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Abstract

The acquisition of syntactic categories is a crucial step in the process of acquiring syntax.

At this stage, before a full grammar is available, only surface cues are available to the

learner. Previous computational models have demonstrated that local contexts are

informative for syntactic categorization. However, local contexts are affected by

sentence-level structure. In this paper, we add sentence type as an observed feature to a

model of syntactic category acquisition, based on experimental evidence showing that

pre-syntactic children are able to distinguish sentence type using prosody and other cues.

The model, a Bayesian Hidden Markov Model, allows for adding sentence type in a few

different ways; we find that sentence type can aid syntactic category acquisition if it is used

to characterize the differences in word order between sentence types. In these models,

knowledge of sentence type permits similar gains to those found by extending the local

context.
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Adding sentence types to a model of syntactic category acquisition
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Introduction

An essential early step in syntax acquisition is learning to group words into categories

such as nouns or verbs according to their syntactic functions. Like other aspects of syntax

acquisition, this task is unsupervised: a child is not told that a given utterance consists of,

say, a determiner followed by a noun. Instead categories must be formed on the basis of

implicit information about the syntactic similarity of words. Characterizing the nature and

amount of the implicit information available to children as they acquire language is

essential for any theory of language acquisition. Computational modeling plays an

important role here, by demonstrating that there is (or is not) sufficient information in a

learner’s input for an idealized learner to reach certain conclusions about the structure of

language, such as the underlying syntactic categories of words.

Syntactic categories are defined as a set of words that can fill the same (or highly

similar) grammatical roles, i.e., that are syntactically similar. A key aspect of syntactic

similarity is the distributional similarity between words, i.e., words that appear in the same

surface contexts (similar distributions) tend to belong to the same syntactic categories.

Distributional similarity is clearly weaker than full syntactic similarity, but it is used to

avoid the circular problem of needing a grammar defined over syntactic categories to decide

the syntactic category of a given word (although this process can be used once a fairly

comprehensive grammar is in place to bootstrap individual unknown words).

The distributional hypothesis (Maratsos & Chalkley, 1980) posited that children use

distributional information to bootstrap grammar. Empirical studies have provided evidence

for this view, demonstrating that infants are sensitive to distributional context before they

are likely to have an adult-like grammar (before 18 months): infants can distinguish nonce

nouns from adjectives based on the distributional context alone (Booth & Waxman, 2003)

and can construct distribution-dependent grammatical paradigms for both natural and

artificial languages (Gerken, Wilson, & Lewis, 2005; Gómez & Lakusta, 2004; Thothathiri,

Snedeker, & Hannon, 2011).
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Likewise, computational methods for automatically inducing syntactic categories use

distributional information heavily, when not exclusively (Brown, Pietra, deSouza, Lai, and

Mercer (1992), Cartwright and Brent (1997), Clark (2003), Harris (1946), Mintz (2003),

and many others). The distributional context of a word in these models is defined using a

few surrounding items (words or categories). This captures the immediate context, which is

sufficient to learn reasonable categories, and avoids exploding the number of model

parameters.

However, non-local syntactic effects play a role as well. In this paper, we add a form

of non-local, sentence-level context to models using only local context, to investigate

whether the added context improves performance. Specifically, we add sentence type as a

known feature to the local context, i.e., whether the local context is within a question,

declarative sentence, short fragment, etc. Sentence type often affects sentence structure and

word order, and thereby can change the nature of local contexts. Taking sentence type into

account may thus lead to clustering on the basis of more informative context distributions.

An improvement in performance would indicate that this new information is useful to

language learners, but it could also decrease performance if it is too noisy or does not

correlate with syntactic category sequences.

Our enhanced models assume that children are aware of different sentence types and

can make use of them at the stage of learning syntactic categories. A great deal of evidence

from language development supports this assumption. Sentence types are strongly signaled

by prosody in most languages (Hirst & Cristo, 1998). Prosody is, along with phonotactics,

the first step in language learning; areas in the brains of three month olds are already

sensitive to the prosody of the surrounding language (Homae, Watanabe, Nakano,

Asakawa, & Taga, 2006) and experiments with newborn infants have demonstrated their

ability to distinguish their native language using prosody alone (Mehler et al., 1988). Two

month olds use prosody to remember heard utterances (Mandel, Jusczyka, & Kemler

Nelson, 1994). Notably Mandel, Kemler Nelson, and Jusczyk (1996) showed that natural
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sentence level prosody aided memory of word order in two month old infants, which is

essential for remembering and using distributional information.

Infants are aided in language learning by the fact that intonation (pitch) contours of

child and infant directed speech (CDS) are especially well differentiated between sentence

types, more than in adult directed speech (Fernald, 1989; Stern, Spieker, & MacKain,

1982). It is specifically the pitch contours of CDS that infants prefer over adult directed

speech (Fernald & Kuhl, 1987) — the same contours that signal sentence type. CDS tends

to be more interactive (as measured by the proportion of questions) than adult directed

speech (Fernald & Mazzie, 1991; Newport, Gleitman, & Gleitman, 1977), resulting in a

greater variety of frequent sentential prosody patterns and potentially making sentential

prosody a more salient feature at the beginning of language learning (Stern, Spieker,

Barnett, & MacKain, 1983). Visual cues, particularly the speaker’s facial expression, can

also be used to distinguish between questions and statements (Srinivasan & Massaro, 2003).

Infants’ awareness of sentence types can be demonstrated by their sensitivity to the

pragmatic function signaled by sentence type. For example, mothers will stop asking

questions if infants do not react appropriately, as when the mother is interacting with

time-delayed video feed of the infant (Murray & Trevarthen, 1986). Since CDS is

characterized by a high proportion of questions, this demonstrates that in normal

caretaker-child interactions infants as young as three months are ‘holding up’ their side of

the conversation in some basic sense. Infants produce appropriate intonation melodies to

communicate their own intentions at the one word stage, before they develop productive

syntax (Balog & Brentari, 2008; Galligan, 1987; Snow & Balog, 2002). Children also

exhibit adult-like behavior when using prosody to distinguish between otherwise identical

Mandarin questions and declarative sentences in an on-line fashion (Zhou, Crain, & Zhan,

2012).

Based on these experimental results, we conclude that children who are at the point

of learning syntax — at two to three years of age — are well equipped to use sentential
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prosody as part of their armory of potentially relevant input features. The current work

investigates whether it would be advantageous for them to do so, given a classic

computational model of syntactic category learning. To this end we annotate a corpus of

child directed speech with sentence types, and extend the model to enable it to use these

features.

We are not aware of previous work investigating the usefulness of sentence type

information for syntactic category acquisition models. However, sentence types (identified

by prosody) have been used to improve the performance of speech recognition systems.

Specifically, Taylor, King, Isard, and Wright (1998) found that using intonation to

recognize dialog acts (which to a large extent correspond to sentence types) and then using

a specialized language model for each type of dialog act led to a significant decrease in

word error rate.

In this paper we first examine the corpus data motivating our use of sentence types in

syntactic category learning, and describe how we label sentence types. We then experiment

with three different ways of incorporating sentence type into a token-based tagging model,

the Bayesian Hidden Markov Model (BHMM). Our results demonstrate that sentence type

is a beneficial feature for representing word order (or more precisely, syntactic category

order).

Data

One of the first detailed investigations of CDS (Newport et al., 1977) found that it

differs from adult directed speech in a number of key ways; for example, child directed

utterances are significantly shorter and more intelligible than adult directed speech, with

fewer false starts and corrections. This emphasizes the need to use realistic (i.e., CDS)

corpora when modeling acquisition: the linguistic environment in which children acquire

language is unlike the standard corpora used in computational linguistics.

More immediately relevant to our current work is the fact that CDS is far more
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diverse in terms of sentence type than either adult written or spoken language. Whereas

adult directed speech is largely made up of declarative utterances, CDS includes many

more questions and imperative statements (Fernald & Mazzie, 1991; Newport et al., 1977).

Indeed, one of the arguments for the utility of CDS (Gleitman, Newport, & Gleitman,

1984) is that it is the range and the complexity of input that enables a learner to delimit

the linguistic space, that is, to successfully separate grammatical sentences from

non-grammatical. If a learner was given an overly constrained language to begin with, she

could construct wrong hypotheses that would not admit the more complex adult language

she would be faced with later on.

The data we we use come from childes (MacWhinney, 2000), a collection of corpora

shared by language development researchers. We use the Eve corpus (Brown, 1973) and the

Manchester corpus (Theakston, Lieven, Pine, & Rowland, 2001). The Eve corpus is a

longitudinal study of a single US American child from the age of 1;6 to 2;3 years, whereas

the Manchester corpus follows a cohort of 12 British children from the ages of 2 to 3. We

remove all utterances with any unintelligible words or words tagged as quote (about 5% of

all utterances and between 2 and 3% of CDS utterances). Corpus statistics are presented in

Table 1. The Manchester corpus is over twenty times as large as the Eve corpus; by inferring

and evaluating our models on both corpora we can investigate the effects of data set size.

Insert Table 1 about here

Sentence types are not annotated in these corpora, so we use simple heuristics to

label the sentences with their sentence type. The Cambridge Grammar of the English

Language (Huddleston & Pullum, 2002) identifies the following five clause types:

Declarative I have eaten the plums in the icebox.

Closed Interrogative/yes/no questions Were you saving them for breakfast?

Open Interrogative/wh-questions Why were they so cold?

Exclamatory What a sweet fruit!
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Imperative Please forgive me!

We use these clause types as a starting point. (To stress that we are labeling a full

utterance/sentence, we will use the term sentence type rather than clause type.) We do not

use the exclamatory sentence type due to its scarcity in the corpus; it is also difficult to

identify automatically. Additionally, we add a short utterance category to distinguish

probable fragments (verb-less clauses). The resulting sentence types with their identifying

characteristics are:

Open Interrogative/wh-questions (W): Utterances ending with a question mark and

beginning (in the first two words) with a ‘wh-word’ (one of who, what, where, when,

why, how, which).

Closed Interrogative/yes/no questions (Q): Utterances ending with a question mark

but not beginning with a wh-word. This includes tag questions and echo questions

with declarative (unmarked) word order.

Imperative (I): Utterances with an imperative-mood verb in the first two words1.

Short (S): One- or two-word non-question utterances, typically interjections and

fragments.

Declarative (D): All remaining utterances.

It would be preferable to use audio cues to categorize utterances, especially with

regard to the difference between declaratives, closed interrogatives, and imperatives (since

short utterances are easily identified by their length, and wh-words are a reliable cue for

open interrogatives). Unfortunately the speech data is not available for our corpora, so we

must approximate the audio cues available to children with the above orthographic
1Since the corpus we use, childes, does not annotate the imperative mood, we use all utterances with

a ‘base’ verb in the first two words without a pronoun or noun preceding it (e.g. well go and get your
telephone).
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(punctuation) and lexical-syntactic (wh-word and verb identification) cues. Note that the

childes annotation guidelines state that all utterances with question-characteristic

intonation must be transcribed with a question mark, even if the utterance is syntactically

declarative (You ate the plums?). In any case, even prosody data would not include all the

cues available to the child such as visual cues, facial expressions, and so on.

Table 2 gives the number of each type of utterance in each corpus. Notably, while

declaratives are the largest category, they make up only about a third of total utterances,

while questions make up a further third of all utterances. (In contrast, questions make up

only 3% of the Wall Street Journal corpus of news text (Marcus, Santorini, Marcinkiewicz,

& Taylor, 1999) and 7% of the Switchboard corpus of adult conversations (Godfrey,

Holliman, & McDaniel, 1992).)

Insert Table 2 about here

Note that these sentence-labeling heuristics are rather coarse and prone to noise. This

is in line with the noisy input that children receive, presumably leading to errors on their

part as well. Any model must be equally robust against noise and miscategorization. We

hand-checked a subset of the Eve (section 10, the dev section) to verify our sentence type

heuristics. Of 497 sentences, only 10 (2%) were misclassified2.

BHMM models with sentence types

In this section we add sentence type as an observed variable to a simple part of speech

induction model, the Bayesian Hidden Markov Model (BHMM) (Goldwater & Griffiths,

2007). The HMM has long been a standard model for part of speech induction (Merialdo,

1994); reformulating it as a Bayesian model avoids some of the problems with standard

maximum likelihood estimation and leads to more accurate clusters. (See Griffiths, Kemp,

and Tenenbaum (2008) for an introduction to Bayesian methods from a cognitive modeling
2The misclassified sentences were: 8 imperatives classified as declaratives (mostly sentences of the form

Eve please listen); one declarative sentence that is clearly a question in context but was not annotated with
a question mark; one declarative sentence that was mistagged as an imperative due to an annotation error
(people tagged as a verb).
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perspective.) Both the Bayesian and classic HMM assign part of speech labels to a

sequence of word tokens, rather than word types (such as the models of Redington, Chater,

and Finch (1998) and Clark (2001)). This enables the model to deal with homographs in a

natural way. It also ensures complete coverage of the data (all tokens must be tagged),

whereas many type-based models limit themselves to only the most frequent items.

Modeling the underlying structure of a sentence as a sequence of part of speech labels

is a particularly simplified view of syntax, removing the hierarchical structure inherent to

language. However, this simplification seems appropriate for the first stages of acquisition,

when learners encounter short sentences with simple syntax. Most computational models of

syntax acquisition or grammar induction assume that syntactic categories are available

(either annotated or learned by a separate method) and induce a grammar over syntactic

categories rather than lexical items (Klein & Manning, 2004; Perfors, Tenenbaum, &

Regier, 2011). A simpler model such as the HMM and its variants can demonstrate what

can be learned before full grammatical structure is in place.

We first present an overview of the BHMM and introduce our notation (but see

Goldwater and Griffiths (2007) for complete details); we then add sentence type evidence

to the BHMM in three ways and describe the ensuing models.

BHMM

HMMs are a classic model used to assign ‘labels’ (hidden state identities, in this case

parts of speech) to a sequence of observations (word tokens). They are defined by two

probability distributions: the transition distribution, which gives the probability of

transitioning to a tag given the surrounding context (tags), and the emission distribution,

which gives the probability of a particular word given its tag. The transition distribution

characterizes the sequence of words, or rather tags, and thus can represent a low-level, local

syntax concerned with word order (but not movement or long distance dependencies). The

emission distributions characterize the set of words that are likely to appear as a given part
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of speech, i.e., the categorization of the words into categories.

Like a standard HMM, the Bayesian HMM makes the independence assumption that

the probability of word wi depends only on the current tag ti, and the probability of tag ti

depends only on the previous tags. The number of previous tags included in the context is

known as the order of the model: a first-order model, also known as a bigram model, uses a

single previous tag as conditioning context to determine the transition probability, whereas

a second-order (trigram) model uses the two previous tags as context.

The trigram transition and emission distributions are written as:

ti|ti−1 = t′, ti−2 = t′′, τ(t′,t′′) ∼ Mult(τ(t′,t′′)) (1)

wi|ti = t, ω(t) ∼ Mult(ω(t)) (2)

where τ(t′,t′′) are the parameters of the multinomial distribution over following tags given

previous tags (t′, t′′) and ω(t) are the parameters of the distribution over outputs given tag

t. The generative process associated with the BHMM assumes that these parameters have

in turn been drawn from symmetric Dirichlet priors with hyperparameters α and β,

respectively:

τ(t′,t′′)|α ∼ Dirichlet(α) (3)

ω(t)|β ∼ Dirichlet(β) (4)

Using these Dirichlet priors allows the multinomial distributions to be integrated out,

leading to the following conditional posterior distributions:

P (ti|t−i, α) = nti−2,ti−1,ti + α

nti−2,ti−1 + Tα
(5)

P (wi|ti, t−i,w−i, β) = nti,wi + β

nti +Wtiβ
(6)

where t−i = t1 . . . ti−1, all tags but ti, and likewise w−i = w1 . . . wi−1, all words but wi.
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nti−2,ti−1,ti and nti,wi are the number of occurrences of the trigram (ti−2, ti−1, ti) and the

tag-word pair (ti, wi) in t−i and w−i. T is the size of the tagset and Wt is the number of

word types emitted by t. The hyperparameters function as a type of smoothing, with α and

β providing pseudo-counts.

Clearly, the Markov independence assumption made in the HMM/BHMM, namely

that a small context window is sufficient to determine the hidden label, is too strong in

natural language contexts, but adding more context leads to an unwieldy and sparse

model. One of the important questions for the models presented here is whether sentence

types can proxy for larger context windows.

BHMM with sentence types

The BHMM depends solely on local information for tagging. However global

information — such as sentence types — can play a role in syntax at the tag sequence

level, by requiring shifts in word order. Hence they are likely to be informative for a tagger

by enriching the impoverished local context representation.

In order to incorporate sentence type information into the BHMM, we add an

observed variable to each time-step in the model with the value set to the current sentence

type3. Given that the BHMM consists of two principal distributions, there are two

straightforward ways that sentence type could be incorporated into the BHMM: either by

influencing the transition probabilities or the emission probabilities. The former would

reflect the effect of sentence type on word order, whereas the latter would investigate

whether sentence type affects the set of words categorized as a single part of speech. We

discuss both, as well as their combination.

BHMM-T. In the first case, transitions are conditioned not only on previous

context, as in the BHMM, but also on the context’s sentence type. This leads different

3Arguably sentence type only needs to be included in the model once per sentence, rather than at each
time-step, since sentence type never changes within a sentence. However, since sentence type is an observed
variable, replicating it has no effect, and it makes the notation clearer.
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sentence types to assign different probabilities to the same sequence of tags, so that, for

example, PRONOUN will be more likely to be followed by a VERB in declaratives than in

imperatives. (Note however that the estimated tag clusters will not necessarily correspond

to gold tags.) By separating out the transitions, the model will have more flexibility to

accommodate word order changes between sentence types.

Formally, the observed sentence type si−1 is added as a conditioning variable when

choosing ti, i.e., we replace line 1 from the BHMM definition with the following:

ti|si−1 = s, ti−1 = t′, ti−2 = t′′, τ(s,t′,t′′) ∼ Mult(τ(s,t′,t′′)) (7)

We refer to this model, illustrated graphically in Fig. 1, as the BHMM-T (for transitions).

Insert Figure 1 about here

The BHMM-T has a larger number of parameters than the BHMM, which has

T o+1 + TV (where T is the number of tags, o is the model order, and V is the size of the

vocabulary) parameters, whereas the BHMM-T has ST o+1 + TV (S being the number of

sentence types)4.

BHMM-E. Analogously, we can add sentence type as a conditioning variable in

the emission distribution by replacing line 2 from the BHMM with

wi|si = s, ti = t, ω(s,t) ∼ Mult(ω(s,t)) (8)

This model, the BHMM-E (for emissions), results in models in which each sentence type

has a separate distribution of probable words for each tag, but the transitions between

those tags are shared between all sentence types, as in the BHMM. This does not

correspond well to the word-order effect that sentence type has in many languages, but

may capture vocabulary differences between sentence types, if these exist.

4Since probability distributions are constrained to sum to one, the last parameter in each distribution is
not a free variable, and so the true number of necessary emission parameters is T (V − 1) (and likewise for
transition parameters), but we omit this technicality in favor of clarity.
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The model size is T o+1 + STV , which in practice is significantly larger than the

BHMM-T model, given V � T > S and model orders of one and two (bigram and trigram

models).

BHMM-ET. The combination of the two, BHMM-T plus BHMM-E, is also

possible. In the BHMM-ET, sentence type conditions both transition and emission

probabilities. Each sentence type now has a separate set of transition and emission

distributions (both transitions and emissions are conditionally independent given sentence

type). Without any shared information, tags are not in any sense equivalent between

sentence types, so this model is equivalent to inferring a separate BHMM on each type of

sentence, albeit with shared hyperparameters.

Introducing the sentence type parameter as an extra conditioning variable in these

models has the consequence of splitting the counts for transitions, emissions, or both. The

split distributions will therefore be estimated using less data, which could degrade

performance if sentence type is not a useful predictor of tag sequences or tag-word pairings.

This will be especially vital to the performance of the BHMM-ET, without any shared

information at all. If the separate models in the BHMM-ET match the BHMM’s

performance, this would indicate that sentence type is as reliable an indicator of tagging

information as a large amount of additional data from other sentence types. However, it is

cognitively implausible for there to be no sharing of information at all between sentence

types: this model serves principally as a measure of sentence type informativeness.

Our prediction is that sentence type is more likely to be useful as a conditioning

variable for transition probabilities (BHMM-T) than for emission probabilities (BHMM-E).

For example, the auxiliary inversion in questions is likely to increase the probability of the

AUX → PRONOUN transition, compared to declaratives. Knowing that the sentence is a

question may also affect emission probabilities, e.g. it might increase the probability the

word you given a PRONOUN and decrease the probability of I ; one would certainly expect

wh-words to have much higher probability in wh-questions than in declaratives. However,
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many other variables also affect the particular words used in a sentence (principally, the

current semantic and pragmatic context). We expect that sentence type plays a relatively

small role compared to these other factors. The ordering of tags within an utterance, on

the other hand, is primarily constrained by sentence type, especially in the short and

grammatically simple utterances found in child-directed speech.

English experiments

Procedure

Corpora. We use the Eve and Manchester corpora from childes for our

experiments. From both corpora we remove all utterances spoken by a child; the remaining

utterances are nearly exclusively CDS.

Although our model is fully unsupervised (meaning the gold standard tags are never

visible to the model), files from the chronological middle of each corpus are set aside for

development and testing evaluation (Eve: file 10 for development, 11 for testing;

Manchester: file 16 from each child for development, file 17 for testing). The remainder of

each corpus is used for inference only, and is never evaluated. The BHMM is thus inferred

using either (dev+remainder) or (test+remainder) datasets, with only the inferred tags in

either the dev or test portion being evaluated.

The motivation behind this evaluation regime is to ensure that the model structures

we investigate generalize to multiple settings. In most previous unsupervised modeling

work, results are reported for the entire corpus. However, since different model structures

and (hyper)parameterizations may be explored during development, this methodology still

leaves open the possibility that the final model structure may be better suited to the

particular corpus being used than to others. To avoid this issue, we set aside a separate test

dataset that is only used for the final evaluation.

Both corpora have been tagged using the relatively rich childes tagset, which we

collapse to a smaller set of thirteen tags: adjectives, adverbs, auxiliaries, conjunctions,
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determiners, infinitival-to, nouns, negation, participles, prepositions, pronouns, verbs and

other (communicators, interjections, fillers and the like). Wh-words are tagged as adverbs

(why, where, when and how), pronouns (who and what), or determiners (which).

Each sentence is labeled with its sentence type using the heuristics described earlier.

Dummy inter-sentence markers are added, so transitions to the beginning of a sentence will

be from the inter-sentence hidden state (which is fixed). The inter-sentence markers are

assigned a separate dummy sentence type.

In our experiments, we experiment with coarser sentence type categorizations as well

as the full five types. This enables us to discover which sentence types are most informative

for the tagging task. Specifically, we try:

QD in which all questions (wh- and other) are collapsed to one question category and all

other utterances are collapsed to declaratives.

WQD in which the question categories are separated but the non-questions are in a single

category.

SWQD as above, but with short (declarative) utterances distinguished from other

non-question utterances.

ISWQD in which all five sentence types are separated: imperatives, short utterances,

wh-questions, other questions, and declaratives.

Inference. We follow Goldwater and Griffiths (2007) in using a collapsed Gibbs

sampler to perform inference over the BHMM and its variants. Gibbs samplers are a

standard batch inference method for Bayesian models and are designed to produce samples

from the posterior distribution of interest—here, the distribution over tag assignments

given the observed word sequences P (t|w, α, β) ∝ P (w|t, β)P (t|α). The sampler is

initialized by assigning a random tag to each word, and then runs iteratively over the

corpus, resampling the tag assignment for each word from the posterior distribution defined
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by the current tag assignments for all other words, P (ti|t−i, w, α, β) (where t−i represents

the other tag assignments). It can be shown that this procedure will eventually converge to

producing samples from the true posterior distribution over all tags (Geman & Geman,

1984). The equations used to resample each word’s tag assignment in each model are shown

in Fig. 2.

Insert Figure 2 about here

In order to minimize the amount of prior information given to the model, we also

optimize the hyperparameters α and β using using a Metropolis-Hastings sampling step,

following Goldwater and Griffiths (2007). The hyperparameter over emission distributions,

β, is estimated separately for each tag distribution, whereas α is constrained to be the

same for all transition distributions.

We set the number of hidden states (corresponding to tag clusters) to the number of

gold tags in the corpus (i.e., 13).

We run the Gibbs sampler for 10000 iterations, with hyperparameter resampling and

simulated annealing. (On the Manchester corpus, due to its size, we only manage 5000

iterations.) The final sample is used for evaluation purposes. Since Gibbs sampling is a

stochastic algorithm, we run all models multiple times and report average values for all

evaluation measures as well as confidence intervals at the 95% level. Significance is

measured using the non-parametric Wilcoxon signed-rank test.

Evaluation measures. Evaluation of fully unsupervised part of speech tagging is

known to be problematic, due to the fact that the part of speech clusters found by the

model are unlabeled, and do not automatically correspond to any of the gold standard part

of speech categories. Commonly used evaluation measures, such as one-to-one and

many-to-one accuracy, suffer from “the problem of matching” (Meila, 2007): their greedy

‘winner takes all’ approach means that all unmatched items are rated as equally bad,

despite the fact that a cluster with members of only two gold classes is intuitively better

than a cluster that is made up of many gold classes.
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For evaluation we thus use V-measure (VM; Rosenberg and Hirschberg, 2007), which

avoids this issue5. VM uses the conditional entropy of clusters and categories to evaluate

clusterings. It is analogous to the F-measure commonly used in NLP, in that it is the

harmonic mean of two measures analogous to precision and recall, homogeneity (VH) and

completeness (VC). VH is highest when the distribution of categories within each cluster is

highly skewed towards a small number of categories, such that the conditional entropy of

categories C given the clusters K, H(C|K), is low. Conversely, VC measures the conditional

entropy of the clusters within each gold standard category, H(K|C), and is highest if each

category maps to a single cluster so that each model cluster completely contains a category.

V H = 1− H(C|K)
H(C) V C = 1− H(K|C)

H(K) VM = 2× V H × V C
V H + V C

Like the standard F-measure, VM ranges from zero to one (rescaled to 0-100). It is

invariant with regards to both the number of items in the dataset and to the number of

clusters used, and consequently it is suitable for comparing results across different corpora.

Results and discussion

We now present results for the three BHMM variants discussed in the previous

section: a model in which both transitions and emission distributions are separated by

sentence type, the BHMM-ET; a model in which only emission distributions are separated

by sentence type and transitions are shared, the BHMM-E; and the converse, the

BHMM-T, in which transitions are separated and emission distributions are shared. We

find that these models perform in very different ways, demonstrating the effect of sentence

type on word order rather than word usage.

5We also calculated many-to-one accuracy and found that it was highly correlated with VM.
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BHMM-ET: sentence-type-specific sub-models

By including a sentence type indicator in both the transition and emission

distributions, the BHMM-ET separates both transition and emission probabilities by

sentence type, effectively creating separate sub-models for each sentence type. The

resulting tags are thus not equivalent between sentence types, i.e., the tag TAG-9 used in a

declarative sentence is not the ‘same’ TAG-9 as used in questions, since they have distinct

transition and emission distributions. Consequently, when evaluating the tagged output

each sentence type must be evaluated separately, to avoid conflating incompatible

clusterings.

Insert Figure 3 about here

Insert Figure 4 about here

Baseline BHMM and BHMM-ET results for the Eve corpus, split by sentence type,

are in Fig. 3 and 4. We see that in this relatively small corpus, as expected, splitting the

sentence types results in decreased performance as compared to the baseline BHMM, in

which all counts are shared. Only the declaratives, the most frequent sentence type,

provide enough information on their own to match (and in the dev settings exceed) the

baseline performance.

Insert Figure 5 about here

Insert Figure 6 about here

Fig. 5 and 6 show results for the much larger Manchester corpus. The BHMM-ET

models here perform much closer to the baseline, due to the larger amount of data

available to each sentence type sub-model. Each of the sentence types contain enough

information to learn approximately equivalent taggers using either only single sentence

type data or the full data set. The exceptions are the short utterances models, which

continue to suffer from the lack of sufficiently informative contexts.
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BHMM-E: sentence-type-specific emissions

We now turn to the BHMM-E, in which emission probability distributions are

sentence-type-specific, but transition probabilities are shared between all sentence types. In

this model a given sequence of tags is equally likely among all sentence types, but those

tags can correspond to different words in different sentence types.

Returning to Fig. 3 and 4 (Eve corpus) and Fig. 5 and 6 (Manchester corpus), we see

that for almost every sentence type, the BHMM-E performs worse than both the

BHMM-ET and the baseline BHMM. The negative effect of the split emissions is most

striking on the Manchester corpus, where small dataset size cannot be a problem. Whereas

with the BHMM-ET we might posit that, given enough data, sentence-type-specific models

would learn an equivalent model to the shared baseline model (apart from the short

utterance distinction), here we see that adding the sentence type feature to only the

emissions is actively harmful.

BHMM-T: sentence-type-specific transitions

Lastly, we evaluate the BHMM-T, which shares emission probabilities among sentence

types and uses sentence-type-specific transition probabilities. This describes a model in

which all sentence types use the same set of tags, but those tags can appear in different

orders in different sentence type. Since this situation corresponds best to the behavior of

sentence type in English and many other languages — word order changes according to

sentence type, but word usage does not — we expect the BHMM-T to perform the best of

all the sentence type BHMM models, and to improve over the baseline BHMM.

In the bigram models (Fig. 3 for the Eve corpus and Fig. 5 for the Manchester

corpus) we see the BHMM-T either match or improve upon the baseline BHMM in all

sentence types, apart from short utterances. Models trained on the Manchester corpus

improve significantly over the baseline on all other sentence types. Models trained on the

smaller Eve corpus show more mixed results, with the most constrained sentence types
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(wh-questions and imperatives) showing significant improvement over the baseline.

Trigram models (Fig. 4 and 6) also differ by dataset size. On the smaller dataset, we

find no consistent difference in performance between BHMM-T and baseline; notably short

utterances also match baseline performance (unlike in bigram models). Given more data,

the Manchester-trained models significantly outperform the baseline on two sentence types,

and match on the others. Imperatives, the least frequent sentence type, suffer a decline in

performance; there may simply not be enough data to estimate good trigram transition

distributions, even with shared emissions.

Trigram models must estimate significantly more parameters than bigram models;

adding sentence type increases the number of parameters still further. Where BHMM-T

matches and exceeds baseline performance, adding sentence type is creating split transition

distributions that are more or equally accurate to the fully shared distribution, despite

being estimated on far less data. This demonstrates the potential effectiveness of sentence

type information for transitions.

Not all sentence types seem to be useful: bigram models perform poorly on short

utterances, due to the limited context; the baseline model makes use of transfer from other

sentence types. Rare sentence types such as imperatives are difficult to learn, particularly

for trigam models. These differences indicate that it may be advantageous to only

distinguish certain sentence types.

Insert Figure 7 about here

Insert Figure 8 about here

Fig. 7 (Eve) and Fig. 8 (Manchester) show the results of BHMM-T models trained on

data sets using a variety of less fine-grained sentence types, as described earlier. The shared

emission distributions in the BHMM-T allow us to evaluate the corpus as a whole, given a

single clustering for all sentence types.

On the Eve dataset we see a difference in baseline performance between the dev and

test sets that is not reflected in the BHMM-T models; the test set is easier for the baseline
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than the dev set. In the BHMM-T, all sentence types apart from declaratives do slightly

better on the test set as well, but because declaratives are so frequent, BHMM outperforms

BHMM-T significantly on the test set. We suspect this is due to peculiarities in the test

data portion: if we evaluate (as is common with unsupervised models) on the full dataset

used for inference at test time (i.e., the full corpus apart from the development section), we

get results that are more similar to the dev-only results, where nearly all BHMM-T

variants significantly improve over the baseline, both in trigram and bigram models.

We were unable to ascertain what the relevant characteristics of the dev and test set

was that caused the difference in performance, but note that both the dev and test set are

small (approximately two thousand tokens) so some variation is to be expected.

Examining the sentence type variants, on the Eve datasets we see bigram models do

best with data annotated with three sentence types, two question types and a general

declaratives sentence type (WQD), whereas trigrams benefit from a simpler question/other

(QD) distinction. On the Manchester corpus, bigram models also perform best with the

WQD split, but nearly all bigram BHMM-T models improve significantly over the baseline,

regardless of the exact sentence type distinctions used. Trigram BHMM-T are less

consistently better than the baseline, but also do not perform worse. The best performance

is achieved when using the full set of sentence types (ISWQD). However, the larger amount

of data used to infer trigram tag sequences leads to all models performing approximately

equally well, with or without sentence type information.

When trained on the Eve corpus, the trigram BHMM-T does not have sufficient data

to accurately infer categories when the transitions are split between too many sentence

types, and performs best with only two sentence types. On the other hand, when more data

is available, the trigram BHMM-T is able to estimate good parameters for all five sentence

types: the models trained on the Manchester corpus with all sentence types outperform all

the others. The improvement over the baseline and other models is slight, however,

indicating that sentence type is providing minimal additional information in this case.
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In contrast, when evaluated on the Eve development corpus, the bigram model with

the best set of sentence type labels (WQD) performs as well as the trigram model without

sentence types. In this case, sentence-type-specific bigram transitions are as informative as

transitions with twice as much local context information, leading to a model with fewer

parameters but equal performance. However, it is important to note that even in cases

where sentence type does not seem to add additional information in the transition

distribution, it never decreases performance (as it did when added to the emission

distribution). This indicates that at worst, sentence type carries the same information (but

no more) as the context history already available in the BHMM.

In summary, based on experiments using English corpora we have found that separate

emission distributions between sentence type are harmful (BHMM-ET and BHMM-E),

whereas separate transitions for sentence types may be helpful. This is in line with our

predictions, based on the fact that in English sentence types primarily affect word order.

Cognitively, separate emission distributions would be hard to justify, since they result

in non-corresponding syntactic categories between sentence types. In these models, each

sentence type has a separate set of syntactic categories, which means that e.g. cat and

mouse must be clustered together separately for each sentence type. Such models, in which

categories are replicated multiple times and differ between sentence types, clearly do not

make efficient use of limited input data.

Unlike the words making up syntactic categories, word order does change between

sentence types in many languages, and taking this into account by learning separate word

orders for each sentence type seems to be an effective strategy. Here we found that the

choice of sentence type categories matters, and is dependent on the amount of input data

available: with larger amounts of data, finer sentence type categories can be used.
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Cross-linguistic experiments

In the previous section we found that sentence type information improved syntactic

categorization in English. In this section, we evaluate the BHMM’s performance on two

languages other than English, and investigate whether sentence type information is useful

across languages.

Nearly all human languages distinguish between closed yes/no-questions and

declaratives in intonation. Open questions are most commonly marked by rising intonation

(Hirst & Cristo, 1998). Wh-questions do not always have a distinct intonation type, but

they are signaled by the presence of members of the small class of wh-words.

We use tagged corpora for Spanish and Cantonese from the childes collection: the

Ornat corpus (Ornat, 1994) and the Lee Wong Leung (LWL) corpus (Lee et al., 1994)

respectively. We describe each corpus in turn below; Table 3 lists their relative sizes.

Insert Table 3 about here

Spanish. The Ornat corpus is a longitudinal study of a single child between the

ages of one and a half and nearly four years, consisting of 17 files. Files 08 and 09 are used

for testing and development. We collapse the Spanish tagset used in the Ornat corpus in a

similar fashion to the English corpora. There are 11 tags in the final set: adjectives,

adverbs, conjuncts, determiners, nouns, prepositions, pronouns, relative pronouns,

auxiliaries, verbs, and other.

Spanish wh-questions are formed by fronting the wh-word (but without the auxiliary

verbs added in English); yes/no-questions involve raising the main verb (again without the

auxiliary inversion in English). Spanish word order in declaratives is generally freer than

English word order. Verb- and object-fronting is more common, and pronouns may be

dropped (since verbs are marked for gender and number). Note that verb-fronted

declaratives will have the same structure as closed questions. This suggests that there will

be fewer clear differences between transition distributions in the various sentence types.
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Cantonese. The LWL corpus consists of transcripts from a set of eight children

followed over the course of a year, totaling 128 files. The ages of the children are not

matched, but they range between one and three years old. Our dataset consists of the first

500 utterances of each file, in order to create a data set of similar size as the other corpora

used. Files from children aged two years and five months are used as the test set; files from

two years and six months make up the development set.

The tagset used in the LWL, which we use directly, is larger than the collapsed

English tagset. It consists of 20 tags: adjective, adverb, aspect marker, auxiliary or modal

verb, classifier, communicator, connective, determiners, genitive marker, preposition or

locative, noun, negation, pronouns, quantifiers, sentence final particle, verbs, wh-words,

foreign word, and other. We remove all sentences that are encoded as being entirely in

English but leave single foreign, mainly English, words (generally nouns) in a Cantonese

context.

Cantonese follows the same basic SVO word order as English, but with a much higher

frequency of topic-raising. Questions are not marked by different word order. Instead,

particles are inserted to signal questioning. These particles can signal either a

yes/no-question or a wh-question; in the case of wh-questions they replace the item being

questioned (e.g., playing-you what?), without wh-raising as in English or Spanish. Strictly

speaking the only syntactic change in transitions would thus be an increase in transitions

to and from the wh-particles in questions. However, there may be other systematic

differences between questions and declaratives.

Results. We inferred BHMM and BHMM-T models in the same manner as with

the English corpora (10 runs each, 10000 iterations, with simulated annealing and

hyperparameter estimation).

Due to inconsistent annotation and lack of familiarity with the languages, we used

only three sentence types: open/wh-questions, other questions, and declaratives.

Punctuation was used to distinguish between questions and declaratives. wh-questions were
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identified by using a list of wh-words for Spanish; the Cantonese corpus included a wh-word

tag.

Insert Figure 9 about here

In English, the BHMM-T was able to improve performance by taking into account

the distinct word orders characteristic of the different sentence types. Spanish does not

show the same improvement (Fig. 9). The estimated BHMM-T models do not differ

significantly from the baseline BHMM; however they have much higher variance. This

indicates that the BHMM-T is harder to estimate, presumably because the separate

transitions merely introduce more parameters without offering the same benefits as in

English. Given that sentence type does not affect word order in the same way in Spanish as

in English, this is an unsurprising result.

Insert Figure 10 about here

In Cantonese, we see a significant improvement for the bigram BHMM-T (Fig. 10).

This is despite the fact that Cantonese has relatively little word order marking of

questions; the BHMM-T was able to make use of the extra information. The tagging of

wh-questions improves most in the BHMM-T in bigram Cantonese models, but declaratives

and other questions also improve slightly. Trigram BHMM-T models do not outperform the

baseline; as in the larger English models, sentence type does not add significant new

information to the trigram context history.

As in English, none of the Spanish or Cantonese BHMM-T models perform

significantly worse than the BHMM baseline. Even when sentence type is not an entirely

reliable signal to word order, the separately estimated transitions still match the

performance of shared transitions.

Conclusion

We have investigated whether sentence type can be a useful cue for models of

syntactic category acquisition. The structure of the BHMM made it possible to distinguish
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between adding sentence types to either the parameters governing the order of syntactic

categories in an utterance (transition distributions), or to the parameters describing the

words making up the syntactic categories (emission distributions). We found that, as

expected, adding sentence type to emission distributions resulted in degraded performance

due to the decreased amount of data available to estimate each separate sentence type

emission distribution; additionally these models are awkward since they create separate

sets of clusters for each sentence type. This is contrary to syntactic categories as they are

generally understood and leads to a representation with high levels of redundancy. Hence

we dismiss this model structure for syntactic category acquisition.

Our models with sentence-type-specific transitions demonstrate that sentence type

can be an informative cue for word and tag order, especially in models with limited

amounts of local context. The amount of input data available to the model and the number

of model parameters affected which set of sentence types performed best; further research

is necessary to characterize these interactions more precisely. However, we showed that at

the very least sentence-type-specific distributions never found worse syntactic clusters than

shared distributions, and in many cases found better clusters. Arbitrarily adding

parameters — and thereby splitting distributions — in unsupervised models is unlikely to

improve performance, due to ensuing data sparsity, unless the parameter is genuinely useful

(unlike supervised models, in which unhelpful parameters will be ignored). This problem

arose when the sentence type parameter was added to the emission distribution. On the

other hand, adding this parameter to the transition distribution resulted in an larger

number of distributions estimated on smaller amounts of data, but these models were able

to recover or improve on the original performance. This demonstrates that the sentence

type parameter added useful additional information to the model in this setting.

Sentence type as an additional feature for syntactic category learning is not limited to

the BHMM structure. Models that use frames (sets of surrounding words) as features for

distributional categorization (Mintz, 2003; St Clair, Monaghan, & Christiansen, 2010)
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could extend the frame description to include the sentence type the frame appears in.

Other models represent individual context words independently, using a vector of word

co-occurrences as features for clustering (Christodoulopoulos, Goldwater, & Steedman,

2011; Redington et al., 1998; Toutanova & Johnson, 2007). In this case each context word

would have to be annotated with the current sentence type, in order to separate the

contexts by sentence type. Adding sentence type to these models could improve accuracy.

For example, one of the most common frames in Mintz (2003) is do_want, which in

declaratives is nearly always filled with not and in questions with you; separating this

frame by sentence type would prevent these words from being clustered together.

Recently, two models of online learning of categories have been presented (Chrupala

& Alishahi, 2010; Parisien, Fazly, & Stevenson, 2008), both of which allow for learning an

unlimited number of categories. These models both use independent occurrences of context

words as features and could be easily extended to use context words plus sentence type, as

outlined above. Adding sentence type to these models could allow us to track the usefulness

of sentence type during the learning process, unlike the static model we presented here.

Based on our results on data sets of different sizes, we hypothesize that initially using

coarser sentence types will be advantageous, but as more data is seen, more fine-grained

sentence types will become helpful.

Our study has shown that computationally there may be an advantage to a

representation of word/syntactic category order that includes sentence type information.

This result naturally leads to the question of whether human learners do in fact have such

a linguistic representation. Experimental work has demonstrated infants’ awareness of

adjacent contexts as cues for categorization at 12 months (Gómez & Lakusta, 2004). At

this stage, they are also clearly aware of prosody, both in its function to signal dialog

pragmatics as well as using it as a feature for storage of heard phrases (Mandel et al.,

1996). However, it has yet to be shown that infants’ representation of early syntax, when

they are learning syntactic categories, allows for a link between prosody and word order,
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i.e., that infants can make use of the fact that different prosodies may signal different word

orders. An artificial language learning experiment for learning categories, similar to Gómez

and Lakusta’s (2004) study, but in which transitions probabilities are manipulated along

with prosody cues, could provide evidence for infants’ ability (or otherwise) to link word

order and prosody. Crucially, infants would also have to be able to ignore prosody when it

is not informative, given that the link between word order and prosody is language

dependent and only informative in certain contexts.

The model we have presented for making this link between sentence type prosody and

word order is brittle: the different sentence types share no information about transitions. A

more realistic model would interpolate between sentence-type-specific transition

distributions, where these are more informative, and general distributions, where sentence

type information is lacking, in order to be more robust to issues of data sparsity. It would

also make use of the fact that some transitions are often shared between sentence types

(i.e., nouns are often preceded by determiners in both questions and declaratives). In future

work we will investigate adding this flexibility to the model. However, our work has

demonstrated that adding a link between sentence type prosody and word order at

minimum does not add noise, and in many cases is a source of additional information.

The Bayesian probabilistic modeling methodology gives us a principled way to add

components to a model, either as observed variables representing input readily available to

the learner, or as latent variables to be learned. Here, we explored a model in which the

additional information (sentence type) was treated as observed, on the assumption that

infants could use prosody to determine sentence type before beginning to learn syntactic

categories. However, it is probably more plausible to assume that, since the relationship

between prosody and sentence type needs to be learned, sentence type information may be

only partially available when syntactic category acquisition begins. This suggests that

ultimately we will need to consider learning sentence types and syntactic categories as a

joint learning problem, where partial information about each task constrains the learning
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of the other. Bayesian models such as ours are a particularly apt way to model joint

learning, with different latent variables used to represent different types linguistic

information. Recent Bayesian models have shown that joint learning can be highly

successful in areas such as syntax/semantics (Kwiatkowski, Goldwater, Zettelmoyer, &

Steedman, 2012; Maurits, Perfors, & Navarro, 2009), syntax/morphology (Sirts & Alumäe,

2012) and phonetic/lexical learning (Elsner, Goldwater, & Eisenstein, 2012; Feldman,

Griffiths, & Morgan, 2009; Feldman, Griffiths, Goldwater, & Morgan, in submission). We

are also beginning to see experimental evidence supporting the cognitive plausibility of

joint learning (Feldman, Myers, White, Griffiths, & Morgan, 2011). Although our models

as they stand do not perform joint learning, nevertheless we feel they support this general

program by emphasizing that multiple sources of information can improve learning, and

suggesting what some of those sources could be. Ultimately, a complete model of language

acquisition will need to consider interactions between all aspects of language. The models

presented in this paper provide an example of the potential utility of this holistic,

integrative approach to language acquisition.



SENTENCE TYPES AND SYNTACTIC CATEGORIES 33



SENTENCE TYPES AND SYNTACTIC CATEGORIES 34

References

Balog, H. L., & Brentari, D. (2008). The relationship between early gestures and

intonation. First Language, 28(2), 141–163.

Booth, A. E., & Waxman, S. R. (2003). Mapping words to the world in infancy: infants’

expectations for count nouns and adjectives. Journal of Cognition and Development,

4(3), 357–381.

Brown, P. F., Pietra, V. J. D., deSouza, P. V., Lai, J. C., & Mercer, R. L. (1992).

Class-based n-gram models of natural language. Computational Linguistics, 18(4),

467–479.

Brown, R. (1973). A first language: the early stages. Harvard University Press.

Cartwright, T. A., & Brent, M. R. (1997). Syntactic categorization in early language

acquisition: formalizing the role of distributional analysis. Cognition, 63(2), 121–170.

Christodoulopoulos, C., Goldwater, S., & Steedman, M. (2011). A Bayesian mixture model

for part-of-speech induction using multiple features. In Proceedings of the conference

on empirical methods in natural language processing.

Chrupala, G., & Alishahi, A. (2010). Online entropy-based model of lexical category

acquisition. In Proccedings of the 14th conference on natural language learning.

Clark, A. (2001). Unsupervised induction of stochastic context-free grammars using

distributional clustering. In Proceedings of the workshop on computational natural

language learning.

Clark, A. (2003). Combining distributional and morphological information for part of

speech induction. In Proceedings of the 10th annual meeting of the European

association for computational linguistics (pp. 59–66).

Elsner, M., Goldwater, S., & Eisenstein, J. (2012). Bootstrapping a unified model of lexical

and phonetic acquisition. In Proceedings of the 50th annual meeting of the association

of computational linguistics.



SENTENCE TYPES AND SYNTACTIC CATEGORIES 35

Feldman, N., Griffiths, T., & Morgan, J. (2009). Learning phonetic categories by learning a

lexicon. In Proceedings of the 31st annual conference of the cognitive science society

(cogsci).

Feldman, N., Myers, E., White, K., Griffiths, T., & Morgan, J. (2011). Learners use

word-level statistics in phonetic category acquisition. In Proceedings of the 35th

boston university conference on language development.

Feldman, N. H., Griffiths, T. L., Goldwater, S., & Morgan, J. L. (in submission). A role for

the developing lexicon in phonetic category acquisition.

Fernald, A. (1989). Intonation and communicative intent in mothers’ speech to infants: is

the melody the message? Child Development, 60(6), 1497–1510.

Fernald, A., & Kuhl, P. (1987). Acoustic determinants of infant preference for motherese

speech. Infant Behavior and Development, 10(3), 279–293.

Fernald, A., & Mazzie, C. (1991). Prosody and focus in speech to infants and adults.

Developmental Psychology, 27 (2), 209–221.

Galligan, R. (1987). Intonation with single words: purposive and grammatical use. Journal

of Child Language, 14, pp 1–21.

Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6(6), 721–741.

Gerken, L., Wilson, R., & Lewis, W. (2005). Infants can use distributional cues to form

syntactic categories. Journal of Child Language, 32, 249–268.

Gleitman, L. R., Newport, E. L., & Gleitman, H. (1984). The current status of the

motherese hypothesis. Journal of Child Language, 11, 43–79.

Godfrey, J. J., Holliman, E. C., & McDaniel, J. (1992). Switchboard: telephone speech

corpus for research and development. In Proceedings of the IEEE international

conference on acoustics, speech and signal processing (ICASSP).



SENTENCE TYPES AND SYNTACTIC CATEGORIES 36

Goldwater, S., & Griffiths, T. L. (2007). A fully Bayesian approach to unsupervised

part-of-speech tagging. In Proceedings of the 45th annual meeting of the association

of computational linguistics.

Gómez, R. L., & Lakusta, L. (2004). A first step in form-based category abstraction by

12-month-old infants. Developmental Science, 7 (5), 567–580.

Griffiths, T., Kemp, C., & Tenenbaum, J. (2008). Bayesian models of cognition. In R. Sun

(Ed.), Cambridge handbook of computational cognitive modeling. Cambridge

University Press.

Harris, Z. (1946). From morpheme to utterance. Language, 22(3), 161–183.

Hirst, D., & Cristo, A. D. (Eds.). (1998). Intonation systems: a survey of twenty languages.

Cambridge University Press.

Homae, F., Watanabe, H., Nakano, T., Asakawa, K., & Taga, G. (2006). The right

hemisphere of sleeping infant perceives sentential prosody. Neuroscience Research,

54(4), 276 –280.

Huddleston, R. D., & Pullum, G. K. (2002). The Cambridge grammar of the English

language. Cambridge University Press.

Klein, D., & Manning, C. (2004). Corpus-based induction of syntactic structure: models of

dependency and constituency. In Proceedings of the conference on empirical methods

in natural language processing.

Kwiatkowski, T., Goldwater, S., Zettelmoyer, L., & Steedman, M. (2012). A probabilistic

model of syntactic and semantic acquisition from child-directed utterances and their

meanings. In Proceedings of the 13th conference of the European chapter of the

association for computational linguistics.

Lee, T. H., Wong, C. H., Leung, S., Man, P., Cheung, A., Szeto, K., & Wong, C. S. P.

(1994). The development of grammatical competence in Cantonese-speaking children.

MacWhinney, B. (2000). The CHILDES project: tools for analyzing talk. Mahwah, NJ:

Lawrence Erlbaum Associates.



SENTENCE TYPES AND SYNTACTIC CATEGORIES 37

Mandel, D. R., Jusczyka, P. W., & Kemler Nelson, D. G. (1994). Does sentential prosody

help infants organize and remember speech information? Cognition, 53, 155–180.

Mandel, D. R., Kemler Nelson, D. G., & Jusczyk, P. W. (1996). Infants remember the

order of words in a spoken sentence. Congnitive Development, 11, 181–196.

Maratsos, M. P., & Chalkley, M. A. (1980). The internal language of children’s syntax: the

ontogenesis and representation of syntactic categories. Children’s language, 2,

127–214.

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., & Taylor, A. (1999). Treebank-3.

Linguistic Data Consortium.

Maurits, L., Perfors, A., & Navarro, D. (2009). Joint acquisition of word order and word

reference. In Proceedings of the 42nd annual conference of the cognitive science

society.

Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C.

(1988). A precursor of language acquisition in young infants. Cognition, 29(2),

143–178.

Meila, M. (2007). Comparing clusterings — an information-based distance. Journal of

Multivariate Analysis, 98, 873–895.

Merialdo, B. (1994). Tagging English text with a probabilistic model. Computational

Linguistics, 20(2), 155–172.

Mintz, T. H. (2003). Frequent frames as a cue for grammatical categories in child directed

speech. Cognition, 90, 91–117.

Murray, L., & Trevarthen, C. (1986). The infant’s role in mother-infant communications.

Journal of Child Language, 13, 15–29.

Newport, E. L., Gleitman, H., & Gleitman, L. R. (1977). Mother, I’d rather do it myself:

some effects and non-effects of maternal speech style. In C. E. Snow &

C. A. Ferguson (Eds.), Talking to children: language input and acquisition

(pp. 109–149). Cambridge, UK: Cambridge University Press.



SENTENCE TYPES AND SYNTACTIC CATEGORIES 38

Ornat, S. L. (1994). La adquisicion de la lengua espagnola. Madrid: Siglo XXI.

Parisien, C., Fazly, A., & Stevenson, S. (2008). An incremental Bayesian model for learning

syntactic categories. In Proceedings of the 12th conference on computational natural

language learning (pp. 89–96). Manchester.

Perfors, A., Tenenbaum, J. B., & Regier, T. (2011). The learnability of abstract syntactic

principles. Cognition, 118(3), 306 –338.

Redington, M., Chater, N., & Finch, S. (1998). Distributional information: a powerful cue

for acquiring syntactic categories. Cognitive Science, 22, 425 –469.

Rosenberg, A., & Hirschberg, J. (2007). V-measure: a conditional entropy-based external

cluster evaluation measure. In Proceedings of the conference on empirical methods in

natural language processing.

Sirts, K., & Alumäe, T. (2012). A hierarchical Dirichlet process model for joint

part-of-speech and morphology induction. In Proceedings of the conference of the

North American chapter of the association for computational linguistics.

Snow, D., & Balog, H. (2002). Do children produce the melody before the words? A review

of developmental intonation research. Lingua, 112, 1025–1058.

Srinivasan, R. J., & Massaro, D. W. (2003). Perceiving prosody from the face and voice:

distinguishing statements from echoic questions in English. Language and Speech, 46,

1–22.

St Clair, M., Monaghan, P., & Christiansen, M. (2010). Learning grammatical categories

from distributional cues: flexible frames for language acquisition. Cognition, 116(3),

341–360.

Stern, D. N., Spieker, S., Barnett, R. K., & MacKain, K. (1983). The prosody of maternal

speech: infant age and context related changes. Journal of Child Language, 10, 1–15.

Stern, D. N., Spieker, S., & MacKain, K. (1982). Intonation contours as signals in maternal

speech to prelinguistic infants. Developmental Psychology, 18(5), 727–735.



SENTENCE TYPES AND SYNTACTIC CATEGORIES 39

Taylor, P. A., King, S., Isard, S. D., & Wright, H. (1998). Intonation and dialogue context

as constraints for speech recognition. Language and Speech, 41(3), 493–512.

Theakston, A., Lieven, E., Pine, J. M., & Rowland, C. F. (2001). The role of performance

limitations in the acquisition of verb-argument structure: an alternative account.

Journal of Child Language, 28, 127–152.

Thothathiri, M., Snedeker, J., & Hannon, E. (2011). The effect of prosody on distributional

learning in 12- to 13-month-old infants. Infant and Child Development.

Toutanova, K., & Johnson, M. (2007). A Bayesian LDA-based model for semi-supervised

part-of-speech tagging. In Advances in neural information processing systems 20.

Zhou, P., Crain, S., & Zhan, L. (2012). Sometimes children are as good as adults: the

pragmatic use of prosody in childrenâăźs on-line sentence processing. Journal of

Memory and Language, 67, 149–164.



SENTENCE TYPES AND SYNTACTIC CATEGORIES 40

Table 1
Summary of Eve and Manchester corpora

Eve Manchester
All CDS only All CDS only

Utterances 25295 14450 582375 318349
Mean Length 4.68 5.38 4.66 4.31
Word Tokens 118372 77766 2713672 1371936
Word Types 2235 1995 11739 11030
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Table 2
Number of child-directed utterances by sentence type and average utterance length in
parentheses.
Sentence Type Eve Manchester
wh-Questions 2273 (4.03) 33461 (4.72)
Other Questions 2577 (4.41) 74327 (5.80)
Declaratives 6181 (5.79) 99318 (5.83)
Short Utterances 2752 (1.27) 95518 (1.28)
Imperatives 665 (5.30) 15725 (5.17)
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Table 3
Counts of sentence types (average utterance length in words) in Spanish and Cantonese
data sets (without test and dev sets).
Sentence Type Spanish (Ornat) Cantonese (LWL)
Total 8759 (4.29) 12544 (4.16)
wh-Questions 1507 (3.72) 2287 (4.80)
Other Questions 2427 (4.40) 3568 (4.34)
Declaratives 4825 (4.41) 6689 (3.85)
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Figure 1. Graphical model representation of the BHMM-T, which includes sentence type
as an observed variable on tag transitions (but not emissions).
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PBHMM(t|t−i,w, α, βt) ∝
nt,wi + βt
nt + V βt

×
nti−2,ti−1,t + α

nti−2,ti−1 + Tα
(9)

PBHMM−E(t|t−i,w, s, α, βt) ∝
nsi,t,wi, + βt
nsi,t + V βt

×
nti−2,ti−1,t + α

nti−2,ti−1 + Tα
(10)

PBHMM−T (t|t−i,w, s, α, βt) ∝
nt,wi + βt
nt + V βt

×
nti−2,ti,si−1,ti + α

nsi−1,ti−2,ti−1 + Tα
(11)

PBHMM−ET (t|t−i,w, s, α, βt) ∝
nsi,t,wi, + βti
nsi,t + V βt

×
nti−2,ti−1,si−1,t + α

nsi−1,ti−2,ti−1 + Tα
(12)

Figure 2. Trigram Gibbs sampling equations for the four model variants. nt,wi is the num-
ber of occurrences of tag t with word wi (and analogously for trigram transition counts);
t−i indicates that these counts do not include the current value of ti. Transition factors for
trigrams (ti−1, t, ti+1) and (t, ti+1, ti+2) are not shown but must be included (see Goldwater
and Griffiths (2007)).
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Figure 3. Performance of bigram BHMM and variants by sentence type on the Eve corpus:
Mean VM and 95% Confidence Intervals (N = 10). Values that differ significantly from
baseline (BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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Figure 4. Performance of trigram BHMM and variants by sentence type on the Eve corpus:
Mean VM and 95% Confidence Intervals (N = 10). Values that differ significantly from
baseline (BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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Figure 5 . Performance of bigram BHMM and variants by sentence type on the Manchester
corpus: Mean VM and 95% Confidence Intervals (N = 10). Values that differ significantly
from baseline (BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-
tailed).
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Figure 6 . Performance of trigram BHMM and variants by sentence type on the Manchester
corpus: Mean VM and 95% Confidence Intervals (N = 10). Values that differ significantly
from baseline (BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-
tailed).
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Figure 7 . BHMM-T performance on the Eve corpus: Mean VM and 95% Confidence Inter-
vals (N = 10). Values that differ significantly from baseline (BHMM) are marked with ∗
(p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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Figure 8. BHMM-T performance on the Manchester corpus: Mean VM and 95% Confi-
dence Intervals (N = 10). Values that differ significantly from baseline (BHMM) are
marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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Figure 9. BHMM-T performance on the Spanish (Ornat) corpus: Mean VM and 95% Con-
fidence Intervals (N = 10). Values that differ significantly from baseline (BHMM) are
marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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Figure 10. BHMM-T performance on the Cantonese (LWL) corpus: Mean VM and 95%
Confidence Intervals (N = 10). Values that differ significantly from baseline (BHMM) are
marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).


