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Natural deduction is the type of logic most familiar to current philosophers, and indeed is all that many
modern philosophers know about logic. Yet natural deduction is a fairly recent innovation in logic, dating
from Gentzen and Jas! kowski in 1934. This article traces the development of natural deduction from the view
that these founders embraced to the widespread acceptance of the method in the 1960s. I focus especially
on the diŒerent choices made by writers of elementary textbooksÐ the standard conduits of the method to
a generation of philosophersÐ with an eye to determining what the `essential characteristics ’ of natural
deduction are.

1. Introduction

In 1934 a most singular event occurred. Two papers were published on a topic that

had (apparently) never before been written about, the authors had never been in

contact with one another, and they had (apparently) no common intellectual

background that would otherwise account for their mutual interest in this topic."

These two papers formed the basis for a movement in logic which is by now the most

common way of teaching elementary logic by far, and indeed is perhaps all that is

known in any detail about logic by a number of philosophers (especially in North

America). This manner of proceeding in logic is called `natural deduction.’ And in its

own way the instigation of this style of logical proof is as important to the history of

logic as the discovery of resolution by Robinson in 1965, or the discovery of the

logistical method by Frege in 1879, or even the discovery of the syllogistic by Aristotle

in the fourth century BC. #

Yet it is a story whose details are not known by those most aŒected: those

`ordinary’ philosophers who are not logicians but who learned the standard amount

of formal logic taught in North American undergraduate and graduate departments of

philosophy. Most of these philosophers will have taken some (series of) logic courses

that exhibited natural deduction, and may have heard that natural deduction is

somehow opposed to various other styles of proof systems in some number of diŒerent

ways. But they will not know why `natural deduction’ has come to designate the types

of systems that are found in most current elementary logic textbooks, nor will they

know why there are certain diŒerences amongst the various textbooks and how these

diŒerences can nevertheless all be encompassed under the umbrella term `natural

deduction.’

The purpose of this article is to give a history of the development of this method

of doing logic and to characterize what sort of thing is meant nowadays by the name.

1 Gerhard Gentzen (1934 } 5) and Stanasøaw Jas! kowski (1934).
2 Some scholars, e.g. Corcoran (1973), think that Aristotle’s syllogism should be counted as a natural

deduction system, on the grounds that there are no axioms but there are many rules. Although this
might be a reasonable characterization of natural deduction systems, I wish to consider only those
natural deduction systems that were developed in direct response to the `logistical’ systems of the late
1800s and early 1900s.
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My view is that the current connotation of the term functions rather like a prototype:

there is some exemplar that the term most clearly applies to and which manifests a

number of characteristics. But there are other proof systems that diŒer from this

prototypical natural deduction system and are nevertheless correctly characterized as

being natural deduction. It is not clear to me just how many of the properties that the

prototype exempli® es can be omitted and still have a system that is correctly

characterized as a natural deduction system, and I will not try to give an answer.

Instead I will focus on a number of features that are manifested to diŒerent degrees by

the various natural deduction systems. My picture is that if a system ranks `low’ on

one of these features, it can `make up for it ’ by ranking high on diŒerent features. And

it is somehow an overall rating of the total mount of conformity to the entire range of

these diŒerent features that determines whether any speci® c logical system will be

called a natural deduction system. Some of these features stem from the initial

introduction of natural deduction in 1934; but even more strongly, in my opinion, is

the eŒect that elementary textbooks from the 1950s had. There were of course some

more technical works that brought the notion of natural deduction into the

consciousness of the logical world of the 1950s and 1960s. But I will argue that the

`ordinary philosopher’ of the time would have been little in¯ uenced by these works

and that the huge sway that natural deduction holds over current philosophy is mostly

due to the textbooks of the 1950s. The history of how these textbooks came to contain

the material they do is itself an interesting matter, and I aim to detail this development

of what is by now the most universally accepted method (within philosophy) of `doing

logic.’

2. The concept of `natural deduction’

One meaning of `natural deduction’ focuses on the notion that systems employing

it will retain the `natural form’ of ® rst-order logic and will not restrict itself to any

subset of the connectives nor any normal form representation. Although this is clearly

a feature of the modern textbooks, we can easily see that such a de® nition is neither

necessary nor su� cient for a logical system’s being a natural deduction system. For,

surely we can give natural deduction accounts for logics that have restricted sets of

connectives, so it is not necessary. And we can have non-natural deduction systems

(e.g. axiomatic systems) that contain all the usual connectives, so it is not su� cient.

Another feature of natural deduction systems, at least in the minds of some, is that

they will have two rules for each connective: an introduction rule and an elimination

rule. But again this can’ t be necessary, because there are many systems we happily call

natural deduction which do not have rules organized in this manner. And even if we

concocted an axiomatic system that did have rules of this nature, this would not make

such a system become a natural deduction system. So it is not su� cient either.

A third feature in the minds of many is that the inference rules are `natural ’ or

`pretheoretically accepted.’ To show how widely accepted this feature is, here is what

four elementary natural deduction textbooks across a forty year span have to say.

Suppes (1957, viii) says : `The system of inference ¼ has been designed to correspond

as closely as possible to the author’ s conception of the most natural techniques of

informal proof.’ Kalish and Montague (1964, 38) say that these systems `are said to

employ natural deduction and, as this designation indicates, are intended to re¯ ect

intuitive forms of reasoning.’ Bonevac (1987, 89) says : `we’ ll develop a system

designed to simulate people’ s construction of arguments ¼ it is natural in the sense
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that it approaches ¼ the way people argue.’ And Chellas (1997, 134) says `Because the

rules of inference closely resemble patterns of reasoning found in natural language

discourse, the deductive system is of a kind called natural deduction.’ These authors are

echoing Gentzen (1934 } 35, 74), one of the two inventors of natural deduction: `We

wish to set up a formalism that re¯ ects as accurately as possible the actual logical

reasoning involved in mathematical proofs.’

But this also is neither necessary nor su� cient. An axiom system with only modus

ponens as a rule of inference obeys the restriction that all the rules of inference are

`natural ’ , yet no one wants to call such a system `natural deduction,’ so it is not a

su� cient condition. And we can invent rules of inference that we would happily call

natural deduction even when they do not correspond to particularly normal modes of

thought (such as is often done in modal logics, many-valued logics, relevant logics, and

other non-standard logics).

As I have said, the notion of a rule of inference `being natural ’ or `pretheoretically

accepted’ is often connected with formal systems of natural deduction; but as I also

said, the two notions are not synonymous or even co-extensive. This means that there

is an interesting area of research open to those who wish to investigate what `natural

reasoning ’ is in ordinary, non-trained people. This sort of investigation is being

carried out by a group of cognitive scientists, but their results are far from universally

accepted (see Johnson-Laird and Byrne, 1991; Rips 1995).

There is also a history to the notion of `natural deduction’ , and that history

together with the way it was worked out by authors of elementary textbooks will

account for our being drawn to mentioning such features of natural deduction systems

and will yet also account for our belief that they are not de® nitory of the notion.

3. Jas! kowski and Gentzen

In his 1926 seminars, Jan è ukasiewicz raised the issue that mathematicians do not

construct their proofs by means of an axiomatic theory (the systems of logic that had

been developed at the time) but rather made use of other reasoning methods;

especially they allow themselves to make `arbitrary assumptions’ and see where they

lead. è ukasiewicz issued the challenge for logicians to develop a logical theory that

embodied this insight but which yielded the same set of theorems as the axiomatic

system than in existence. The challenge was taken up to Stanisøaw Jas! kowski,

culminating in his (1934) paper. This paper develops a methodÐ indeed, two

methodsÐ for making `arbitrary assumptions’ and keeping track of where they lead

and for how long the assumptions are in eŒect.$ One method is graphical in nature,

drawing boxes or rectangles around portions of a proof ; the other method amounts to

tracking the assumptions and their consequences by means of a book-keeping

annotation alongside the sequence of formulas that constitutes a proof. In both

methods the restrictions on completion of subproofs (as we now call them) are

enforced by restrictions on how the boxes or book-keeping annotationscan be drawn.

We would now say that Jas! kowski’ s system had two subproof-introduction methods:

conditional-proof (conditional-introduction) and reductio ad absurdum (negation-

elimination). It also had rules for the direct manipulation of formulas (e.g. Modus

Ponens). After formulating his set of rules. Jas! kowski remarks (p. 238) that the system

3 Some results of his had been presented as early as 1927, using the graphical method.



4 Francis J. Pelletier

`has the peculiarity of requiring no axioms’ but that he can prove it equivalent to the

established axiomatic systems of the time. (He shows this for various axiom systems of

è ukasiewicz, Frege and Hilbert). he also remarks (p. 258) that his system is `more

suited to the purposes of formalizing practical [mathematical] proofs’ than were the

then-accepted system, which are `so burdensome that [they are] avoided even by the

authors of logical [axiomatic] systems.’ Furthermore, `in even more complicated

theories the use of [the axiomatic method] would be completely unproductive. ’ Given

all this, one could say that Jas! kowski was the inventor of natural deduction as a

complete logical theory.

Working independently of è ukasiewicz and Jas! kowski, Gerhard Gentzen

published an amazingly general and amazingly modern-sounding two-part paper in

1934 } 35. Gentzen’ s opening remarks are :

My starting point was this: The formalization of logical deduction, especially as it

has been developed by Frege, Russell, and Hilbert, is rather far removed from the

forms of deduction used in practice in mathematical proofs. Considerable formal

advantages are achieved in return.

In contrast, I intended ® rst to set up a formal system which comes as close as

possible to actual reasoning. The result was a `calculus of natural deduction ’ (`NJ ’

for intuitionist, `NK’ for classical predicate logic) ¼

Like Jas! kowski, Gentzen sees the notion of making an assumption to be the

leading idea of his natural deduction systems :

¼ the essential diŒerence between NJ-derivations and derivations in the systems of

Russell, Hilbert, and Heyting is the following: In the latter systems true formulae

are derived from a sequence of `basic logical formulae ’ by means of a few forms of

inference. Natural deduction, however, does not, in general, start from basic

logical propositions, but rather from assumptions to which logical deductions are

applied. By means of a later inference the result is then again made independent of

the assumption.

These two founding fathers of natural deduction were faced with the question of

how this method of `making an arbitrary assumption and seeing where it leads ’ could

be represented. As remarked above, Jas! kowski gave two methods. Gentzen also

contributed a method, and there is one newer method. All of the representational

methods used in today’ s natural deduction system are variants on one of these four.

To see the four representations in use let’s look at a simple propositional theorem:

(((P [ Q) & ( C R [ C Q)) [ (P [ R)).% Since the main connective is a conditional,

the most likely strategy will be to prove it by a rule of conditional introduction. But to

apply this rule one must have a subproof that assumes the conditional’ s antecedent

and ends with the conditional’s consequent. All the methods will follow this strategy;

the diŒerences among them concern only how to represent the strategy. In Jas! kowski’ s

graphical method, each time an assumption is made it starts a new portion of the proof

4 Jas! kowski’s language contained only conditional, negation, and universal quanti® er, so the use of &
here is a certain liberty. But it is clear what his method would do if & were a primitive. I call the rule
of &-elimination `simpli® cation’ .
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which is to be enclosed with a rectangle (a `subproof’ ). The ® rst line of this subproof

is the assumption ¼ in the case of trying to apply conditional introduction, the

assumption will be the antecedent of the conditional to be proved and the remainder

of this subproof will be an attempt to generate the consequent of that conditional. If

this can be done, then Jas! kowski’ s rule conditionalization says that the conditional can

be asserted as proved in the subproof level of the box that surrounds the one just

completed. So the present proof will assume the antecedent, ((P [ Q)& ( C R [ C Q)),

thereby starting a subproof trying to generate the consequent, (P [ R). But this

consequent itself has a conditional as main connective, and so it too should be proved

by conditionalization with a yet-further-embedded subproof that assumes its

antecedent, P, and tries to generate its consequent, R. As it turns out, this subproof

calls for a yet further embedded subproof using Jas! kowski’ s reductio ad absurdum.

To make the ebb and ¯ ow of assumptions coming into play and then being

`discharged ’ work, one needs restrictions on what formulas are available for use with

the various rules of inference. Using the graphical method, Jas! kowski mandated that

any `ordinary rule ’ (e.g. Modus Ponens) is to have all the formulas required for the

rule’ s applicabilitybe in the same rectangle. If the relevant formulas are not in the right

scope level, Jas! kowski has a rule that allows lines to be repeated from one scope level

into the next most embedded rectangle, but no such repetitions are allowed using any

other con® guration of the rectangles. The `non-ordinary’ rules of Conditionalization

and Reductio require that the subproof that is used to justify the rule’ s applicabilitybe

immediately embedded one level deeper than the proposed place to use the rule. There

are also restrictions that make each rectangle, once started, be completed before any

other, more inclusive, rectangles can be completed. We need not go into these details

here. A formula is proved only `under certain suppositions’ unless it is outside of any

boxes, in which case it is a theoremÐ as the above demonstration proves about line

g 13.

This graphical method was streamlined somewhat by Fitch (1952), as we will see

in more detail below, and proofs done in this manner are now usually called `Fitch

diagrams.’ (Fitch does not have the whole rectangle, only the left vertical line; and he

draws a line under the ® rst formulae of a subproof to indicate explicitly that it is an

assumption for that subproof.) This method, with some slight variations, was then

followed by Copi (1954), Anderson and Johnstone (1962), Kalish and Montague

(1964), Thomason (1970), Leblanc and Wisdom (1972), Kozy (1974), Tapscott (1976),

Bergmann et al. (1980), Klenk (1983), Bonevac (1987), Kearns (1988), Wilson (1992),

and many others.
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Jas! kowski’ s second method (which he had hit upon somewhat later than the

graphical method) was to make a numerical annotationon the left-side of the formulas

in a proof. This is best seen by example; and so we will re-present the previous proof.

but a few things were changed by the time Jas! kowski described this method. First, he

changed the statements of various of the rules and he gave them new names : Rule I is

now the name for making a supposition, Rule II is the name for conditionalization,

Rule III is the name for modus ponens, and Rule IV is the name for reductio ad

absurdum. (Rules V, VI, and VII have to do with quanti® er elimination and

introduction). & Some of the details of these changes to the rules are such that it is no

longer required that all the preconditions for the applicability of a rule of inference

must be in the same `scope level ’ (in the new method this means being in the same

depth of numerical annotation), and hence there is no longer any requirement for a

rule of repetition. To indicate that a formula is a supposition, Jas! kowski now pre® xes

it with `S ’ .

It can be seen that this second method is very closely related to the method of

rectangles. (And much easier to typeset !) Its only real drawback concerns whether we

can distinguish diŒerent subproofs which are at the same level of embedding. A

confusion can arise when one subproof is completed and then another started, both at

the same level of embedding. In the graphical method there will be a closing of one

rectangle and the beginning of another, but here it could get confused. Jas! kowski’ s

solution is to mark the second such subproof as having `2 ’ as its rightmost numerical

pre® x. This makes numerals be superior to using other symbols in this role, such as an

asterisk. As we will see in section 5, this representational method was adopted by

Quine (1950a), who used asterisks rather than numerals thus leading to the

shortcoming just noted.

One reason that this book-keeping method of Jas! kowski did not become more

common is that Suppes (1957) introduced a method (which could be seen as a variant

on the method, but which I think is diŒerent enough in both its appearance and in its

metalogical properties that it should be called a distinct method) using the line

numbers of the assumptions which any given line in the proof depended upon, rather

than asterisks or arbitrary numerals. In this third method, when an assumption is made

its line number is put in set braces to the left of the line (its `dependency set ’ ). The

application of `ordinary rules ’ such as & E and Modus Ponens make the resulting

formula inherit the union of the dependencies of the lines to which they are applied,

whereas the `scope changing’ rules like [ I and Reductio delete the relevant

assumption’s line number from the dependencies. In this way, the `scope ’ of an

5 For purposes of the example we continueattributinga rule of &-elimination to Jas! kowski, even though
he did not have & in his system.
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assumption is not the continuous sequence of lines that occurs until the assumption is

discharged by a [ I or C I rule, but rather consists of just those (possibly non-

contiguous) lines that `depend upon’ the assumption. Without using Suppes’ s speci® c

rules, we can get the ¯ avour of this style of representation by presenting the above

theorem as proved in a Suppes-like manner.

The appearance of the empty set as the dependency set for line 10 shows that it is

a theorem. This method seems much superior to the other book-keeping method, and

must have seemed so to other writers since they adopted this method rather than the

Jas! kowski way. Some version of Suppes’ s style of proof was adopted by Lemmon

(1965), Mates (1965), Pollock (1969), Myro et al. (1987), Bohnert (1977), Chellas

(1997) and many others.

The fourth method was presented by Gentzen. Proofs in the N calculi (the natural

deduction calculi) are given in a tree format with sets of formulas appearing as nodes

of the tree. The root of the tree is the formula to be proved, and the `suppositions’ are

at the leafs of the tree. The following is a tree corresponding to the example we have

been looking at, although it should be mentioned that Gentzen’ s rule for indirect

proofs ® rst generated v (`the absurd proposition’ ) from the two parts of a

contradiction, and then generated the negation of the relevant assumption.

The lines indicate a transition from the upper formula(s) to the one just beneath the

line, using the rule of inference indicated to the right of the lower formula. (We might

replace these horizontal lines with vertical or splitting lines to more clearly indicate

tree-branches, and label these branches with rule of inference responsible, and the

result would look even more tree-like). Gentzen uses the numerals on the leafs as a way

to keep track of subproofs. Here the main antecedent of the conditional to be proved

is entered (twice, since there are two separate things to do with it) with the numeral `1 ’ ,

the antecedent of the consequent of the main theorem is entered with numeral `2 ’ , and

the formula C R (to be used in the reductio part of the proof) is entered with numeral

`3 ’ . When the relevant rule `scope changing’ is applied (indicated by citing the

numeral of that branch as part of the citation of the rule of inference, in parentheses)

this numeral gets `crossed out ’ , indicating that this subproof is ® nished.
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As Gentzen remarks, very complex proofs show that `the calculus N lacks a certain

formal elegance’ because of the book-keeping matters. However, he says, this has to

be put against the following advantages of N systems (p. 80) :

(1) A close a� nity to actual reasoning, which had been our fundamental aim in

setting up the calculus.

(2) In most cases the derivations for true formula are shorter in our calculus than

their counterparts in the logistic calculi. This is so primarily because in logistic

derivations one and the same formula usually occurs a number of times (as part of

other formulae), whereas this happensonly very rarely in the case of N-derivations.

(3) The designations given to the various inference ® gures [rules of inference] make

it plain that our calculus is remarkably systematic. To every logical symbol belongs

precisely one inference ® gure which `introduces’ the symbolÐ as the terminal

symbol [main connective] of a formulaÐ and one which `eliminates’ it.

The Gentzen tree method did not get used much in elementary logic books, with

the exception of Curry, 1963 (who said his book was for `graduate students of

philosophy’ ) and van Dalen, 1980 (which is for advanced undergraduates in

mathematics). But the method enjoyed some play in the more technical works on

natural deduction, especially Prawitz (1965) and the many works of Curry. It is also

used when comparisons are made to other styles of proving in various of the Russian

works (e.g. Maslov (1969) and Mints (1997)) . But even in works expanding on

Gentzen, it is far more common to use his sequent calculus than his natural deduction

systems. (See section 11). In any case, this method of representing natural deduction

proofs is not at all common any more.

Gentzen’ s was the ® rst use of the term `natural deduction’ to describe logical

systems, and therefore it is only natural that his characterization would strongly

in¯ uence what is to be given the title in any future use of the term. But it is not correct

to say, for instance, that all natural deduction systems must contain precisely the

speci® c rules that Gentzen proposed, for we know that there are many diŒerent ways

to posit the rules of inference that lead to the same eŒect. Nor is it even correct to say

that a natural deduction system cannot contain axioms. In fact, Gentzen’ s own

formulation of NK, the natural deduction system for classical logic, was obtained by

taking the intuitionistic NJ system and adding all instances of ( W h | W ) as `basic

formulae ’ (axioms).’ He remarks that he could have equivalently added double-

negation elimination as a further rule, but that such an elimination of two negations

at once violated his notion of admissibility of rules. (Modern treatments of natural

deduction do not normally have these scruples about admissibility of rules).

In this same article, Gentzen also introduced another type of proof system: the

sequent calculus. This is a topic to which we shall return in section 11.

4. Nine choice points in natural deduction systems

In the next sections we will see how the Jas! kowski} Gentzen goal of employing

natural deduction proof systems rather than `logistical’ (axiomatic) systems came to

6 And so I would say that the characterization of `natural deduction’ as being directly opposed to
`having axioms ’ (e.g. by Corcoran 1973, 192) cannot be quite correct.
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pass into the teaching of logic to generations of (mostly North American ( ) philosophy

and mathematics students. But ® rst, with an eye to bringing some order to the

bewilderingly diverse array of details in the diŒerent systems, in this sub-section I will

lay out some `choice points’ that are diŒerently followed by our diŒerent authors. It

is perhaps because there is such an array of diŒering options chosen by authors within

the general natural deduction framework that it is so di� cult to give an unambiguously

straightforward set of necessary and su� cient conditions for a proof system’s being

correctly called a natural deduction system.

Before recounting the various choices available to a developer of natural deduction

systems, let me impose a matter of terminology. I will use the introduction and

elimination rule-names ( [ I, & E, c I and so on) in the way that Gentzen uses them,

with the exception of the negation rules. Without deviating too much from Gentzen,

but being more in line with the later developments, we will use the negation

introduction and elimination rules as follows:

From C C u infer u ( C E)

From an immediately embedded subproof [ u ¼ W ¼ C W ], infer C u ( C I)

(The last rule, requiring the demonstration that an assumption of u leads to a

contradiction, will recognized as a negation-introducing version of Reductio ad

Absurdum, while the ® rst is Double Negation elimination). Some of our writers use

diŒerent names for the same rules, as for example Modus Ponens (MP) for [ E; while

others call somewhat diŒerent rules by Gentzen’ s names. And there are a number of

other rules that have been proposed.) One particularly important diŒerence concerns

the quanti ® er rules, especially the eliminationof the existential quanti ® er. I will discuss

this soon, as one of the major choice points. In this discussion I will distinguish a rule

of Existential Instantiation (EI) from Gentzen’ s Existential Elimination ( d E).

All the systems we will consider below have a rule of [ I, which introduces a

conditional formula if one has an immediately-embedded subproof that assumes the

antecedent of the conditional and ends with the consequent of the conditional.* This

means that all these systems have a mechanism by means of which an assumption can

be made, and they all have some means of keeping track of the `scope ’ of an

assumption (that is, a way of demarcating a subproof from the one that encompasses

it, and to demarcate two separate and independent subproofs both of which are

encompassed by the same subproof). This much is common to all, although the rule I

might be called CP (`conditional proof ’) or Cd (`conditional derivation’ ), etc. and

although the ways of demarcating distinct subproofs may diŒer. We have already seen,

from Jas! kowski, Suppes, and Gentzen, four basic methods of representing proofs and

7 At the time, British philosophy schools, and those heavily in¯ uenced by them, tended instead to study
`philosophy of logic` as presented by Strawson (1952). Those who studied logic on the Continent
during this period mostly worked in the axiomatic framework.

8 Gentzen did not have a 3 (material equivalence) in his language. Many of the more recent authors do,
and therefore have rules governing its use, but we will not remark on this further.

9 But as I remarked above in section 1, we could have a natural deduction system without a conditional
and hence with no rule [ I. For example, we could have `nand ’ ( U # W ) as the only connective. An
appropriate rule of # I might be: if from the assumption of U one can derive ( W # W ), then in the next
outer scope we can conclude ( U # W ) by # I [and a symmetrical form that assumes W , derive ( U # U ) and
concludes( U # U )]. A rule of # E might be: from ( U # W ) and U , infer ( W # W ) [and a symmetrical form
that eliminates from the other side]. And probably a sort of reductio rule will be desired : if from the
assumption of ( U # U ) we can infer both W and ( W # W ), then on the next outer scope we can infer U .
It can be seen that the # I and reductio rules are of the natural deduction sort because they involve the
construction of a subproof and the subproof involves making an assumption. See also Price (1962) for
natural deduction rules for SheŒer strokes and a discussion of the issues involved in constructing them.
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hence the four basic ways to keep track of subproofs. Which of these methods to adopt

is what I refer to as the ® rst choice point for natural deduction system-builders.

The second choice point concerns whether to allow axioms in addition to the rules.

Despite the fact that Jas! kowski found `no need ’ for axioms, Gentzen did have them in

his NK. And many of the authors of more modern textbooksendorse methods that are

di� cult to distinguish from having axioms. For example, as a primitive rule many

authors have a set of `tautologies’ that can be entered into a proof anywhere. This is

surely the same as having axioms. Other authors have such a set of tautological

implications together with a rule that allows a line in a proof to be replaced by a

formula which it implies according to a member of this set of implications. And it is

but a short step from here to add to the primitive formulation of the system a set of

`equivalences’ that can be substituted for a subpart of an existing line. A highly

generalized form of this method is adopted by Quine (1950a), where he has a rule TF

(`truth functional inference’ ) that allows one to infer `any schema which is truth-

functionally implied by the given line(s) ’ ." ! , " " Although one can detect certain

diŒerences amongst all these variants I have just mentioned here, I would classify them

all as being on the `adopt axioms’ side of this second dimension. Of course, from a

somewhat diŒerent point of view one might separate Quine from the other `axiomatic ’

systems in that he does not have any list of tautological implications to employ, and

instead formulates this as a rule. We might note that, in the propositional logic, Quine

in fact has no real need for the rule of conditionalization. For, everything can be

proved by the rule TF. (Any propositional theorem follows from the null set of

formulas by TF).

Related to the choice of allowing axioms is a third choice of how closely the system

is to embrace the int-elim ideal of Gentzen: that there be an introduction rule and an

elimination rule for each connective, and that there be no other rules." # There are

complete sets of int-elim rules, so we know that the class of all valid inferences can be

generated out of a set of primitive int-elim inferences. But there are other sets of

primitive rules that do not obey the int-elim ideal but also can generate the set of all

valid inferences. (Without going to Quine’ s extreme of just allowing all propositional

inferences to be primitively valid). As we will see, most textbook writers do not follow

the int-elim ideal, but instead have a large number of `overlapping ’ rules (presumably

for pedagogical reasons). And so the third choice is a matter of deciding how far to

deviate from having all rules be int-elim.

A fourth choice point in the propositional logic is to determine which propositional

rules shall require a subproof as a precondition. Although we’ve seen that all systems

have a [ I rule, and that this requires a subproof as a precondition, there is

considerable diŒerence on the other rules ¼ even in those systems that, unlike Quine’ s,

actually have a set of propositional rules. For example, Gentzen’ s rule of h E is:

From u h W and embedded subproofs [u ¼ h ] and [W ¼ h ] infer h

10 Quine’ s TF rule allows one to infer anything that follows from the conjunction of lines already in the
proof.

11 In his (1950b, fn. 3) Quine says that the most important diŒerence between him and Gentzen is in the
formulation of the existential quanti® er elimination rule, and that the diŒerence between Quine’s TF
and Gentzen’s introduction and elimination rules for all the connectives `is a trivial matter.’ It is not
clear to me that Gentzen would agree with this, for he heavily emphasized the int-elim ideal as a crucial
feature of natural deduction. Cellucci (1995, 315± 316) agrees with me in this evaluation.

12 As remarked above, Gentzen did not think this could be done in an appropriate manner for classical
logic. In his mind this showed that classical logic was not `pure ’ in the same way that intuitionisticlogic
was.
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which requires subproofs. But it is clear that we could do equally well with `separation

of cases ’ :

From u h W and u [ h and W [ h , infer h

where there are no required subproofs. (In the presence of [ I the two rules are

equivalent). Gentzen’ s natural deduction had required subproofs for [ I, h E, d E,

and his version of negation introduction. It is possible to have a natural deduction

system with [ I as the only subproof-requiring rule of inference: Quine’ s (1950a) is

like that. But on the opposite hand, some authors have not only the four subproof-

requiring rules of Gentzen (with the C I rule introduced at the beginning of this

subsection replacing Gentzen’s), but in addition have subproof-requiring rules for c I,

3 I, and for a version of Reductio that eliminates negations. And pretty much any

intermediate combination of the two types of rules can be found in some author or

other.

There are a number of choice points concerning the use of variables in ® rst-order

natural deduction systems. But before we come to these choices, a few words of

background are in order. The proper treatment of variables in natural deductionproof

systems is much more involved than in some other proof systems. For example, even

though semantic tableaux systems retain the `natural form’ of formulas just as much

as natural deduction systems do, because tableaux systems are decompositional in

nature and so use only elimination rules, they need not worry about c I and its

interaction with d E or free variables in assumptions and premises. This means in

particular that no tableaux proof will ever try to infer a universally quanti ® ed formula

from any instance of that formula ¼ only a quanti ® er introduction rule would try to

do that. Hence, tableaux systems need not worry about the proper restrictions on

variables that would allow such an inference. But natural deduction systems do allow

this; indeed, it is one of the features of natural deduction theorem proving that it can

construct direct proofs of conclusions, rather than trying to show unsatis® ability (as

tableaux and resolution proofs do).

The treatment of variables in natural deduction is also more involved than in

resolution systems. Resolution converts formulas to a normal form which eliminates

existential quanti ® ers in favour of Skolem functions.But because the Skolem functions

explicitly mention all the universal quanti ® ers that had the original existential

quanti® er in their scope, this information will be present whenever a formula is used

in an inference step. And the uni® cation-of-variables rule will preserve this information

as it generates a formula with the most general uni® er. But in a natural deduction

system this information is only available by relative placement of quanti ® ers. And

these quanti ® ers could become separated from each other when rules of inference are

used on them. Thus the formula c x(Fx [ d yGy) might have c E applied to it to yield

Fa [ d yGy, and Fa might be somewhere in the proof so that [ E could be used to

yield d yGy. But now this resulting formula has no indication that it is actually

somehow dependent on the choice of x in the ® rst formula (namely `a ’ , from the other

formula). In a resolution-style proof the ® rst formula would represented as
C F(x) h G(sk(x)) (with implicit universal quanti ® cation), and when doing a

resolution with Fa, the result would be G(sk(a)), since a would be the most general

uni® er with x, and this resulting formula explicitly mentions the instances of the

universally quanti ® ed variable which is logically responsible for this formula.

But none of this `Skolem information’ is available in a natural deduction proof.
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Formulas are simpli® ed by using the elimination rules ; and formulas are made more

complex by using the introductionrules. All along, variables and quanti® ers are added

or deleted, and no record is kept of what variable used to be in the scope of what other

universally quanti ® ed variable. This all shows that the proper statement of a universal

quanti® er introduction rule, c I, is quite complex; and it interacts with the way an

existential quanti® er elimination rule, d E, is stated. It furthermore is aŒected by

whether one allows a new category of terms into the language, just for helping in this

regard. (Those who take this route call these new terms `arbitrary names ’ or

`parameters ’).

We are now ready to resume our discussion of choice points in developing natural

deduction systems. A ® fth choice point involves whether to have more than one

quanti® er. Jas! kowski only had one quanti ® er, c , and therefore did not need to worry

about its interaction with d . This route is not taken much in the elementary logic

teaching literature, although Mates (1965) did have only c in his primitive vocabulary

(therefore he had only c I and c E as primitive rules). But he soon introduced the

de® ned existential quanti ® ers and derived rules for introducing and eliminating them.

A sixth choice point concerns whether to use subordinate proofs as the

precondition for d E. We’ve seen that in the propositional case,, there appears to be no

`logical’ issue involved in whether to use h E or use separation of cases ¼ merely

(perhaps) some aesthetic issue. And much the same can be said about the other

propositional rules for which some writers require a subproof (so long as [ I is

present). But in the case of quanti® ers there is a logical diŒerence. Gentzen’ s rule for

Existential Quanti ® er Elimination ( d E) is:

( d E) From d x u x and a subproof [u a ¼ W ], infer W

(with certain restrictions on a and on the variables occurring in W ). That is, to

eliminate an existentially quanti ® ed formula, we assume an `arbitrary ’ instance of it in

a subproof. Things that follow from this arbitrary instance (and which obey the

restrictions on the variables) can be `exported ’ out to the subproof level in which the

existentially quanti ® ed formula occurred. But an alternative way to eliminate an

existential quanti ® er could be by Existential Instantiation (EI) :

(EI) From d x u x, infer u a

(with certain restrictions on a ). Here the instance is in the same subproof level as the

existentially quanti ® ed formula. This in turn has various logical implications. For

instance, proofs in a system employing this latter rule do not obey the principle that

each line of a proof is a semantic consequence of all the assumptions that are `active ’

at that point in the proof. For, even if d xFx were semantically implied by whatever

active assumptions there are, it is not true that Fy will be implied by those same

assumptions, since the rule’ s restriction on variables requires that y be new. But in

systems that have a ( d E)-style rule, the situation is diŒerent. For, the `arbitrary

instance’ becomes yet another active assumption of all the formulas in that subproof,

and the restrictions on the variables that can occur in W when it is `exported ’ ensure

that this formula does not semantically depend upon the arbitrary instance. Quine’ s

system used the (EI)-style of ruleÐ he called it Existential Instantiation (EI)Ð and

systems that have such a rule are now usually called `Quine-systems ’ . Systems using

Gentzen’ s rule could be called `Gentzen-systems ’ , but when referring especially to this
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particular matter, they are more usually called `Fitch-systems ’ (see below). In a Quine

system, without further restrictions, it is possible to prove such formulas as

( d xFx [ Fy) by assuming the antecedent, applying EI to this formula, and then using

[ I. Yet under most interpretations of this formula, it is not semantically valid. It is

rather more di� cult to give adequate restrictions for Quine systems than for Fitch

systems, as can be intuitively seen from the following quotation from Quine (1950a,

164), when he is discussing just this sort of inference:

Clearly, then, UG and EI need still further restriction, to exclude cases of the above

sort in which a ¯ agged variable survives in premiss or conclusion to corrupt the

implication. A restriction adequate to this purpose consists merely in regarding

such deductions as un® nished. The following is adopted as the criterion of a

® nished deduction : No variable ¯ agged in the course of a ® nished deduction is free

in the last line nor in any premiss of the last line.

Even before investigating Quine’s notion of ¯ agging variables we can see that there is

a tone of desperation to this. And in fact the method speci® ed in the ® rst edition of

Quine (1950a) was changed in the second edition of 1959. " $

A seventh choice point is whether to have a subproof introductionrule for c I. The

idea behind a rule of c I is that one should derive a formula with an `arbitrary variable ’

in order to conclude that the formula is true for everything. At issue is the best way to

ensure that the variable is `arbitrary ’ . One way would be to stay within the same

subproof level, requiring that the `arbitrary variable ’ must pass such tests as not

occurring free in any premise or undischarged assumption. Yet another way, however,

would be to require a subproof with a special marking of what the `arbitrary variable ’

is going to be and then require that no formula with that variable free can be reiterated

into, or used in, that subproof, and that no existential instance of a formula that uses

that variable can be assumed in an embedded subproof, as when one does this with the

intention of being able to apply d E, within this subproof. (This last discussionÐ of

having embedded subproofs to apply d E inside the suggested version of c I that

requires a subproofÐ shows that there is an interaction between whether one has a

subproof-introducing c I rule and also a subproof-introducing d E rule. As one can see,

there are four possibilities here, and each of them is taken by some elementary

textbook author over the last 50 years.)

An eighth choice point concerns whether to require premises and conclusion (of the

whole argument) to be sentences (formulas with no free variables), or whether they are

allowed to contain free variables. (If the requirement were imposed, then the fact that

the semantically invalid ( d xFx [ Fy) can be proved in a Quine system might not be a

problem, since it couldn’ t be a conclusion of a `real ’ argument because it had a free

13 The preface to the Third Edition (1972) of this book says (p. vi) : `The second edition, much revised,
should have come out in 1956, but was delayed three years by an inadvertent reprinting of the old
version.’ Had it come out in 1956, closer to the publication of Copi’s (1954) with its logically incorrect
combination of EI and UG, perhaps more of the budding early logicians would have understood the
various correct ways to present the restrictions. As it was, the combination of the bizarre and baroque
method of the ® rst edition of Quine’s (1950a), the logically incorrect method in Copi (1954), and the
radically diŒerent-looking method of Fitch (1952) Ð the Gentzen subproof methodÐ made for a rather
mysterious stew of ideas. Anellis (1991) contains a discussion of the diŒerent versions of EI, d E, and
c I that were in the air during the 1950s and 1960s. Despite the fact that there are many places where
Anellis and I diŒer on interpretation of facts, and indeed even on what the facts are, nonetheless I
believe that his article is a fascinating glimpse into the sociology of this period of logic pedagogy.
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variable.) If they are allowed to contain free variables, then one needs to decide how

sentences containing them are to be semantically interpreted (e.g. whether they are

interpreted as if they were universally quanti ® ed or as if existentially quanti® ed.) Such

a decision will certainly dictate the statement of quanti ® er rules and particularly of the

restrictions on variables.

Yet a ninth choice point is related to the just-mentioned one. This is whether to

have an orthographical ly distinct category of `arbitrary names ’ or `parameters ’ to use

with the quanti ® er rules. For example, using a Quine-system we might say that the EI

rule must generate an instance using one of these arbitrary names, rather than an

ordinary variable or ordinary constant. Or, instead of this one might require that using
c I to infer c xFx requires having F a , where a is one of these arbitrary names. It can

here be seen that the notion of `arbitrary name ’ encompasses two quite distinct, and

maybe incompatible, ideas. One is relevant to existential quanti® ers and means `some

speci® c object, but I don’ t know which’ , while the other is relevant to universal

quanti® ers and means `any object, it doesn’t matter which.’ These choices interact

with the eighth choice point on the issue of free variables in premises and conclusions,

and with the background issue in the sixth choice pointÐ the status of the metalogical

claim that each line should be a valid semantic entailment of all the assumptions upon

which it depends. Here’ s what Suppes (1957, 94) says about the issue.

If we interpret ambiguous names in the same way that we interpret proper names

and free variables, then not every line of a derivation is a logical consequence of the

conjunction of the premises on which it depends. ¼ yet this interpretation is the

most natural one, and the simplest procedure is to weaken the requirement that

every line of a derivation be a logical consequence of the conjunction of its

dependency set. What we may prove is that if a formula in a derivation contains no

ambiguous names and neither do its premises, then it is a logical consequence of its

premises. And this state of aŒairs is in fact intuitively satisfactory, for in a valid

argument of use in any disciplinewe begin with premises and end with a conclusion

which contains no ambiguous names.

We will see below how this idea eventually was played out.

With these nine choice points in mind, we turn to the elementary textbooks of the

1950s, where natural deduction was introduced to generations of philosophers and

mathematicians. DiŒerent ones of these textbooks took diŒerent combinations of the

choice points mentioned here, and this is why it is di� cult to give a simple but

adequate characterization of what natural deduction necessarily consists.

5. Quine (and Rosser)

The ® rst publication of a modern-style natural deduction system is in Quine

(1950a), where he says it is `of a type known as natural deduction, and stems, in its

broadest outlines, from Gentzen (1934 } 35) and Jas! kowski (1934) ¼ ’ This textbook of

Quine’ s was one of the main conduits of information about natural deduction to

`ordinary’ philosophers and logicians, although as I will show below, there were also

other pathways of a more technical nature. (There is also an article by Quine (1950b),

which describes the textbook’ s method in more formal terms.) In the textbook Quine

says the rule of conditionalization is `the crux of natural deduction’ (p. 166), and he
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points out that the metatheorem which we call `The Deduction Theorem’ ( R e {u } {
} iŒR { ( u [ } )) is closely related to conditionalization but it has the `status of [a]

derived rule relative to one system or another.’ " %

With regard to the ® rst choice point in natural deduction proof systems, I have

already remarked that Quine adopted Jas! kowski’ s book-keeping method to indicate

relative scopes for subproofs, except that Quine’ s method of `making assumptions’

has one put a * next to the line number to indicate it is an assumption, and any line of

the proof written after this assumption and before the use of a `discharging rule ’ will

also get a * put next to its line number. When an assumption is made `inside’ an

already active assumption, then it inherits a second *. Quine calls the [ I rule `Cd’ ;

it eliminates the most recent (undischarged) assumption in favour of a conditional

using the formula that introduced the * as its antecedent and the line just prior to this

conditional as its consequent. In this (1950b), Quine remarks that `the use of columns

of stars is more reminiscent of Jas! kowski’ s notation" & than Gentzen’ s. Its speci® c form

is due to a suggestion by Dr. Hao Wang.’ It is indeed very similar : Jas! kowski used a

sequence of numerals to exactly the same purpose that Quine used a sequence of *. One

diŒerence was whether they were on the right (Jas! kowski) or left (Quine) of the

numeral for the line number in the proof. Another diŒerence, perhaps more important,

concerned what happens when there are two separate subproofs both embedded

within the same superordinateproofs. Jas! kowski indicates this by having the rightmost

numeral in the sequence of subscope-indicating numerals be changed to a `2 ’ in the

second subproof, whereas Quine is restricted to using *s in both places, perhaps

thereby allowing some confusion as to what the scope of a subproof is. It may also be

that the possibility of confusion is heightened by the fact that Quine also does not

employ any indication of what rules of inference are used to generate any given line in

his proofs. On the other hand, since CD is the only way to end an embedded subproof

in Quine’s system, and since applying it eliminates the rightmost *, there will always

be a line containing a conditional between any two independent subproofs that are at

the same level of subproof embedding, and this line will have one fewer * than these

subproofs. So therefore we can always tell when two subproofs are distinct, as Quine

points out in (1950a, 156 fn1), using the terminology of `an interruption of a column

of stars ’ .

Concerning the other choice points for propositional logic, Quine’ s system has no

other subproof-introducing rules at all. Indeed, the only propositional rules are :

`introduce an assumption’ , Cd, and his rule TF that allows one to infer any new line

if it truth-functionally follows from the undischarged previous lines. Thus Quine has

only one subproof-introducing rule, does not follow the int-elim pattern, and he does

in eŒect allow all truth-functional implication tautologies as axioms by his use of TF

(with the caveats I mentioned in the last section).

When it comes to the quanti® cationrules, Quine’ s system contains both quanti ® ers

rather than implicitly using negation and the universal quanti ® er to represent

existential quanti ® cation.Quine says that not having existential quanti ® ers meant that

14 Suppes (1957, 29fn) says that `when the rule [of conditional proof] is derived from the other rules of
inference rather than taken as primitive, it is usually called the deduction theorem.’ Church (1956, 165)
carefully distinguishes the deduction theorem (whether primitive or derived) from Gentzen formu-
lations on the grounds that `Gentzen’s arrow, U , is not comparable to our syntactical notation, { , but
belongs to his object language.’ But Church is probably here thinking of Gentzen’s sequent calculi (to
be discussed in section 11 below) and not his natural deduction system.

15 By which Quine means the book-keeping method, not the graphical method.
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Jas! kowski did not have to worry about restrictions on a rule to eliminate d , and he said

that Jas! kowski’ s restrictions on universal quanti ® er generalization were `milder ’

(than Quine’s). Quine had four rules for the quanti ® ers: introduction and elimination

rules for each. As I discussed in the last section, Quine’ s rule of eliminating the

existential quanti ® er does not introduce a subproof in the way that Gentzen’ s rule

does. Quine’ s comment on this is that Gentzen’s system `had a more devious rule in

place of [Quine’s] EI, " ’ with the result that many deductions proved more

complicated.’ " (

Here is a proof of a simple theorem, illustrating both the general style of Quine’ s

proof system and also how he deals with the problems of variable interaction. (I have

changed the symbolism to match Gentzen). Quine’ s method involved stating a

preferred ordering on the entire in® nite set of variables and requiring that UG always

apply to a variable that is later in the ordering than any other free variables in the

formula. " ) Similarly, when using EI, the new variable must be later in the ordering

than all the free variables in the formula. Whenever UG or EI is performed, the

relevant variable is `¯ agged ’ by writing it beside the annotation. There is a restriction

on completed proofs that no variable may be ¯ agged more than once in a derivation.

And, as remarked in the last section, there is also a condition on `® nished proofs’ that

no ¯ agged variable be free in the last line nor in any premises of the last line.

This presentation of natural deduction as an elementary proof method seems to be

new to this work of Quine’s; it does not appear in the third edition (1947) of his earlier

Mathematical Logic. Quine does note the appearance of a system with rules of

Conditionalization and EI in Cooley (1942, 126± 140), although as Quine remarks, the

16 This is Quine’s name for the rule Existential Instantiation. Since it eliminates an existential quanti® er,
it could be called d E, except that I have reserved that name for the Gentzen-style rule that requires a
subproof. Quine’s use of the name EI should not be confused with `existential quanti® er introduction’ ,
which rule we are calling d I.

17 Cellucci (1995) containsa very nice discussion of many of the issues concerningQuine’s (1950a) system,
especially those involving restrictions on variables and on how c I and EI interact. He also evaluates
the plausibility of some of Quine’s deviations from Jas! kowski and Gentzen.

18 In the ® rst edition, that is. he changed his method in this regard in the second edition, where the
ordering criterion is stated as `it must be possible to list the ¯ agged variables of a deduction in some
order v

"
, ¼ , v

n
such that, for each number i from 1 to (n –1), v

i
is free no line in which v

i+ "
, ¼ , v

n ± "
is

¯ agged.’ He retains the condition disallowing multiply-̄ agged variables (p. 164).
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EI rule is `without exact formulation of restrictions.’ " * Quine also says (p. 167) that

explicit systems of this sort `have been set forth by Rosser and independentlyby me in

mimeographed lecture notes from 1946 on.’ In the more technical (1950b), Quine

comments more fully in fn. 3 about this matter, saying that he had mimeographed

versions of the system in 1946 and 1948, but that the restrictions on variables in those

systems were incorrect.# ! He also says:

I have lately learned that Barkley Rosser has had, since 1940, an exactly formulated

system of natural deduction which perhaps resembles the present system more

closely than any of the others cited above [by which he means Cooleys’ and his own

earlier work]. He set it forth in some mimeographed lecture notes in 1946± 47.

Having learned of this during travels in which I am still engaged, I do not yet know

the details of his system. I was in¯ uenced in latter-day revisions of my present

system, however, by information that Rosser’ s UG and EI were symmetrical to

each other.

It is not at all clear what became of this work of Rosser’s. He published his (1953)

textbook, but this was not about natural deduction, neither mentioning the term nor

referring to Gentzen or Jas! kowski. It is a textbook intending to show mathematicians

how they might formalize their proofs of mathematical theorems. To this end Rosser

introduced an axiom system for classical predicate logic, and then tried to show how

mathematical reasoning could be represented in this system. But, as he remarks, this

is not the way mathematicians actually carry out their proofs; and he goes on to

illustrate how mathematical proofs could be imitated by a proof in the metalanguage

of his axiom system. in this metalanguage he has the deduction theorem, and so he can

represent the making of assumptions, and he can show how reductio proofs can be

mirrored (this looks like the C I rule mentioned at the beginning of section 4 above).

When it comes to the quanti ® er introduction and elimination rules, these are also

treated metalinguistically. (In the axiom system there is of course an axiom concerning

universal generalization, but it does not work in the `intuitive way ’ that a natural

deduction rule does). In discussing the metalinguistic rule of EI (which he calls `C ’),

Rosser says it amounts to `an act of choice ’ in generating `an unknown, ® xed’ entity,

and that this will explain the restrictions in using it (p. 128). The restrictions mentioned

do not at all seem symmetrical to the restrictions on Rosser’s rule of UG (which he

calls `G ’ ), which only require that the variable of generalization not occur free in any

premises. But in any case Rosser does not in this book develop a system of natural

deduction in the same sense that we have been discussing with Jas! kowski, Gentzen,

and Quine.

Cellucci (1995, 314) reports that Quine met with Jas! kowski in Warsaw in 1933, and

19 Interestingly, Cooley says in his preface (p. viii) `The text was originallywritten in mimeographed form
for a course in which I collaborated with Prof. W. V. Quine of Harvard and I am greatly indebted to
him for advice and stimulation.’

20 As I remarked two footnotes go, Quine changed the restrictions on UG and EI in the second edition
of (1950a), which was published in 1959 with the remark `In � 28 there are two convenient deductive
rules that cannot be directly justi® ed [namely, EI and UG], for the good reason that they serve to
deduce conclusions from premises insu� cient to imply them. In past printings of � 28 these rules have
been indirectly justi® ed by proving that deductions in which they are used will still turn out all right in
the end, as long as certain arbitrary-looking restrictions are respected. In this new edition, � 28 is
rewritten. The rules and restrictions are now explained and justi® ed in a way that dispels the old air of
arti ® ciality.’ Or so he says.



18 Francis J. Pelletier

helped with the translation of Jas! kowski’ s work into English. (I note that Jas! kowski

(1934) was initially published in English.) Cellucci also reports that this was Quine’ s

® rst exposure to natural deduction. We can see the background in¯ uence that Quine

had from the very earliest statements of natural deduction (Jas! kowski’s) through

various pedagogical eŒorts of Cooley’s (and Quine’ s own) in the 1940s, cumulating

with the (1950a) publication and its various editions.

6. Fitch

About the same time that Quine was writing his textbook, Frederic Fitch was

working on one too. It was published in 1952, and the method in it was also called

`natural deduction’, marking thereby the second time the term was used in a work

addressed to non-logicians. In the foreword of this book Fitch claims to have been

using the method in teaching for the previous eleven years (p. viii), but in the preface

he claims only that `the fundamental ideas of this system of logic were conceived

during ¼ 1945± 1946 ’ (p. iv). In Fitch’ s mind the principal innovation of this system is

`the method of subordinate proofs’ which, he says, `vastly simpli® es the carrying out

of complicated proofs.’ (p. vi). This method of subordinate proofs is `suggested by

techniques due to Gentzen (1934 } 35) and Jas! kowski (1934) ’ (p. vii).

Neither Quine nor Fitch refer to the other, even in later editions.

Quine and Fitch have made diŒerent turns at almost every one of the various

choice points. To begin with, Fitch used Jas! kowski’ s graphical method to represent the

subproof-structure of a derivation, rather than Jas! kowski’s book-keepingmethod that

Quine employed. The main diŒerence between Jas! kowski’ s original method and

Fitch’ s is that Fitch does not completely draw the whole rectangle around the

embedded subproof. These are now generally referred to as `Fitch diagrams’ . I

mentioned before that Jas! kowski’s two methods were equivalent, and indeed seem

almost identical in the propositional logic. But not only is Fitch’s more clear when it

comes to two successive subproofs at the same level, but also it seems that the logical

restrictions one wishes to enforce for the quanti ® er rules can more easily be given by

the method of boxes. Fitch `¯ agged ’ subproofs with variables when they were

introducing an assumption for existential quanti ® er elimination, and added some

simple requirements on what formulas from an encompassing scope level can be

reiterated inside such a ¯ agged scope and which can be exported to outside scope levels

when the embedded subproof is completed. As indicated in discussing the example

proof in Quine’s system, his method required that the annotation (justi® cations) of

lines needed to be marked with the names of variables used when existentially

instantiatingand also when universally generalizing. There are then a set of restrictions

on when formulas can be instantiated to which variables, and in addition there is the

notion of `an un® nished derivation’ , which is an otherwise good derivation except that

some further restrictions on variables have not been observed in the construction of

the proof ¼ but this is to be discovered afterwards, when inspecting the entire proof.

Another diŒerent turn is that Fitch adhered to the int-elim ideal: each connective

comes with an introduction and an elimination rule, and there are no other rules of

inference. (In particular, there are no axioms or lists of equivalences or rules that

implicitlyappealed to axioms or equivalences.) And as a pedagogical point,Fitch cited

both the rule of inference employed and the line numbers of the precondition-formulas

as a part of the annotation. Quine did not use rule-names. Fitch had subproof-
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requiring rules for [ I, h I, and d E. The fact that Fitch had the rule of d E rather than

Quine’ s EI has the many rami® cations of the sort outlined above in section 4. Fitch

does not employ parameters, but uses variables exclusively.# "

A proof in Fitch’ s system for the theorem proved above in Quine’ s system would

look like this. (Fitch uses `uq ’ and `eq ’ for c and d in the annotations).

7. Copi (and Rosser)

The most enduring and widely-used textbook from this era is Copi’ s (1954). This

book does not refer to either of Quine’ s or Fitch’ s earlier books, and says only that the

quanti® er rules `are variants of rules for `̀ natural deduction’ ’ which were devised

independently by Gerhard Gentzen and Stanisøaw Jas! kowski in 1934 ’ (p. 76). There

are no further references to any published work on natural deduction, although the

preface says that some of the material `was ® rst communicated to me by ¼ Professor

Atwell Turquette’ and that `the logistic systems [axiomatic systems] R.S. and RS
"
,

which are set forth in Chapters 7 and 9, respectively, are early versions of calculi which

appear in revised form in Professor Barkley Rosser’ s [1953].’ # #

21 Although it is true that Fitch doesn’ t distinguish parameters from variables in the way that Gentzen
does (and some later writers do) ¼ which is the point of the sentence in the text ¼ it might also be noted
that, o� cially, Fitch doesn’t have any free variables. They are all thought of as `names ’ Ð not `dummy
names ’ , but real ones. Although this seems not to have any logical force in elementary logic, it feeds
into his later interest in the substitution theory of quanti® cation.

22 I continue here with the puzzle that Quine said that Rosser had developed natural deduction systems,
and yet there are none such in Rosser (1953). From the fact that Copi had taken material from earlier
versions of Rosser’s (1953) and that this material consisted only of axiomatic developments, it seems
plausible to suppose that there never was any natural deduction in the early Rosser
manuscripts ¼ except, as mentioned above, in some sort of metalinguistic sense. For, Copi would
certainly have mentioned it, or used it, given his fulsome acknowledgements of Rosser. Further,
according to Copi (pp. ix± x), Rosser read the manuscript of Copi’s book, and (apparently) made no
claims about priority in the development of natural deduction. Rosser and Turquette are, of course,
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Copi uses a version of Jas! kowski’ s graphical method, although not quite like

Fitch’ s.He indicatestheembeddedsubproofby means ofdrawing a `bent arrow ¼ with

its head pointing at the assumption from the left, its shaft bending down to run along

all steps within the scope of the assumption, and then bending inward to mark the end

of the scope of that assumption.’ (See the example proof below.) Unlike Quine’ s

system, Copi’s does not have a general rule of `follows by truth functional logic ’ but

instead has a set of nine `elementary valid [propositional]argument forms,’ to go along

with his rule of conditionalproof (`CP ’ ). But unlike Fitch, Copi did not organize these

argument forms into the Gentzen ideal of introduction and elimination for each

connective. He does have int-elim rules for some of the connectives: the conditional

(calling [ I `CP ’ and calling [ E by its traditional name, `MP’), the conjunction

(calling & E `Simp ’ and & I `Conj’ ), as well as for the quanti® ers. For disjunctionCopi

has a normal h I rule (called `Add’), but he uses DS # $ to handle some of h E, while

other parts of h E are dealt with by CD. # % Copi also has MT (`Modus Tollens’ : from

( } [ c ) and | c infer | } ), and a `Destructive Dilemma ’ that uses MT and disjunction

where CD used MP and disjunction.# & In addition, Copi had a list of `logical

equivalents ’ which `may be substituted for each other wherever they occur,’ thus in

eŒect allowing axioms. Despite deviation from Gentzen’ s system due to the lack of

introduction and elimination rules for some of the propositional connectives, and the

presence of rules that are not in this format, and the existence of `equivalents’ , his text

was so popular that this system became the prototypical example of a (propositional)

natural deduction system.

Copi, like Quine and unlike Fitch} Gentzen, does not employ a subproof when

eliminating existential quanti ® ers. They are instead eliminated directly in the same

proof level as the existentially quanti ® ed formula ¼ and thus is a Quine-system, in the

sense mentioned in section 4. He has an appealingly simple restriction on the variables

introduced by this EI rule: the variable used to state the instance has to be new to the

proof (as well as substituted properly, of course). But this makes the restrictions on

variables employed in universal generalization become more di� cult. Besides the

usual proper substitution requirements, Copi states these other requirements as `[the

free variable to be generalized upon] does not occur free either in any propositional

function inferred by EI or in any assumption within whose scope [the formula being

generalized] lies.’

Like Quine, Copi altered the statement of the restrictions, although in Copi’s case

(unlike Quine’ s) it was because they were logically incorrect. In Copi’ s second edition

(1965) they are replaced by a method described in Copi (1956), which changed the

restrictions on variables cited in universal generalization.# ’ No longer is it merely `the

free variable to be generalized upon’ that can’ t occur free if it was somewhere inferred

long-time collaborators, especially in the ® eld of many-valued logics. And so it is possible that they
`doodled around’ with systems of natural deduction informally, and that Turquette then forwarded
these ideas to Copi.

23 For `Disjunctive syllogism’ Copi used the traditional names for his rules of inference. This rule is
sometimes called MTP (`Modus Tollendo Ponens’ ) or `unit resolution’ : from C U and ( U h W ) infer
W [and a symmetrical form for eliminating from the other side of the disjunction].

24 For `Constructive Dilemma’ . This is the rule I called Separation of Cases above. Recall that this diŒers
from the usual h E rule in not requiring subproofs but instead merely requiring the conditionals to be
at the same subproof level as the disjunction, i.e. from ( } [ c ) and ( r [ h ) and ( } h r ) infer ( c h h ).

25 That is, from ( } [ c ) and ( r [ h ) and ( | c h | h ) infer ( | } h | r ).
26 There was also a change in the third printing of the ® rst edition , in 1958. However this change, which

seems adequate, did not survive when the second edition came out in 1965 where it was replaced by the
1956 method.
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by EI, but now it is `any free variable in the formula being generalized upon’ that can’ t

occur free if it was introduced by EI in any formula. The original error showed that the

completeness } soundness proofs of the original system were ¯ awed, and they are

altered in both (1956) and in the second edition (1965). Copi (1956) says that these

errors were `pointed out to me by Professor Donald Kalish ’ . Ironically, Kalish (1967)

also shows that these (1956) changes, which are carried over to the second edition, are

also inadequate.# (

A proof in Copi’ s system of the example we have been following is:

8. Suppes

Suppes (1957) seems to be the next of the natural deduction textbooks to appear,

and although it appeared in 1957, the preface says that it was initiallya joint book with

J. C. C. McKinsey, who `wrote the original drafts of Chapters 9, 10, and 11.’ Since

McKinsey died in 1953 the book must have been well underway before the appearance

of Copi (1954). The preface also remarks that there were `several preliminary editions

used in courses since the summer of 1954.’ Suppes does not refer to Gentzen or

Jas! kowski, nor to Rosser ; and there is but one passing reference to Quine (1950a) and

to Copi (1954) on p. 81, obviously added as toss-away references immediately before

the publication of the book. In section 3 above I pointed out that Suppes’ s method of

representing the structure of subproofs was diŒerent from the three classic methods

developed by the founders of natural deduction, Jas! kowski and Gentzen. And I

mentioned that those who might have initially been attracted to Jas! kowski’ s book-

keeping method adopted Suppes’ s superior method instead.

Like Quine and unlike Fitch or Copi, Suppes has a rule `T ’ which allows one to

`introduce a sentence S in a derivation if there are preceding sentences in the derivation

such that their conjunction tautologically implies S.’ Recall that when making an

assumption in this system, the line number is placed into set braces. when applying the

rule T of tautological implication (or any other rule except for conditional proof), one

indicates the set of all premises upon which that line depends by forming the union of

all premises that the lines appealed to by this use of T depended upon, and placing the

result to the left of the line number. As usual, the rule of conditional proof (CP)

generates a new line that has a conditional as its main connective, has some formula

27 See also Parry (1965), Leblanc (1965), and Slater (1966). In the third edition (1967), Copi changed from
a Quine system to a Fitch-Gentzen system, presumably on the grounds that it is much easier to state
the restrictions on variables. Kalish (1974) claims that the new system is correct, but he also shows that
the proof of its soundness continues to be incorrect.
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that was introduced by the assumption rule as an antecedent, and has some later-in-

the-proof formula as its consequent. The set of formulas that this conditional depends

upon is: those that the consequent depended upon minus the line number of the

antecedent. Suppes’s rule T in eŒect allows axioms in the system, in the same sense as

Quine’ s TF rule does. Suppes introduces a `derived rule ’ of C I to the propositional

logic system, calling it `Reductio’ , and using it extensively in his examples. Like the

[ I rule, Reductio requires a subproof as a precondition of its application.

Another innovationof Suppes was to employ the notion of ambiguous names to aid

with the statement of the quanti® er rules. He says that `the technical device used here

[is] apparently new in the literature of ® rst-order logic’ (p. 81), but that `the central

idea of this approach is related to Hilbert’s e symbol ’ as set forth in Hilbert and

Bernays (1934 } 1939). The idea there was that ` e xFx ’ was to designate `an arbitrary or

inde® nite F ’ about which nothing was known other than that it was F. Suppes’ s

method was to have an orthographically distinct category of these ambiguous names,

separate from the variables and from the constants (`proper names ’). He used Greek

letters for these arbitrary names, while the variables were roman letters from the end

of the alphabet and the constants were roman letters from the beginning of the

alphabet. In this way an existential quanti ® er was to be eliminated (called Existential

Speci® cation, ES) by replacing it with a one of these ambiguous names, so long as it

is new to the proof.# ) ES does not require an embedded subproof, and so this system is

a Quine-system in the sense described above. Existential Generalization (EG) can be

the result of generalizing on either a proper or an ambiguous name, or on a variable

(these three types form the category of `term ’ ). Universal Speci® cation (US) can

replace its variable of generalization by any term. Finally, Universal Generalization

(UG) can occur only on a free variable and then only if that variable is not `¯ agged ’

(and only if the variable does not occur as a subscript to any arbitrary name in the

formulaÐ see the last footnote). Suppes uses the notion of a `¯ agged variables’ as an

aid to stating the UG rule, requiring that any premise of the argument that has a free

variable must have that variable ¯ agged, which means to indicate any such variable on

the line in the proof where that premise is entered. (Suppes does this by writing the

variable alongside the justi® cation for the line). Any line that appeals to a line with a

¯ agged variable in its justi® cation will also have that variable ¯ agged. UG cannot

apply to a ¯ agged variable.

Proofs in Suppes’ s system look very much like those in Quine’ s, except for (a) the

appearance of ambiguous names, (b) the notion of subscripting variables, (c) the

28 As with any of the systems we need to make sure that the substitution is proper. Suppes chooses to do
this as a matter of conditionson the proper applicationof rules, rather than giving a separate de® nition
of `proper substitution’ and then requiring the rules to embody proper substitution. For example,
suppose that from ( c x) ( d y) Fxy we infer Fx a by US and then ES ( a being an ambiguous name). We
want to prevent inferring ( d x) Fxx from this last formula by EG. One way to do this (followed by
Quine, Fitch, and Copi) is to say that Fxx is not a proper substitution instance of Fx a (or perhaps
conversely), and this notion of proper substitution is a restriction on using any of the quanti® er rules.
But Suppes instead decides to say that `when an ambiguous name is introduced by ES it is to include
as a subscript all the free variables occurring in the original formula ’ . So, in our example the ES rule
would have generated Fx a

x
. And now there is a restriction on EG that one may not apply an existential

quanti® er to a formula using a variable which occurs as a subscript in the formula. Similar strategies
are employed in US as well as EG. The notion is also appealed to in UG, but here the background
reason is diŒerent and can’t be dealt with merely on the basis of a proper substitution. it is used to
prevent universal generalization on a variable when the formula still has an ambiguous name in it that
was introduced after a universal speci® cation. Those familiar with resolution system will see all these
restrictions as ways to recognize skolem functions and to deal correctly with them.
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explicit marking of which formulas are current premises for each line, and (d) the

consequent lack of other scope-indicatingmethods such as *’s. The proof we have been

tracking would look like this:

9. The choice points revisited

As we have seen, in the fundamental textbooks that introduced natural deduction

to the `average philosopher’ , there were many problems with the precise statement of

the natural deduction rules for the quanti ® ers, and we’ve also seen that the Gentzen

ideal of introduction and elimination rules for each connective was followed only by

Fitch. Nonetheless, these four systems form the early history of natural deduction as

taught to generations of philosophers and mathematicians, and were the

acknowledged source of the next wave of elementary logic textbooks, which seem to

have overcome the di� culties in stating the quanti ® er rules and also seem to have

settled on not having introduction and elimination rules of the Gentzen style for the

propositional connectives. This next wave includes Anderson and Johnstone (1962),

Kalish and Montague (1964), Lemmon (1965), Mates (1965), and Pollock (1969), as

well as later editions of the texts mentioned earlier.

In summarizing the fate of our nine choice pointsÐ that is, how they were taken up

by later textbooks, both the second wave of 1960s texts and the third wave of

1970s± 1980s textsÐ we would come to these conclusions:

I. Propositional proof-style is about equally divided between the Jas! kowski’ s

graphical method and Suppes’ s method.

II. About half the texts `allow axioms’ in the sense of having sets of equivalents

or implications and a primitive rule that allows replacement of a line (or part

of it) by an equivalent. Pretty much all the other texts have such a rule as a

derived rule.

III. Very few texts in the second and third wave maintained the ideal of int-elim

rules for all the propositional connectives and no other rules. (Of the second

wave mentioned above, only Anderson & Johnstone maintained this int-

elim ideal). Most textbooks have a set of elementary propositional rules,

rather than a general `truth functional inference’ rule.
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IV. All texts have a primitive subproof-requiring rule [ I ; almost all texts have

a primitive subproof-requiring rule of C I or C E (that is, some form of

reductio); most texts have a subproof-requiring rule of h E, although a

strong minority use SC (separation of cases) instead; about half the systems

that have a material equivalence ( 3 ) have a subproof-requiring rule for 3
I.

V. Except for Mates (1965), all authors had primitive universal and existential

quanti ® ers; and even Mates introduced the existential quanti ® eras a derived

symbol and gave it appropriate int-elim rules.

VI. Somewhat more than half of our authors have employed the d E (subproof-

requiring) version of existential quanti® er elimination, while the remainder

use a version of Quine’ s EI that does not require subproofs.

VII. Most authors do allow free variables in premises and conclusions. About

half treat them semantically as existentially quanti ® ed and the other half as

universally quanti ® ed.

IX. The ploy of employing a separate category of `arbitrary names ’ or

`parameters ’ was not widely adopted.

10. Advanced works : Bernays, Feys, Church, Kleene, and Curry

The works surveyed in the previous sections were all introductory textbooks, and

I discussed them so as to show why the term `natural deduction’ has come to indicate

the types of systems now in the front of the mind of philosophical logicians, most of

whom have taken their elementary logic from these textbooks or later ones patterned

after these. In addition to the elementary textbooks, there were a number of writings

at a high level of sophistication which occurred between the 1934 inception of natural

deduction and the widespread acceptance of natural deduction in the late 1950s. The

present section aims to cite some of the most in¯ uential works of this nature, and to

explain why they did not in fact have much of an impact on the `ordinary philosopher.’

The underlying reason for this is that these works were too advanced and complex for

these `ordinary philosophers ’ to comprehend themselves, and the works did not get

explained to them by anyone capable of understanding them. For example, the writers

of the ® rst wave of textbooks might have explained these works in a `preface for the

instructor’ , for example, or at least have referred to these works as being worthy of

further study. But in fact, of the four textbook authors canvassed above, only Suppes

refers to any of the works I am about to discuss, and he does not refer to the relevant

area. See Suppes, 1957, 70.

The authors I have in mind here, those authors who ® rst read Gentzen and

Jas! kowski and who followed up this natural deduction methodology by writing

further important expository and exploratory works in this area, are Bernays (1936),

Feys (1946), Curry (1950), Kleene (1952) and Church (1956). Of these ® ve authors,

Curry’s work on natural deduction was much more in¯ uential than any of the other’s

work on natural deduction.For, even within the realm of practicing logicians the latter

four works had a muted impact so far as Gentzen’ s natural deduction is concerned.

Bernays’ s work was in the form of mimeographed notes taken at his Princeton

lectures. These very interesting notes show that Bernays was aware of the relationship

between Hilbert’ s e -term operator and the use of `arbitrary names ’ in the rules of d -

elimination and c -introduction (see p. 73Œ). It also gave a quite detailed account of
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Gentzen’ s natural deduction, although it was rather skimpy on actual proofs in the

system. Even though these notes were widely distributed, the fact is that they covered

many diŒerent topics in addition to an explication of Gentzen’ s natural deduction

systems ; and many of these diŒering topics appeared in other published works of

Bernays that did not emphasize the natural deduction aspect but rather concentrated

on metalogical topics. It was often these other topics that readers of Bernays found

most interesting, and so these readers naturally were more comfortable in reading his

works that did not explicate natural deduction. Further, in the realm of logical

systems, Bernays was mostly interested in intuitionistic systems and their properties.

Many logicians, especially American ones, did not share this interest and did not

follow his works carefully (although it is cited in Church 1956, 215n365 and also in

Curry 1950 at many places).

Feys (1946) was in French, which set it apart from the majority logic works that

were in English or German, and also Feys’ s interests were always more in the realm of

modal logics, culminating in Feys (1965) in which the natural deduction aspects were

much subordinated to the modal logic. For these reasons Feys’ s work on natural

deduction did not have much impact (only Curry 1950 refers to it, among the writers

here surveyed).

Church’s monumental workÐ which enjoyed a very wide circulation in preliminary

versions during the 1940s and early 1950sÐ does not actuallydiscuss natural deduction

systems very much. In the pedagogical body of the book his interest is in teaching an

axiomatic system and with proving properties of this system. In the amazingly

thorough historical parts of this book the main discussion of natural deduction as an

independent manner of describing logic occurs on pp. 164± 165 where he says

The idea of using the deduction theorem as a primitive rule of inference in

formulations of the propositional calculus or functional calculus [® rst order logic]

is due independently to Jas! kowski and Gentzen. Such a primitive rule of inference

has a less elementary character than is otherwise usual, and indeed it would not be

admissible for a logistic system according to the de® nition as we actually gave it [as

an object-language logical system]. But this disadvantage may be thought to be

partly oŒset by a certain naturalness of the method; indeed to take the deduction

theorem as a primitive rule is just to recognize formally the usual informal

procedure (common especially in mathematical reasoning) of proving an im-

plication by making an assumption and drawing a conclusion.

However, Church also says (p. 94n181), `Advantages of the deduction theorem in this

role are largely psychological and heuristic.’ Presumably he means that there is no

`real ’ logical reason to adopt the deduction theorem as a primitive rule, and therefore

no `logical ’ reason to employ natural deduction systems. And so, although Gentzen’s

natural deduction is mentioned by Church and although this book was known by

virtually every logician even before it was ® nally published, the topic was given so

short a shrift that it certainly cannot be said to have encouraged the study of natural

deduction by many people. And it certainly seems to have had no impact at all on the

early teaching of natural deduction.

Kleene’ s (1952) advanced textbook contains a substantial discussion of Gentzen’s

sequent calculus in chapter 15 (the last chapter). However, this book contains no

discussion of Gentzen’ s natural deduction method, and I will show in the next section

that these two methods are quite diŒerent from each other. Furthermore, this ® nal
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chapter of Kleene’ s textbook is seen, even by Kleene, as only rarely being reached in

classroom use (pp. v± vi) :

The book is written to be usable as a text book by ® rst year graduate students in

mathematics (and above) ¼ The author has found it feasible to complete [the ® rst]

ten chapters ¼ in the semester course which he has given ¼ The remaining ® ve

chapters can be used to extend such a course to a year course, or as collateral

reading to accompany a seminar.

I think it is true that many logicians became aware of Gentzen’ s work through its being

mentioned in Kleene’ s book. However, none of these readers will have learned

anything about natural deduction from the book, for it is not at all discussed. Those

readers who were interested would have been sent to the original source and would

have discovered for themselves what Gentzen meant by natural deduction. Part of the

reason that they might have become interested is due to Kleene’s sections 23 and 24

(pp. 98± 107) which contain a discussion of `Introduction and elimination of logical

symbols.’ Here Kleene provides `a collection of derived rules ’ starting with the

deduction theorem (renaming it now ` [ -Introduction ’ ) and including int-elim rules

for all the connectives and quanti ® ers. They are stated in this form (the example is h -

Elimination):

If C , A { C and C , B { C, then C , A h B { C

Here we can see that this rule is treated as a metalinguistic rule that guarantees the

existence of a certain proof (in the then clause) if there are proofs of the sort mentioned

in the if clause. Kleene shows that these rules are all derivable, and hence admissible,

by showing how to `unabbreviate’ them in favour of an explicit sequence of steps in the

axiomatic system he has developed. So while these sections of the book illustrate the

strategy of natural deduction proofs, and incidentally discuss how the restrictions on

the variables should go, there is no independently-developed system that embodies

natural deduction. But those readers who might be attracted to this sort of logical

system would most likely have been directed to Gentzen’ s original articles and would

have found it congenial.

Curry (1950) is a set of ® ve lectures given at Notre Dame University in 1948. `The

book aims to give a self-contained account of the approach to the logical calculus by

means of the inferential rules as given by Gentzen in his thesis (Gentzen 1934 } 35) ¼ In

regard to the expository aspect, I share in the opinion that the inferential rules of

Gentzen and Jas! kowski form one of the most natural and fruitful approaches to the

propositional and predicate calculuses’ (p. iii). But the book is not elementary: `The

exposition attempted here is intended for mature persons ¼ it is assumed that the

reader can cope with mathematical arguments of considerable generality and

abstractness ¼ ’ (p. iii). Curry says that he has come to believe, on the basis of his

investigations into combinatory logic, `that Gentzen’ s L-system [the sequent for-

mulation] is really a more profound and, in a sense, a more natural approach than the

T-system [Curry’ s name for the natural deduction N-system]. ’ This perhaps means

that the exposition was of more interest to those researchers interested in the

metatheoretic properties of L-systems than in natural deduction. (There are in fact

only a very few object-language proofs given in the book. It would be very di� cult to

achieve any expertise in natural deduction merely from looking at the examples.)
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Despite the fact that these lectures were merely printed from typescript, they

apparently had quite a wide distribution and have been cited by a large number of

authors. Curry continued to be a champion of (what he came to call) `the inferential

calculus’ of Gentzen # * (so called because the basic items were statements of valid

inferences, rather than axioms.)

My contention is, after examining the works of the authors mentioned in this

section, that they played only a minor role in the formation of the stereotype of natural

deduction. Instead, they kept alive the formal virtues of the sequent-calculus

formulations of Gentzen, and succeeded in drawing the attention of some logicians of

the 1940s and 1950s to the Gentzen way of proceeding. But as for establishing the

notion of natural deduction in the minds of the philosophical-mathematical

community, it was the elementary textbooks that did that.

11. Gentzen’s sequent calculus

I have already mentioned that some researchers who became interested in

`Gentzen’s logical methods ’ were in fact more attracted to his sequent calculi than to

his natural deduction calculi. But this is sometimes obscured because the distinction

between the two proof systems is not fully appreciated, and it might be thought that

anyone interested in Gentzen’ s logical systems was thereby interested in his natural

deduction logics.

In his 1934 } 35 article, Gentzen in fact spent much more time developing his L-

calculi than he did his natural deduction logics. These L-logics were presented in a

format known as the sequent calculus, which Gentzen presented in a tree format but

where the elements at nodes are sequents rather than simple formulas (as was the case

in Gentzen’ s presentation of natural deduction proofs). A sequent is anything of the

form U
"
, ¼ , U

n U W
"
, ¼ , W

k
where the U

i
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i
are ordinary formulas (and either of

n and k could be 0).$ ! The interpretation of this notation is a matter of some dispute,

but a natural understanding is that a sequent asserts the existence of a proof of one of

the W
i
’ s from the set of premises {U

"
, ¼ , U

n
}. Equivalently one could say that it asserts

the existence of a proof from the conjunction of the U
i
’ s to the disjunction of the W

i
’ s.

Gentzen says it is to be interpreted as equivalent to (( U
i
&¼ & U

n
) [ ( W

"
h ¼ h W

k
)),

presumably meaning equivalent to this formula’ s being a theorem. There are three

types of rules of inference in the L-calculi: one is that all branches of a proof tree start

with U U U sequents, and the other two types of rules describe how to extend a proof

tree by altering a sequent into another one. These other two types of inference rules are

called the `structural ’ and the `operational’ rules, the former not doing anything to the

logical symbols in a proof but only to the structure of the sequents (such as saying that

extra premises can be added to a valid argument, or permuting their order; additionally

there is a special rule, `cut ’ ). The operational rules, are always introduction rules for

the connectives, but divided into whether the connective is introduced on the left or the

right of the U . So for each connective there will still be two rules, but now rather than

being elimination and introduction they are introduction on the left and introduction

on the right.

29 As evidenced by his (1960} 61), the textbook (1963), and various expository articles such as his (1965).
30 Gentzen also remarks that the natural deduction logics could be formulated with sequents, and then

the diŒerence between the N-systems and the L-systems is that the N-systems have k (the number of
`conclusion formulas’ ) be 0 or 1.
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These L-systems are naturally interpreted metalinguistally. The rules of inference

amount to saying `If there is a proof that looks like such-and-so, then there is a proof

that looks like so-and-so. ’ And a proof tree in an L-system in essence says : `Granted

that there are always proofs of u from u , here’s a demonstration that there must also

be a proof of W from the set of premises D .’ This suggests that U is pro® tably seen as

meaning { , although not everyone agrees with this. Church (1956, 165), for example,

says U cannot be interpreted as the metalinguistic { because it is in Gentzen’ s object

language. $ "

I will here give a derivation in LJ sequent calculus for the simple theorem
C d xFx [ c y C Fy. That this is a theorem is shown by its being the only formula on

the right side of an U which has no formulas on its left side. I have not given all the

rules of inference for a sequent calculus, but will trust that citing structural rules like

`interchange’ will be clear (it permutes the order of elements), that citing the rule `cut ’

is obvious (it allows one to `piece together’ two derivations where the conclusion of

one derivation is a premise of another), and that the reader can follow rules like c I-

R (universal quanti ® er introduction in the right) and C I-L (negation introduction on

the left). A sequent below a line is justi® ed by the rule cited beside it on account of the

sequent(s) above that line.

It can be seen that each branch of the tree starts with the assertion that there is a proof

of a formula from itself, than various rules alter these statements until the two

branches can be uni® ed by an applicationof Cut. Then further modi® cationsare made

until we arrive at a sequent with no premises and the desired formula as the sole

conclusion.

One might wonder why Gentzen bothered to introduce the rather unnatural L-

systems in addition to the N-systems. Here’s what he says :

A closer investigationof the speci® c properties of the natural calculus ® nally led me

to a very general theorem which will be referred to below as the Hauptsatz . The

Hauptsatz says that every purely logical proof can be reduced to a de® nite, though

not unique, normal form. Perhaps we may express the essential properties of such

a normal proof by saying: it is not roundabout. No concepts enter into the proof

other than those contained in its ® nal result, and their use was therefore essential

to the achievement of that result ¼

In order to be able to enunciate and prove the Hauptsatz in a convenient form, I

had to provide a logical calculus especially suited to the purpose. For this the

natural calculus proved unsuitable ¼ [T]herefore, I [developed] a new calculus of

logical deduction possessing all the desired properties in both their intuitionistand

31 Prawitz (1965, 91) puts the point like this: `A proof in the calculus of sequents can be looked upon as
an instruction on how to construct a corresponding natural deduction.’
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their classical forms (`LJ ’ for intuitionist, `LK ’ for classical predicate logic). The

Hauptsatz will then be enunciated and proved by means of that calculus ¼ In

section V, I prove the equivalence of the logical calculi NJ, NK, and LJ, LK,

developed in this paper, by means of a calculus modeled on the formalisms of

Russell, Hilbert, and Heyting.

The equivalence that is shown is that the same theorems are probable. He thus shows

that anything provable in the axiomatic theory can be proved in each of the N- and L-

logics, and that a proof in either of these logics can be simulated in the axiomatic

theory. $ #

Gentzen proved that for any formula u provable in a N-system, there is a proof tree

in the corresponding L-system that has the sequent U u as its root, i.e. { u . And for

each sequent U
"
, ¼ , U

n U W
"
, ¼ , W

k
that occurs as the root of an L-proof tree there is

a proof of ((U
"
& ¼ & U

n
)) k [ ( W

"
h ¼ h W

k
)) in the corresponding N-system. But of

course N-proofs and L-proofs are quite diŒerent : Using Gentzen’ s methods for the N-

systems we operate directly with the object language formulas and construct a proof

tree starting with assumptions, whereas in the L-systems we start with `trivial proofs’

and show that there must exist more and more complex proofs until we have shown

that there is a proof of the formula we are interested in from the premises we are given.

The sequent formulation of the N-systems therefore is not natural deduction

system. It is a metalinguistic proof system, and automated theorem proving programs

(as well as people) who use such a formulation to construct proofs (more accurately,

to construct proofs that there is a proof) are not employing natural deduction as laid

out by Gentzen (or Jas! kowski). It may be that there are many nice properties of L-

proofs, such as there always being a cut-free proof for any sequent and therefore such

proofs always obeying a subformula property. But against this we should look back to

the advantages Gentzen claimed for natural deduction proofs and at the method by

which he achieved these advantages. And we see that sequent proofs do not embody

these advantages, and they fail to embody them precisely because they are not proofs

in a natural deduction format.$ $

12. Concluding remarks

I started this story with the astonishing occurrence of two independent researchers

happening upon the identical logical methodology at essentially the same time. 1934

was a propitious yearÐ at least from a logical point of view. The story continued with

32 As if this weren’t already enough for one article, Gentzen also gave a decision procedure for intuitionist
propositional logic and `a new proof of the consistency of classical arithmetic without complete
induction.’

33 Further, it would be wrong to let stand unchallenged Gentzen’ s belief that natural deduction systems
do not also have the same nice metatheoretical properties that the sequent calculi have, or that it is
somehow much harder to prove them for natural deduction systems than for sequent systems. Prawitz’ s
(1965) landmark work showed that natural deduction systems in fact have a Hauptsatz and all the other
properties of sequent systems. And with the correct formulation, they are even easier to prove for
natural deduction systems. Here’s what Prawitz says (1965, 7) : `The result that every natural deduction
can be transformed into this normal form is equivalent to what is known as the Hauptsatz or the natural
form theorem, a basic result in proof theory, which was established by Gentzen for the calculi of
sequents. The proof [in the present work] of this result for systems of natural deduction is in many ways
simpler and more illuminating.’ Allen Hazen remarks, in personal communication, that `to give
Gentzen his due, Prawitz only proves his normalization theorem for intuitionistic logic, and for the h -
free and d -free classical fragment. Proving it for the full classical logic is much harder.’
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these discoveries going `underground’, being known only to the logical sophisticates,

and being passed from one enlightened initiate to another by mimeographed lecture

notes and preprints. But then came the early 1950s when the method became a part of

some elementary textbooks; and so popular were these textbooks that within a very

short period of time indeed this method of doing logical proofs became the only way

that the vast majority of philosophers had even heard of. The diŒerent directions taken

by the diŒerent authors on various of the details have given rise to a panoply of

systems that are linked mainly through their common history.

And this was a Good Thing.$ %
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