symmetries and power counting: 
( ) ( ) ( ) ( ) ( )1
div ,n h K C F P h L Q h Cµν τ µν αβ σ αβ τ

µν τ µν σ τκ − Γ = ℑ +ℜ − + 


  (141) 

where ( )P hµν αβ  and ( )Q hσ αβ
τ  are arbitrary Lorentz-covariant functions of 

the gravitational field hµν , but not of its derivatives, at a single spacetime point. 

( )hµνℑ  is a local gauge-invariant functional of hµν  containing terms with 
four, two, and zero derivatives. Expanding (141), we obtain an array of possible 
divergent structures: 

( ) ( ) ( )

( ) ( ) ( )
( )

div

2 2

2 .

symn I D
h P K C F C P

h h

PK C F D C K C F D Q C
h

L Q C C L C Q C

Q
L C D C L Q C C

h

ρσ
µν µν τ α µνα

ρσ τ ρσµν µν

ρσ
τ µν α τ µν σ ε

ρσ τ ρσ α µν τ µν σ εµν

σ τ β σ β τ
σ β τ σ β τ

σ
τ µν α σ τ βτ

σ α σ τ βµν

δ δ
κ

δ δ

δκ κ
δ

κ κ

δ
κ κ

δ

 
Γ = ℑ + + −  

 

− − − −

− ∂ − ∂

− + ∂



 

   (142) 

is determined only up to a term of the form [13] [14] 
 

 
Figure 5. The three types of divergent diagram which 
involve external ghost lines. Arbitrarily many gravitons 
may emerge from each of the central regions,(a) Ghost 
action type,(b) K type, (c) L type. 
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The breakup between the gauge-invariant divergences S and the rest of (142) 

( )4d ,symI
x h

h
µν µν

µν

δ
η κ

κδ
+∫                    (143) 

which can be generated by adding to Pµν  a term proportional to  
h g gµν µν µνη κ+ = . The profusion of divergences allowed by (142) appears to 

make the task of renormalizing the effective action rather complicated. Although 
the many divergent structures do pose a considerable nuisance for practical cal-
culations, the situation is still reminiscent in principle of the renormalization of 
Yang-Mills theories. There, the non-gauge-invariant divergences may be elimi-
nated by a number of field renormalizations. We shall find the same to be true 
here, but because the gravitational field hµν  carries no weight in the power 
counting, there is nothing to prevent the field renormalizations from being non-
linear, or from mixing the gravitational and ghost fields. The corresponding re-
normalizations procedure considered in [13] [14]. 

Remark 2.2.2. We assume now that: 
1) The local Poincaré group of momentum space is deformed at some funda-

mental high-energy cutoff ∗Λ  [9] [10]. 
2) The canonical quadratic invariant 2 ab

a bp p pη=  collapses at high-energy 
cutoff ∗Λ  and being replaced by the non-quadratic invariant: 

( )
2

0

.
1

ab
a bp p

p
l p

η

∗Λ

=
+

                      (144) 

3) The canonical concept of Minkowski space-time collapses at a small dis-
tance 1l

∗

−
Λ ∗= Λ  to fractal space-time with Hausdorff-Colombeau negative di-

mension and therefore the canonical Lebesgue measure 4d x  being replaced by 
the Colombeau-Stieltjes 
measure 

( )( ) ( )( )( )4d , d ,x v s x xεε ε
η ε =                 (145) 

where 

( )( )( ) ( )

( )

1

,

,

D
v s x s x

s x x x

ε ε
ε

µ
µ

ε
− −  = +     

=

              (146) 

see subsection IV.2. 
4) The canonical concept of local momentum space collapses at fundamental 

high-energy cutoff ∗Λ  to fractal momentum space with Hausdorff-Colombeau 
negative dimension and therefore the canonical Lebesgue measure 3d k , where 

( ), ,x y zk k k=k  being replaced by the Hausdorff-Colombeau measure 

( ) ( ) ( ) 1
,

d d
d ,

D D
D D

D D

D D D p p

p
ε ε

ε ε

+ +

+ −

− −

− + − −∆ ∆ ∆
=

   + +      



k
k

k
        (147) 

see Subsection 3.4. Note that the integral over measure ,dD D+ −
k  is given by 
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formula (185). 
Remark 2.2.3. (I) The renormalizable models which we have considered in 

this section many years regarded only as constructs for a study of the ultraviolet 
problem of quantum gravity. The difficulties with unitarity appear to preclude 
their direct acceptability as canonical physical theories in locally Minkowski 
space-time. In canonical case they do have only some promise as  
phenomenological models. 

(II) However, for their unphysical behavior may be restricted to arbitrarily 
large energy scales ∗Λ  mentioned above by an appropriate limitation on the 
renormalized masses 2m  and 0m . Actually, it is only the massive spin-two ex-
citations of the field which give the trouble with unitarity and thus require a very 
large mass. The limit on the mass 0m  is determined only by the observational 
constraints on the static field. 

3. Hausdorff-Colombeau Measure and Associated Negative 
Hausdorff-Colombeau Dimension 

3.1. Fractional Integration in Negative Dimensions 

Let D
Hµ +  be a Hausdorff measure [19] and nX ⊂   is measurable set. Let 

( )s x  be a function :s X →   such that is symmetric with respect to some 
centre 0x X∈ , i.e. ( )s x  = constant for all x satisfying ( )0,d x x r=  for arbi-
trary values of r. Then the integral in respect to Hausdorff measure over 
n-dimensional metric space X is then given by [19]: 

( ) ( ) ( )
2

1
0

2πd d .
2

D
D D
HX

s x s r r r
D

µ
+

+ +
∞ −

+

=
Γ∫ ∫             (148) 

The integral in RHS of the Equation (148) is known in the theory of the Weyl 
fractional calculus where, the Weyl fractional integral ( )DW f x , is given by 

( ) ( ) ( ) ( )1

0

1 d .DDW f x t x f t t
D

∞ −= −
Γ ∫               (149) 

Remark 3.1.1. In order to extend the Weyl fractional integral (148) in nega-
tive dimensions we apply the Colombeau generalized functions [20] and Co-
lombeau generalized numbers [21]. 

Recall that Colombeau algebras ( )Ω  of the Colombeau generalized func-
tions defined as follows. Let Ω  be an open subset of n . Throughout this paper, 
for elements of the space ( )( ]0,1C∞ Ω  of sequences of smooth functions indexed 
by ( ]0,1ε ∈  we shall use the canonical notations ( )( )xε ε

ζ  and ( )uε ε
 so 

( )u Cε
∞∈ Ω , ( ]0,1ε ∈ . 

Definition 3.1.1. We set ( ) ( ) ( )/MΩ = Ω Ω   , where 

( ) ( ) ( )( ]{
( ) ( ) }

( ) ( ) ( )( ]{
( ) ( ) }

0,1

0,1

, with

sup as 0 ,

,

sup as 0 .

n
M

p
x K

n

q
x K

u C K p

u x O

u C K q

u x O

ε ε

ε

ε ε

ε

α

ε ε

α

ε ε

∞

−
∈

∞

∈

Ω = ∈ Ω ∀ ⊂⊂ Ω ∀ ∈ ∃ ∈

= →

Ω = ∈ Ω ∀ ⊂⊂ Ω ∀ ∈ ∀ ∈

= →





 

 
   (150) 
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Notice that ( )Ω  is a differential algebra. Equivalence classes of sequences 
( )uε ε

 will be denoted by ( )cl uε ε
    is a differential algebra containing 

( )D′ Ω  as a linear subspace and ( )C∞ Ω  as subalgebra. 
Definition 3.1.2. Weyl fractional integral ( )DW f xε

ε

− − 
 
 

 in negative dimen-
sions 0D− < , 0, 1, , , ,D n n− ≠ − − ∈    is given by 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )
( )

1

0 1

1 d

or

1 1 d ,

DD

D

D

W f x t x f t t
D

W f x f t t
D t x

ε ε

ε
ε

ε
ε

−−

−
−

−

∞ −

−

∞

− +

= −
Γ

 
 =
 Γ + − 

∫

∫

       (151) 

where ( ]0,1ε ∈  and ( )
0

df t t
∞

< ∞∫ . Note that ( )( ) ( )DW f xε
ε

−−
∈  . Thus 

in order to obtain appropriate extension of the Weyl fractional integral 
( )DW f x

+
 on the negative dimensions 0D− <  the notion of the Colombeau 

generalized functions is essentially important. 
Remark 3.1.2. Thus in negative dimensions from Equation (148) we formally 

obtain 

( )( ) ( )
( ) ( )

2

, 0 1

2πd d ,
2

D
DD

HCX D

s r
s x r I

D r
ε ε εε

ε

µ
ε

−
−−

−
−

∞

− +

 
 = =
 Γ + 

∫ ∫        (152) 

where ( ]0,1ε ∈  and 0, 2, , 2 , ,D n n− ≠ − − ∈    and where ( ),
D
HC ε

ε
µ

−
 is ap-

propriate generalized Colombeau outer measure. Namely Hausdorff-Colombeau 
outer measure. 

Remark 3.1.3. Note that: if ( )0 0s ≠  the quantity ( ),D DIε
ε

+ −
 takes infinite 

large value in sense of Colombeau generalized numbers, i.e., ( ),D DIε
ε

+ −
= ∞




 , 
see Definition 3.3.2 and Definition 3.3.3. 

Remark 3.1.4. We apply through this paper more general definition then 
(3.1.4): 

( )( ) ( ) ( )
( ) ( )

12 2
,,

, 0

4π πd d ,
2 2

DD D
D DD D

HCX D

r s r
s x r I

D D r
ε ε

ε ε
ε

µ
ε

++ −
++ −

−
−

−
∞

+ −

 
 = =
 Γ Γ + 

∫ ∫   (153) 

where ( ]0,1ε ∈  and 1D+ ≥ , 0, 2, , 2 , ,D n n− ≠ − − ∈    and where 

( ),
,

D D
HC ε

ε
µ

+ −
 is appropriate generalized Colombeau outer measure. Namely 

Hausdorff-Colombeau outer measure. In Subsection 3.3 we pointed out that 
there exists Colombeau generalized measure ( ),

,d D D
HC ε

ε
µ

+ −
 and therefore Equa-

tion (151) gives appropriate extension of the Equation (148) on the negative 
Hausdorff-Colombeau dimensions. 

3.2. Hausdorff Measure and Associated Positive Hausdorff Di-
mension 

Recall that the classical Hausdorff measure [19] [22] originate in Caratheodory’s 
construction, which is defined as follows: for each metric space X, each set 

{ }i i
F E

∈
=



 of subsets iE  of X, and each positive function ( )Eζ + , such that 
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( )0 iEζ +≤ ≤ ∞  whenever iE F∈ , a preliminary measure ( )Eδφ
+  can be 

constructed corresponding to 0 δ< ≤ +∞ , and then a final measure ( )Eµ+ , as 
follows: for every subset E X⊂ , the preliminary measure ( )Eδφ

+  is defined 
by 

( )
{ }

( ) ( ){ }inf | , .
i i

i i ii iE
E E E E diam Eδφ ζ δ

∈

+ +
∈ ∈

= ⊂ ≤∑ 


 

     (154) 

Since ( ) ( )
1 2

E Eδ δφ φ+ +≥  for 1 20 δ δ< < ≤ +∞ , the limit 

( ) ( ) ( )
0 0

lim supE E Eδ δδ δ
µ φ φ

+

+ + +

→ >
= =               (155) 

exists for all E X⊂ . In this context, ( )Eµ+  can be called the result of Cara-
theodory’s construction from ( )Eζ +  on F. ( )Eδφ

+  can be referred to as the 
size δ  approximating positive measure. Let ( ),iE dζ + +  be for example 

( ) ( ) ( ) ( ), ,0 ,
d

i iE d d diam E dζ
+

+ + + + = Θ < Θ               (156) 

for non-empty subsets ,iE i∈  of X. Where ( )d +Θ  is some geometrical fac-
tor, depends on the geometry of the sets iE , used for covering. When F is the 
set of all non-empty subsets of X, the resulting measure ( ),H E dµ+ +  is called the 
d+-dimensional Hausdorff measure over X; in particular, when F is the set of all 
(closed or open) balls in X, 

( ) ( ) ( )2π 2 1 .
2

d
d dd d

+
+

+
+ + −  

Θ Ω = Γ + 
 

             (157) 

Consider a measurable metric space ( )( ) ( ), , , ,n
HX d X dµ ∈ −∞ +∞ . The 

elements of X are denoted by , , ,x y z  , and represented by n-tuples of real 
numbers ( )1 2, , , nx x x x=   

The metric ( ),d x y  is a function :d X X R+× →  is defined in n dimensions 
by 

( ) ( )( ) 1 2
, ij i i j j

ij
d x y y x y xδ = − − ∑              (158) 

and the diameter of a subset E X⊂  is defined by 

( ) ( ){ }sup , | , .diam E d x y x y E= ∈              (159) 

Definition 3.2.1. The Hausdorff measure ( ),H E Dµ+ +  of a subset E X⊂  
with the associated Hausdorff positive dimension D+

+∈  is defined by ca-
nonical way 

( )
{ }

( ) ( )( ){ }
( ) ( ){ }

0
, lim inf , | , ,

sup | 0, , .

i i
H i i ii iE

H

E D E D E E i diam E

D E d d E d

δ
µ ζ δ

µ

∈

+ + + +
∈→

+ + + + +
+

 = ⊂ ∀ <  

= ∈ > = +∞

∑ 





(160) 

Definition 3.2.2. Remind that a function :f X →   defined in a measura-
ble space ( ), ,X µΣ , is called a simple function if there is a finite disjoint set of 
sets { }1, , , nE E  of measurable sets and a finite set { }1, , nα α  of real num-
bers such that ( ) if x α=  if ix E∈  and ( ) 0f x =  if ix E∉ . Thus 
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( ) ( )1 i

n
i Eif x xα χ

=
= ∑ , where ( )

iE xχ  is the characteristic function of iE . A 
simple function f on a measurable space ( ), ,X µΣ  is integrable if ( )iEµ < ∞  
for every index i for which 0iα ≠ . The Lebesgue-Stieltjes integral of f is defined 
by 

( )=1d .n
i iif Eµ α µ= ∑∫                    (161) 

A continuous function is a function for which ( ) ( )limx y f x f y→ =  whenev-
er ( )lim , 0x y d x y→ = . 

The Lebesgue-Stieltjes integral over continuous functions can be defined as 
the limit of infinitesimal covering diameter: when { }i i

E
∈  is a disjoined cover-

ing and i ix E∈  by definition (3.2.12) one obtains 

( ) ( )

( )
( )

{ }
( )( )=0 with

d ,

lim inf , .
ii ij ij ij

HX

i ij ijE X jdiam E E E E

f x x D

f x E D E

µ

ζ

+ +

+ +

→ ⊃

 
=  

 

∫

∑ ∑




   (162) 

From now on, X is assumed metrically unbounded, i.e. for every x X∈  and 
0r >  there exists a point y such that ( ),d x y r> . The standard assumption 

that D+  is uniquely defined in all subsets E of X requires X to be regular (ho-
mogeneous, uniform) with respect to the measure, i.e.  

( )( ) ( )( ), ,H r H rB x D B y Dµ µ+ + + +=  for all elements ,x y X∈  and (convex) 
balls ( )rB x  and ( )rB y  of the form ( ) ( ){ }0 | , ; ,rB x z d x z r x z X> = ≤ ∈ . In 
the limit ( ) 0idiam E → , the infimum is satisfied by the requirement that the 
variation overall coverings { }ij ij

E
∈

 is replaced by one single covering iE , such 
that ij i ij

E E x→


 . Hence  

( ) ( )
( )

( ) ( )
0

d , lim , .
i i

H i iX diam E E X
f x x D f x E Dµ ζ+ + + +

→ =

= ∑∫


       (163) 

The range of integration X may be parametrized by polar coordinates with 
( ),0r d x=  and angle Ω . { },i ir i

E Ω ∈
 can be thought of as spherically symme-

tric covering around a centre at the origin. In the limit, the function 

( ), ,rE Dζ + +
Ω  defined by Equation (156) is given by 

( )
( )

( )
,

1 1
,

0
d , lim , d d .

r

D D
H r

diam E
x D E D r r

ω

µ ζ
+ ++ + + + − −

Ω
→

= = Ω         (164) 

Let us assume now for simplification that ( ) ( ) ( )f x f x f r= =  and 
( )lim 0

r
f r

→∞
= . The integral over a D+ -dimensional metric space X is then given 

by 

( ) ( ) ( ) ( )
2

1
0

2πd , d d .
1

2

D

D D
HX X

f x x D f x x f r r r
D

µ

+

+ +∞+ + −
+

= =
 

Γ + 
 

∫ ∫ ∫     (165) 

The integral defined in (163) satisfies the following conditions. 
1) Linearity: 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

d ,

d , d , .

HX

H HX X

a f x a f x x D

a f x x D a f x x D

µ

µ µ

+ +

+ + + +

+  

= +

∫
∫ ∫

       (166) 
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2) Translational invariance: 

( ) ( ) ( ) ( )0 d , d ,H HX X
f x x x D f x x Dµ µ+ + + ++ =∫ ∫        (167) 

since ( ) ( )0d , d ,H Hx x D x Dµ µ+ + + +− = . 
3) Scaling property: 

( ) ( ) ( ) ( )d , d ,D
H HX X

f ax x D a f x x Dµ µ
++ + − + +=∫ ∫        (168) 

since ( ) ( )d , d ,D
H Hx a D a x Dµ µ

++ + − + += . 
4) The generalized ( )D xδ

+
 function: 

The generalized ( )D xδ
+

 function for sets with non-integer Hausdorff di-
mension exists and can be defined by formula 

( ) ( ) ( ) ( )0 0d , .D
HX

f x x x x D f xδ µ
+ + +− =∫          (169) 

3.3. Hausdorff-Colombeau Measure and Associated Negative 
Hausdorff-Colombeau Dimensions 

During last 20 years the notion of negative dimension in geometry was many 
developed, see [12] [23] [24] [25] [26] [27]. 

Remind that canonical definitions of noninteger positive dimension always 
equipped with a measure. Hausdorff-Besicovich dimension equipped with 
Hausdorff measure ( )d ,H x Dµ+ + . 

Let us consider example of a space of noninteger positive dimension equipped 
with the Haar measure. On the closed interval 0 1x≤ ≤  there is a scale 
0 1σ≤ ≤  of Cantor dust with the Haar measure equal to xσ  for any interval 
( )0, x  similar to the entire given set of the Cantor dust. The direct product of 
this scale by the Euclidean cube of dimension 1k −  gives the entire scale k σ+ , 
where k ∈  and ( )0,1σ ∈  [24]. 

In this subsection we define generalized Hausdorff-Colombeau measure. In 
subsection III.4 we will prove that negative dimensions of fractal equipped with 
the Hausdorff-Colombeau measure in natural way. 

Let Ω  be an open subset of n , let X be metric space nX   and let F 
be a set { }i i

F E
∈

=   of subsets iE  of X. Let ( ), ,E x xζ   be a function 
: Fζ ×Ω×Ω→  . Let ( )FC∞ Ω  be a set of the all functions ( ),E xζ  such that 
( ) ( ),E x Cζ ∞∈ Ω  whenever E F∈ . Throughout this paper, for elements of the 

space ( )( ]0,1
FC∞ Ω  of sequences of smooth functions indexed by ( ]0,1ε ∈  we 

shall use the canonical notations ( )( ),E xε ε
ζ  and ( )ε ε

ζ  so ( )FCεζ
∞∈ Ω , 

( ]0,1ε ∈ . 
Definition 3.3.1. We set ( ) ( ) ( ), / ,F M F FΩ = Ω Ω   , where 

( ) ( ) ( )( ]{
( ) ( ) }

( ) ( ) ( )( ]{
( ) ( ) }

0,1

;

0,1

;

, , with

sup , as 0 ,

, ,

sup , as 0 .

n
M F

p
E F x K

n
F

q
E F x K

F C K p

E x O

F C K q

E x O

ε ε

ε

ε ε

ε

ζ α

ζ ε ε

ζ α

ζ ε ε

∞

−
∈ ∈

∞

∈ ∈

Ω = ∈ Ω ∀ ⊂⊂ Ω ∀ ∈ ∃ ∈

= →

Ω − ∈ Ω ∀ ⊂⊂ Ω ∀ ∈ ∀ ∈

= →

 

 




   (170) 
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Notice that ( )F Ω  is a differential algebra. Equivalence classes of sequences 
( )ε ε
ζ  will be denoted by ( )cl ε ε

ζ    or simply ( )ε ε
ζ   . 

Definition 3.3.2. We denote by   the ring of real, Colombeau generalized 
numbers. Recall that by definition ( ) ( )/M=     [21], where 

( ) ( ) ( ] ( ) ( ]( ){ }
( ) ( ) ( ] ( ) ( ]( ){ }

0,1
0 0

0,1
0 0

0,1 ,

0,1 .

M x x

x x

α
ε εε

α
ε εε

α ε ε ε ε

α ε ε ε ε

 = ∈ ∃ ∈ ∃ ∈ ∀ ≤ ≤ 

 = ∈ ∀ ∈ ∃ ∈ ∀ ≤ ≤ 

  

  




  (171) 

Notice that the ring   arises naturally as the ring of constants of the Co-
lombeau algebras ( )Ω . Recall that there exists natural embedding  :r 


  

such that for all r∈ , ( )r rε ε
=  where r rε ≡  for all ( ]0,1ε ∈ . We say that 

r is standard number and abbreviate r∈  for short. The ring   can be en-
dowed with the structure of a partially ordered ring: for ,r s∈   , 1η η+∈ ≤  
we abbreviate ,r sη≤





 or simply 


r s≤  if and only if there are representa-
tives ( )rε ε

 and ( )sε ε
 with r sε ε≤  for all ( ]0,ε η∈ . Colombeau generalized 

number r∈   with representative ( )rε ε
 we abbreviate  

( )cl rε ε
   . 
Definition 3.3.3. 1) Let δ ∈  . We say that δ  is infinite small Colombeau 

generalized number and abbreviate 0δ ≈




  if there exists representative ( )ε ε
δ  

and some q∈  such that ( )qOεδ ε=  as 0ε → . 2) Let ∆∈  . We say that 
∆  is infinite large Colombeau generalized number and abbreviate ∆ = ∞





  if 
1 0−∆ ≈
 

 

 . 3) Let ∞  be { }∞  We say that ∞Θ∈   is infinite Colombeau 
generalized number and abbreviate Θ = ∞

 

 

 if there exists representative 
( )ε ε
Θ  where εΘ = ∞  for all ( ]0,1ε ∈ . Here we set  
( ) ( ) ( ){ }M M ε ε∞ = Θ   , ( ) ( )∞ =    and ( ) ( )/M∞ ∞ ∞=

    . 
Definition 3.3.4. The singular Hausdorff-Colombeau measure originate in 

Colombeau generalization of canonical Caratheodory’s construction, which is 
defined as follows: for each metric space X, each set { }i i

F E
∈

=   of subsets iE  
of X, and each Colombeau generalized function ( )( ), ,E x xε ε

ζ  , such that: 1) 
( )( )0 , ,E x xε ε

ζ≤  , 2) ( )( ), ,E x xε ε
ζ = ∞





 

 , whenever E F∈ , a preliminary 
Colombeau measure ( )( ), , ,E x xδ ε

φ ε  can be constructed corresponding to 
0 δ< ≤ +∞ , and then a final Colombeau measure ( )( ), ,E x xε ε

µ  , as follows: for 
every subset E X⊂ , the preliminary Colombeau measure ( )( ), , ,E x xδ ε

φ ε  is 
defined by 

( )
{ }

( ) ( ){ }, , , sup , , | , .
i i

i i ii i
E

E x x E x x E E diam Eδ εφ ε ζ δ
∈

∈ ∈
= ⊂ ≤∑ 




    (172) 

Since for all ( ]0,1ε ∈ : ( ) ( )
1 2

, , , , , ,E x x E x xδ δφ ε φ ε− −≥   for 1 20 δ δ< < ≤ +∞ , 
the limit 

( )( ) ( )( ) ( )( )0 0
, , , lim , , , inf , , ,E x x E x x E x xδ δε δ δ εε

µ ε φ ε φ ε
+→ >

= =       (173) 

exists for all E X⊂ . In this context, ( )( ), , ,E x x
ε

µ ε  can be called the result of 
Caratheodory’s construction from ( )( ), ,E x xε ε

ζ   on F and ( )( ), , ,E x xδ ε
φ ε  

can be referred to as the size δ  approximating Colombeau measure. 
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Definition 3.3.5. Let ( )( ), , , ,iE D D x xε ε
ζ + −   be 

( )( )
( ) ( ) ( )

( )
1 2 if

, , , , ,

0 if

D
i

iD
i

i

D D diam E
x E

E D D x x d x x

x E

ε ε
ε

ζ ε

+

−

+ −

+ −

  Θ Θ    ∈ =  +   
 ∉



  (174) 

where ( ] ( ) ( )1 20,1 , , 0D Dε + −∈ Θ Θ > . In particular, when F is the set of all 
(closed or open) balls in X, 

( )
2

1
2 π

1
2

D
D

D
D

+
+−

+
+

Θ =
 

Γ + 
 

                    (175) 

and 

( )

( )

2

2
2 π ,

1
2

2, 4, 6, , 2 1 ,

D
D

D
D

D n

−
−−

−

−

−

Θ =
 

Γ + 
 

≠ − − − − + 

                (176) 

Definition 3.3.6. The Hausdorff-Colombeau singular measure  

( )( ), , , , ,H E D D x x
ε

µ ε+ −   of a subset E X⊂  with the associated  
Hausdorff-Colombeau dimension ( ) ,D D D+ − −

+ +∈ ∈


   is defined by 

( )( )

{ }
( )( ) ( )( ){ }
( )( ) { }

0

, , , , ,

lim sup , , , , | , ,

sup 0 | , , , , , ,

i i

HC

i i ii i
E

HC

E D D x x

E D D x x E E i diam E

D D E D D x x

ε

εδ ε
ε

ε

µ ε

ζ δ

µ ε

∈

+ −

+ −
∈→

+ + + −

  
= ⊂ ∀ <     

= > = ∞

∑




















(177) 

The Colombeau-Lebesgue-Stieltjes integral over continuous functions 
:f X →   can be evaluated similarly as in Subsection III.3, (but using the limit 

in sense of Colombeau generalized functions) of infinitesimal covering diameter 
when { }i i

E
∈  is a disjoined covering and i ix E∈ : 

( ) ( )( )

( )
( )

{ }
( )

0 with

d , , , , ,

lim inf , , , , .
ii ij ij ij

HCX

i i iE X jdiam E E E E

f x E D D x x

f x E D D x x

ε

ε
ε

µ ε

ζ

+ −

+ −
=→ ⊃

  
=   

  

∫

∑ ∑








 (178) 

We assume now that X is metrically unbounded, i.e. for every x X∈  and 
0r >  there exists a point y such that ( ),d x y r> . The standard assumption 

that D+  and D−  is uniquely defined in all subsets E of X requires X to be reg-
ular (homogeneous, uniform) with respect to the measure, i.e.  

( )( )( ) ( )( )( ), , , , , , , , , ,HC r HC rB x D D x x B y D D x y
ε ε

µ ε µ ε− + − − + − ′=
   

    , where  
( ) ( ), ,d x x d x y′=   for all elements , , ,x y x x X′∈   and convex balls ( )rB x  and 
( )rB y  of the form ( ) ( ){ }| , ; ,rB x z d x z r x z X= ≤ ∈    and  
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( ) ( ){ }| , ; ,rB y z d y z r y z X= ≤ ∈   . In the limit ( ) 0idiam E → , the infimum is 
satisfied by the requirement that the variation over all coverings { }ij ij

E
∈

 is re-
placed by one single covering iE , such that ij i ij

E E x→


 . Therefore 

( ) ( )( )

( )
( ) ( )

0

d , , , , ,

lim , , , , .
ii

HCX

i i iE Xdiam E

f x E D D x x

f x E D D x x

ε

ε
ε

µ ε

ζ

+ −

+ −
=→

 =  
 

∫

∑


 



 



       (179) 

Assume that ( ) ( ) ,f x f r r r= = . The range of integration X may be para-
metrized by polar coordinates with ( ),0r d x=  and angle ω . { },i irE ω  can be 
thought of as spherically symmetric covering around a centre at the origin. Thus 

( ) ( )( )

( )
( ) ( )

0

d , , , , ,

lim , , , , .
ii

HCX

i i iE Xdiam E

f r E D D x x

f r E D D x x

ε

ε
ε

µ ε

ζ

+ −

+ −
=→

 =  
 

∫

∑


 



 



       (180) 

Notice that the metric set nX ⊂   can be tesselated into regular polyhedra; 
in particular it is always possible to divide n  into parallelepipeds of the form 

( ) ( ){ }1 , , 1, , | 1 ,0 , 1, , .
ni i n j j j j j jx x x X x i x x j nγ γΠ = = ∈ = − ∆ + ≤ ≤ ∆ =



 

(181) 

For 2n =  the polyhedra 
1 2,i iΠ  is shown in Figure 6. Since X is uniform 

( )( ) ( )
( )

( )

1
, ,1

, ,1

, ,

1

1

d , , , , , lim , , , ,

lim

d
.

n
i in

i in

HC i i
diam

D
n

n j
j Ddiam

j j

D
n

n j
j D

nD
j j

x D D x x D D x x

x

x x

x

x x

εε
ε

ε

ε

µ ε ζ

ε

ε

+

−

+

+

−

+ − + −

Π

=Π

=

 
= Π 
 

 
  ∆  =   
 − +   

 

 
 
 
 
 

  − +    

∏

∏

















   

 







  (182) 

Notice that the range of integration X may also be parametrized by polar 
coordinates with ( ),0r d x=  and angle Ω . ,rE Ω  can be thought of as spheri-
cally symmetric covering around a centre at the origin (see Figure 7 for the 
two-dimensional case). In the limit, the Colombeau generalized function 

( )( ), , , , ,0rE D D rε ε
ζ + −

Ω

 

 is given by 

( )( )

( )
{ }( )

, ,1

1 1

,

d , , , ,

d dlim , , , , ,0
i in

HC

D D

r
Ddiam

r D D

r rE D D r
r

ε

ε
ε

ε

µ ε

ζ
ε

+ +

−

+ −

− −
+ −

Ω
Π

Ω

  Ω
= Ω 

   + 
 



 



 

 



    (183) 
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Figure 6. The polyhedra covering for 2n = . 

 

 

Figure 7. The spherical covering ,rE Ω . 

 
When ( )f x  is symmetric with respect to some centre x X∈ , i.e. ( )f x  = 

constant for all x satisfying ( ),d x x r=  for arbitrary values of r, then change of 
the variable 

x z x x→ = −                         (184) 

can be performed to shift the centre of symmetry to the origin (since X is not a 
linear space, (184) need not be a map of X onto itself and (184) is measure pre-
suming). The integral over metric space X is then given by formula 

( ) ( )( )

( ) ( )
( )12 2

0

d , , , , ,

4π π d .
2 2

HCX

DD D

D

f x E D D x x

r f r
r

D D r

ε

ε

µ ε

ε

++ −

−

+ −

−
∞

+ −

 
 =
 Γ Γ + 

∫

∫

 



            (185) 

3.4. Main Properties of the Hausdorff-Colombeau Metric Meas-
ures with Associated Negative Hausdorff-Colombeau Dimen-
sions 

Definition 3.4.1. An outer Colombeau metric measure on a set nX   is a 
Colombeau generalized function ( )( ) ( )FEε ε

φ  ∈ Ω    (see Definition 3.3.1) 
defined on all subsets of X satisfies the following properties. 

1) Null empty set: The empty set has zero Colombeau outer measure 
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( )( ) 0.ε ε
φ ∅ =                       (186) 

2) Monotonicity: For any two subsets A and B of X 

( )( )


( )( ) .A B A Bε εε ε
φ φ   ≤                  (187) 

3) Countable subadditivity: For any sequence { }jA  of subsets of X pairwise 
disjoint or not 

( )( ) 

( )( )11
.j jjj

A Aε ε
εε

φ φ∞ ∞

==
   ≤       ∑             (188) 

4) Whenever ( ) ( ){ }, inf , | , 0nd A B d x y x A y B= ∈ ∈ >  

( )( ) ( )( ) ( )( ) ,A B A Bε ε εε ε ε
φ φ φ     = +               (189) 

where ( ),nd x y  is the usual Euclidean metric: ( ) ( )2,n i id x y x y= −∑ . 
Definition 3.4.2. We say that outer Colombeau metric measure  

( ) ( ], 0,1ε ε
µ ε ∈  is a Colombeau measure on σ-algebra of subests of nX   if 
( )ε ε
µ  satisfies the following property: 

( )( ) ( )( )11
.j jjj

A Aε ε
εε

φ φ∞ ∞

==
   =       ∑

            (190) 

Definition 3.4.3. If U is any non-empty subset of n-dimensional Euclidean 
space, n , the diamater U  of U is defined as 

( ){ }sup , | ,U d x y x y U= ∈                 (191) 

If nF ⊆  , and a collection { }i i
U

∈  satisfies the following conditions: 
1) iU δ<  for all i∈ , 2) ii

F U
∈

⊆
  , then we say the collection 

{ }i i
U

∈  is a δ-cover of F. 
Definition 3.4.4. If nF ⊆   and , , 0s q δ > , we define Hausdorff-Colombeau 

content: 

( )( ),
1, inf

s
is q

qi
i

U
H F

x
δ ε

ε

ε
ε

∞

=

    =   +   
∑            (192) 

where the infimum is taken over all δ-covers of F and where  
( ),1 ,, ,i i i n ix x x U= ∈  for all i∈  and x  is the usual Euclidean norm: 

2
1

n
jjx x

=
= ∑ . 

Note that for ( ]1 20 1, 0,1δ δ ε< < < ∈  we have 

( ) ( )
1 2

, ,, ,s q s qH F H Fδ δε ε≥                   (193) 

since any 1δ  cover of F is also a 2δ  cover of F, i.e. ( )
1

, ,s qH Fδ ε  is increasing as 
δ  decreases. 

Definition 3.4.5. We define the ( ),s q -dimensional Hausdorff-Colombeau 
(outer) measure as: 

( )( ) ( )( ), ,

0
, lim , .s q s qH F H Fδε δ ε
ε ε

→
=               (194) 

Theorem 3.4.1. For any δ-cover, { }i i
U

∈  of F, and for any ( ]0,1ε ∈ , t s> :  
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( ) ( ), ,, , .t q t s s qH F H Fε δ ε−≤                 (195) 

Proof. Consider any δ-cover { }i i
U

∈  of F. Then each t s t s
iU δ− −≤  since 

iU δ≤ , so: 

.t t s s st s
i i i iU U U Uδ− −= ≤                (196) 

From (196) it follows that 

t st s
i i

q q
i i

U U

x x

δ

ε ε

−

≤
+ +

                   (197) 

and summing (196) over all i∈  we obtain 

1 1 .
t s

i it s
q qi i

i i

U U

x x
δ

ε ε
∞ ∞−
= =

≤
+ +

∑ ∑                (198) 

Thus (195) follows by taking the infimum. 
Theorem 3.4.2. 1) If ( )( ), ,s qH F

ε
ε < ∞

 

 

, and if t s> , then  
( )( ), , 0t qH F

ε
ε =





. 
2) If ( )( ),0 ,s qH F

ε
ε<

 

 

, and if t s< , then ( )( ), ,t qH F
ε

ε = ∞




. 
Proof. 1) The result follows from (195) after taking limits, since ( ]0,1ε∀ ∈  

by definitions follows that ( ), ,s qH F ε < ∞ . 
2) From (3.4.10) ( ]0,1 , 0ε δ∀ ∈ ∀ >  follows that 

( ) ( ), ,1 , , .s q t q
s t H F H Fε ε

δ − ≤                 (199) 

After taking limit 0δ → , we obtain ( ), ,t qH F ε = ∞ , since  

( ) 1

0lim s t
δ δ

−−
→ = ∞  and ( ) ( ), ,

0lim , , 0s q s qH F H Fδ δ ε ε→ = > . 
Definition 3.4.6. We define now the Hausdorff-Colombeau dimension 

( )dim ,HC F q  of a set F (relative to 0q > ) as 

( ) ( ) ( )( ){ }
( ) ( )( ){ }

,

,

dim , sup | ,

inf = | , 0 .

s q
HC

s q

F q s s q H F

s s q H F

ε

ε

ε

ε

= = = ∞

= =









        (200) 

Remark 3.4.1. From theorem 3.4.2 follows that for any fixed q q=  : 
( )( ), , 0s qH F

ε
ε =







 or ( )( ), ,s qH F
ε

ε = ∞






 everywhere except at a unique 
value s, where this value may be finite. As a function of s, ( ), ,s qH F ε



 is de-
creasing function. Therefore, the graph of ( ), ,s qH F ε



 will have a unique value 
where it jumps from ∞  to 0. 

Remark 3.4.2. Note that the graph of ( )( ), ,s qH F
ε

ε


 for a fixed q q=   is 

( )( )
( )
( )
( )

,

if dim ,
, 0 if dim ,

undetermined if dim ,

HC
s q

HC

HC

s F q
H F s F q

s F q
ε

ε
∞ >
= >
 =

















       (201) 

Definition 3.4.7. We say that fractal nF  has a negative dimension rela-
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tive to 0q >  
if ( )dim , 0HC F q q− < . 

4. Scalar Quantum Field Theory in Spacetime with  
Hausdorff-Colombeau Negative Dimensions 

4.1. Equation of motion and Hamiltonian 

Scalar quantum field theory and quantum gravity in spacetime with noninteger 
positive Hausdorff dimensions developed in papers [28] [29] [30] [31]. Quan-
tum mechanics in negative dimensions developed in papers [32] [33] Scalar 
quantum field theory and quantum gravity in spacetime with Haus-
dorff-Colombeau negative dimensions originally developed in paper [12]. In this 
section only free scalar quantum field in spacetime with negative dimensions 
briefly is considered. 

A negative-dimensional spacetime structure is a desirable feature of superre-
normalizable spacetime models of quantum gravity, and the most simply way to 
obtain it is to let the effective dimensionality of the multifractal universe to 
change at different scales. A simple realization of this feature is via suitable ex-
tended fractional calculus and the definition of a fractional action. Note that be-
low we use canonical isotropic scaling such that: 

1, 0,1, , 1x Dµ µ  = − = −  t                  (202) 

while replacing the standard measure with a nontrivial Colombeau-Stieltjes 
measure, 

( )( )
[ ] [ )

t f

t

d d d , ,

, 1, .

D Dx x x

D
ε

η ε

η α α

→ =

= ⋅ ∈ −∞
                 (203) 

Here tD  is the topological (positive integer) dimension of embedding space-
time and α  is a parameter. Any Colombeau integrals on net multifractals can 
be approximated by the left-sided Colombeau-Riemann--Liouville complex mil-
ti-fractional integral of a function ( )tL : 

( ) ( )( ) ( ){ }( ) ( ) ( )

( )( ) ( )

( )( )
( ) ( ) ( )

( )( )

1

, 10
d , d ,

, ,
1

i

i

ii

z t
t tmz t

t i
i

z tz t

i

t t i
x t I t t

z t

t t t i
t

z t

ε εεε
ε

ε

ε

ε
η ε

ε
η ε

−

=

 − +   ∝
 Γ
 

 − − +   =
 Γ +
 

∑∫ ∫L L

 (204) 

where ( ]0,1ε ∈ , t  is fixed and the order ( )z t  is (related to) the complex 
Hausdorff-Colombeau dimensions of the set. In particular if  

, 1, 2, ,iz i m∈ =   is a complex parameter an integral on net multifractals can 
be approximated by finite sum of the left-sided  
Colombeau-Riemann-Liouville complex fractional integral of a function 
( )tL  
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( ) ( )( ) { }

( ) ( ) ( ) ( )

( )( ) ( )
( )

1
,0

1
,1 1

1

d ,

1 d ,

, .
1

m
i i

ii

ii

t z
t

t zm mz
ti i

i

zz
m
i

i

x t I

I t t i t
z

t t t i
t

z

ε
ε ε

ε εε
ε

ε

ε

η ε

ε

ε
η ε

=

−

= =

=

 ∝  
 

 
= − +    Γ 

 − − +   =
 Γ +
 

∫

∑ ∑ ∫

∑



L

L        (205) 

Note that a change of variables t t t→ −  transforms Equation (205) into the 
form 

( ) ( )( ) [ ]
( )( ) ( )

1

10 0
d , d .

iz
t tm

i

t i
x t t t t

z tε
ε

ε
η ε

−

=

 +
 = −
 Γ 

∑∫ ∫L L         (206) 

The Colombeau-Riemann-Liouville multifractional integral (206) can be 
mapped onto a Colombeau-Weyl multifractional integral in the formal limit 
t → +∞ . We assume otherwise, so that there exists ( )lim t z t→+∞  and 

( ) ( ) ( )lim ,t t t q t q t→+∞ − =   L L . In particular if z∈  is a complex parame-
ter a change of variables t t t→ −  transforms Equation (206) into the form 

( ) [ ]
( ) ( ) ( )

1

,1 1 d , .
i

i

z
tm mz

ti i
i

t i
I t q t q t

zε εε
ε

ε −

= =

 +
 =    Γ 

∑ ∑ ∫ L          (207) 

This form will be the most convenient for defining a Colombeau-Stieltjes field 
theory action. In tD  dimensions, we consider now the action 

( ) ( ) ( ) ( )( )d , , ,
M

x x xε ε µ εε ε
η ε ϕ ϕ = ∂ ∫S L             (208) 

where , µϕ ϕ ∂ L  is the Lagrangian density of the scalar field ( )( )xε ε
ϕ  and 

where 

( )( ) ( )( ) ( )( )t 1
, ,1 0d , , d , , : ,Dm
i iix f x x f x Mµ

µ µµε ε ε
η ε ε ε−

= =
= →∑ ∏ 

   (209) 

is some Colombeau-Stieltjes measure. We denote with pair ( )( )( ), d ,M x
ε

η ε  
the metric spacetime M equipped with Colombeau-Stieltjes measure 

( )( )d ,x
ε

η ε . The former can be taken to be the canonical scalar field Lagran-
gian, 

( ) ( )( ) ( ) ( )( )1, ,
2

x x Vµ
ε µ ε µ ε ε ε εεε

ϕ ϕ ϕ ϕ ϕ ∂ = − ∂ ∂ − L       (210) 

where ( )V ϕ  is a potential and contraction of Lorentz indices is done via the 
Minkowski metric ( ), , ,µν µν

η = − + + . As for the Colombeau-Stieltjes measure, 
we make the multifractal spacetime isotropic choice 

( )( ) ( ), t, , , 1, , 1; 1, , .iif f D i mεµ ε εε
µ= = − =             (211) 

Hence the scalar field action (208) reads 

( ) ( ) ( ) ( )( )
( ) ( )t

,1

d , ,

1d ,
2

M

m D
jj

x x x

xv x V

ε ε µ εε ε

µ
ε µ ε ε ε

ε

η ε ϕ ϕ

ϕ ϕ ϕ
=

 = ∂ 

  = ∂ ∂ +    

∫

∑ ∫

S
      (212) 

where ( )( )v xε ε
 is a coordinate-dependent 
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Lorentz scalar 

( )( )
( ) ( )t

, 1

1 .j D
j

v x
s x

ε αε

ε
ε

−

 
 =     +  

               (213) 

We define now the Dirac distribution as Colombeau generalized function by 
equation 

( ) { }
( ) ( )( )f

1 d , , .j

j

Dm
jj v

x x m
ε

η ε δ ε
=

=∑ ∫ ,               (214) 

In particular for the case 1m =  

( ) { }
( ) ( )( )fd , , 1.D
vx x

ε
η ε δ ε =∫                  (215) 

Invariance of the action under the infinitesimal shift ( ) ( ) ( )x x xϕ ϕ δϕ→ +  
gives the equation of motion for a generic weight ( ), , 1, ,iv i mε ε

=  : 

( )
,

1
,

d 0.
d

m i
i

i

v
v x
µ ε

µ
ε ε µ εε ε

ϕ ϕ=

   ∂ ∂ ∂ − + =      ∂ ∂ ∂      
∑L L

        (216) 

In particular for the case 1m =  we obtain  

( )
d 0.

d
v

v x
µ ε

µ
ε ε µ εε ε

ϕ ϕ

 ∂   ∂ ∂ − + =    ∂ ∂ ∂    

L L
           (217) 

From Equation (212) and Equation (216) we obtain 

( ) ( ),
1

,

d 0.
d

m i
i

i

v
V

v
µ ε µ

ε ε εε
ε ε εε

ϕ ϕ ϕ
ϕ=

   ∂   + ∂ − =             
∑       (218) 

where µ
µ= ∂ ∂ . In particular for the case 1m =  we obtain 

( ) ( )d 0.
d

v
V

v
µ ε µ

ε ε εε
ε ε εε

ϕ ϕ ϕ
ϕ

 ∂   
+ ∂ − =         

          (219) 

4.2. Propagator in Configuration Space with Negative-Dimensions 

We define the canonical vacuum-to-vacuum amplitude by 

[ ]( ) ( )( ),1, exp d ,m
jjZ J i Jε ε εε ε

ε ϕ η ϕ
=

 = + ∑∫ ∫D L         (220) 

where J is a source. Integration by parts in the exponent leads to the Lagrangian 
density for a free field as 

( ) ( ), 2
1

,

1 1 ,
2 2

m j
j

j

v
m

v
µ ε µ

ε ε ε ε ε εε ε
ε ε

ϕ ϕ ϕ ϕ
=

  ∂
 = + ∂ − = ℑ     

∑L     (221) 

where 

, 2
1

,

; 1, , .m j
j

j

v
m j m

v
µ ε µ

ε
ε

=

∂
ℑ = + ∂ − =∑             (222) 

In particular for the case 1m =  we obtain 
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2 .
v

m
v
µ ε µ

ε
ε

∂
ℑ = + ∂ −                    (223) 

The propagator is the Green function ( )( )G xε ε
 solving the equation 

( )( ) ( )( ), ,D
vG x xε ε ε ε

δ ε
−

ℑ =                (224) 

where ( )t 1 0D D α− = − < . By virtue of Lorentz covariance, the Green function 
( )G xε  must depend only on the Lorentz interval 2 2i

is x x x x tµ
µ= = − , where 

0x t=  and t1, , 1i D= − . In particular, ( ) ( )( )( )v v s xε εε ε
=  with the correct 

scaling property is 

( )( )( ) ( ) ( )
1

, .
D

v s x s x s x x xµ
ε µε

ε

ε
− −  = + =     

      (225) 

Note that 

( ) ( )
2 t 1

, .s s s

x D
s s

µ
µ

ε εε ε
−

∂ = ∂ = ∂ + ∂
+ +

             (226) 

Hence the inhomogeneous Equation (224) reads 

( ) ( )( ) ( )( )2 2t 1
, .D

s s v
D

m G x x
s ε ε ε

ε

α
δ ε

ε
− −

∂ + ∂ − =  + 
       (227) 

We first consider the Euclidean propagator and denote with 2i
ir x x t= +  

the Wick-rotated Lorentz invariant. In the massless case, the solution of the 
homogeneous equations for any 0α <  is 

( )( ) t2 2
, .

2
D

G r Cr β
ε ε

α
β

+
= =               (228) 

Let us now consider the massive case.The solution of the homogeneous equa-
tion ( )( ) 0G rε ε ε

ℑ =  for any 0α <  is 

( )( ) ( ) ( )

2 t
2

t t1 22 2
2 2

,

D

D D
rG r C mr C mr
m

α

ε α αε

+ ⋅

+ ⋅ + ⋅
− −

  = +  
    

K I     (229) 

where 1 2,C C  are constants and λK  and λI  are the modified Bessel func-
tions. The function ( )zνI  is 

( ) ( )
( )

2

0

2
.

! 1

k

k

z
z

k k

ν

ν ν

+
∞

=
=

Γ + +∑I                (230) 

Formula (230) is valid providing 1, 2, 3,ν ≠ − − −   

( ) ( )
( )

2

0

2
! 1

k

k

z
z

k k

ν

ν ν

− +
∞

− =
=

Γ − + +
∑I              (231) 

Formula (231) is obtained by replacing ν  in (232) with a ν− . 

( ) ( ) ( )π .
2sin π

z z zν ν νν− −
 = − − K I I          (232) 

The modified Bessel functions ( )zν−I  and 
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( )zν−K  have the following asymptotic forms for 0z → : 

( ) ( ) ( ) ( )
1 2 1, , 1, 2, 3,
2 21

zz z
z

ν ν

ν νν ν
ν

− −

− −
   Γ − ≠ − − −   Γ − +   

K I  (233) 

Since for small 0m  the solution must agree with the massless case (228), 
we can set 2 0C = . To find the solution of the inhomogeneous equation, one 
exploits the fact that the mass term does not contribute near the origin. Ex-
panding Equation (229) at 0mr   when 0α <  ( 2 0C = ), we find 

( )( ) ( )
t t4 2

t 22 2
1

2
2

2

i iD D
iD

G r C r
α α

ε ε

α+ ⋅ + ⋅
−  + ⋅

= Γ − 
 

          (234) 

which must coincide with Equation (228). This gives the coefficient 1C  and the 
propagator reads 

( ) ( )
t

tt

t 2
2

2
t 22

1 2 .
2

2π
2

i iD

DD

D
mG r mr
rD

α

αα

+ ⋅
−

+
−

 Γ    = −     
Γ − 
 

,

K      (235) 

5. The Solution Cosmological Constant Problem 
5.1. Einstein-Gliner-Zel’dovich Vacuum with Tiny Lorentz Inva-

riance Violation 

We assume now that: 
1) Poincaré group of momentum space is deformed at some fundamental 

high-energy cutoff ∗Λ  [9] [10]. 
2) The canonical quadratic invariant 2 ab

a bp p pη=  collapses at high-energy 
cutoff ∗Λ  and being replaced by the non-quadratic invariant: 

( )
2

0

.
1

ab
a bp p

p
l p

η

∗Λ

=
+

                      (236) 

3) The canonical concept of Minkowski space-time collapses at a small dis-
tance 1l

∗

−
Λ ∗= Λ  to fractal space-time with Hausdorff-Colombeau negative di-

mension and therefore the canonical Lebesgue measure 4d x  being replaced by 
the Colombeau-Stieltjes measure 

( )( ) ( )( )( )4d , d ,x v s x xεε ε
η ε =                  (237) 

where 

( )( )( ) ( )

( )

1

,

,

D
v s x s x

s x x x

ε ε
ε

µ
µ

ε
− −  = +     

=

              (238) 

see subsection IV.2. 
4) The canonical concept of momentum space collapses at fundamental 
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high-energy cutoff ∗Λ  to fractal momentum space with Hausdorff-Colombeau 
negative dimension and therefore the canonical Lebesgue measure 3d k , where 

( ), ,x y zk k k=k  being replaced by the Hausdorff-Colombeau measure 

( ) ( ) ( ) 1
,

d d
= ,

D D
D D

D D

D D D p p
d

p
ε ε

ε ε

+ +

+ −

− −

− + − −∆ ∆ ∆

   + +      



k
k

k
       (239) 

where ( ) ( )
22π
2

D

D
D

±

±
±

∆ =
Γ

 and x y zp k k k= = + +k . 

Remark 5.1.1. Note that the integral over measure ,dD D+ −
k  is given by for-

mula (185). Thus vacuum energy density ( )eff, , ,D D pε µ+ −
∗  for free quantum 

fields is 

( ) ( ) ( ) ( )eff eff eff eff, , , , , , , .D D p p D D pε µ ε µ ε µ ε µ+ − + −
∗ ∗ ∗= + +     (240) 

Here the quantity ( )effε µ  is given by formula 

( )
( )

( )

( )

( )

eff

eff

eff

2 2 3
eff 3

0

2 2 2

0

2 2 2

0 0

1 d d
2 2π

d d

d d

p

f

K f p p p

K f p p p

µ

µ

µ

µ

µ µ

ε µ µ µ µ

µ µ µ

µ µ µ

≤

≤

= +

= +

= +

∫ ∫

∫ ∫

∫ ∫

 k

k k

        (241) 

where 
( )3

2π , 1
2π

K c= =


. The quantity ( )eff , pε µ ∗  is given by formula 

( )
( )

( )

( )

eff

eff

2 2 3
eff 3

0

2 2 2

0

1, d d
2 2π

d d .

p

p

p f

K f p p p

µ

µ

µ

µ

ε µ µ µ µ

µ µ µ

∗

∗

∗
< <

< <

= +

= +

∫ ∫

∫ ∫

 k

k

k k

    (242) 

The quantity ( )eff, , ,D D pε µ+ −
∗

  (since Equation (22) holds) is given by 
formula 

( )

( ) ( )
eff

eff

2 4 2
2 2 ,

2 2 2 22 2
0

, , ,

1d d ,
1 11

D D

p

D D p

l l
K f

l ll

µ

ε µ

µ µ
µ µ µ

µ µµ

+ −
∗ ∗

∗ ∗ ∗∗

+ −
∗

Λ Λ

≥ Λ ΛΛ

 
 = + + +
 − −− 

∫ ∫



k

k k

(243) 

where 
( )3

1 , 1
2 2π

K c′ = =


. 

Remark 5.1.2. We assume now that  2 2 4 21, 1l lµ µ
∗ ∗Λ Λ   and therefore 

from Equation (243) 
we obtain 
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( )

( ) ( )
eff eff

3,2 2 2 ,

0 0

, , ,

d d d d .D D D

p p

D D p

K l f K f
µ µ

ε µ

µ µ µ µ µ µ
+ −

−

∗ ∗

+ −
∗

Λ
≥ ≥

′ ′= + +∫ ∫ ∫ ∫

eff

k k

k k k
(244) 

From Equation (244) and Equation (239) we obtain 

( )
( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( )

eff eff

eff

eff

eff

eff

2 , 2 2 ,
0 0

1
2

0

2 2 1

0

2 1
0

, , ,

d d d d

dd

d
d

d d

D D D D

p p

D

p D

D

p D

D D
p

D D p

K l f K f

p pK l D D f
p

p p p
K D D f

p

K l D D f p p

µ µ

µ

ε

µ

ε

µ

ε µ

µ µ µ µ µ µ

µ µ µ
ε

µ
µ µ

ε

µ µ µ

+ − + −

∗ ∗

+

−∗

+

−∗

− +

+ −
∗

Λ
≥ ≥

−
∞+ −

Λ

−
∞+ −

+ − + −
Λ

′ ′= + +

′= ∆ ∆
 + 
 

+
′+ ∆ ∆

 + 
 

′= ∆ ∆

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

∫

k k

k k k

( ) ( ) ( )eff 2 2 1
0

d d .D D
p

K D D f p p p
µ

µ µ µ

∗

− +

∗

∞

∞+ − + −′+ ∆ ∆ +

∫

∫ ∫

(245) 

Remark 5.1.2. We assume now that: 

2 6.D D− ++ + ≤ −                      (246) 

Note that 

( )

( )

( ) ( )

( ) ( )
( ) ( ) ( )

eff

eff

eff eff

eff

eff e

2 2 1
0

2

20

2 1
0 0

4 3 4
0

1
2

0 0

d d

d 1 d

1d d d d
2

1 d d
8

d d
1 2

D D
p

D D
p

D D D D
p p

D D D D
p

D D D D

f p p p

f p p
p

f p p f p p

f p p O p

p pf f
D D D D

µ

µ

µ µ

µ

µ µ

µ µ µ

µµ µ

µ µ µ µ µ

µ µ µ

µ µ µ µ µ

− +

∗

− +

∗

− + − +

∗ ∗

− + − +

∗

− + − +

∞ + −

∞ +

∞ ∞+ + −

∞ + − + −
∗

+ + +
∗ ∗

− + − +

+

= +

= +

− +

= +
+ + +

∫ ∫

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

∫

( ) ( ) ( )

ff

eff
1

4 4
0

d .
8 1

D D
D Dp f O p

D D
µ

µ µ µ
− +

− +
+ −

+ −∗
∗− +

− +
+ −

∫

∫

  (247) 

Thus finally we obtain 

( )

( )

( ) ( ) ( )( )

( ) ( ) ( )

eff

eff

eff

eff

1

0

2
0

2
4 4

0

, , ,

d
1

0.5 d

d .
8 1

D D

D D

D D
D D

D D p

K p f
D D

pK l D D f
D D

K p f O p
D D

µ

µ

µ

ε µ

µ µ

µ µ µ

µ µ µ

− +

− +

− +
− +

+ −
∗

+ +
∗

− +

+
+ − ∗

Λ − +

+ −
+ −∗

∗− +

′
=

+ +

 ′+ ∆ ∆ +  +

′
− +

+ −

∫

∫

∫

    (248) 
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Remark 5.1.3. Note that (see Equations (42)): 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

eff eff eff

eff eff eff

eff eff eff

4 2 2 4
1

0 0 0

4 6 8 5
2

0 0 0

, ,

1 1 1d d ln d
4 4 8

1 1 1ln d d .
8 32

p p

p f p f C p f

f f O f p
p

µ µ µ

µ µ µ

ε µ ε µ ε µ

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

∗ ∗

∗ ∗ ∗

−
∗

∗

= +

 = + + − 
 

  
+ − +        

∫ ∫ ∫

∫ ∫ ∫



(249) 

From Equation (240), Equation (248) and Equation (249) finally we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

eff eff eff

eff eff eff

eff eff eff eff

4 2 2 4
1

0 0 0

4 6 8 5
2

0 0 0

2

, , , , , , ,

1 1 1d d ln d
4 4 8

1 1 1ln d d
8 32

.D D

D D p p D D p

p f p f C p f

f f O f p
p

O p

µ µ µ

µ µ µ

ε µ ε µ ε µ ε µ

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

+ − + −
∗ ∗ ∗

∗ ∗ ∗

−
∗

∗

− ++ +
∗

= + +

 = + + − 
 

  
+ − +        

+

∫ ∫ ∫

∫ ∫ ∫



(250) 

The pressure ( )eff, , ,p D D pµ+ −
∗  for free scalar quantum field is 

( ) ( ) ( ) ( )eff eff eff eff, , , , , , , .p D D p p p p p D D pµ µ µ µ+ − + −
∗ ∗ ∗= + +     (251) 

Here the quantity ( )effp µ  is given by formula 

( ) ( )eff
4

eff 0 2 2
d d .

3 p

K pp f p
p

µ

µ

µ µ µ
µ<

=
+

∫ ∫            (252) 

The quantity ( )eff ,p pµ ∗  is given by formula 

( ) ( )eff
4

eff 0 2 2
, d d .

3 p p

K pp p f p
p

µ

µ

µ µ µ
µ∗

∗
≤ ≤

=
+

∫ ∫        (253) 

The quantity ( )eff, , ,p D D pµ+ −
∗

  is given by formula  

( ) ( )eff
4

eff 0 2 2
, , , d d ,

3 p p

K pp D D p f p
p

µ
µ µ µ

µ∗

+ −
∗

>

′

+
∫ ∫




    (254) 

where 
( )3

1 , 1
2 2π

K c′ = =


. 

Remark 5.1.4. Note that (see Equations (42): 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

eff eff

eff eff

eff eff

eff eff eff

4 2 2

0 0

4 4
2

0 0

6 8 5
2

0 0

, ,

1 1d d
12 12

1 1ln d ln d
8 8

5 1 d .
32

p p p p p

p f p f

C p f f

f O f p
p

µ µ

µ µ

µ µ

µ µ µ

µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ µ µ

∗ ∗

∗ ∗

∗

−
∗

∗

= +

= −

 + + − 
 

  
+ +        

∫ ∫

∫ ∫

∫ ∫



 (255) 

From Equation (250), Equation (254) and Equation (255) similarly as above 
finally we get 
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( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

eff eff

eff eff

eff eff

eff

4 2 2

0 0

4 4
2

0 0

6 8 5 2
2

0 0

, , ,

1 1d d
12 12

1 1ln d ln d
8 8

5 1 d .
32

D D

p D D p

p f p f

C p f f

f O f p O p
p

µ µ

µ µ

µ µ

µ

µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ µ µ
− +

+ −
∗

∗ ∗

∗

− + +
∗ ∗

∗

= −

 + + − 
 

  
+ + +       

∫ ∫

∫ ∫

∫ ∫

   (256) 

Remark 5.1.5. We assume now that: 

( ) ( ) ( )
eff eff eff

2 4

0 0 0

d d d 0.f f f
µ µ µ

µ µ µ µ µ µ µ µ= = =∫ ∫ ∫          (257) 

From Equation (250), Equation (256) and Equation (257) finally we get 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

eff

eff

4 2
eff

0

4 2
eff

0

1, , , ln d ,
8

1, , , ln d .
8

D D p f O p

p D D p f O p

µ

µ

ε ε µ µ µ µ µ

µ µ µ µ µ

+ − −
∗ ∗

+ − −
∗ ∗

= +

= − +

∫

∫





     (258) 

Remark 5.1.6. Note that the Equation (258) can be obtained without 
fine-tuning (257) which was assumed in Zel’dovich paper [1]. 

In order to obtain Equation (5.1.23) and strictly weaker conditions we assume 
now that: 

1) 

( ) ( ) ( ). . . . eff ,n
s m g mf f fµ µ µ µ−= + =             (259) 

where 0n >  is an parameter, ( ). .s mf µ  corresponds to standard matter and 
where ( ). .g mf µ  corresponds to physical ghost matter, see Equation (32). 

2) 

 

( )

( )

( )

eff

eff

eff

4
1

0

2 2
2

0

4
3

0

d 0,

d 0,

ln d 0

I p f

I p f

I p f

µ

µ

µ

µ µ

µ µ µ

µ µ µ

∗

∗

∗

= ≈

= ≈

= ≈

∫

∫

∫

               (260) 

3) 

( ) ( )
eff

4
1 2 3

0

ln d .I I I f
µ

µ µ µ µ+ + ∫           (261) 

5.2. Zeropoint Energy Density Corresponding to a Non-Singular 
Gliner Cosmology 

We assume now that 

( ) ( ) ( )
eff eff eff

4 2
eff

0 0 0

d 0, d 0, d 0, .f f f p
µ µ µ

µ µ µ µ µ µ µ µ µ∗= < >∫ ∫ ∫    (262) 
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From Equation (250), Equation (256) and (262) we obtain 

( )

( ) ( )

( ) ( ) ( )

( ) ( )

eff eff

eff eff

eff

eff

2 2 4
1

0 0

4 6
2

0 0

8 5 2

0

, , ,

1 1d ln d
4 8

1 1 1ln d d
8 32

,D D

D D p

p f C p f

f f
p

O f p O p

µ µ

µ µ

µ

ε ε µ

µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ
− +

+ −
∗

∗ ∗

∗

− + +
∗ ∗

 = − − 
 

 
+ −  

 
 

+ +  
 

∫ ∫

∫ ∫

∫



      (263) 

and 

( )

( ) ( )

( ) ( ) ( )

( ) ( )

eff eff

eff eff

eff

2 2 4
2

0 0

4 6
2

0 0

8 5 2

0

, , ,

1 1d ln d
12 8

1 5 1ln d d
8 32

D D

p p D D p

p f C p f

f f
p

O f p O p

µ µ

µ µ

µ

µ

µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ
− +

+ −
∗

∗ ∗

∗

− + +
∗ ∗

 = − − + 
 

 
− +  

 
 

+ +  
 

∫ ∫

∫ ∫

∫

 eff

    (364) 

correspondingly. From Equation (263) and Equation (264) we obtain 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

eff eff

eff eff

eff eff

eff eff

2 2 4
2

0 0

4 6
2

0 0

2 2 4
1

0 0

4 6
2

0 0

4

1 33 d 3 ln d
4 8

3 5 3ln d d
8 32

1 1d ln d
4 8

1 1 1ln d d
8 32

1 ln d
4

p p f C p f

f f
p

p f C p f

f f
p

p f

µ µ

µ µ

µ µ

µ µ

ε µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ

∗ ∗

∗

∗ ∗

∗

∗

 + = − − + 
 

 
− +  

 

 + − − 
 

 
+ −  

 

= −

∫ ∫

∫ ∫

∫ ∫

∫ ∫

( ) ( )

( ) ( ) ( )

eff eff

eff eff

4
2 1

0 0

4 6
2

0 0

3 d

1 5 1ln d d 0.
4 16

C C f

f f
p

µ µ

µ µ

µ µ µ

µ µ µ µ µ µ µ
∗

− +

 
− + < 

 

∫ ∫

∫ ∫

   (265) 

Therefore under conditions (262) the inequality 

2 3 0pε ε− < + <                        (266) 

corresponding to Gliner non-singular cosmology [2] [4] is satisfied. 

5.3. Zeropoint Energy Density in Models with Supermassive 
Physical Ghost Fields 

We assume now that: 
1) ghost fields corresponding to massive spin-2 particle with mass 2m  and to 

massive scalar particle with mass 0m  appears (see Subsection II.2) as real phys-
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ical fields in action () 
Remark 5.3.1. Note that their unphysical behavior may be restricted to arbi-

trarily high-energy cutoff Λ  by an appropriate limitation on the renormalized 
masses 2m  and 0m . 

Actually, it is only the massive spin-two excitations of the field which give the 
problem with unitarity and thus require a very large mass (see Subsection II.2). 

2) Poincaré group is deformed at some fundamental high-energy cutoff ∗Λ  

( ) 2 2
0 2 0 2, .m m m c m c∗ ∗Λ = Λ <                 (267) 

The canonical quadratic invariant 2 ab
a bp p pη=  collapses at high-energy cu-

toff ∗Λ  and being replaced by the non-quadratic invariant 

( )
2

0

.
1

ab
a bp p

p
l p

η

∗Λ

=
+

                      (268) 

3) The canonical concept of Minkowski space-time collapses at a small dis-
tance to fractal space-time with Hausdorff-Colombeau negative dimension and 
therefore the canonical Lebesgue measure 4d x  being replaced by the Colom-
beau-Stieltjes measure 

( )( ) ( )( )( )4d , d ,x v s x xεε ε
η ε =                (269) 

where 

( )( )( ) ( ) ( )
1

, ,
D

v s x s x s x x xµ
ε µε

ε

ε
− −  = + =     

        (270) 

4) we assume that 

( ) ( ) ( ). . . . ,s m g mf f fµ µ µ= +                  (271) 

where ( ). .s mf µ  corresponds to standard matter and where ( ). .g mf µ  corres-
ponds to physical ghost matter. 

Remark 5.3.2. We assume now that 

( ) ( ) 1 2
0 eff eff 2

2
eff

, 1

0

nO n m c m c
f

µ µ µ µ
µ

µ µ

− > ≤ ≤= 
>

 

     (272) 

Thus vacuum energy density ( )1 2
eff eff, , ,D Dε µ µ+ −  for free quantum fields is 

( ) ( ) ( )1 2 1 2 1 2
eff eff eff eff eff eff, , , , , , , .D D D Dε µ µ ε µ µ ε µ µ+ − + −= +      (273) 

Here the quantity ( )1 2
eff eff,ε µ µ  is given by formula 

( )
( )

( )

( )

2
eff

1
eff

2
eff

1
eff

1 2 2 2 3
eff 3

2 2 2

1, d d
2 2π

d d ,
p

f

K f p p p

µ

µ
µ

µ

µ
µ

ε µ µ µ µ µ

µ µ µ

≤

≤

= +

= +

∫ ∫

∫ ∫



eff
k

k k

      (274) 

where 
( )3

2π , 1
2π

K c= =


. The quantity ( )1 2
eff eff, , ,D Dε µ µ+ −  is given by for-

mula 
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( )

( ) ( )2
eff

1
eff

1 2
eff eff

4 22
2 2 ,

2 2 2 22 2

, , ,

1d d ,
1 11

D D

D D

llK f
l ll

µ

µ
µ

ε µ µ

µµ
µ µ µ

µ µµ

+ −
∗

∗∗

+ −

ΛΛ

Λ Λ> Λ

 
 ′= + + +
 − −− 

∫ ∫
k

k k



 
(275) 

where 
( )3

1 , 1
2 2π

K c′ = =


. 

Remark 5.3.2. We assume now that 2 2
1lµ Λ∗

< , and therefore from Equation 
(5.3.9) we obtain 

( )
( ) ( )

2 2
eff eff

1 1
eff eff

1 2
eff eff

3,2 2 2 ,

, , ,

d d d d .D D D

D D

K l f K f
µ µ

µ µ
µ µ

ε µ µ

µ µ µ µ µ µ
+ −

−

+ −

Λ
> >

′ ′+ +∫ ∫ ∫ ∫
k k

k k k

(276) 

From Equation (276) and Equation (239) we obtain 

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
eff eff

1 1
eff eff

2
eff

1
eff

2
eff

1
eff

1 2
eff eff

2 , 2 2 ,

1
2

2 2 1

, , ,

d d d d

dd

d
d

D D D D

D
'

D

D

D

D D

K l f K f

p pK D D l f
p

p p p
K D D f

p

µ µ

µ µ
µ µ

µ

µ µ

ε

µ

µ µ

ε

ε µ µ

µ µ µ µ µ µ

µ µ µ
ε

µ
µ µ

ε

+ − + −

+

−

+

−

+ −

Λ
> >

−
∞+ −

Λ

−
∞+ −

′ ′+ +

 
 
 = ∆ ∆
  +    


+

′+ ∆ ∆
 + 
 

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

k k

k k k

( ) ( ) ( )

( ) ( ) ( )

2
eff

1
eff
2
eff

1
eff

2 1

2 2 1

d d

d d .

D D

D D

K D D l f p p

K D D f p p p

µ

µ µ

µ

µ µ

µ µ µ

µ µ µ

− +

− +

∞+ − + −
Λ

∞+ − + −


 
 
 
 


 ′= ∆ ∆   

 ′+ ∆ ∆ +  

∫ ∫

∫ ∫

(277) 

Note that 
2 2 4 6

2 2
2 2 4 6

2 4 6

3 5

1 1 11 1
2 8 16

1 1 1
2 8 16

p p p pp

p p p

µ µ µ
µ µ µ µ

µ
µ µ µ

 
+ = + = + − + + 

 

= + − + +





       (278) 

By inserting Equation (278) into Equation (274) we get 

( )

( )

( )

( )

2
eff

1
eff

2
eff

1
eff

2
eff

1
eff

1 2
eff eff

2 4 6
2

3 5

4 6 8
2

3 5
0

3 5 7 9

3 5
0

,

1 1 1d d
2 8 16

1 1 1d d
2 8 16

1 1 1d
3 2 5 8 167 9

p

p p pK f p p

p p pK f p p

p p p pK f

µ

µ
µ

µ
µ

µ

µ
µ

µ

ε µ µ

µ µ µ
µ µ µ

µ µ µ
µ µ µ

µ µ µ
µ µ µ

≤

 
= + − + + 

 

  
= + − + +  

   

 
= + − + + 

 

∫ ∫

∫ ∫

∫






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( )

( )

( ) ( )( )

2
eff

1
eff

2
eff

1
eff

2
eff

1
eff

3 5 1 9
2 2 2 2

3 5

5 3 1 1
2 2 2 2

5 3 1 1
1 212 2 2 2

eff

1 1 1d
3 2 5 8 167 9

1 1 1 1d
3 10 56 144

1 1 1 1d .
3 10 56 144

n

K f

K f

K f o

µ

µ

µ

µ

µ

µ

µ µ µ µµ µ µ
µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ µ

−

− − +

 
 = + − + + 
  

 
= + − + + 

 

 
= + − + + 

 

∫

∫

∫



    (279) 

The pressure ( )1 2
eff eff, , ,p D D µ µ+ −  for free quantum fields is 

( ) ( ) ( )1 2 1 2 1 2
eff eff eff eff eff eff, , , , , , , .p D D p p D Dµ µ µ µ µ µ+ − + −= +       (280) 

Here the quantity ( )1 2
eff eff,p µ µ  is given by formula 

( )
( )

( )

( )

2
eff

1
eff

2
eff

1
eff

2
1 2 3
eff eff 3 2 2

4

2 2

1, d d
2 2π

d d .
3 p

p f

K pf p
p

µ

µ
µ

µ

µ
µ

µ µ µ µ
µ

µ µ
µ

≤

≤

=
+

=
+

∫ ∫

∫ ∫

k

k
k

k

      (281) 

The quantity ( )1 2
eff eff, , ,p D D µ µ+ −  is given by formula 

( ) ( )
2
eff

1
eff

2
1 2 ,
eff eff 2 2

, , , d d ,
3

D D

p

Kp D D f
µ

µ
µ

µ µ µ µ
µ

+ −+ −

>

′

+
∫ ∫



k
k

k
    (282) 

where 
( )3

1 , 1
2 2π

K c′ = =


. Note that 

1
2

1
22 2

2 4 6
1

2 4 6

2 4 6

3 5 7

1 1

1 3 51
2 8 16

1 1 3 5
2 8 16

p

p

p p p

p p p

µ
µµ

µ
µ µ µ

µ µ µ µ

−

−

−

 
 = +
 +  

 
= − + − + 

 

= − + − +





         (283) 

By inserting Equation (283) into Equation (281) we get 

( )

( )

( )

( )

2
eff

1
eff

2
eff

1
eff

2
eff

1
eff

1 2
eff eff

2 4 6
4

3 5 7

4 6 8 10

3 5 7

5 7 9 11

3 5 7
0

,

1 1 3 5d d
3 2 8 16

1 3 5d d
3 2 8 16

1 3 5d
3 5 2 8 167 9 10

p

p

p

K p p pf p p

K p p p pf p

K p p p pf

µ

µ
µ

µ

µ
µ

µ
µ

µ

µ µ

µ µ
µ µ µ µ

µ µ
µ µ µ µ

µ µ
µ µ µ µ

≤

≤

 
= − + − + 

 

 
= − + − + 

 

 
= − + − + 

 

∫ ∫

∫ ∫

∫






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( )

( )

( ) ( )( )

2
eff

1
eff

2
eff

1
eff

2
eff

1
eff

5 7 9 11
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6. Discussion and Conclusion 

We will now briefly review the canonical assumptions that are made in the usual 
formulation of the cosmological constant problem. 

The canonical assumptions: 
1) The physical dark matter. 
Dark matter is a hypothetical form of matter that is thought to account for 

approximately 85% of the matter in the universe, and about a quarter of its total 
energy density. The majority of dark matter is thought to be non-baryonic in 
nature, possibly being composed of some as-yet-undiscovered subatomic par-
ticles. Its presence is implied in a variety of astrophysical observations, including 
gravitational effects that cannot be explained unless more matter is present than 
can be seen. For this reason, most experts think dark matter to be ubiquitous in 
the universe and to have had a strong influence on its structure and evolution. 
The name dark matter refers to the fact that it does not appear to interact with 
observable electromagnetic radiation, such as light, and is thus invisible (or 
‘dark’) to the entire electromagnetic spectrum, making it extremely difficult to 
detect using usual astronomical equipment. Because dark matter has not yet 
been observed directly, it must barely interact with ordinary baryonic matter and 
radiation. The primary candidate for dark matter is some new kind of elementa-
ry particle that has not yet been discovered, in particular, weakly-interacting 
massive particles (WIMPs), or gravitationally-interacting massive particles 
(GIMPs). Many experiments to directly detect and study dark matter particles 
are being actively undertaken, but none has yet succeeded. 

2) The total effective cosmological constant effλ  is on at least the order of 
magnitude of the vacuum energy density generated by zero-point fluctuations of 
the standard particle fields. 

3) Canonical QFT is an effective field theory description of a more funda-
mental theory, which becomes significant at some high-energy scale ∗Λ . 

4) The vacuum energy-momentum tensor is Lorentz invariant. 
5) The Moller-Rosenfeld approach [34] [35] to semiclassical gravity by using 

an expectation value for the energy-momentum tensor is sound. 
6) The Einstein equations for the homogeneous Friedmann-Robertson-Walker 

metric accurately describes the large-scale evolution of the Universe. 
Remark 6.1.1. Note that obviously there is a strong inconsistency between 

Assumptions 2 and 3: the vacuum state cannot be Lorentz invariant if modes are 
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ignored above some high-energy cutoff ∗Λ , because a mode that is high energy 
in one reference frame will be low energy in another appropriately boosted 
frame. In this paper Assumption 3 is not used and this contradiction is avoided. 

Remark 6.1.2. Note that also, Assumptions 1, 3, 4 and 5 is modified, which 
we denote as Assumptions 4 and 5 respectively. 

Modified assumptions 
1’) The physical dark matter. 
2’) The total effective cosmological constant effλ  is on at least the order 

5
eff efflnnµ µ− +  of magnitude of the renormalized vacuum energy density gen-

erated by zero-point fluctuations of standard particle fields and ghost particle 
fields, see subsection 1.2. 

3’) The vacuum energy-momentum tensor is not Lorentz invariant. 

6.1. The Physical Ghost Matter and Dark Matter Nature 

In the contemporary quantum field theory, a ghost field, or gauge ghost is an 
unphysical state in a gauge theory. Ghosts are necessary to keep gauge inva-
riance in theories where the local fields exceed a number of physical degrees of 
freedom. For example in quantum electrodynamics, in order to maintain manif-
est Lorentz invariance, one uses a four-component vector potential ( )A xµ , 
whereas the photon has only two polarizations. Thus, one needs a suitable me-
chanism in order to get rid of the unphysical degrees of freedom. Introducing 
fictitious fields, the ghosts, is one way of achieving this goal. Faddeev-Popov 
ghosts are extraneous fields which are introduced to maintain the consistency of 
the path integral formulation. Faddeev-Popov ghosts are sometimes referred to 
as “good ghosts”. 

“Bad ghosts” represent another, more general meaning of the word “ghost” in 
theoretical physics: states of negative norm, or fields with the wrong sign of the 
kinetic term, such as Pauli-Villars ghosts, whose existence allows the probabili-
ties to be negative thus violating unitarity. 

(VI.1) In contrary with standard Assumption 1 in the case of the new ap-
proach introduced in this paper we assume that: 

(VI.1.1.a) The ghosts fields and ghosts particles with masses at a scale less 
then a fixed scale effm  really exist in the universe and formed dark matter sec-
tor of the universe, in particular: 

(VI.1.1.b) these ghosts fields give additive contribution to a full zero-point 
fluctuation (i.e. also to effective cosmological constant effλ  [5], see subsection 
1.2). 

(VI.1.1.c) Pauli-Villars renormalization of zero-point fluctuations (see sub-
section 1.2) is no longer considered as an intermediate mathematical construct 
but obviously has rigorous physical meaning supported by assumption (I.a-b). 

(VI.1.2) The physical dark matter formed by ghosts particles; 
(VI.1.3) The standard model fields do not to couple directly to the ghost sec-

tor in the ultraviolet region of energy at a scale less then a fixed large energy 
scale ∗Λ , in particular: 
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(VI.1.3.a) The “bad” ghosts fields with masses at a scale less then a fixed scale 

effm , where 2
effm c ∗Λ , cannot appear in any effective physical lagrangian 

which contains also the standard particles fields. 
In additional though not necessary we assume that: 
(VI.1.4) The “bad” ghosts fields with masses at a scale m∗ , where 

2m c∗ ∗Λ  can appear in any effective physical lagrangian which contains also 
the standard particles fields, in particular: 

(VI.1.4.a) Pauli-Villars finite renormalization with masses of ghosts fields at a 
scale m∗  of the S-matrix in QFT (see Subsection 2.1-2) is no longer considered 
as an intermediate mathematical construct but obviously has rigorous physical 
meaning supported by assumption (IV). 

(VI.1.4.b) If the “bad” ghosts fields coupled to matter directly, it gives rise to 
small and controllable violetion of the unitarity condition. 

Remark 6.1.3. We emphasize that in universe standard matter coupled with a 
physical ghost matter has the equation of state [3]: 

( ) ( ) ( ) ( )
eff 4

4 vac
vac eff eff

0

1 ln d ,
8 8π

c
p f

G

µ λ
ε µ µ µ µ µ µ= − = =∫        (285) 

where 

( ) ( ) eff

eff

, 1

0

nO n
f

µ µ µ
µ

µ µ

− > ≤= 
>

              (286) 

and where eff effm cµ =  (see subsection I.2, Equation (46)) and therefore gives 
rise to a de Sitter phase of the universe even if bare cosmological constant 

0λ = . 
(VI.1.5) In order to obtain QFT description of the dark component of matter 

in natural way we expand the standard model of particle physics on a sector of 
ghost particles, see [12], Section 2.3.2. QFT in a ghost sector developed in [12], 
Section 3.1-3.4 and Section 4.1-4.8. 

6.2. Different Contributions to effλ . 

The total effective cosmological constant effλ  is on at least the order of magni-
tude of the vacuum energy density generated by zero-point fluctuations of stan-
dard particle fields. 

Assumption 2 is well justified in the case of the traditional approach, because 
the contribution from zero-point fluctuations is on the order of 1 in Planck units 
and no other known contributions are as large thus, assuming no significant 
cancellation of terms (e.g. fine tuning of the bare cosmological constant λ ), the 
total effλ  should be at least on the order of the largest contribution [15]. 

(VI.2) In contrary with standard Assumption 1 in the case of the new ap-
proach introduced in this paper we assume that: 

(VI.2.1) For simplicity though not necessary bare cosmological constant 
0λ = . 

(VI.2.2) The total effective cosmological constant effλ  depends only on mass 
distribution ( )f µ  and constant eff effm cµ =  but cannot depend on large 
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energy scale ∗Λ  
Remark VI.2.1. Note that in subsection we pointed out that under Assump-

tion VI.1 if bare cosmological constant 0λ =  the total cosmological constant 

vacλ  is on at least the order 5
eff

nµ − +  of magnitude of the renormalized va-
cuum energy density generated by zero-point fluctuations of standard particle 
fields and ghost particle fields 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

eff

eff

4 2
vac eff

0

4 2
vac eff

0

1 ln d ,
8

1 ln d .
8

f O

p f O

µ

µ

ε µ µ µ µ µ

µ µ µ µ µ

−
∗

−
∗

= + Λ

= − + Λ

∫

∫
         (287) 

6.3. Effective Field Theory and Lorentz Invariance Violation 

To prevent the vacuum energy density from diverging,the traditional approach 
also assumes that performing a high-energy cutoff is acceptable. This type of re-
gularization is a common step in renormalization procedures, which aim to 
eventually arrive at a physical, cutoff-independent result. However, in the case of 
the vacuum energy density, the result is inherently cutoff dependent, scaling 
quartically with the cutoff ∗Λ . 

Remark VI.3.1. By restricting to modes with particle energy a certain cutoff 
energy ω ∗≤ Λk  a finite, regularized result for the energy density can be ob-
tained. The result is proportional to 4

∗Λ . Any other fields will contribute simi-
larly, so that if there are bn  bosonic fields and fn  fermionic fields, the density 
scales with ( )4b fn n−  4

∗Λ . Typically, the cutoff is taken to be near = 1 in 
Planck units (i.e.the Planck energy), so the vacuum energy gives a contribution 
to the cosmological constant on the order of at least unity according to Equation 
(6.2.4). Thus we see the extreme ne-tuning problem: the original cosmological 
constant λ  must cancel this large vacuum energy density vac 1ε   to a preci-
sion of 1 in 10120 -but not completely- to result in the observed value 

120
eff 10λ −=  [5]. 
Remark VI.3.2. As it pointed out in this paper that a high-energy theory, i.e. 

QFT in fractal space-time with Hausdorff-Colombeau negative dimension would 
not display the zero-point fluctuations that are characteristic of QFT, and hence 
that the divergence caused by oscillations above the corresponding cutoff fre-
quency is unphysical. In this case, the cutoff ∗Λ  is no longer an intermediate 
mathematical construct, but instead a physical scale at which the smooth, conti-
nuous behavior of QFT breaks down. 

Poincaré group of the momentum space is deformed at some fundamental 
high-energy cutoff ∗Λ The canonical quadratic invariant 2 ab

a bp p pη=  col-
lapses at high-energy cutoff ∗Λ  and being replaced by the non-quadratic inva-
riant: 

( )
2

0

.
1

ab
a bp p

p
l p

η

∗Λ

=
+

                     (288) 

Remark VI.3.3. In contrary with canonical approach the total effective cos-
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mological constant effλ  depends only on mass distribution ( )f µ  and con-
stant eff effm cµ =  but cannot depend on large energy scale ∗Λ . 

6.4. Semiclassical Moller-Rosenfeld Gravity 

Assumption 5 means that it is valid to replace the right-hand side of the Einstein 
equation Tµν  with its expectation Tµν . It requires that either gravity is not in 
fact quantum, and the Moller-Rosenfeld approach is a complete description of 
reality, or at least a valid approximation in the weak field limit. The usual argu-
ment states that the vacuum state 0  should be locally Lorentz invariant so 
that observers agree on the vacuum state. This means that the expectation value 
of the energy-momentum tensor on the vacuum, ˆ0 0Tµν , must be a scalar 
multiple of the metric tensor gµν  which is the only Lorentz invariant rank 
( )0,2  tensor. By using Moller-Rosenfeld approach the Einstein field equations 
of general relativity, a term representing the curvature of spacetime Rµν  is re-
lated to a term describing the energy-momentum of matter ˆ0 0Tµν , as well as 
the cosmological constant λ  and metric tensor gµν  reads: 

1 ˆ8π 0 0 .
2

R R g g Tυ
µν υ µν µν µνλ− + =              (299) 

The 00T̂  component is an energy density, we label vac
ˆ0 0Tµν ε= , so that 

the vacuum contribution to the right-hand side of Equation (6.4.1) can be writ-
ten as 

vac
ˆ8π 0 0 8π .T gµν µνε=                      (290) 

Subtracting this from the right-hand side of Equation (6.4.1) and grouping it 
with the cosmological constant term replaces with an “effective” cosmological 
constant [5]: 

eff vac8π .λ λ ε= +                        (291) 

Note that in flat spacetime, where ( )1, 1, 1, 1g diagµν = − + + + , Eq.(6.4.2) im-
plies vac vacpε = − , where vac

ˆ0 0iip T=  for any 1, 2,3i =  is the pressure. 
Obviously this implies that if the energy density is positive as is usually assumed, 
then the pressure must be negative, a conclusion which extends to any metric 
gµν  with a ( )1, 1, 1, 1− + + +  signature. 

Remark VI.4.1. In this paper we assume that the vacuum state 0  should be 
locally invariant under modified Lorentz boost (1.1.18) but not locally Lorentz 
invariant. Obviously this assumption violate the Equation (6.4.2). However 
modified Lorentz boosts (1.1.18) becomes Lorentz boosts for sufficiently small 
energies and therefore in IR region one obtain in a good approximation 

vac
ˆ8π 0 0 8πT gµν µνε≈                 (292) 

and 

eff vac8π .λ λ ε≈ +                     (293) 

Thus Moller-Rosenfeld approach holds in a good approximation. 
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6.5. Quantum Gravity At Energy Scale ∗Λ ≤ Λ . Controllable Viola-
tion of the Unitarity Condition 

Gravitational actions which include terms quadratic in the curvature tensor are 
renormalizable. The necessary Slavnov identities are derived from  
Becchi-Rouet-Stora (BRS) transformations of the gravitational and Faddeev-Popov 
ghost fields. In general, non-gauge-invariant divergences do arise, but they may 
be absorbed by nonlinear renormalizations of the gravitational and ghost fields 
and of the BRS transformations [14]. The geneic expression of the action reads 

( )4 2 2d 2 ,symI x g R R R Rµν
µνα β κ −= − − − +∫            (294) 

where the curvature tensor and the Ricci is defined by Rλ λ
µαν ν µα= ∂ Γ  and 

R Rλ
µν µλν=  correspondingly, 2 32πGκ = . The convenient definition of the gra-

vitational field variable in terms of the contravariant metric density reads 

.h g gµν µν µνκ η= − −                     (295) 

Analysis of the linearized radiation shows that there are eight dynamical de-
grees of freedom in the field. Two of these excitations correspond to the familiar 
massless spin-2 graviton. Five more correspond to a massive spin-2 particle with 
mass 2m . The eighth corresponds to a massive scalar particle with mass 0m . 
Although the linearized field energy of the massless spin-2 and massive scalar 
excitations is positive definite, the linearized energy of the massive spin-2 excita-
tions is negative definite. This feature is characteristic of higher-derivative mod-
els, and poses the major obstacle to their physical interpretation. 

In the quantum theory, there is an alternative problem which may be substi-
tuted for the negative energy. It is possible to recast the theory so that the mas-
sive spin-2 eigenstates of the free-fieid Hamiltonian have positive-definite ener-
gy, but also negative norm in the state vector space. These negative-norm states 
cannot be excluded from the physical sector of the vector space without de-
stroying the unitarity of the S  matrix. The requirement that the graviton 
propagator behaves like 4p−  for large momenta makes it necessary to choose 
the indefinite-metric vector space over the negative-energy states. The presence 
of massive quantum states of negative norm which cancel some of the diver-
gences due to the massless states is analogous to the Pauli-Villars regularization 
of other field theories. For quantum gravity, however, the resulting improve-
ment in the ultraviolet behavior of the theory is sufficient only to make it re-
normalizable, but not finite. 

Remark 6.5.1. (I) The renormalizable models which we have considered in 
this paper many years mistakenly regarded only as constructs for a study of the 
ultraviolet problem of quantum gravity. The difficulties with unitarity appear to 
preclude their direct acceptability as canonical physical theories in locally Min-
kowski space-time. In canonical case they do have only some promise as phe-
nomenological models. 

(II) However, for their unphysical behavior may be restricted to arbitrarily 
large energy scales ∗Λ  mentioned above by an appropriate limitation on the 
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renormalized masses 2m  and 0m . Actually, it is only the massive spin-two ex-
citations of the field which give the trouble with unitarity and thus require a very 
large mass. The limit on the mass 0m  is determined only by the observational 
constraints on the static field. 

6.6. Pauli-Villars Masses Distribution Corresponding to Ghost 
Matter Sector above High Energy Cutoff ∗Λ  A Common Ori-
gin of the Dark Energy and Dard Matter Phenomena 

Dark matter is a hypothetical form of matter that is thought to account for ap-
proximately 85% of the matter in the universe, and about a quarter of its total 
energy density. The majority of dark matter is thought to be non-baryonic in 
nature, possibly being composed of some as-yet undiscovered subatomic par-
ticles. Its presence is implied in a variety of astrophysical observations, including 
gravitational effects that cannot be explained unless more matter is present than 
can be seen. For this reason, most experts think dark matter to be ubiquitous in 
the universe and to have had a strong influence on its structure and evolution. 
Dark matter is called dark because it does not appear to interact with observable 
electromagnetic radiation, such as light, and is thus invisible to the entire elec-
tromagnetic spectrum, making it extremely difficult to detect using usual astro-
nomical equipment [36] [37] [38]. 

Figure 8 Analysis of a giant new galaxy survey, made with ESO’s VLT Survey 
Telescope in Chile, suggests that dark matter may be less dense and more 
smoothly distributed throughout space than previously thought. An internation-
al team used data from the Kilo Degree Survey (KiDS) to study how the light 
from about 15 million distant galaxies was affected by the gravitational influence 
of matter on the largest scales in the Universe. The results appear to be in disa-
greement with earlier results from the Planck satellite. This map of dark matter 
in the Universe was obtained from data from the KiDS survey, using the VLT 
Survey Telescope at ESO’s Paranal Observatory in Chile. It reveals an expansive 
web of dense (light) and empty (dark) regions. This image is one out 
 

 
Figure 8. Dark matter map for a patch of sky based on gravitational lensing analysis [38] 
Hilderbrandt 16. 
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of five patches of the sky observed by KiDS. Here the invisible dark matter is 
seen rendered in pink, covering an area of sky around 420 times the size of the 
full moon. This image reconstruction was made by analyzing the light collected 
from over three million distant galaxies more than 6 billion light-years away. 
The observed galaxy images were warped by the gravitational pull of dark matter 
as the light traveled through the Universe. Some small dark regions, with sharp 
boundaries, appear in this image. They are the locations of bright stars and other 
nearby objects that get in the way of the observations of more distant galaxies 
and are hence masked out in these maps as no weak-lensing signal can be meas-
ured in these areas [38]. The luminous (light-emitting) components of the un-
iverse only comprise about 0.4% of the total energy. The remaining components 
are dark. Of those, roughly 3.6% are identified: cold gas and dust, neutrinos, and 
black holes. About 23% is dark matter, and the overwhelming majority is some 
type of gravitationally self-repulsive dark energy. 

Remark 6.6.1. In order to explain physical nature of the dark matter sector we 
assume that the main part of dark matter, i.e., 23% 4.6% 18%− =  (see Fig-
ure 9) formed by supermassive ghost particles with masses such that 2mc ∗> Λ , 
see ref. [12], Subsection 2.3. 

Remind that vacuum energy density for free scalar quantum field with a 
wrong statistic is: 

( )
( )

( )2 2 2 2 2 2
3 0 0

1 1 4π d d ,
2 2π

c p p p K p p p K Iε µ µ µ µ
∞ ∞

′ ′= − + = + =∫ ∫


 (296) 

where mcµ = . From the basic definitions [1] 

( )
( )

2
3 0 2 2

1 1 1, 4π d , , ,
2 32π

xx x x x x
cp T p u p p p u p

p
µ

µ

∞
= = − = =

+
∫



pu u p  (297) 

one obtains 

( ) ( )
4

0 2 2

d .
3
K p pp K F

p
µ µ

µ

∞′
′= =

+
∫                (298) 

Remark 6.6.2. Note that the integral in RHS of Equation (297) and in Equa-
tion (298) is divergent and ultraviolet cutoff is needed. Thus in accordance with 
[1] we set 

( ) ( ) ( ) ( )0 0 0 0, , , , , ,p K I p p p K F pε µ µ µ µ′ ′= =           (299) 

where 

( ) ( )0 0
4

2 2 2
0 00 0 2 2

d, d , , ,
p p p pI p p p p F p

p
µ µ µ

µ
= + =

+
∫ ∫       (300) 

where 0p c∗≤ Λ . For fermionic quantum field with a wrong statistic, similarly 
one obtains 

( ) ( ) ( ) ( )0 0 0, 4 , , 4 , .p K I p p K F pε µ µ µ µ′ ′= − = −         (301) 

Thus from Equations. (300)-(301) by using formally Pauli-Villars regulariza-
tion [7] [8] and regularization by high-energy cutoff the expression for  
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Figure 9. Matter and energy distribution in the universe 
today. The luminous (light-emitting) components of the 
universe only comprise about 0.4% of the total energy. The 
remaining components are dark. 

 
free vacuum energy density ε  reads 

( )
2

vac 0
0

,
M

i i
i

f I pε µ
=

= ∑                       (302) 

and the expression for pressure p reads 

( )
2

vac 0
0

, .
M

i i
i

p f F pµ
=

= ∑                     (303) 

Definition 6.6.1. We define now discrete distribution :PVf + →   by 
formula 

( ) ,PV i if fµ =                        (304) 

and we will call it as a full discrete Pauli-Villars masses distribution. 
Remark 6.6.3. We assume now that in Equations (302)-(303): 1) the quanti-

ties . , 1, 2, ,s m
i i i Mµ µ= =   are masses of physical particles corresponding to 

standard matter and 2) the quantities . , 1, 2, , 2g m
i i i M Mµ µ= = +   are masses 

of ghost particles with a wrong kinetic term and wrong statistics corresponding 
to physical dark matter. 

Remark 6.6.4. We recall that the Euler-Maclaurin summation formula reads 

( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1

2
11

1 2 1

2
2 2 1

1

d

1, .

M

M
i

M

M

g i h

f A g g

A h g g O h f g
h

µ

µ

µ

µ µ µ µ

µ µ µ µ

=
+ −

= + −  

′ ′+ − + =  

∑

∫       (305) 

Let ( )g µ  be an appropriate continuous function such that: 1)  
( ) , 1, 2, , 2i ig f i Mµ = =  , 
2) ( ) ( )2 10, 0Mg gµ µ′ ′= = . 
Thus from Equations (302)-(303) and Equations (305) we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1

2

vac 0 0
0

2
1 2 2 0 1 1 0

, , d

, ,

M
M

i i
i

M M

f I p f I p

A h f I p f I p O h

µ

µ
ε µ µ µ µ

µ µ µ µ
=

= =

 + − + 

∑ ∫
     (306) 
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and 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1

2

vac 0 0
0

2
1 2 2 0 1 1 0

, , d

, , .

M
M

i i
i

M M

p f F p f F p

A h f F p f F p O h

µ

µ
µ µ µ µ

µ µ µ µ
=

= =

 + − + 

∑ ∫
   (307) 

Definition 6.6.2. We will call the function ( )PVf µ  as a full continuous Pau-
li-Villars masses distribution. 

Definition 6.6.3. We define now: 1) discrete distribution . . :b g m
PVf + →   by 

formula 

( ). . . , 1, 2, ,b g m s m
PV i if f i Mµ = =              (308) 

and we will call it as discrete Pauli-Villars masses distribution of the bosonic 
ghost matter and 

2) discrete distribution . . :f g m
PVf + →   by formula 

( ). . , 1, 2, , 2f g m
PV i if f i M Mµ = = +          (309) 

and we will call it as discrete Pauli-Villars masses distribution of the fermionic 
ghost matter. 

Remark 6.6.4. We rewrite now Equations (306)-(307) in the following equiv-
alent form 

( ) ( ) ( )( ) ( )( )
( )

2
. . . . . . . . . . .

vac 0 0
1 = 1

, ,
M M

b g m s m b g m f g m f g m f g m
PV i i PV j i j i

i j i M
f I p f I pε µ µ µ µ

= +

= +∑ ∑   (310) 

and 

( ) ( ) ( )( ) ( )( )
( )

2
. . . . . . . . . . . .

vac 0 0
1 1

, , ,
M M

b g m b g m b g m f g m f g m f g m
PV i i PV j i j i

i j i M
p f F p f F pµ µ µ µ

= = +

= +∑ ∑ (311) 

where ( ) , 1 1,2, ,j i i M i M= + = +  . 
Remark 6.6.6. We assume now that:1) ( )

. . . .b g m f g m
i j iµ µ≈ , 

2) ( ) ( )( ). . . . . . . . 1b g m b g m f g m f g m
PV i PV j if fµ µ+  , i.e., 

( ) ( )( ). . . . . . . . .b g m b g m f g m f g m
PV i PV j if fµ µ≈ −                 (312) 

Note that Equation (312) meant highly symmetric discrete Pauli-Villars 
masses distribution between bosonic ghost matter and fermionic ghost matter 
above that scale .∗Λ  

Thus from Equations (310)-(311) and Equations (312) we obtain 

( ) ( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )

2
. . . . . . . . . . . .

vac 0 0
1 1

. . . . . . . .
0

1

, ,

,

M M
b g m b g m b g m f g m f g m f g m

PV i i PV j i j i
i j i M

M
b g m b g m f g m f g m

PV i PV ij i
i

f I p f I p

f f I p

ε µ µ µ µ

µ µ µ

= = +

=

= +

 = + 

∑ ∑

∑
 (313) 

and 

( ) ( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )

2
. . . . . . . . . . . .

vac 0 0
1 1

. . . . . . . .
0

1

, ,

, .

M M
b g m b g m b g m f g m f g m f g m

PV i i PV j i j i
i j i M

M
b g m b g m f g m f g m

PV i PV ij i
i

p f F p f F p

f f F p

µ µ µ µ

µ µ µ

= = +

=

= +

 = + 

∑ ∑

∑
 (314) 

https://doi.org/10.4236/***.2019.*****


J. Foukzon et al. 
 

 

DOI: 10.4236/***.2019.***** 62 Journal of Modern Physics 
 

From Equations (313)-(314) and Equations (305) finally we obtain 

( ) ( )( ) ( )

( ) ( ) ( )eff

1

. . . . . . . .
vac 0

1

. . . .
0

,

, d

M
b g m b g m f g m f g m

PV i PV ij i
i

b g m f g m
PV PV

f f I p

f f I p
µ

µ

ε µ µ µ

µ µ µ µ

=

 = + 

 = + 

∑

∫
         (315) 

and 

( ) ( )( ) ( )

( ) ( ) ( )eff

. . . . . . .
vac 0

1

. . . .
0

1

,

, d ,

M
b g m s m f g m f g m

PV i PV ij i
i

b g m f g m
PV PV

p f f F p

f f F p
µ

µ

µ µ µ

µ µ µ µ

=

 = + 

 = + 

∑

∫
         (316) 

where obviously 

( ) ( ) ( ). . . . . . 0.b g m f g m g m
PV PV PVf f fµ µ µ+ = ≈              (317) 

Thus finally we obtain 

( ) ( )( ) ( ) ( )( )

( )2
eff
1

eff

1 2. . . .
eff eff 0 0, , , d ,g m g m

PVp f I p
µ

µ
ε µ µ µ µ µ= ∫          (318) 

and 

( ) ( )( ) ( ) ( )( )

( )2
eff
1

eff

1 2. . . .
eff eff 0 0, , , d ,g m g m

PVp p f F p
µ

µ
µ µ µ µ µ= ∫          (319) 

where ( ) ( )1 2
eff eff 0, pµ µ  . In order to calculate ( ) ( )( )1 2. .

eff eff 0, ,g m pε µ µ  and  
( ) ( )( )1 2. .
eff eff 0, ,g mp pµ µ  let us evaluate now the following quantities defined above 

by Equations (300) 

( )
0 0 2

2 2 2 2
0 2

0 0

, d 1 d
p p pI p p p p p pµ µ µ

µ
= + = +∫ ∫        (320) 

and 

( )
0 04 4 1

0 2 2 2
0 0

2

1 d 1 d, ,
3 3

1

p pp p p pF p
p p

µµ
µ

µ

−

= =
+

+
∫ ∫          (321) 

where 0 1p µ  . Note that 
2 2 4 6

2 2 4 6

2 2 4 6
2 2 2 2 2

2 2 4 6

4 6 8
2

3 5

1 1 11 1
2 8 16

1 1 11 1
2 8 16

1 1 1
2 8 16

p p p p

p p p pp p p p

p p pp

µ µ µ µ

µ µ µ
µ µ µ µ

µ
µ µ µ

+ = + − + +

 
+ = + = + − + + 

 

= + − + +







 (322) 

By inserting Equation (322) into Equation (320) one obtains 

( )
0 4 6 8

2
0 3 5

0

5 7 9
3 0 0 0
0 3 5

1 1 1, d
2 8 16

1 1 1 1
3 10 7 8 9 16

p p p pI p p p

p p p
p

µ µ
µ µ µ

µ
µ µ µ

 
= + − + + 

 

= + − + +
× ×

∫ 



       (323) 

Note that 
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1 22 2 4

2 2 4

1 22 4 6 8
4 1

2 3 5

1 31 1
2 8

1 31
2 8

p p p

p p p pp

µ µ µ

µ
µµ µ µ

−

−

−

 
+ = − + + 

 

 
+ = − + + 

 





          (324) 

By inserting Equation (324) into Equation (321) one obtains 

( )
0 04 1 4 6 8

0 3 52
0 0

2

5 7 9
0 0 0

3 5

1 d 1 1 3, d
3 3 2 8

1

1 1
3 5 2 3 7 8 9

p pp p p p pF p p
p

p p p

µµ
µ µ µ

µ

µ µ µ

−  
= = − + + 

 +

= − + +
× × × ×

∫ ∫ 



   (325) 

By inserting Equation (323) into Equation (318) one obtains 
( ) ( )( )

( ) ( )( )

( )

( )( )

( )

( )( )

( ) ( )
( )

( ) ( )
( )

( )

2
eff
1

eff

2
eff
1

eff

2 2 2
eff eff eff
1 1 1

eff eff eff

1 2. .
eff eff 0

. .
0

5 7 9
. . 3 0 0 0

0 3 5

. . . .3 5 7
. .0 0 0

3

, ,

, d

1 1 1 1 d
3 10 7 8 9 16

d d
d

3 10 7 8

g m

g m
PV

g m
PV

g m g m
PV PVg m

PV

p

f I p

p p p
f p

f fp p p
f

µ

µ

µ

µ

µ µ µ

µ µ µ

ε µ µ

µ µ µ

µ µ µ
µ µ µ

µ µ µ µ
µ µ µ

µ µ

=

 
= + − + + 

× × 

= + − +
×

∫

∫

∫ ∫ ∫





(326) 

By inserting Equation (325) into Equation (319) one obtains 
( ) ( )( )

( ) ( )( )

( )

( )( )

( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( )

2
eff
1

eff

2
eff
1

eff

2 2 2
eff eff eff
1 1 1

eff eff eff

1 2. .
eff eff 0

. .
0

5 7 9
. . 0 0 0

3 5

. . . . . .5 7 9
0 0 0

3 5

, ,

, d

1 1 d
3 5 2 3 7 8 9

d d d
3 5 2 3 7 8 9

g m

g m
PV

g m
PV

g m g m g m
PV PV PV

p p

f F p

p p p
f

f f fp p p

µ

µ

µ

µ

µ µ µ

µ µ µ

µ µ

µ µ µ

µ µ
µ µ µ

µ µ µ µ µ µ
µ µ µ

=

 
= − + + 

× × × × 

= − + +
× × × ×

∫

∫

∫ ∫ ∫





 
(327) 

Remark 6.6.7. We assume now that 

( )
( )( ) ( ) ( )

( )

1 1 2
eff eff eff. .

2
eff

, 7

0

n

g m
PV

O n
f

µ µ µ µ
µ

µ µ

−   > ≤ ≤   = 
 >

      (328) 

Note that under assumption (328) the quantities ( ) ( )( )1 2. .
eff eff 0, ,g m pε µ µ  and 

( ) ( )( )1 2. .
eff eff 0, ,g mp pµ µ  cannot contribute in the value of the cosmological constant. 

7. Conclusion 

We argue that a solution to the cosmological constant problem is to assume that 
there exists hidden physical mechanism which cancels divergences in canonical 

4 4,QED QCD , Higher-Derivative-Quantum-Gravity, etc. In fact, we argue that 
corresponding supermassive Pauli-Villars ghost fields, etc. really exist. New 
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theory of elementary particles which contain hidden ghost sector is proposed. In 
accordance with Zel’dovich hypothesis [1] we suggest that physics of elementary 
particles is separated into low/high energy ones, the standard notion of smooth 
spacetime is assumed to be altered at a high energy cutoff scale ∗Λ  and a new 
treatment based on QFT in a fractal spacetime with negative dimension is used 
above that scale. This would fit in the observed value of the dark energy needed 
to explain the accelerated expansion of the universe if we choose highly symme-
tric masses distribution below that scale ∗Λ , i.e., 

( ) ( ) 2
. . eff eff, ,s m g mf f cµ µ µ µ µ ∗≤ < Λ  
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