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ABSTRACT

 

Increasing international trade has exacerbated the risks of ecological damage due to
invasive pests and diseases. For extreme events such as invasions of damaging exotic
species or natural catastrophes, there are no or very few directly relevant data, so
expert opinion must be relied on heavily. Expert opinion must be as fully informed
and calibrated as possible – by available data, by other experts, and by the reasoned
opinions of stakeholders. We survey a number of quantitative and non-quantitative
methods that have shown promise for improving extreme risk analysis, particularly
for assessing the risks of invasive pests and pathogens associated with international
trade. We describe the legally inspired regulatory regime for banks, where these
methods have been brought to bear on extreme ‘operational risks’. We argue that an
‘advocacy model’ similar to that used in the Basel II compliance regime for bank
operational risks and to a lesser extent in biosecurity import risk analyses is ideal for
permitting the diversity of relevant evidence about invasive species to be presented
and soundly evaluated. We recommend that the process be enhanced in ways that
enable invasion ecology to make more explicit use of the methods found successful
in banking.
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INTRODUCTION

 

A risk is called ‘extreme’ when it concerns an event that may happen

very rarely or never. Typically, ‘extreme’ is used for events that are

of high (negative) consequence as well as low probability, but in

this review the emphasis is on events of very low probability

rather than on consequences. Such events are at the edge of or

outside the range of what has occurred, possibly far outside. Any

data are unlikely to be reliably representative. The problem of

evaluating extreme risks is therefore fundamentally different

from the standard statistical approach of choosing a model to

describe a quantitative problem, fitting the parameters of the

model to the data available, then using the resulting tuned model

for prediction.

Probabilities of extreme events must therefore be evaluated by

combining disparate sources of evidence, none of which are

reliable in isolation. Sources include whatever data there are, how

far the event of interest is from the data, the opinion of experts

(possibly in diverse disciplines), arguments from analogy (that is,

from events whose similarity to the event in question is debatable),

specialist scientific causal knowledge relevant to the case, and

commonsense knowledge. There is no established methodology

either for computing or eliciting the probabilities arising from

these sources of knowledge, or for combining them once discovered.

But the reasons for the difficulty of reaching a correct answer are

the same as the reasons why it is important to succeed – because

when data are scarce, neglecting any source of evidence or any

method of interpretation may lead to the misevaluation of

extreme risks and to substantial, avoidable environmental costs.

Recent developments in international trade agreements have

accelerated the rates of entry, establishment, and spread of

invasive species (Karatayev 

 

et al

 

., 2007; Meyerson & Mooney,

2007). Invasions by new species have low but non-negligible

chances of causing catastrophic changes in ecosystems. Risk

assessments are severely hampered by a lack of data on such

things as entry pathways and rare, long-distance dispersal events,

especially when such processes are critically important for

prediction (Karatayev 

 

et al

 

., 2007; Mack 

 

et al

 

., 2007; Nehrbass

 

et al

 

., 2007). Methods for risk assessment in such cases often

rely on poorly grounded expert opinion confronting either a

‘presumption of innocence’ or a ‘precautionary principle’

(Simberloff, 2005; Suedel 

 

et al

 

., 2007).

At the same time the World Trade Organization, through the

decisions of its Appellate Body, has enforced certain constraints

on risk assessments of potential invasions through international

trade. Its 1998 determination on the importation of salmon into
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Australia (WTO, 1998), in particular, ruled out risk assessments

that relied on mere ‘possibilities’ of invasion, while allowing that

the actual probabilities it required instead need not be numerical

but could be based on substantial but qualitative evidence. In

effect, it imposes on those arguing for a restriction on imports an

onus to establish some substantial (but not necessarily numerical)

probability of the establishment of a pest in the importing country.

We describe a case from biosecurity where the risk assessment

was already conducted in a tribunal-like style – much more so

than is normal in scientific practice. To find what further lessons

can be learned from an approach based on semilegal methods,

we survey the Basel II banking compliance regime as it applies

to operational risk. We also survey a range of quantitative and

semiquantitative data exploration and analysis methods that

have proved particularly applicable to extreme risk analysis.

Taken together they suggest an overall approach to extreme risk

analysis that may have particular utility for evaluating the risks

associated with trade-related invasive pests, pathogens and

diseases. We conclude by making recommendations on how to

improve current practice.

 

A BIOSECURITY CASE STUDY: DISEASE RISK 
FROM TRADE IN APPLES

 

In response to requests from New Zealand to permit the import

of apples to Australia, Australian biosecurity agencies analysed

risks that the apples would introduce disease (AQIS, 1998;

Biosecurity Australia, 2006). The main stakeholders were strongly

motivated by opposite concerns – the New Zealanders were

concerned that the likelihood of disease had been overestimated

and representatives of the Australian apple industry were

concerned that it had been underestimated. Both sides pre-

sented detailed scientific analyses. A 1998 report (AQIS, 1998)

recommended against import, while a 2006 report (Biosecurity

Australia, 2006) recommended for it, but only after onerous

inspection and disinfection measures.

The analyses looked at the possible chains of causes by which

diseases might become established in Australia. (The analysis of

causal chains is an important topic in biosecurity and ecological

studies – e.g. Kilpatrick 

 

et al

 

., 2006 – but is problematic: a

chain may include low-probability events and the chain may be

repeated many times. Breaking the chain into many units for

analysis of probabilities is desirable, but it is difficult to choose

the correct unit, especially for the critical lowest probability, and

to deal with correlations between errors at different points in the

chain.) A particularly difficult point in the analysis, and the one

most relevant to the study of extreme risks, came in trying to

evaluate the probability of what was believed to be the most

unlikely event in the most likely chain, the transfer of the pest fire

blight from a discarded apple to an Australian plant. There were

many imponderables in the scenario – including specifying the

scenario with any exactitude, mechanisms of transfer, levels of

infection of apples, the distribution of the possible host plants,

and seasonal differences in the probability of transfer. Since the

probability of transfer was believed to be of the order of one in a

million, experimentation was not feasible – it would take

several million experiments to achieve any moderately reliable

estimate of the probability. The analyses therefore relied on an

expert review of marginally relevant evidence (Roberts 

 

et al

 

.,

1998; Biosecurity Australia, 2006).

The complexity of the analyses in this case study meant they

had answers to many potential questions. That made them

robust in the politically charged atmosphere of import contro-

versies, which included grilling of the regulator’s (the Australian

Quarantine and Inspection Service) Executive Director by a Senate

committee on the possible motives of New Zealand scientists

(Senate Hansard, 1997), direct recommendations by the Australian

Senate Committee that the regulator should conduct its risk

assessment more quantitatively (Senate, 2005), and comment by

the New Zealand Minister for Agriculture that ‘the concept of

honest science has no meaning [in Australia]’ (Knight, 2005). In

addition to bilateral debate, countries need to comply with the

guidelines of the International Plant Protection Convention and the

decisions of the WTO’s Appellate Body, and scientists naturally

desire to show to the international scientific community that

their results are not swayed by political pressures. Such pressures

are stressful, in much the same way as it is stressful to be cross-

examined in court by experienced legal counsel. From the

point of view of the ‘advocacy’ model that we outline below for

evaluating extreme risks, however, that is not necessarily a bad

thing. Pressures from different directions are integral to the

process and (at least if the pressures are reasonably balanced) they

can encourage care and transparency in the risk evaluation process.

 

BANK OPERATIONAL RISK IN THE BASEL II  
COMPLIANCE REGIME

 

Bank operational risk is a rapidly developing area in which

massive resources have been committed to the study of, in part,

the quantification of extreme risks. A powerful international

body, the Committee on Banking Supervision of the Bank for

International Settlements in Basel, enforces the Basel II standards

(Bank for International Settlements, 2002, 2004; Marrison,

2002). A bank’s business is to take in funds and lend most of

them out for profit while reserving some against risks. Credit

and market risk are rich in data and statistically tractable.

Operational risk, on the other hand, is a grab-bag of unusual and

extreme events ranging from massive internal fraud to tsunamis,

typing errors in crucial places, incompetent CEOs, and major

technological change (King, 2001; Bank for International

Settlements, 2002; Rosen & Coreggia, 2004).

It is difficult for a bank to quantify its operational risks. The

diversity of hazards and the lack of data are major challenges.

Internal frauds, for example, are rarely reported publicly by

individual banks unless they are catastrophic. Therefore, most

banks have very little data on past events of the sort that may

impact on them severely in the future. The paucity of data means

that it is essential to combine what data there are with expert

opinion (O’Hagan 

 

et al

 

., 2006).

Basel II permits larger banks to evaluate their risks using any

models and statistical technology they wish, provided they disclose

them to the (national) regulator (in the USA, The Federal
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Reserve, in the UK, the Bank of England) and the regulator

approves. That naturally allows free rein for statistical expertise,

including the use of sophisticated methods relevant to extreme

values, both on the side of banks and on the side of the regulator.

It promises to improve risk evaluation greatly, by encouraging

improvements in data collection and in risk analysis methods

appropriate for the context.

There is a fundamental conflict between the perspective of the

bank and that of the regulator. The bank wishes to minimize its

calculated risks so as to be able to reserve less funds against them,

allowing the bank to lend out and make profit on as much money

as possible. The regulator, on the contrary, wishes to ensure that

the bank fully states its risks and reserves against them, so that

the bank and the whole banking system remain stable. In opera-

tional risk in particular, where unusual ‘one-off ’ major events

have occurred or may occur, there is potential for the results of

argument about particular cases to make a large difference to the

amount of funds that a bank is required to hold in reserve and

thus make no profit from (Franklin, 2005). It is that conflict of

perspectives and inherent disputability of individual data points

that has led the banking industry to develop a package of mathe-

matical and legally inspired methods, from which other areas

such as biosecurity can learn.

Extreme risk analysis under Basel II is essentially inspired

by the familiar ‘adversary’ model of reaching decisions in

(Anglo-American) legal cases, but has adaptations to suit the

more quantitative nature of the data and the more cooperative

relation that exists between the regulator and regulatee than

exists between opposing counsel in a court of law. We suggest the

name ‘advocacy model’ for the result.

It is mandated that larger banks at least should quantitatively

model the probability of losses of various sizes in each of 56 cells

– eight ‘loss types’ (such as external fraud, damage to physical

assets) in seven ‘business lines’ (such as retail banking, asset

management). An individual bank may have no or very few data

points (over say the last five years) in some cells but hundreds in

others. It is also mandated that the loss models should take into

account four types of evidence: internal data, relevant external

data (that is, aggregated data on other banks, possibly in other

countries), scenario analysis (that is, ‘what-if ’ analyses con-

ducted by teams of experts on situations of financial stress), and

‘factors reflecting the business environment and internal control

systems’. The models are expected to use state-of-the-art statistical

methods such as Extreme Value Theory (EVT), with justifications

of the distributional assumptions used. Correlations between the

losses in different cells should also be modelled.

That provides a rigid and demanding framework for the

format in which loss probabilities must be reported, but it is

recognized that there are many points at which informed human

judgement must come into play. They include borderline cases as

to which losses should be classified into which cells (or divided

among cells), the time to which a loss should be attributed, the

likelihood of a previously experienced large loss recurring now

that precautions against it have been taken, the relevance of

external industry-wide data to the individual bank’s case, and the

judgements reached about the correlations between extreme

losses in different cells (for example, estimating the impact of an

IT ‘meltdown’ on the bank’s various lines of business). The

bank’s internal modellers and the regulator both understand that

the outcome of the process – the figure that the regulator requires

the bank to hold in reserve – is very sensitive to both individual

large-loss data points and to assumptions about distributions

and scenarios. Thus, the quantitative models are regarded as an

essential starting point but are also taken ‘with a grain of salt’;

they form the starting point for negotiations between modellers

and regulators, often mediated by consultants. The consultants,

specialists in operational risk from an independent firm, look

at the modellers’ attempts and advise on changes needed to meet

the regulator’s standards, while assuring the regulator that the

modellers are reasonable in their assumptions and conclusions

(or soon will be). Feedback proceeds up and down the line in a

generally cooperative atmosphere.

The essential lesson that can be learned from the advocacy

model as practised in bank operational risk assessment is that the

normally cooperative but potentially adversarial relationship

between quantitatively astute parties on either side encourages

the utmost use of sophisticated quantitative methods like EVT to

make the most of data, but at the same time permits honesty in

allowing all parties to understand and admit exactly where expert

judgement goes beyond the data.

 

OUTLIERS, CRITICISM OF INDIVIDUAL DATA 
POINTS, AND EXTREME VALUE THEORY

 

We first review the methods that have been found in bank oper-

ational risk and elsewhere to be particularly useful in making

sense of any available extreme data points. One must identify the

data points, then examine any relevant knowledge of them indi-

vidually, and lastly apply the EVT formalism where appropriate.

First, one must distinguish extreme values from outliers.

Extremes are the data points at the edge of the distribution and

thus are the most important points for predicting what will occur

near the edge and beyond the range of the data. Outliers, in

contrast, are not part of the distribution at all. Typically an

outlier is a mistake and it should be deleted from the data. But an

outlier may also indicate contamination of the data, which could

indicate an event deserving further investigation. For example,

an outlier of a measure of an environmental pollutant may

indicate an illegal discharge – the normal range of data comes

from natural processes, but the illegal discharge is from a different

cause or distribution.

There are many methods for outlier detection in fault

monitoring, intrusion detection, and the like (Barnett, 2004;

Hand & Bolton, 2004; Hodge & Austin, 2004). All involve

modelling the data in some way, finding a distribution that fits

(most of) the data well, and which, if true, implies that the outlier

is very unlikely to have occurred. This process emphasizes the

problem of having to know the distribution of the data, especially

in cases where the data, including the outlier(s), are the only

source of knowledge of the distribution. There is no good solution

to this fundamental problem. There has been progress on it

in the field of fraud detection, where the aim is to identify by
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automatic methods ‘unusual’ or ‘fringe’ data points in large data

sets that warrant further investigation. Pattern recognition

(Bolton & Hand, 2002) has been applied to such problems as

money laundering detection and intrusion in computer systems,

but far less to such potential areas as environmental monitoring,

epidemic alerting, or quarantine inspection (although see

ANZECC/ARMCANZ, 2000).

Second, having made the most of automatic methods to delete

outliers, one must consider one by one the most extreme remain-

ing cases with a critical eye. A characteristic of extreme risk is the

existence of individual data points whose relevance is itself a

matter of dispute. Methods for extrapolating extreme values (see

below) are very sensitive to the few most extreme values in the

data, so great care needs to be taken in determining if those

values are from the same distribution, that is, fully relevant to

the prediction problem at hand. Purely quantitative methods are

not suitable for examining data points where there is extra

knowledge of the particular case. An ‘advocacy’ model should

include drilling down to a critical consideration of individual

dubious data points. For example, usually steps are taken to

prevent disasters or near-disasters recurring, so the relevance of a

past incident to present evaluations is unclear. For example, the

National Australia Bank (NAB) lost about $A330 million

in rogue trading in 2004. It is one of the few large (known)

operational risk losses in recent times by an Australian bank. Its

relevance to present operational risk evaluations, whether for

NAB or other banks, is unclear, since NAB has had to submit

detailed evidence of the steps it has taken to prevent a recurrence

(Anon, 2005).

Another instance comes from the 1998 Import Risk Assess-

ment for New Zealand apples (AQIS, 1998). The assessment

dealt mainly with the risk of imported apples causing an

outbreak of fire blight, a disease that is not present in Australia.

In 1997, while the report was being prepared, fire blight was

discovered on two shrubs in the Royal Botanic Gardens,

Melbourne, and the assessment was suspended, pending study

and eradication. It never became clear how the disease entered

the Gardens or for how long it had been there. The outbreak did

not spread. It was considered unlikely that the outbreak was

caused by the import of commercial fruit. The IRA concluded

that nothing of relevance to the IRA could be learned from the

episode (AQIS, 1998; pp. 9, 23).

Debate about such individual cases is essential for the analysis

of extreme risks because often, the cases are well studied, so

much may be learned from them. Reasonable judgements can be

made as to whether the same could happen again (or something

different from a similar cause). It is unsatisfactory simply to

delete the data point as no longer relevant, without careful con-

sideration of context.

Third, having reached agreement on what the data set of

extreme values is, one should apply EVT. EVT is the study of the

extrapolation of the tails of distributions beyond the range of

existing data (Embrechts 

 

et al

 

., 1997; Embrechts, 2000). The

statistical modelling of extremes has its origins in the analysis of

problems such as predicting ‘once in a hundred years’ floods

from observations of the annual maximum river heights (e.g.

Kotz & Nadarajah, 2000; Coles, 2001; Beirlant 

 

et al

 

., 2004; see

Appendix for some technical details).

Extreme value theory is a very powerful, mathematically

justified mechanism for making inference on extreme levels of a

process. It is capable of evaluating the likelihood of future

extreme values occurring beyond both the levels and the

time-span of the observed data. It is also easily adaptable to the

Bayesian framework, thus allowing incorporation of any quanti-

tative prior knowledge of the situation (Coles & Pericchi, 2003;

Sisson 

 

et al

 

., 2006).

However, it has some obvious limitations, which means that

despite its potential for making the most of what data there are,

it is inadequate as a stand-alone method of evaluating extreme

risks for biosecurity. To have some belief in the outcome, one is

required to have belief in the underlying assumptions: that there

are sufficient data for the limiting asymptotic models to be valid;

that dependence in the data has been adequately modelled;

that for predictive purposes the future state of the model (e.g.

incorporating estimated trends, or explicitly modelled system

change-points) is known or estimated. And even if the assumptions

are true, EVT is no more capable than other statistical methods

of magically extracting reliable predictions from tiny data sets. In

the contexts of extreme risks that preoccupy bank operational

and biosecurity risk analyses, data of the kind necessary to reliably

parameterize extreme value distributions are unlikely to be

available. In these situations EVT acts especially to guard against

dangerous illusions of false precision in extreme risk estimates

and underestimates of tail probabilities. It can distinguish

between reasonable and unreasonable orders of magnitude in

estimates of extreme risks, but honesty requires admitting the

imprecision in the answers.

Extreme value theory is not the only (relatively) new statistical

method that has particular relevance to extremes. A number of

other new statistical (or marginally statistical) methods have

emerged in recent years, which 

 

prima facie

 

 have good possibilities

for application to extreme risk analysis. Data mining has shown

the possibilities of extracting value from large data sets and has

proved its value to business in understanding customer behaviour;

its applications to fraud detection are relevant to extreme risks

because of their ability to distinguish the main body of data from

extremes, especially in hard-to-visualize multivariate data. Many

risks are spatially variable (for example the chance of transfer of

fire blight from discarded apple cores to hosts is very dependent

on the spatial distributions of cores, hosts, and vectors), and the

general inadequacy of coverage of the space by data means there

is (or should be) strong interaction between the methods of spatial

statistics and extreme risk analysis.

 

ROBUSTNESS: IMPRECISE PROBABILITIES, 
SENSITIVITY ANALYSIS, DECISION THEORY

 

In traditional statistics, probabilities are based on large data sets

or on physical considerations such as symmetry and are thus

quite precise. In extreme risk evaluation, that is not the case

because of the lack of data, so attempts to impose numerical

precision on probabilities results in (potentially dangerous)
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distortion. Therefore, methods of handling and communicating

imprecision in probabilities are of special significance in extreme

risk analysis (though useful more widely). In dealing with

extremes, risk analysis should take its cue from the law, which has

resisted quantifying the criminal standard of ‘proof beyond

reasonable doubt’: any attempt to lay it down as a precise number

will not lead to improved consistency in decision-making, as it is

impossible to determine a numerical probability that a defendant

is guilty on the evidence (even if it is clear that the person is guilty

‘quite certainly’ or only ‘on the balance of probabilities’) (Franklin,

2006).

There is always some awkwardness in dealing explicitly

with imprecision in probabilities. Probability is a measure of

uncertainty, so dealing with ‘uncertainty in uncertainty’ or

‘probabilities of probabilities’ can easily seem overly elaborate

and too confusing, especially if one attempts to represent the

imprecision by some formal method. However, false precision

can be unnatural and costly. The ubiquity of fuzzy language in

discussing probability, embodied in terms such as ‘extreme risk’,

‘quite likely’, and ‘a remote chance’, is a sign that people are com-

fortable with imprecision and find it adequate in representing

their ideas on probability (e.g. Olson & Budescu, 1998). Since

people often use words in preference to numbers in discussing

risks, it is fortunate that probabilistic words can be reasonably

well calibrated across individuals (Franklin, 2001; pp. 324–5).

There are four ways of dealing with imprecision in probabilities.

All have value and one (or more) can be chosen according to

the pragmatic needs of the problem. In increasing order of

sophistication they are:

• Keeping to fuzzy natural language and studying its grounding

in numerical probabilities.

• Restricting numerical probabilities to one significant figure.

• Representing imprecise probabilities in some simple way such

as by probability bounds or triangular distributions and using

them to conduct sensitivity analyses.

• Using decision theory to study directly the robustness of

decisions to imprecision in the probabilities.

We survey briefly what is achievable by each method. People

operate naturally with language-based descriptions of probabilities

such as ‘very likely’ and may prefer to use them for reporting so as

to avoid false precision (or to maintain deniability). They are prev-

alent in scorecards and informal risk discussions (e.g. Table 1).

Such translation tables encounter the problem that natural

language is in general highly context-sensitive (a small elephant

is bigger than a big mosquito because being a small elephant is

being small 

 

for an elephant

 

 – with reference, that is, to the mean

in the appropriate, context-dependent, reference class). There is

some consistency in how subjects translate verbal to numerical

probabilities, but some individual variability (Wallsten 

 

et al

 

.,

1993) and sensitivity to context (Fox & Irwin, 1998; Burgman,

2005; p. 77). Verbal probabilities and translation tables are usable

in the elicitation and communication of risk judgements, but

only with great care to ensure that experts and non-experts mean

the same by such expressions as ‘extreme risk’ and that they mean

the same in one risk setting as in another.

A particular contextual matter, often commented on in bank

operational risk, is the need for clarity in the time period to

which the risk refers: a loss that has a one-in-a-thousand

chance of happening in a day is quite likely to happen in a year.

It is much easier to clarify such matters with numbers than with

words.

Reporting numerical probabilities to only one significant

figure (for example, 0.4 or 2 

 

×

 

 10

 

–6

 

 but not 0.41 or 2.4 

 

×

 

 10

 

–6

 

) is a

common practice but one usually done unreflectively (Phillips &

LaPole, 2003). It relies on the fact that it is quite rare for decisions

to be sensitive to differences in probability of less than one signi-

ficant figure: an annual chance of three-in-a-million may

warrant higher precautions than a chance of one-in-a-million,

but it is hardly likely that one will take much notice of the difference

between one-in-a-million and 1.3-in-a-million, even if one is

convinced that the difference in the chances is real and not just

measurement error. However, the cognitive basis for reporting can

have a significant effect on risk perception. Relative risks (e.g.

the risk has increased by 30%) communicate a different message

from absolute frequencies (e.g. the annual risk increased by

0.3 in a million) or natural frequencies (e.g. out of 10 million

people, we expect an additional three people to die this year;

Gigerenzer, 2002).

To report a probability to one significant figure is to make

implicit use of an interval-valued probability, since by ‘probability

0.4’ one means ‘probability in the range 0.35–0.45’. Explicit use of

bounded probabilities (Walley, 1991; Ferson 

 

et al

 

., 2004) may

involve intervals with the implicit assumption of a uniform

distribution between the bounds, or triangular distributions

with a ‘midpoint’ that is the best estimate of the probability and a

(not necessarily symmetric) range of uncertainty on either side

(cf. Burgman, 2005; pp. 78–9).

The use of interval probabilities encourages sensitivity

analyses, since it is easy to calculate what would happen if the

ends of the ranges were used. For example, Biosecurity Australia’s

Table 1 Nomenclature for qualitative 
likelihoods, corresponding semiquantitative 
probability intervals (after Biosecurity 
Australia, 2006; Table 12).

Likelihood Qualitative descriptors Probability interval

High The event would be very likely to occur 0.7 → 1

Moderate The event would occur with an even probability 0.3 → 0.7

Low The event would be unlikely to occur 5 × 10–2 → 0.3

Very low The event would be very unlikely to occur 10–3 → 5 × 10–2

Extremely low The event would be extremely unlikely to occur 10–6 → 10–3

Negligible The event would almost certainly not occur 0 → 10–6
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apple risk analysis (Biosecurity Australia, 2006; pp. 114–5)

concludes that ‘a maximum value three times larger than the

value agreed by the IRA team for every exposure value results in

an overall risk ... that just exceeds Australia’s appropriate level of

protection’. There is, however, a conceptual difficulty with the

idea of interval-valued, bounded or triangular probabilities –

the ends themselves appear to be precise, whereas they are not

(since if the probability itself is not known precisely, it is hardly

likely that bounds on it will be).

Decision theory can provide a framework for more complete

sensitivity analyses. For instance, info-gap decision theory

(Regan 

 

et al

 

., 2005; Ben-Haim, 2006) deals with the sensitivity of

decisions to uncertainty in the inputs by calculating outcomes

for a continuous range of deviations from estimates of parameters

and models. A decision maker can impose a range of acceptable

possibilities for the output and map the range of inputs that lead

to acceptable outputs.

All these techniques are needed in the toolkit of any risk

analyst, but especially of the analyst of extreme risk who cannot

fall back on traditional data-rich statistical methods.

 

STRENGTHS AND WEAKNESSES OF INTUITIVE 
REASONING UNDER UNCERTAINTY

 

Given that some reliance on expert judgement is inevitable in the

analysis of extreme risks, it is essential to understand where

expert judgement can be taken to be reasonably reliable and

where it cannot. The story is a complex one.

The systematic errors of experts are well documented – their

overconfidence, inability to know where their expertise ends,

sensitivity to framing effects, confusion over base rates and

conditional probabilities, sensitivity to the order of presentation

of evidence and so on (see Gigerenzer, 2002; Burgman, 2005;

Tetlock, 2005). Certainly, one cannot accept human judgements

of probabilities uncritically. However, subjective assessments of

risk expressed in words are reasonably accurate in many circum-

stances. In forecasting such quantities as stock prices, human

‘judgemental forecasting’ is still generally comparable to the best

statistical methods (e.g. Lawrence & O’Connor, 1992). Risks

expressed in words are reasonably accurate in circumstances

such as stock prices where the system is stable and well known,

data are plentiful, feedback is immediate, and there are strong

incentives to improve performance.

Extreme risks do not satisfy those conditions, and people’s

reasoning and fuzzy representations begin to break down as

events become rarer and their consequences become more

extreme and visible. For example, people tend to over-weight

small risks based on written information, but under-weight

those based on (lack of) experience (Hertwig 

 

et al

 

., 2004).

Workable probabilistic methods may exist for low-data,

poor-feedback, extreme risk situations if suitable precautions are

taken. It remains an important area for research.

Human judgement is superior to formal methods of inference

in combining evidence from different sources – partly because of

the inability of formal methods to offer any useful guidance at all.

The simplest model of this problem is a form of the ‘reference

class problem’, which asks how to combine statistical evidence

from the different classes to which an individual belongs. The

most basic evidence for probabilities is observation of a relative

frequency. For example, the probability that Tex is rich, given that

Tex is a Texan and 90% of Texans are rich, is 0.9. But typically, a

case is a member of many classes, in which relative frequencies

vary. There is no formal way to combine the probabilities arising

from different ‘reference’ classes. For example, if the evidence is

that Tex is a Texan philosopher, that 90% of Texans are rich and

10% of philosophers are rich, then standard statistical methods

provide no guidance on how to combine these two numbers

to achieve a numerical probability that Tex is rich, on the given

evidence (Hájek, 2007).

The problem has caused a great deal of trouble in, for example,

the law of evidence, where often there is evidence of different

classes but it is of dubious legal relevance (Colyvan 

 

et al

 

., 2001;

Tillers, 2005), and in attempts to construct medical diagnosis

expert systems, where combining evidence from different

symptoms is essential but how to do it is theoretically poorly

understood. Nevertheless, humans successfully and intuitively

combine evidence from different classes, weighting them in some

way that is based on the comparative experience that has gone

into each class. For example, they can learn enough about being

Texan, being a philosopher, and being rich to have some sense of

whether being Texan or being a philosopher is more likely to be

relevant to being rich. This remarkable ability is very relevant to

extreme risks, where disparate pieces of evidence need to be

combined. There is no choice but to rely on human intuition to

accomplish the task.

 

ADVERSARY AND ADVOCACY MODELS FOR 
EXTREME RISK ANALYSIS

 

Given that human probabilistic judgement has to be relied on to

a considerable extent in extreme risk analysis and that it has

potential, it needs to be asked how it can be appropriately

constrained to take advantage of its strengths but avoid its weak-

nesses. We suggest that an ‘advocacy model’ is ideal. It replaces

the ideal but unavailable feedback of real experience with

the ‘virtual’ feedback provided by the scrutiny of experts’

assessments, a neutral panel of ‘judges’, informed by the scenarios

and reasoning put forward by potentially hostile stakeholders

(Hagafors & Brehmer, 1983; Lee 

 

et al

 

., 1999; Fig. 1). It gives

human intuition the last word in combining the evidence to

reach a final conclusion, while allowing maximum space for the use

of technical methods to support it. Figure 1 shows governance

structures that would support an ‘advocacy’ model for the evaluation

of extreme risks.

The advocacy model works because of the psychological

pressure it applies. True accountability requires that the people to

be held accountable fear their judges. They must be motivated by

anxiety as to what the judges’ views might be (Tetlock, 1983;

Simonson & Staw, 1992; Siegel-Jacobs & Yates, 1996). The

authority to which justification is submitted must be perceived

as legitimate and itself having the expertise to evaluate the

justification (Lerner & Tetlock, 1999). Many, but not all, cognitive
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biases are attenuated by accountability, including hastiness in

judgement, lack of awareness of one’s own judgement processes,

overconfidence, oversensitivity to the order in which information

appears, pursuing sunk costs, and groupthink (accountability is

not helpful with insensitivity to base rates and insensitivity to

sample size).

The essential idea in the advocacy model for extreme risk

analysis is to have an 

 

adversary

 

 look for the weaknesses in an

assessment. Such methods have proved useful in, for example,

software testing (Myers, 2004; p. 15) and computer security

(Klevinsky 

 

et al

 

., 2002). The most developed and best-known use

is the system of legal trials in Anglo-American law. The two sides

are represented by counsel who have wide discretion to put their

cases as they think fit, though the judge moderates the process to

some degree. The final decision is made either by a jury which

acts as a ‘black-box’ fact evaluator, or by a judge or panel of judges

who deliver reasons for their judgement. The model encourages

effort to present a rational case that will be as convincing as possible,

while leaving the final decision to disinterested parties.

That model can be problematic when there is a need to evaluate

technical complexity. For example, in medical negligence or

complicated financial cases, the evidence may be beyond the

understanding of juries or legally trained professionals. It also

tends to be impervious to some systematic errors, for example,

psychological evidence on the low reliability of eyewitness

identification evidence (Wells & Olson, 2003).

Compliance regimes that regulate industries such as banking

have adopted models that have some of the qualities and

advantages of a trial but are fundamentally different. Typically, a

regulatory body oversees the compliance with published standards

by the participants in the regulated industry. A party seeking a

determination from the authority (for example, permission to

import a commodity or to continue to lend money) submits

extensive documentation, typically about risk measurement and

mitigation. The documentation may be prepared by specialists,

sometimes outside consultants who work with insiders. The

documentation is examined by experts from the regulator, who

can and typically do demand further documentation on matters

they consider possibly suspicious or poorly described. In some

cases, draft determinations may be published and comment

from stakeholders may be invited. After some rounds of queries,

investigations, data gathering, and inspections, a decision is

reached. A generally cooperative attitude is maintained between

the regulator and body regulated, except in extreme cases.

The degree of confidentiality of the process varies; in cases of

accreditation confidentiality is normal during the process to

encourage honesty in sharing of data, but a public report is

issued at the end of the process. The regulator is responsible to some

outside body such as Parliament, and is subject to embarrassment if

a risk it has overlooked results in preventable deaths, irreversible

environmental harm, or substantial financial or social losses.

The case studies described above in which an advocacy model

was used in one form or another (bank operational risk and

Biosecurity Australia’s apple risk analysis) show how the model

has acted to force the parties involved to work hard to identify and

quantify all the risks and to lay them out for inspection. The success

of these cases indicates why further study and implementation of

such models is desirable.

In planning the implementation of an advocacy model, a

number of administrative issues arise such as the exact locus of

final judgement, incentives to improve technical analyses,

compensation, security of tenure, financial arrangements for

tribunals, stakeholders and consultants, and the like. These are

important issues in ensuring the independence and credibility of

the decisions reached by the process – indeed, there are a few

cases of spectacular failures of semijudicial regulatory tribunals

from problems in these areas (Franklin, 2007). Research on these

questions needs to draw on expertise in public administration

and corporate governance. The multidisciplinary nature of

extreme risk analysis requires expertise in the social sciences as

much as in mathematical statistics and psychology.

 

CONCLUSION AND RECOMMENDATIONS

 

In data-poor but decision-critical situations such as extreme risk

evaluation, it is necessary to give human intuition the last word in

risk assessment, while at the same time using formal quantitative

and qualitative methods as a kind of prosthesis to supplement

and control its known weaknesses. An ‘advocacy’ model, as

implemented in bank operational risk and to some degree in

biosecurity, provides a strong framework for allowing the

interplay of formal methods and human intuition.

We recommend two ways in which the so far successful use of

‘advocacy’ models can be consolidated and extended.

The first concerns education. The strongly quantitative style of

education in statistics, valuable as it is, can lead to a neglect of the

more qualitative, logical, legal and causal perspectives needed to

Figure 1 Representation of governance structures that would 
support an ‘advocacy’ model for the evaluation of extreme risks. 
The ‘M’ stands for a potential role for independent mediators/
facilitators to manage interactions between stakeholders and 
regulators. For Basel II, the entity seeking determination is a bank 
seeking approval from a national banking regulator that their risk 
analysis is adequate.
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understand data intelligently. That is especially so in extreme risk

analysis, where there is a lack of large data sets to ground solidly

quantitative conclusions, and correspondingly a need to supple-

ment the data with outside information and with argument on

individual data points. So we suggest better education of statisti-

cians in non-numerical methods including legal-style advocacy.

At the same time, risk evaluators in general need better education

in certain statistical methods (extreme value theory, Bayesian

methods of combining expert opinion with data, and robust

decision methods); and all parties need to understand the

psychological findings on expert judgement.

The second recommendation is for the use of independent

facilitators to mediate between the regulator/evaluator and the

client/stakeholder. Business compliance protocols such as bank

risk analyses make extensive use of independent mediators

between the final risk evaluator (the regulator) and the client

whose risk analysis has to pass inspection. They have the potential

to become an important part of the advocacy model for extreme

risk analysis, when applied to the management of the risks of

invasive species associated with increasing international trade.
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Appendix Extreme value theory

Suppose we have a sequence of independent random variables

X1, X2, ... , Xn drawn from a common distribution function F.

Classical extreme value theory models focus on the statistical

behaviour of the ‘block maxima’ over blocks of n observations:

Mn = max{X1, X2, ... Xn}.

The Xi usually represent (continuous) values of a process

observed on a regular timescale, such as daily rainfall amounts or

log daily returns of some stock. Biosecurity applications have not

been much studied but could include daily levels of a contaminant

or the distances travelled by dispersers.

It can be shown that as n grows large, the probability distribution

of Mn (after some minor rescaling) approaches the generalized

extreme value (GEV) distribution, with distribution function

(1)

where [a]+ = max(0, a). The parameters μ, σ and ξ correspond to

location, scale, and tail shape parameters, respectively. The GEV

distribution incorporates into a single formulation three families

of extreme value distributions: the Weibull, Gumbel, and Fréchet

distributions.

The most important parameter is the tail shape ξ, which deter-

mines the general behaviour of the probability for the extreme

values, whose prediction is the focus of interest. For ξ < 0, the

GEV yields Weibull tails with a finite upper endpoint of μ – σ/ξ.

Realizing a Weibull distribution is often of practical importance,

as there is a clear maximum bound for the process under study.

For ξ > 0, the GEV gives Fréchet tails with no upper endpoint.

This is a polynomial decay, where the larger the value of ξ, the

heavier the tail. Fréchet tails are common in environmental

applications, such as precipitation (Smith, 1989; Sisson et al.,

2006), and in financial applications, such as insurance (Smith,

1989) (where values of ξ between 2 and 4 are typical). Polynomial

tails decay much more slowly than exponential tails such as

those in the normal (Gaussian) distribution – that explains why

the naïve procedure (still sometimes followed) of fitting normal

distributions to data will give dangerously low estimates of the

probability of extreme events. In the limit as ξ→0, the GEV

reduces to the Gumbel distribution, with exponential decay tails.

If the common distribution function F is known, the distribution

of Mn may be calculated explicitly. But in many applications, the

distribution F is unknown. Usually, one takes advantage of the

single GEV formulation of the Weibull, Gumbel, and Fréchet dis-

tributions by statistically fitting this distribution to the observed

sample maxima. The estimated value of the tail shape parameter

will determine which family the sample maximum belongs to.

Various methods of fitting are available. In applying this theory, the

practitioner must make a conscious decision when partitioning

observed data into blocks of size n, amounting to the trade-off

between bias and variance: blocks that are too small mean that

approximation by the limit model is likely to be poor, leading to

bias in estimation; large blocks generate few block maxima

leading to large estimation variance. In practice, pragmatic

considerations often lead to the adoption of blocks of length of 1

year. For example, daily temperatures are likely to vary according

to season, violating the assumption that the Xi have a common

distribution F (daily temperatures are also not independent; see

Coles, 2001; Bottolo et al., 2003), but taking blocks of a year

means that it is plausible that the maxima of the blocks should

have the same distribution.

Once estimates of model parameters are obtained, the GEV

distribution function (1) may be inverted to give the ‘return level’

associated with the return period 1/p, the level that is expected to be

exceeded on average once every 1/p years. It provides an easily

communicated measure of how unlikely a given possible extreme

event is.

Block maxima analyses are arguably wasteful of data. Only the

largest value in each block is used to fit the model. An alternative

formulation is based on threshold exceedance models (Smith,

1989). They regard as extreme events those of the Xi that exceed

some high threshold u. It can be shown that the distribution of

events exceeding a high threshold is approximately distributed as

a generalized Pareto distribution (Coles, 2001).

EVT also has the advantage of being readily adaptable to the

Bayesian framework, allowing any expert prior knowledge to be

incorporated as a prior distribution over the parameters, which is

then updated in the light of the data (by Bayes’ formula). Bayesian

inference is particularly suited to extreme value theory (Coles &

Powell, 1996). The requirement of prior specification means that the

natural scarcity of extreme data may be supplemented through

an informative prior formulation from a subject matter expert.

As a simple illustration of how Extreme Value Theory can cast

light on invasion biology, we consider the prediction of dispersal

events larger than those observed in a data set.

The data are daily movements of bobucks. Bobucks, or mountain

brushtail possums, Trichosurus cunninghami, are medium-sized

(2.6–4.2 kg), nocturnal, semi-arboreal marsupials that depend

on tree hollows for diurnal shelter. We trapped and individually

marked every bobuck resident in a forest patch at Boho South

(36°48′S, 145°45′E) in the Strathbogie Ranges, north-eastern

Victoria. Furthermore, we fitted all adults and sub-adults

(n = 37) in the population with radio-transmitters (Martin,

2006). We conducted radio-tracking regularly on foot between

June 1999 and November 2003 and located possums during

daylight while they were in their den-trees (mean 309 locations
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per adult). It was always possible to determine the exact tree in

which an individual was located. For each individual, we also had

a record of sex and tooth-wear class (a relative estimate of age; see

Martin & Handasyde, 2007). We then calculated the distance (m)

between the den-tree(s) used by each individual on consecutive

days of radio-tracking (ignoring the distance moved by that

individual during the nightly foraging period in between).

There are a total of 4996 observations on 37 individuals. There

are many zero values (where the possum returns to the same

den-tree as was used the previous day after nightly foraging), and

the mean run (including the zeros) is about 56 m. But there are a

small number of much larger values. The largest 10 observations

(rounded to the nearest metre) are: 1256, 1488, 1723, 2011, 2523,

2587, 5492, 5525, 7024, and 7152.

 (The closeness of the two largest values is coincidental, as they

come from different individuals on different dates.)

For application to problems such as predicting the spread of a

disease carried by possums, it would be desirable to be able to

estimate approximately the probability of much larger values than

those seen in the data, for example the probability of a run greater

than say 10,000 m. Although the data do not appear to come from

any model of the types used in deriving EVT, fitting an EVT model

just to the larger values can give a means of allowing the data in the

tail to give information as to what lies beyond the range of the data.

A threshold exceedance EVT model was fitted to the extreme

data. A run was considered as ‘extreme’ if it exceeded 400 m. This

judgement was based on diagnostics that suggested that a higher

threshold would give unstable predictions of model parameters

and of probabilities (e.g. Coles, 2001). This yielded 122 extreme

data observations.

The model was fitted using both classical (maximum likelihood)

and Bayesian frameworks. For the Bayesian framework a prior

proportional to 1 was assumed for all unknown parameters,

indicating maximal prior ignorance as to the distribution of the

parameters. The probabilities predicted for a run over 10,000 m

are very similar in the classical and Bayesian analyses. They are:

Probability of observing a single observation over 10,000 m:

(The probabilities refer to the chance that a single observation

from the data set gives a reading of greater than 10,000 m – that

is, probabilities are per possum-day.)

These probabilities are larger than 1/4996 = 0.00020, the

reciprocal of the number of data points. That means that it

would be expected that in a data set of that size, there should be

on average a value greater than 10,000, so that the occurrence of no

values beyond 7152 in the actual data set is strongly coincidental.

This is not inconsistent with the observed data as quantile–quantile

plots indicate an adequate model/data fit, with the exception of

the largest observation, which is simply observed to be smaller

than that predicted by the model (that is, it does not follow the

rate of tail decay exhibited by the other extreme observations).

This effect is picked up in the Bayesian analysis, which by its

nature permits improved flexibility in its predictions. Here the

slightly smaller probability of exceeding 10,000 m reflects that it

is attempting to give higher probability to the most extreme events.

(In general, an alternative explanation for a lack of observed very

high values could be data censorship, but that is not the case here

as radio tracking gives accurate and complete data.)

The tail shape parameter ξ is about 1 or a little more, indicating

Fréchet (polynomial) decay, that is, a heavy tail. The analysis thus

warns that fitting standard models such as a normal or exponential

decay to the data would seriously underestimate the probability

of extreme events.

The applicability of the analysis for prediction is subject

to various matters of human judgement concerning causal

knowledge of possums and characteristics of the particular data

set. For example, it is clear from the data that all of the more

extreme values were from a small number of dispersing

sub-adult male possums (whereas females are all philopatric),

so one may want to separate out this subpopulation for further

analysis, and inquire as to whether other populations to which

prediction is applied have similar mixes of age and sex. Any

information about possible changes in the environment and the

possibility of more informative priors could also be considered,

subject to expert judgement. However, the simple analysis of the

whole data that we have described is sufficient to illustrate the

utility of Extreme Value Theory in making predictions of

extremes considerably beyond what is visible in the data.

Classical (maximum likelihood) 0.00028

Bayesian 0.00024
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