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The papers where Gerhard Gentzen introduced natural deduction and sequent calculi suggest that his

conception of logic differs substantially from now dominant views introduced by Hilbert, Gödel, Tarski,

and others. Specifically, (1) the definitive features of natural deduction calculi allowed Gentzen to

assert that his classical system nk is complete based purely on the sort of evidence that Hilbert called

‘experimental’, and (2) the structure of the sequent calculi li and lk allowed Gentzen to conceptualize

completeness as a question about the relationships among a system’s individual rules (as opposed to

the relationship between a system as a whole and its ‘semantics’). Gentzen’s conception of logic is

compelling in its own right. It is also of historical interest because it allows for a better understanding

of the invention of natural deduction and sequent calculi.

1. Introduction

In the opening remarks of 1930, Kurt Gödel described the construction and use of
formal axiomatic systems as found in the work of Whitehead and Russell—the procedure
of ‘initially taking certain evident propositions as axioms and deriving the theorems of
logic and mathematics from these by means of some precisely formulated principles of
inference in a purely formal way’—and remarked that

when such a procedure is followed, the question at once arises whether the ini-
tially postulated system of axioms and principles of inference is complete, that
is, whether it actually suffices for the derivation of every logico-mathematical
proposition, or whether, perhaps, it is conceivable that there are true [wahre1]
propositions . . . that cannot be derived in the system under consideration. (p.
103)

Gödel proceeded to establish the completeness of one fundamental system which, follow-
ing Whitehead and Russell, he called ‘the restricted functional calculus’, known today as
first-order quantification theory. Then he proved several classical corollary results and
strengthenings.

Gödel wrote as if with the hindsight of today’s logicians, who, when they encounter
a new formal system, reflexively ask for an interpretive scheme to make sense of the
symbolism and then ask whether the system is complete with respect to this ‘semantics’.

1In the main body of the paper Gödel used the expression ‘allgemeingültige’ which he explained was
a slightly imprecise way of saying ‘in jedem Individuenbereich allgemeingültig ’. In more contemporary
terms the word ‘validity’ is used to denote this property of being ‘true in every domain’.
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But in their historical context, the questions that Gödel posed and solved hardly arose
immediately. In the writing of most logicians, the question of the semantic completeness
of quantification theory did not arise at all.

This has struck some historians as remarkable because it can indeed be difficult to
see how this question would escape the attention of logicians who developed sufficient
apparatus to solve it. Most striking is the fact that in the work of Thoralf Skolem and
Jacques Herbrand one finds in explicit detail all the reasoning needed to establish the
semantic completeness of quantification theory. Yet the question did not occur even to
them. Thus Gödel, in a 1967 letter to Hao Wang:

The completeness theorem, mathematically, is indeed an almost trivial con-
sequence of Skolem 1923. However, the fact is that, at that time, nobody
(including Skolem himself) drew this conclusion (neither from Skolem 1923
nor, as I did, from similar considerations of [Skolem’s].) (Wang 1974, p. 8)

Herbrand even went so far as to say in 1930 that it is tempting to infer from his results
a certain statement2, which combined with the inferences he does draw establishes the
semantic completeness of quantification theory, but that the statement is too idealistic
to make real, concrete sense (p. 165).3 Subject to an insensitive, modern re-reading,
what appear in the writing of these two thinkers are something like proofs of the com-
pleteness theorem with the theorem’s statement and concluding sentence erased. But
there is something obviously chauvinistic about reading in this way while ignoring the
hermeneutical problem of recovering the conceptual framework that allowed these logi-
cians to skirt the completeness phenomenon without recognizing it as a phenomenon.

2The statement is that if, for every n, the nth Herbrand expansion of a quantificational formula is
truth-functionally satisfiable, then the formula is satisfiable in an infinite domain.

3Herbrand wrote in 1930 :

We observe that this definition differs from the definition that would seem most natural
only in that, as the number p increases, the new domain C′ and the new values need not
be regarded as forming an ‘extension’ of the previous ones. Clearly, if we know C′ and the
values for any given p, then for each smaller number we know a domain and values that
answer to the number; but only a ‘principle of choice’ could lead us to take a fixed system
of values in an infinite domain. (p. 165)

In this passage one finds explicitly an objection to a certain use of Zermelo’s set-theoretical choice
axiom. But implicitly a deeper objection is hinted at, namely, one against the entire standard definition of
satisfaction. The axiom of choice is needed to construct infinite domains of interpretation out of sequences
of increasingly large finite ones. Herbrand is suspicious of the meaningfulness of such a construction,
or at least of its appropriateness in meta-mathematical investigations. But he is also suspicious of the
meaningfulness of finite domains of interpretation, in the set-theoretical sense, for the reason that these
are far removed from the immanent features of logical syntax. His own ‘champs finis’ are entirely different
sorts of structures. For example, the universal and existential quantifiers in a given formula range over
different objects. For a detailed contrast between the standard notion of a model and Herbrand’s notion
of a champ fini, see van Heijenoort 1985, especially pp. 100-1, 110-3.
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That problem is made difficult by the fact that Gödel’s conception of logic, according to
which the completeness question is central and unavoidable, proved to be such a produc-
tive conception. Because no other way of looking at things ushered in nearly so many
deep results as Gödel’s, logicians inevitably came to adopt that conception in the process
simply of tracking the development of logic over time. In science, productive ways of
thinking are also seductive ways of thinking, and rightly so.

But the hermeneutical problem appears more urgent when one takes account of more
historical data. Notably, some seven years passed between the establishment of the se-
mantic completeness of propositional logic and the first written4 acknowledgment (in
Hilbert and Ackermann 1928 ) even of the question of the completeness of quantification
theory. Thus it is not possible, for example, to attribute Herbrand’s failure to recog-
nize the question solely to his adherence to intuitionistic principles, nor Skolem’s to his
reservations about using the axiom of choice in an ‘investigation in the foundations of
set theory’ (Skolem 1923, p. 293). Plenty of logicians were perfectly comfortable with
non-constructive apparatus, but attempts to pose the question of semantic completeness
outside of the propositional framework are not found outside the work of Hilbert and
Bernays.

Still more perplexing is the fact that a considerable amount of logical work after 1930
proceeded largely uninfluenced by Gödel’s result. Perhaps most striking is Skolem’s own
continued disinterest, surmised by Burton Dreben and Jean van Heijenoort who write:

If comment is a measure of interest, then the completeness of quantification
theory held absolutely no interest for Skolem. There is not one reference to
completeness in the fifty-one papers on logic, dating from 1913 through 1963,
collected in Fenstad 1970. (1986, p. 54)

Not quite as statistically impressive, but perhaps equally of interest (and the prin-
cipal topic of this paper), is Gerhard Gentzen’s attitude. Only once in the ten papers
compiled in Szabo 1970 did Gentzen mention the completeness of quantification theory.
The reference is in the 1936 paper ‘Die Widerspruchsfreiheit der reinen Zahlentheorie’.
Gentzen’s tone is nonchalant, his explanation of the concept literally parenthetical:

The completeness of the purely logical rules of inference, i.e., the rules be-
longing to the connectives &,∨,⊃,¬,∀,∃, has already been proved elsewhere
(completeness here means that all correct inferences of the same type [as
those] represented by the stated rules [are already represented]).5 (p. 154)

4In 1986 Dreben and van Heijenoort observe that Hilbert had raised the question in a lecture that
same year, which was later published as 1929. Recent scholarship has traced the question to Hilbert’s
lectures from the academic year 1917-8. The notes for these lectures were prepared by Paul Bernays, as
detailed in Ewald and Sieg 2010. Indeed, Hilbert and Ackermann 1928 appears to be largely a redaction
of these lectures with little if any input from Ackermann.

5The brackets indicate my deviation from Szabo’s translation. Gentzen wrote ‘alle richtigen Schlüsse
von gleicher Art bereits durch die angegebenen Schlußregeln darstellbar sind, ist durch besondere Un-
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There are some oddities in this passage that prove important for my reading of Gentzen
in section 3 below. But more interesting than the peculiarities of the way Gentzen dis-
cussed completeness where he did is the fact that in his other logical writings he never
mentioned the result. Most crucially, in his 1934–35 dissertation ‘Untersuchungen über
das logische Schliessen’ Gentzen developed the systems of natural deduction and sequent
calculus for quantification theory and proved their deductive equivalence as well as their
equivalence with ‘a calculus modeled on the formalism of Hilbert’. Because the latter
system was known already to be sound and complete with respect to the standard quan-
tificational semantics, Gentzen could have immediately inferred the same properties for
his classical calculi nk and lk. But he neither referenced the completeness theorem nor
posed the question. Indeed, not even in his expository 1938 paper ‘Die gegenwärtige
Lage in der mathematischen Grundlagenforschung’, did Gentzen mention the complete-
ness of quantification theory. This, despite Gentzen’s claim in a section called ‘Exact
foundational research in mathematics: axiomatics, metalogic, metamathematics: The
theorems of Gödel and Skolem’ that his purpose was to ‘discuss some of the more recent
findings and, in particular, some of the especially important earlier results obtained in
the exact foundational research in mathematics’.

Gentzen wrote:

A main task of metamathematics is the development of the consistency proofs
required for the realization of Hilbert’s programme. Other major problems
are: The decision problem, i.e., the problem of finding a procedure for a given
theory which enables us to decide of every conceivable assertion whether it
is true or false; further, the question of completeness, i.e., the question of
whether a specific system of axioms and forms of inference for a specific
theory is complete, in other words, whether the truth or falsity of every
conceivable assertion of that theory can be proved by means of these forms
of inference. (p. 238)

Against this backdrop Gentzen then reviewed, in order, Gödel’s so-called second in-
completeness theorem about the unprovability in elementary number theory of that
very theory’s consistency, Gentzen’s own arithmetical consistency proof using transfinite
induction, Church’s theorem on the undecidability of quantification theory as well as
Gödel’s preliminary work in this direction, Gödel’s first incompleteness theorem gener-
ating, in Gentzen’s words, for ‘every formally delimited consistent mathematical theory
. . . number theoretical theorems . . . which are true, but which are not provable with the
techniques of that theory’, Ackermann’s proof of the consistency of ‘general set theory’
relative to the consistency of elementary number theory, the Löwenheim-Skolem theorem,

tersuchen bewiesen worden’, which Szabo translates ambiguously as ‘all correct inferences of the same
type are representable by the stated rules’. That translation invites the (now standard) interpretation
‘all first-order inferences’ as opposed to Gentzen’s intended, weaker claim about ‘all &,∨,⊃,¬,∀, and ∃
inferences’. (Szabo further miscopies Gentzen’s reference, which is to Gödel 1930, as being to Gödel 1931.
Two anonymous referees for History and Philosophy of Logic steered me to these two observations.)
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and Skolem’s proof of the existence of nonstandard models of first-order arithmetical sys-
tems. Obviously the completeness of quantification theory is a fundamental metalogical
result quite difficult to omit from such a discussion, but Gentzen never mentioned it.

To sum up, there are features of the thought of figures like Herbrand, Skolem, and
Gentzen that, variously, prevented them from recognizing semantic completeness as a
phenomenon or dissuaded them from acknowledging the relevance of the completeness
theorem after it was proved. One might suppose that those ways of thinking would be
uninteresting to a modern logician if they could be recovered today. One might despair
of the possibility of recovering them anyway due to the ossification of the point of view
that Gödel introduced—the point of view that inclines us to think that these ‘deviant’
logicians were missing something instead of being on to something. But I am more
optimistic.

Against these assumptions, I suggest first, that the profundity of the logical inno-
vations that these logicians devised speaks for the validity of their conception of their
craft, and second, that in the case of Gentzen, there are ample clues in his writing from
which to reconstruct his thought. What led Gentzen to ignore questions of and theorems
about semantic completeness are the same details of his conception of logic that led to
his invention of natural deduction and sequent calculi. The differences between how he
thought about basic notions like logical consequence and how they are ordinarily under-
stood today are not subtle but fundamental. This is not to say that there is something
wrong about the now standard view of logic, only that to fully appreciate Gentzen’s
accomplishments (which are still central in modern logic) one must relinquish that view.

2. Syntax and semantics

A picture of the development of the standard view of logic will provide a helpful foil
for the details of Gentzen’s thought. I sketch such a picture here and postpone reading
Gentzen until the following section. The ‘standard view’ I have in mind is based on
a theoretical distinction between logical syntax and logical semantics. The story of its
development begins with the invention of formal logical languages and precise rules for
their systematic deployment.

Ambiguities in natural, spoken and written languages hinder the study of the subtlest
details of the laws of thought, particularly of mathematical thought. Piecemeal attempts
to disambiguate these languages according to any uniform principles largely fail. Indeed,
serious attempts to disambiguate natural language ordinarily reveal deeper ambiguities
than are recognizable at first reflection. According to Gottlob Frege:

A strictly defined group of modes of inference is simply not present in [natural]
language, so that on the basis of linguistic form we cannot distinguish between
a ‘gapless’ advance [in reasoning] and an omission of connected links. We can
even say that the former almost never occur in language, that it runs against
the feel of language because it would involve an insufferable prolixity. In
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language, logical relations are almost always only hinted at—left to guessing,
not actually expressed. (1882, p. 85)

Determined to overcome these hindrances, logicians devised artificial languages with
precise, recursively defined grammars and emphasized that a purely mechanical proce-
dure suffices to determine if a string of symbols is a sentence of one of these languages. In
a similar fashion, they devised proof systems over these languages by replacing the usual
free-wheeling progression from sentence to sentence in learned discourse with formal
rules of inference. Repeated applications of these rules—depending on the particulars
of the system in question, either on a privileged set of sentences called axioms, or from
arbitrary hypotheses, or in some settings from no starting point at all—generate finite,
ordered structures (e.g., sequences or acyclic graphs) whose elements are sentences from
the formal language. Just as with the recognition of sentences of the language, a purely
mechanical procedure suffices to determine whether an arbitrary sequence or tree of sen-
tences is a proof. Frege repeatedly emphasized the calculus-like nature of logical systems.
These remarks from Grundlagen can be compared with similar emphases on page 86 of
Frege 1882 and on page 104 of Frege 1879 :

The demand is not to be denied: every jump must be barred from our de-
ductions. That it is so hard to satisfy must be set down to the tediousness
of proceeding step by step. Every proof which is even a little complicated
threatens to become inordinately long. . . . [To this end] I invented my concept
writing6. It is designed to produce expressions which are shorter and easier
to take in, and to be operated like a calculus by means of a small number of
standard moves, so that no step is permitted which does not conform to the
rules which are laid down once and for all. (1884, §91)

Of course the details of a logical system will be set up with an eye to what its
various parts mean. But the purely mechanical tests for grammaticality and derivational
propriety guarantee that no attention to the interpretation of the various signs in the
system ever is needed in order to deploy the system correctly. The hallmark, according
to Gödel in 1930, of a formal system is that it is possible to ‘derive the theorems of
logic and mathematics . . . without making further use of the meaning of the symbols’ (p.
103). What Gödel thereby de-emphasized is that this possibility is extremely idealistic,
that attention to meaning is typically essential for a system’s scientific, goal-directed
deployment. But the general idea is clear: The meaning of the calculus is completely
absent from its operational description. Indeed, the formal notion of logical consequence
dominant in the early days of formal logic made no reference to meaning. According to
this notion, the logical consequences of a set of sentences are the sentences obtainable
from them by repeated applications of the various inference rules.

6The formal system of higher order logic found in Frege 1879. ‘Concept writing’ is Austin’s literal
translation of ‘Begriffsschrift ’, the title of this work.
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According to Frege, this is a purely perspectival point. It is possible to view a
logical system purely formally, and it is also possible to view it as a system of contentful
expressions. Whereas the latter point of view is essential for the system’s original design
and, typically, also for making good use of it, it is crucial that the purely formal point of
view suffices to verify the correctness of its expressions and proofs. But Frege thought it
is a mistake to make heavy weather out of the autonomy of a system’s formal features.
In a reply to criticisms of E. Schröder he wrote:

I did not wish to present an abstract logic in formulas, but to express a con-
tent through written symbols in a more precise and perspicuous way than
is possible with words. In fact, I wished to produce, not a mere calculus
ratiocinator, but a lingua characteristica in the Leibnizian sense. In doing
so, however, I recognize that deductive calculus is a necessary part of a con-
ceptual notation. If this was misunderstood, perhaps it is because I let the
abstract logical aspect stand too much in the foreground. (1883, pp. 90-1)

In fact, Frege thought that the formal precision of his logical system, because ‘every
ambiguity is banned’ from its expressions and every gap filled in its derivations, necessi-
tates this conception. In his words, it produces ‘a strict logical form from which meaning
cannot escape’ (1882, p. 86).

The fate of the lingua characteristica conception of formal logic is well known. In
moving from the rough terrain of natural language and ordinary argumentative com-
pulsion to the precisely defined setting of a formal logical system, one raises questions
about how the consequence relation defined in the formal system is coordinated with
the notion of logical consequence that underlies those laws of thought that the logician
originally set out to study. These questions appear at every stage of the formalization:
Which thoughts amenable to logical relationships are translatable into the language of
the formal system? Restricted to these thoughts, does the system have enough rules to
emulate all the intricate argument patterns of ordinary learned discourse? Or conversely,
does the formal system ever err by sanctioning an inference that, under the intended in-
terpretation of the language, we should not accept as truth-preserving? These last two
questions are the original forms of the completeness and soundness questions about log-
ical systems. More simply: ‘In this pristine landscape, have we left anything out? Have
we got too much?’

To address these questions one must attend not only to the formal properties of
the system, but also and especially to how its language is interpreted. Interpreting a
logical system is typically straightforward. Because of the recursively defined generation
rules for sentences, one is able to stipulate a compositional semantics on the language:
The meaning of a complex sentence is calculable from the meanings of its components,
whose meanings are in turn calculable from the meanings of their components, and so
on, until at the end of this process are reached simple components with fully specified
meanings and so-called ‘logical particles’ that specify which calculations to perform on
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the meanings of the components they govern. The notions of component and complexity
are given by correlate notions from the recursively defined grammar; the logical particles
are the logical constants of that grammar.

The theory of such a compositional semantics can be fully precise, just not formal in
the sense of being open to investigation independent of considerations of meaning. Take
for example the standard set-theoretical semantics for first-order quantificational theory.
It is a precise theory of the meanings of the purely formal logical system. Meanwhile, that
logical system, born an interpreted language, becomes syntax, i.e., fully uninterpreted:
The system was designed so that all of its properties can be mechanically verified, and
the unambiguosness engendered by this feature was its principal scientific merit. Now,
with meaning excised into the semantic realm, this same feature becomes its essence.

Only in the semantic setting is one able to the define truth and falsity of a sen-
tence. Here one also typically defines ‘validity’ (truth under all interpretations) and a
new consequence relation—semantic consequence—according to which a sentence is a
consequence of a set of sentences if it is true in all those interpretations that make all
sentences from the set true. Indeed, history has not abided simultaneous notions of se-
mantic and syntactic consequence, but instead has seen the semantic definition replace
its syntactic forebear. In current discussion of the syntactic phenomenon, the expression
‘consequence of’ is replaced by ‘derivable from’.

Thus from the features of unambiguous logical languages arose a two-tiered mathe-
matical scaffolding. The perfectly natural perspectival distinction between syntax and
semantics evolved into a theoretical distinction. Frege’s original distinction asks about
ordinary objects whether their form or their content is under investigation. The new
one considers two different sorts of objects: signs, which are immanent, and their mean-
ings, which are transcendent, and directs one’s investigations to an appropriate theory
depending on which objects are being asked about.

This theoretical syntax/semantics distinction leads to reformulations of the various
questions that logical system building invites. One can, for example, determine quite
readily whether higher order quantification or certain modal notions are recoverable in
the semantics. Typically something will be lacking, but one can simply restrict one’s
attention to the laws of some sharply delineated fragment of human thought and decide
that one is studying the logical relationships that attain between sentences expressing
thoughts in that category. More pointedly, one can take on the questions about the
sufficiency and possible fallaciousness of the axioms and inference rules—the questions
of the logical system’s completeness and soundness—quite directly. The first question
becomes ‘semantic completeness’: ‘Are all truths derivable?’ or more generally ‘Are all
the semantic consequences of a set of sentences formally derivable from those sentences?’
The question of ‘semantic soundness’ is its converse: ‘Do all derivations exhibit legiti-
mate semantic consequences?’ ‘Does this system accommodate a proof of anything that
isn’t actually true?’ Because of the precision of all the definitions involved—truth, in-
terpretation, validity, and consequence on the semantic side; sentence, axiom, and proof
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on the syntactic side—these questions are in fact amenable to mathematical solution.7

Until now I have spoken only about the completeness and soundness of a logical
system. This question began vague but rich: ‘How accurately do the rules of this system
capture the intuitive notion of logical consequence?’ In time it became precise but bland:
‘How accurately are this system’s semantics traced by the purely syntactic machinery?’
Precision is a sign of some headway, but one can reasonably ask where, in the move from
‘completeness’ to ‘semantic completeness’, the richness went.

Drawing the theoretical syntax/semantics distinction simply pushes both the im-
precision and the richness of the original ‘Is anything missing?’ form of completeness
elsewhere. Semantic completeness is a question about the coordination of the transcen-
dent, semantic realm with the immanent, syntactic one that it hovers over. But the
original question resurfaces as a question about the propriety of those very realms. The
full force of that question remains, though outside of the two-tiered scaffolding that we
erect—and the grandeur of that edifice holds our attention and makes us forget about
the surrounding landscape.

Given a formal semantics for a logical system, it is possible to ask about its sound-
ness and completeness. One might ask, for example, whether the usual set-theoretical
semantics are a proper precisification of intuitions about first-order logical truths. This
question is rarely asked today because it is not considered at all doubtful that the
set-theoretical semantics are a complete triumph in this regard.8 On this point, John
Etchemendy remarks:

Our attitude here is characteristic of our attitude toward an analysis: exten-
sional adequacy is guaranteed on a conceptual level, by our close adherence to
the intuitive notion we aim to characterize. It is in this sense that the model-
theoretic account is treated as a genuine analysis of the intuitive notions of
logical truth and logical consequence. (1988, p. 67)

But Etchemendy shows vividly that no arm-chair analysis of our intuitions resulted in
the ossification of the set-theoretical semantics of first-order logic. Gödel, in the very
1930 paper where he proved the soundness and completeness of first-order predicate logic
relative to this semantics, never considered a notion of semantic consequence and reserved
the designation of ‘consequence’ for the syntactic notion. More surprisingly, and this is
Etchemendy’s main point, it is Alfred Tarski to whom we usually attribute both the turn
from the syntactic to the semantic notion of consequence and the orthodox account of
what the semantic notion is. Yet in his landmark 1936 paper in which he did the former,
he actually advocated a different semantics with respect to which the ordinary logical
calculus is not complete. Thus Tarski’s own attempt at a ‘close adherence to the intuitive

7But because of the complicated nature of the semantic setting, a relatively large amount of math-
ematics is needed to solve completeness problems. For the relevance of this point see the concluding
remarks in section 5.

8An anonymous referee for History and Philosophy of Logic reminds me that such glib optimism is
happily far less common in Continental Europe than in other geographical areas.
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notion we aim to characterize’ led him elsewhere than to where modern logicians take
themselves to be led. In his later writing, Tarksi advocated the orthodox semantics, but
without argument, and it seems reasonable to suggest with Etchemendy that it is the
development of model-theory and the comparative fruitfulness of the standard notion
that shaped both his and our own intuitions, rather than vice-versa.

The completeness or incompleteness of quantificational theory is then a matter of
taste, according to how well one takes to the standard semantics. We might only add
that rejecting completeness for the Π1 fragment of quantification theory is a matter of bad
taste—not because the now standard notions of first-order logical consequence and truth
are a priori correct, but because the logical study of first-order theories made possible
by those notions is so formidable as in any case to make the taste worth acquiring.

3. Experiment and proof

When Hilbert and Bernays raised the question of the semantic completeness of quan-
tification theory (in Hilbert and Ackermann 1928 and the lectures9 that led to the pre-
sentation there), they suggested that it had already been answered, that it was already
‘known’ that the axiomatization of quantification theory they specified ‘suffices for all
applications’. But from their point of view, the question remained open in a crucial
sense, for, they claimed, the fact that nothing is missing from that axiom system was
‘only known purely empirically’, i.e., from observing that all known legitimate first-
order inferences could be emulated purely formally in the system. They concluded that
‘[w]hether the axiom system is complete in the sense that from it all logical formulas that
are correct for each domain of individuals can be derived is still an unsolved question’,
because it had not been shown mathematically that this is true (Hilbert and Ackermann
1928, p. 68). Hilbert had made an analogous remark in an address at the Bologna
International Congress of Mathematicians: ‘[T]he question of the completeness of the
system of logical rules, put in general form, constitutes a problem of theoretical logic.
Up till now we have come to the view that these rules suffice only through experiment
[probieren]’ (Hilbert 1929, p. 140).10

It is possible to interpret Hilbert’s words in two different ways. Perhaps he felt that
our ‘knowledge’ that nothing is missing from the axiomatization lacks the certainty of
mathematical conviction so long as it is attained empirically, that mathematical proof
would rule out the haunting but unlikely possibility that we have overlooked something.
On the other hand, in the same breath in which they questioned the appropriateness
of empirical methods in this arena, Hilbert and Bernays did claim to know that their
system is fully sufficient. Perhaps, therefore, the completeness question did not remain
open in the sense that they did not know its answer, but only in the sense that as a
mathematical problem it was still unsolved.

9See footnote 4.
10The translations of passages from Hilbert 1929 and Hilbert and Ackermann 1928 are from quotations

in Dreben and Van Heijenoort 1986.
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My view is that the second reading has more weight behind it. Hilbert seems to
have been motivated to demonstrate that questions hitherto conceived of essentially as
part of empirical science or transcendental philosophy are actually better understood as
part of mathematics. Elsewhere11 I have defended an interpretation of the notorious
Hilbert program driven by this theme, and I suspect that it is at work again here in
Hilbert’s formulation of the problem of semantic completeness. But my purpose in
drawing attention to Hilbert’s words, now, is not to defend any particular reading of
them. They simply provide the right background against which Gentzen’s views stand
out.

In the opening sentence of the Untersuchungen, Gentzen cited Hilbert and Acker-
mann 1928, but in the only passage that follows in which he discussed a question of
completeness he wrote the following:

The fact that this formal system does actually allow us to represent the
types of proof customary in informal arithmetic (as long as they do not use
complete induction) cannot be proved, since for considerations of an informal
character no precisely delimited framework exists. We can merely verify this
in the case of individual informal proofs by testing them [durch den Versuch
davon]. (p. 112)

In this passage Gentzen was concerned, not with pure quantification theory, but with
a formal system of arithmetic without complete induction. His purpose was to apply
his verschärfte Hauptsatz to show that this system is consistent. But Gentzen did not
merely want to show how the Hauptsatz can be applied. He had independent interests in
arithmetical consistency proofs. Thus before beginning the proof, he explicitly considered
whether the system could rightly be considered a systematization of arithmetic, i.e.,
whether the system is complete.

As the passage indicates, Gentzen immediately concluded that consideration with
two claims—first, that the only means available to approach the completeness question
are empirical, and second, that those methods are nevertheless insufficient for a conclu-
sive answer in this case because informal arithmetic is imprecise in a way that prevents
us from attaining a definite positive answer to the question. The question, as Gentzen
saw it, is whether or not his system is adequate with respect to a particular subject
matter. Whereas the system is perfectly precise, the relevant subject matter—informal
arithmetic—is not. An answer to the question in the form of a proof is therefore im-
possible, and we are left to consider examples of actual arithmetical reasoning as we
encounter them and to ask whether they can be formalized in the system.

Why does Gentzen not ask a similar question about pure quantification theory?
One expects scruples analogous to those Gentzen expressed about his systematization of
informal arithmetic to surface in sections II and III of the Untersuchungen, immediately

11In Franks 2009, especially chapter 2.
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after the definitions of the logical calculi and prior to the proof of the Hauptsatz. Are
these systems adequate to their subject matter? Is anything missing from them?

On Gentzen’s view, these two questions are distinct and, in the case of quantification
theory, have different answers. The distinction is subtle and foreign to the modern view
of logic. Moreover, it is only implicit in Gentzen’s writing. Indeed, when Gentzen asked
these questions explicitly, he asked them about his system of induction-free arithmetic,
where they coincide. Their answers were that we don’t know whether anything is missing
from that system nor whether the system is fully adequate, for the single reason that the
informal theory of numbers is not sufficiently precise to allow definitive answers. But the
answers Gentzen would have given to the same questions, if he had thought it sensible to
ask them in this arena, about his classical calculi nk and lk, are that nothing is missing
from them and that they do not have a subject matter.

In fact, Gentzen’s certainty that his classical calculi are complete, in the original
sense that they do not lack anything, stems directly from the fact that he did not con-
ceive of a set of first-order logical truths that his calculi were supposed to capture. In
section II.1, Gentzen called the expressions (X ∨ (Y & Z)) ⊃ ((X ∨ Y ) & (X ∨ Z)),
(∃x∀yFxy) ⊃ (∀y∃xFxy), and (¬∃xFx) ⊃ (∀y¬Fy) ‘true formulae’, but he wrote quo-
tation marks around this label and never explained what it meant. What he did explain
was ‘how to see their truth in the most natural way’, i.e., how to prove them infor-
mally. Their three proofs then became the templates for his natural deduction rules.
So Gentzen did not distinguish being true from being informally provable, and thus
he considered truth an inherently informal, though immanent rather than transcendent
notion.12 Rather than a set of first-order logical truths, he conceived only of valid quan-
tificational schemata determined by actual patterns of reasoning. That these patterns
could be directly formalized and captured was the point of the theory of natural deduc-
tion.

In subsection 1 of the synopsis, Gentzen announced his aim ‘to set up a formal system
that comes as close as possible to actual reasoning’ (p. 68). The advantage of natural
deduction has since been thought to lie primarily in the fact that the actual implementa-
tion of the calculus comes naturally and feels familiar compared to the implementation
of axiomatic systems: Because natural deduction systems are modeled after the flow
of reasoning in mathematical proofs, formalizing known mathematical proofs will be a
matter of direct translation, and discovering new ones will be facilitated. But Gentzen
thought that this same feature of natural deduction affords a more serious advantage: It

12In the middle of a section called ‘Application of the sharpened Hauptsatz to a new consistency proof
for arithmetic without complete induction’ Gentzen mentions a ‘customary way’ of explaining ‘the truth
or falsity of [formulas of the form] A & B, A ∨ B,¬A, and A ⊃ B, as functions of the truth or falsity
of the subformulae’ (p. 114). This passage—the only mention in the Untersuchungen of the conception
of propositional connectives as truth functions—occurs, not as one might expect in the definition of the
logical connectives, but in the stipulation of an algorithm for reducing the complexity of arithmetical
proofs. This algorithm makes no analogous use of a conception of the truth of quantificational formulas:
Instead quantifiers are eliminated from a given normal-form arithmetical proof through a numerical
substitution determined by the proof’s structure.
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allows for the empirical verification that the calculus is complete to be conclusive.
To see why Gentzen thought this, it suffices to look at the way he described logic

and its relationship to mathematics in the Untersuchungen. In the opening sentences,
Gentzen wrote of ‘predicate logic’ that ‘[i]t comprises the types of inference that are
continually used in all parts of mathematics’, and added:

What remains to be added to these are axioms and forms of inference that
may be considered as being proper to the particular branches of mathemat-
ics, e.g., in elementary number theory the axioms of the natural numbers,
of addition, multiplication, and exponentiation, as well as the inference of
complete induction; in geometry the geometric axioms. (p. 68)

Gentzen should be read literally: Specific branches of mathematics have independent
subject matters which we can try to formalize by adding to ‘those inferences continu-
ally used in all parts of mathematics’ (predicate logic) axioms and forms of inference
corresponding to the methods used by the mathematicians who research those branches
of mathematics. The completeness question for our formalization of those branches of
mathematics will always be elusive, Gentzen thought, because the subject matter itself
is vague. At any time inspired mathematicians might devise new methods to uncover
further of its details. No corresponding problem arises in pure predicate logic, though,
because its principles are designed to track, not any independent mathematical subject
matter, but the inferences that mathematicians actually use. Something ‘remains to be
added’ to the formalization of these principles before the system can rightly be considered
a systematization of any independent subject matter.

Still, a type of completeness question could arise for predicate logic, on this view,
if mathematical practice exhibited so wide a range of inference types that it proved
difficult to ensure that one has incorporated them all. Alternatively, one’s logical sys-
tem could host principles of an entirely different sort than the informal ones used by
mathematicians—different not merely in their formality, but in their very form—so that
the coextensionality of the formal system and the body of informal inference patterns
could only be checked globally. Gentzen’s method of section II of the Untersuchungen
was to address the second of these possibilities directly, by presenting ‘a formalism that
reflects as accurately as possible the actual reasoning involved in mathematical proofs’
(p. 74). He had only to devise the correct grid to impose on mathematical discourse
in order to recognize that single inferences could span a large swath of the text of a
proof, and that this property could be preserved in a formal calculus. But this same
realization led immediately, though indirectly, to an answer to the first completeness
question. Gentzen discovered that under the conceptual grid he devised to isolate and
categorize individual mathematical inferences, an extremely small number of inference
types appear. These inference types, moreover, are systematically coordinated with the
logical particles that characterize the statements involved in the inferences, so that with
each logical particle are associated two rules, one rule for its introduction into mathemat-
ical discourse, and a dual, ‘elimination’ rule governing how to reason from statements
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characterized by that particle—a ‘classification’, that Gentzen remarked in 1936 ‘almost
suggests itself’ (p. 148).

For example, a conjunctive statement of the form ‘A and B’ can be established
directly from the previous establishment of the statements ‘A’ and ‘B’, and from the
statement ‘A and B’ one can establish individually as true its two components ‘A’ and
‘B’. In Gentzen’s calculi ni and nk, these inference patterns are represented by the
rules:

A B &I
A & B

A & B
A

A & B &E
B

Gentzen observed that this ‘introduction/elimination’ grid brought to the fore pairs of
coordinated rules for each of the logical particles ‘or’, ‘for all’, ‘there exists’, ‘if . . . then’,
and ‘not’ analogous to those for ‘and’:

A
A ∨B

B ∨I
A ∨B A ∨B

[A]
C

[B]
C ∨E

C

Fa ∀I∀xFx

∀xFx
∀E

Fa

Fa ∃I∃xFx ∃xFx

[Fa]
C
∃E

C

[A]
B ⊃I

A ⊃ B

A A ⊃ B ⊃E
B

[A]
f ¬I¬A

[A] ¬A
¬Ef

13

Let us designate the calculus comprised of the foregoing rules as ‘the minimal cal-
13The rules in this table have the exact form of Gentzen’s (p. 77): The flow of reasoning is downward

in each diagram; each rule warrants the inference of the expression below the horizontal line from the
expression(s) above that same line and may be instantiated in the presence of zero or more assumptions
upon which its lower formula is said to depend; expressions in square brackets represent assumptions,
and the expressions immediately beneath them are meant to be known to be deducible from them; f is
Gentzen’s symbol for absurdity. The free object variable a in the rules ∀I and ∃E is called an eigenvariable
and is subject to the familiar restrictions: In an instance of ∀I, a can occur neither in ∀xFx nor in any
assumption formula upon which that formula depends; in an instance of ∃E, a can occur neither in ∃xFx

nor in C, nor in any assumption formula upon which the upper occurrence of that formula depends apart
from the displayed occurrence of the formula Fa.
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culus’, as it is a formalization of I. Johansson’s (1937 ) minimal logic. The coordination
of its rules, Gentzen explained, consists in the fact that, given a logical particle, once it
is observed how a statement governed by that particle is introduced in reasoning, the
corresponding ‘elimination’ rule describing how to reason from that statement can be
deduced:

The introductions represent, as it were, the ‘definitions’ of the symbols con-
cerned, and the eliminations are no more, in the final analysis, than the
consequences of these definitions. This fact may be expressed as follows: In
eliminating a symbol, we may use the formula with whose terminal symbol we
are dealing only ‘in the sense afforded it by the introduction of that symbol’.
(p. 80)

Gentzen illustrated this method of rule-deduction with the example of the rules for the
symbol ⊃, which corresponds with the informal expression ‘if . . . then’. The introduction
rule for that symbol tells us that statements of the form A ⊃ B are warranted when
there is known to be a derivation of B from A. Thus Gentzen explained that ‘[i]f we
then wished to use that formula [A ⊃ B] by eliminating the ⊃-symbol . . . , we could do
this precisely by inferring B directly once A has been proved’ (Ibid.).

Gentzen concluded this observation with two noteworthy remarks: First, regarding
this specific example of rule-deduction, he pointed out that the procedure could be per-
formed without considering what he called ‘the informal sense’ of the symbol ⊃ (p. 81).
By the informal sense of the symbol, Gentzen surely had in mind the semantic view of
the symbol as a truth function, a view that does not figure into Gentzen’s development
of logic anywhere in the Untersuchungen.14 This is the significance of Gentzen’s claim
that the introduction rules themselves represent their symbols’ definitions: They are le-
gitimate rules not because of their ability to coordinate with the ‘informal sense’ of those
symbols—what matters is that they correspond with the way statements characterized
by the logical particles those symbols represent are actually introduced in mathematical
practice. Because this correspondence suffices also to determine exactly how to reason
from those statements, the rules fully embody the logically salient meanings of those
particles.

Second, Gentzen claimed that ‘[b]y making these ideas more precise it should be pos-
sible to display the E -inferences as unique functions of their corresponding I -inferences,
on the basis of certain requirements’ (Ibid.). In sections 10 and 11 of 1936 Gentzen
pointed out that the association is 1-1. Although somewhat vague, Gentzen’s point here
is that the general procedure of rule-derivation is precise. Much has been made of this
idea as a principle of ‘logical harmony’.15 But most obviously what one can say about
Gentzen’s observation is that it simplifies the experimental task of verifying that the
calculus adequately encompasses all the inference types that ‘are continuously used in

14But see footnote 12.
15See Belnap 1962.
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all parts of mathematics’. Each logical particle is introduced and eliminated in only
one way, and the respective ways of reasoning one’s way to a statement governed by
that particle and of drawing inferences from a statement governed by that particle are
recoverable from one another.

Thus these rules are conveniently categorized so as to almost preclude any possibility
that anything has been left out from the system in one sense: A symbol’s introduction
and elimination rules are a full analysis of the way that symbol is used in mathematical
reasoning. All other reasoning patterns that mathematical thought follows are inevitably
tied to some specific field of inquiry, save two, to which Gentzen attended closely:

f fE
D

¬¬A ¬¬E
A

Gentzen wrote: ‘The schema f
D

expresses the fact that if a false proposition holds,
any proposition holds’ (p. 79) and noted two pages later that this rule ‘occupies a
special place among the schemata: It does not belong to a logical symbol but to the
propositional symbol f’. ni is the system that results by adding to the minimal calculus
only this first inference rule. It corresponds to intuitionistic predicate logic. To obtain
‘a complete [vollständiger ] classical calculus nk’ Gentzen observed that it suffices to
add to ni a single schema for ‘basic formulae’ of the form ‘A ∨ ¬A’, corresponding to
the principle tertium non datur. Then he explained (and it is easy to verify) that ‘[i]t
would be perfectly feasible to introduce a new inference figure schema, say ¬¬A

A
,

in place of the basic formula schema A ∨ ¬A’, because the calculi that result in each
case are deductively equivalent. ‘However’, Gentzen cautioned, ‘such a schema still falls
outside the framework [of introduction and elimination rules], because it represents a new
elimination of the negation whose admissibility does not follow at all from our method
of introducing the ¬-symbol by the ¬I ’ (p. 81). In 1936 he elaborated:

This form of inference conflicts in fact quite categorically with the remaining
forms of inference. In the case of the logical connectives ∀, &, ∃, ∨, and ⊃ we
had in each case an introduction and an elimination inference corresponding
to each other in a certain way. . . . Double negation [elimination, by contrast]
renders possible indirect proofs of positive propositions from their denials by
means of contradiction, in cases where a positive [i.e., direct] proof of the
same proposition may be completely unobtainable16 [gar nicht zu erhalten
ist ]. (p. 169)

Strictly speaking, the calculi ni and nk are slightly more closely related to the min-
imal calculus than this progression indicates. ni is the result of adding the rule fE to
the minimal calculus. Gentzen then characterized nk as the result of adding the basic
formula schema A ∨ ¬A to ni. But it is easy to verify that in nk the rule fE does not

16Szabo has ‘inaccessible’, somewhat misleadingly.
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allow for the derivation of any expressions that cannot be derived without it—i.e., that
in the presence of the rule ¬¬E (or, equivalently, of tertium non datur), the use of fE is
eliminable from all derivations. For suppose that one has derived the expression f. Then
fE allows one to infer an arbitrary expression D forthright. But instead one might note

the validity of the scheme [¬D]
f

, which immediately extends to
[¬D]
f ¬I¬¬D

and then

to

[¬D]
f ¬I¬¬D ¬¬E
D

. Thus nk extends the minimal calculus simply in its accommodation of

the classical principle tertium non datur, where ni had only the weaker principle ex falso
quodlibet. Gentzen’s principal observation was that, apart from principles of inference
contentfully associated with specific branches of mathematical inquiry (e.g., mathemat-
ical induction in number theory), ordinary mathematical practice exhibits no reasoning
patterns not already present in the minimal calculus other than these. Nothing could be
missing from a calculus that accommodates two rules for each logical particle so tightly
coordinated as to effectively define that particle, together with the single other principle
ever appealed to in general mathematical discourse.

The sufficiency of the natural deduction rules is thus guaranteed by (1) their nature
together with (2) a contingent fact about mathematical practice and (3) Gentzen’s mod-
est vision of the purpose of the predicate calculus. To sum up: (1) The rules of the
calculi ni and nk take the exact form of actual mathematical inferences, and (2) the
inference types immediately recognizable in this scheme are extremely few and categori-
cally arranged so that one can be sure that none have been left out, because (3) if there
are any inferences that have been overlooked, then for that very reason they surely fail
to meet the criterion of ubiquity in mathematical practice that Gentzen imposed.

Gentzen’s analysis is obviously counter to Hilbert and Bernays’ suggestion (from
Hilbert and Ackermann 1928 et. al.) that empirical methods could not properly secure
an answer to the completeness problem. If one has a theory of first-order truths that
functions independently of a formal calculus, and if one wants assurance that all and
only the truths from the semantic realm are theorems of that calculus, then however
much inductive evidence one amasses that this is so, a priori methods surely are still
welcome. But that semantic realm is itself an analysis of our intuitive notions of truth
and consequence—notions that Gentzen thought mathematicians would be the first and
only authority on. To analyze their intuitions, Gentzen simply modeled his logical
calculus on the inferences they actually make. Then he observed that the empirical
task of determining whether he had left anything out was trivial. No coordination of
syntax and semantics was called for: Because Gentzen analyzed the informal notions
of logical truth and consequence directly with his logical calculus, the analysis did not
take the form of a ‘semantic theory’ and natural deduction retained its status of lingua
characteristica.
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There remains a question: why, in 1936 17, did Gentzen cite Gödel’s completeness
theorem? Had he loosened his hold on his contrary conception of this problem in the
year following the submission of his thesis? I think that the counter-evidence alone, in
the simple fact that Gentzen mentioned the theorem nowhere else in his later writing—
including several places where its omission is jarring—outweighs any suggestion that he
did. But a careful look at his description of Gödel’s result reveals that even as he paid
homage to the theorem, Gentzen preserved key features of his own point of view.

To begin with, in his explanation of completeness, Gentzen wrote about ‘correct
inferences’ rather than correct or valid formulas. This could not have been inspired by
Gödel’s own discussions, for Gödel always used ‘logical consequence’ to refer to the purely
syntactic relation of formal derivability. But as we have seen, Gentzen did not share
Gödel’s transcendent notion of quantificational truth and thought of true expressions of
the predicate calculus merely as formalizations of sentence schemata that are informally
provable. To claim that all such expressions are provable would have sounded trivial
and been confusing. Clearer is Gentzen’s claim that all correct, informal inferences ‘are
already represented’.

Also, though it is customary to speak of the soundness of an individual rule—so that
a system is sound if, and only if, each of its rules is—one typically poses the question
of completeness only of systems as a whole. This certainly is the conception driving
Gödel’s own discussion of the completeness phenomenon. Yet Gentzen’s conception of
completeness in terms of the ability to capture correct informal inferences engenders
the unorthodox notion of an individual rule being complete with respect to the correct
informal inferences ‘of its type’. Thus he cites Gödel as having proved the completeness
of ‘the rules belonging to the connectives &,∨,⊃,¬,∀,∃’, seemingly oblivious to the
fact that Gödel showed that these rules not only allow for the formal regimentation
of any informal inference involving their specified logical particles, but indeed for ‘the
derivation of every logico-mathematical proposition’ whatever. Thus, even as Gentzen
acknowledges that it is possible to prove that a system of rules is complete, he means
only that with each individual logical particle are associated rules that completely specify
the legitimate inferences it affords. The conviction that these logical particles are all the
ones whose legitimate inferences must be so specified must still derive from empirical
observation.

Finally, the usual understanding of completeness as a coordination of syntax and
semantics is entirely missing from Gentzen’s explanation of Gödel’s result. In place of
that image, Gentzen preserved the more traditional image of having not left out any
of the essential rules, rules being fully interpreted inference patterns. The coordination
that Gentzen thought was relevant, even to the extent that he used it to explain Gödel’s
accomplishment, is one between informal inference patterns and the rules of a formal
system.

17An anonymous referee for the Journal informs me that the relevant passage was written in the spring
of 1935.
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In 1936, two sections after the reference to Gödel’s theorem, Gentzen claimed that
‘[i]t is easily proved that the logical rules of inference, applied to [the theory of a finite
domain of objects], are correct [richtig ] in the sense that their application to “true”
basic mathematical sequents leads to “true” derivable sequents’ (p. 159). Here Gentzen
focuses on those rules’ soundness rather than their completeness, and the reason for this
is clear: When applied to the basic mathematical sequents designed to axiomatize the
theories that Gentzen was interested in, the rules are not complete. Of course, from the
modern point of view, what is more fundamental is the soundness of those rules in and
of themselves, apart from any application. And when their soundness is viewed in this
context-less way, the corresponding question of their completeness gets an affirmative
answer. But as we have seen, the conception of soundness and completeness of a logical
system in terms of the truth of the various expressions is available to Gentzen only in
the context of its application.

But crucially, as ‘easily proved’ as such a soundness result might be, Gentzen chose
to omit its proof and remarked:

A verification of this statement would mean no more than an acknowledg-
ment18 [Bestätigung ] of the fact that we have indeed chosen our formal rules
of inference in such a way that they are in harmony with the informal sense
of the logical connectives. (Ibid.)

Gentzen omitted the soundness proof because he believed that it would be uninforma-
tive. His system’s rules are guaranteed from the start to allow only legitimate inferences,
because they are an analysis of the inferences mathematicians make. There is no corre-
sponding completeness proof for Gentzen to omit on the same grounds: Applied to any
mathematical theory, the rules of the predicate calculus will be incomplete because miss-
ing from them will be any axioms and rules unique to that theory. And in their pure,
unapplied form, the expressions of the predicate calculus are, according to Gentzen,
not about anything so that the question of their truth does not arise. But clearly the
complicated proof of the completeness of nk would be uninteresting to Gentzen for the
same reason that the simple proof of its soundness is: It would be ‘no more than an
acknowledgment of the fact that we have indeed chosen our formal rules of inference’
appropriately—a fact Gentzen had already confirmed empirically.

4. Analysis and synthesis

The principal result [Hauptsatz ] of the Untersuchungen is the normalization technique
for quantification theory known today as cut-elimination. In subsection 2 of the synopsis,
Gentzen explained that ‘[t]he Hauptsatz says that every purely logical proof can be

18Szabo de-emphasizes Gentzen’s intended contrast between ‘Nachweis’ (verification) and ‘Bestätigung ’
by rendering the latter as ‘confirmation’. Gentzen’s point is that the system’s soundness is guaranteed
by its design and therefore need not be proved.
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reduced to a definite, though not unique, normal form’, and added: ‘Perhaps we may
express the essential properties of such a normal proof by saying: it is not roundabout
[er macht keine Umwege] ’ (p. 69). Thus everything provable in predicate logic turns
out in fact to have a direct proof into which ‘[n]o concepts enter . . . other than those
contained in its final result’ (Ibid.). These same comments are repeated in section III.2
immediately prior to the proof of the Hauptsatz.

Although the first logical systems Gentzen presented in the Untersuchungen were the
‘natural’ calculi ni and nk, these present certain obstacles for the proof of the Hauptsatz.
For that reason, in sections III and IV, Gentzen developed a different style of logical
calculus, called sequent calculi, proved the normalization result for its intuitionistic and
classical varieties, and exhibited several applications of that result. He explained:

In order to be able to enunciate and prove the Hauptsatz in a convenient
form, I had to provide a logical calculus especially suited for this purpose.
For this the natural calculus proved unsuitable. For, although it already
contains the properties essential to the validity of the Hauptsatz, it does so
only with respect to its intuitionistic form, in view of the fact that the law of
excluded middle . . . occupies a special position in relation to these properties.
(p. 69)

With this development in mind, the sequent calculi that Gentzen introduced appear
at first to be a later development than the natural calculi of section II.19 And indeed,
if one views the value of the Hauptsatz purely in terms of its vast applicability, the se-
quent calculi appear to have merely instrumental value, in so far as they allow for such
applications. Gentzen’s claim that ‘[t]heir form is largely determined . . . by consider-
ations connected with the “Hauptsatz”’ has led some readers to think that the calculi
were designed strictly in order to exhibit the sort of combinatorial features that facilitate
consistency proofs and the like (p. 83).

But it is essential to acknowledge that the basic framework of the sequent calculus
predated the Untersuchungen in the work20 of Paul Hertz and in Gentzen’s own 1932
paper ‘Über die Existenz unabhängiger Axiomsysteme zu unendlichen Satzsysteme’. In
the Untersuchungen, Gentzen simply extended the purely atomic system of 1932 with
rules for the logical particles. ‘What we want to do’, he claimed there, ‘is to formulate
a deductive calculus (for predicate logic)’ modeled after his earlier system

19Nor in one crucial sense is this appearance misleading: The calculi lk and li emerged from the details
of Gentzen’s original translation scheme from proofs of the natural deduction calculus n2 to proofs of
the axiomatic calculus of Hilbert and Ackermann 1928. This translation appears prominently in the
unpublished, handwritten draft of the Untersuchungen. Jan von Plato mentions the relevance of this
translation for the discovery of the first sequent calculus, a contraction-free system (nl3), on page 242
of his 2008 and illustrates the emergence of the rules for the calculus n2 in §8 of his 2009.

20See especially Hertz 1929. For more discussion of Hertz’ contributions, see Bernays 1965 and
Schroeder-Heister 2002.
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on the one hand, i.e., in which the derivations do not, as in the calculus ni,
contain assumption formulae, but which, on the other hand, takes over from
the calculus ni the division of the forms of inference into introductions and
eliminations of the various logical symbols. (p. 82)21

What prompted Gentzen to think to devise a calculus with just these properties? It
is tempting to answer that he foresaw that these were the properties that would allow
for the troublesome aspects of tertium non datur to vanish and remove all obstacles to a
proof of the Hauptsatz for classical predicate logic. But in comments about the sequent
calculus in 1938a Gentzen emphasized that he had no such foresight:

All of the connectives &, ∨, ∀, ∃, ¬ 22 have, to a large extent, equal status
in the system; no connective ranks notably above any other connective. The
special position of the negation, in particular, which constituted a trouble-
some exception in the natural calculus has been completely removed in a
seemingly magical way. The manner in which this observation is expressed is
undoubtedly justified since I myself was completely surprised by this property
of the ‘lk-calculus’ when first formulating that calculus. (p. 259)

The special position of the negation that Gentzen mentioned is the fact that the clas-
sically valid rule for ¬¬A

A
does not figure into the introduction and elimination clas-

sification for logical symbols. Because this rule is equivalent to the axiom scheme for
tertium non datur, one observes that it is possible to reason classically from statements
characterized by negation in a way other than what is licensed by ¬E. Thus negation
stands out as an exception to the general principle that all logical connectives are on
a par with one another, and this exception proves troublesome because it creates an
obstacle for the proof of the Hauptsatz. But the suggestion that his initial motivation
in creating the sequent calculus could have been to facilitate a proof of the Hauptsatz is
implausible when one considers Gentzen’s claim that the suppression of these features
in the sequent calculus came to him as a surprise.

Gentzen’s dissatisfaction with natural deduction that motivated his development of
a new calculus was not the failure of nk proofs to normalize. He sought a logical
calculus that both (1) is ‘logistic’ like the calculus of 1932 and (2) ‘takes over from the
calculus ni the division of the forms of inference into introductions and eliminations of
the various logical symbols’, because he was unhappy with certain aspects of the analysis
of the meanings of logical particles into introduction and elimination rules in the natural
calculi. That analysis had proved adequate to ensure that the calculus is complete,
because it tracked exactly the inferences that mathematicians make. But it failed to be

21See §8 of von Plato’s 2009 for an illustration of how, in Gentzen’s words, nl3’s ‘logistic form of proof
arises from the natural one’ from the details of the translation scheme of Gentzen’s handwritten thesis.

22For technical reasons related to the consistency proof of this paper, Gentzen eliminated the symbol
⊃ and its rules from the calculus.
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analytic in an important sense, because it entangled the meanings of logical particles
with the synthetic notion of logical consequence. Thus Gentzen designed the sequent
calculus to separate the analytic and synthetic components of proofs, thereby allowing
the independent contribution to the meanings of our expressions that logical particles
make to stand out more distinctly.

In order to understand how Gentzen was led to this view, it is essential to review
the relatively unknown work Gentzen 1932. In that earlier paper, Gentzen presented a
‘formal definition of provability’ that he proved to be sound and complete with respect
to the ‘informal’ notion of logical consequence. From the modern point of view, these
soundness and completeness proofs are squarely in the paradigm of syntax/semantics
coordination—the same paradigm so conspicuously absent from Gentzen 1934–35 and
onward.

Conceived as a formal system, Gentzen’s formal definition of provability consists
of ‘sentences’ of the form M → v, where v is an ‘element’ and M is a ‘complex’ (a
non-empty set of finitely many elements.) Gentzen’s typographic convention is that
concatenation of complex letters represents their set-theoretical union. Sentences can
also be written with the elements of a complex displayed, thus: u1, u2, . . . un → v.
Because complexes are sets, the same element cannot appear multiple times in the same
complex, and the order in which the elements of a complex are listed is immaterial.
Gentzen referred to the complex of a sentence as its antecedent and to the lone element
on the right of the arrow symbol as the succedent. He defined tautologies to be those
sentences whose antecedent is the singleton set containing the same element that appears
in the sentence’s succedent.

Gentzen specified two inference rules for his system, which he called ‘thinning’ and
‘cut’:

L → v thinning
ML → v

L → u Mu → v cut
LM → v

Then he defined a ‘proof’ of a sentence q from the sentences p1, . . . , pv to be ‘an ordered
succession of inferences (i.e., thinnings and cuts) arranged in such a way that the con-
clusion of the last inference is q and that its premises are either premises of the p’s or
tautologies’ (p. 31). In contemporary terminology, this system corresponds to a purely
atomic single conclusion sequent-calculus (The structural rules for contraction and in-
terchange are implicit because of Gentzen’s use of set-theoretical complexes instead of
sequences); if we conceive of the comma as logical conjunction and the sequent arrow as
a material conditional, then the proof system is also equivalent to SLD-resolution.23

In section 4, Gentzen wrote:

Our formal definition of provability, and, more generally, our choice of the
forms of inference will seem appropriate only if it is certain that a sentence q is
‘provable’ from the sentences p1, . . . , pv if and only if it represents informally

23On this point, see Schroeder-Heister 2002.
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a consequence of the p’s. We shall be able to show that this is indeed so
as soon as we have fixed the meaning of the still somewhat vague notion of
‘consequence’, in accordance with a particular informal interpretation of our
‘sentences’ . . . (p. 33).

Gentzen distinguished in this question of the appropriateness of a formal proof system the
two familiar components, the system’s ‘informal correctness’ and its ‘informal complete-
ness’. Then, quite contrary to the claim in the Untersuchungen that ‘for considerations
of an informal character no precisely delimited framework exists’, he specified a precise
notion of ‘informal consequence’:

We say that a complex of elements satisfies a given sentence if it either does
not contain all antecedent elements of the sentence, or alternatively, contains
all of them and also the succedent of that sentence. . . .We now look at
the complex K of all (finitely many) elements of p1, . . . , pv and q and call
q a consequence of p1, . . . , pv if (and only if) every subcomplex of K which
satisfies the sentences p1, . . . , pv also satisfies q. (p. 33)

Theorem I of Gentzen 1932 states that the proof system is ‘correct’: ‘if a sentence
q is “provable” from the sentences p1, . . . , pv then it is a “consequence” of them’. Thus
Theorem I is a soundness theorem. It is ‘informal’, not because of any lack of precision
in its methods, but in so far as the result coordinates Gentzen’s formal sentence system
with the informal, intuitive notion of consequence. As one would expect, Gentzen’s
statement of ‘informal completeness’ is the converse of this result: ‘If a sentence q is a
“consequence” of the sentences p1, . . . , pv, then it is also “provable” from them’. Gentzen
established the informal completeness of his sentence system in Theorem II, where he
in fact showed that proofs of a specific ‘normal form’ alone suffice to exhibit all the
consequences among sentences in his system.

The comfort with which Gentzen works with these notions of soundness and com-
pleteness makes all the more striking his distance from them in 1935 and thereafter.
But this shift in methodology need not be puzzling. In 1932 Gentzen dealt with the
pure notion of logical consequence. The elements of his formal calculus are logically
unrelated to one another, and the ‘sentences’ comprised of these elements are themselves
interpretable as statements of logical consequence. Gentzen considered the exemplar
sentence u1, . . . un → v and suggested several interpretations of it ranging from event
causation to property containment. Two crucial suggestions stand out:

The ‘sentence’ [u1, . . . un → v] may also be understood thus: A domain of
elements containing the elements u1, . . . un also contains the element v.

. . .

Or we might imagine the elements to stand for ‘propositions’, in the sense of
the propositional calculus, and the ‘sentence’ then reads: If the propositions
u1, . . . un are true, then proposition v is also true. (p. 30)
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Obviously, these two interpretations correspond exactly with the informal relation of
logical consequence that Gentzen defined over the sentences themselves (according to
whether one construes elements generally or as propositions).

Gentzen’s point was that the pure notion of logical consequence is at once simple,
uncontroversial, and easily enough specified to be captured formally by a logical calcu-
lus, and the soundness and completeness results of 1932 are the proof that his ‘formal
definition of provability’ does just that. In other words, the system of 1932 based on
‘cut’ and ‘thinning’ is a fully adequate systematization of the pure notion of logical con-
sequence. Gentzen described this result, not as a coordination of the semantic notion
of consequence and the syntactic notion of derivability, but as the formalization of the
informal notion. Thus his correctness and completeness theorems serve again as an anal-
ysis of an informal notion—this time, the notion of pure logical consequence—directly
into a logical system.

Crucially, logical consequence so conceived is synthetic in the Aristotelian sense. If
one knows only that a sentence u1, . . . un → v was obtained from an application of ‘cut’,
it is not possible to determine what sentences were used as premises for that inference,
because the ‘cut element’ vanishes in the course of the inference. Conversely, however,
given a collection of truths, presented as sentences in the style of Gentzen 1932, from some
field of inquiry, it is possible to attempt various pairings of sentences from this collection
as premises of a cut inference in order to obtain new sentences, thereby expanding the
size of the collection. What Gentzen took himself to have proved is that all purely
logical reasoning that does not turn on a specific understanding of the meanings of any
components of individual expressions can be recovered in just this way. Because the
rule for thinning is doing very little real work in this system, it makes sense to say that
Gentzen proved that the cut rule is a fully adequate formalization of the pure notion of
logical consequence.

By contrast, the expressions of predicate logic and even of propositional logic are
logically interrelated because of the contribution that their constituent logical particles
make to their meanings. Articulating a detailed account of the consequence relation
among these expressions requires a semantic theory. Such a semantic theory will in-
evitably be less simple, more controversial, and more difficult to specify than the pure
consequence relation, for it requires a successful analysis of the various logical particles.

It was this sort of semantic analysis that Gentzen was skeptical of. The very idea of
such a semantic theory presupposes a notion of quantificational truth that transcends
human reasoning. In place of such a theory about the meanings of the logical particles of
predicate logic, Gentzen opted for a formal emulation of the use mathematicians make
of statements characterized by those particles—effectively an analysis of those particles
directly into the structure of his logical system. This analysis disclosed that the use that
mathematicians make of the expression ‘if . . . then’ involves a form of ‘cut’. (The rule
⊃E is the culprit.) This is not surprising, given the close relationship between material
conditionals and statements of logical consequence. But Gentzen hoped to tease these
notions apart: He wanted a logical system in which the contribution to the meaning of
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a sentence that the logical particles make (including the ⊃-symbol) is perspicuous and
separate from the synthetic method of generating new theorems from lemmas.

Thus the idea of the sequent calculus was to map the expressions of pure predicate
logic onto the ‘elements’ of the 1932 formal definition of provability. To the rules ‘cut’
and ‘thinning’ Gentzen added new rules for the analysis of the logical symbols that
appear within individual elements. Now that the synthetic notion of logical consequence
was already a native structural rule of the system, the ‘introduction’ and ‘elimination’
rules for the logical symbols did not have to reproduce its effects.

It is not difficult to appreciate Gentzen’s report that the outcome of this endeavor
struck him as magical. Consider the extended passage from section III.1 of the Unter-
suchungen where the intuitionistic sequent calculus li takes its form:

The most obvious method of converting an ni-derivation into a logistic one is
this: We replace a [derivation]-formula24 B, which depends on the assump-
tion formulae A1, . . . ,Aµ, by the new formula (A1 & . . . & Aµ) ⊃ B. This
we do with all [derivation]-formulae.

We thus obtain formulae which are already true in themselves, i.e., whose
truth is no longer conditional on the truth of certain assumption formulae.
This procedure, however, introduces new [occurrences of the] logical symbols
& and ⊃, necessitating additional inference figures for & and ⊃, and thus
upsets the systematic character of our method of introducing and eliminating
symbols. (p. 82)

The simple typographical solution that Gentzen proposes to address this conceptual
difficulty appears at first like a joke:

Instead of a formula (A1 & . . . & Aµ) ⊃ B, we therefore write the sequent
A1, . . . ,Aµ → B.

The informal meaning of this sequent is no different from that of the above
formula; the expressions differ merely in their formal structure. (Ibid.)

How does this solve the difficulty? Gentzen confessed that ‘[e]ven now new inference
figures are required that cannot be integrated into our system of introductions and
eliminations’. He had in mind the inference figures for ‘cut’, ‘thinning’, and—because he
now used sequences in place of sets—‘contraction’ and ‘interchange’. ‘But’, he continued,
‘we have the advantage of being able to reserve them special places within our system,
since they no longer refer to logical symbols, but merely to the structure of the sequents’
(Ibid.)

Informally, these structural rules do refer to logical particles: Gentzen himself ex-
plained that a sequent’s sequent arrow and antecedent commas have the same informal

24Gentzen’s notion ‘Herleitungsformel ’: a token occurrence of a formula in a derivation tree.
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sense as the symbols ⊃ and &.25 But the typographical distinction of the sequent cal-
culus allows the rules governing the use of these logical particles to split, so that the
aspect of informal mathematical reasoning used to synthesize lemmas into new theorems
is relegated to formal structural rules, and only the remaining aspect of that reasoning
occurs in the rules governing the logical symbols. The fact that the structural rules do
not figure into the scheme of introductions and eliminations is immaterial, because only
the rules used to analyze the logical particles were meant to fit that paradigm.

The extension of this construction to a classical sequent calculus is then made possible
by allowing sequents to have multiple formulas in their succedents, again separated by
commas, with the informal sense of these succedent commas being the same as for the
symbol ∨. The calculus lk has the following rules:

Structural Rules

Γ → Θ thinning(L)
D,Γ → Θ

Γ → Θ thinning(R)
Γ → Θ,D

D,D,Γ → Θ
contraction(L)

D,Γ → Θ
Γ → Θ,D,D

contraction(R)
Γ → Θ,D

∆,D,E,Γ → Θ
interchange(L)

∆,E,D,Γ → Θ
Γ → Θ,E,D,∆

interchange(R)
Γ → Θ,D,E,∆

Γ → Θ,D D,∆ → Λ
cutΓ,∆ → Θ,Λ

Operational Rules

Γ → Θ,A Γ → Θ,B
&(R)

Γ → Θ,A & B

A,Γ → Θ B,Γ → Θ ∨(L)
A ∨B,Γ → Θ

A,Γ → ∆
A & B,Γ → ∆

B,Γ → ∆
&(L)

A & B,Γ → ∆
Γ → ∆,A

Γ → ∆,A ∨B

Γ → ∆,B ∨(R)
Γ → ∆,A ∨B

25Often, today one thinks of the sequent calculus as a ‘meta-calculus’ for some other, typically natural-
deduction calculus. Under this interpretation, the sequent arrow represents the derivability relation, the
antecedent of a sequent represent assumptions, and the succedent of a sequent represents a conclusion (or,
if the succedent contains more than one formula, a list of cases). Thus each sequent in a sequent calculus
proof represents a complete judgment that a certain object level proof in some other calculus exists (or
has been obtained), and one reasons ‘at the meta-level’ from the existence of some such proofs to the
existence of others. Crucially, Gentzen does not advocate any such meta-level/object-level distinction in
his thesis.
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Γ → Θ,Fa ∀(R)
Γ → Θ,∀xFx

Fa,Γ → Θ ∃(L)∃xFx,Γ → Θ

Fa,Γ → Θ ∀(L)∀xFx,Γ → Θ
Γ → Θ,Fa ∃(R)
Γ → Θ,∃xFx

A,Γ → Θ ¬(R)
Γ → Θ,¬A

Γ → Θ,A ¬(L)¬A,Γ → Θ

Γ → Θ,A B,Γ → Θ ⊃(L)
A ⊃ B,Γ → Θ

A,Γ → Θ,B ⊃(R)
Γ → Θ,A ⊃ B

26

The first question Gentzen considered after presenting the calculus lk is whether
it contains any redundancies. This is a natural question: Because some of the logical
connectives appear in duplicate in this calculus, one suspects that some of the rules
might be redundant and therefore eliminable in the same way that fI was seen to be
eliminable from nk. According to Gentzen, these suspicions are justified: ‘The schemata
are not at all mutually independent, i.e., certain schemata could be eliminated with the
help of the remaining ones’ (p. 85). But, he claimed, the Hauptsatz would not be valid
for the resulting calculus. He continued: ‘In general, we could simplify the calculi in
various respects if we attached no importance to the Hauptsatz ’ (Ibid.).

These remarks deserve some explanation.27 After all, the Hauptsatz itself is nothing
more than the elimination of the cut rule. Presumably, in its absence other eliminations
that were available before would no longer be valid. Why does Gentzen attach more
importance to the eliminability of ‘cut’ than he does to the eliminability of the other
rules?

The obvious answer to this question is that the Hauptsatz has important applications
that distinguish it from ordinary rule-eliminability results. But a deeper explanation is
available. According to Gentzen, the cut rule is a complete formalization of the pure
notion of logical consequence. It is, moreover, by far the most widely emulated pattern of
reasoning used in mathematics, so that mathematical thought is predominantly synthetic
in nature. But the Hauptsatz shows that all mathematical thought that does not rest
on the principles of any specific mathematical theory can be simulated with purely
analytical reasoning. This is the conceptual significance of the subformula property, the
fact that ‘[i]n an li- or lk-derivation without cuts, all [formula occurrences in a sequent
that occurs in the derivation] are subformulae of the [formula-occurrences] that occur

26German letters represent formulas of predicate logic; Greek letters represent finite sequences of
such formulas. Here again, the rules ∀(R) and ∃(L) are subject to eigenvariable conditions, but the
condition is easier to state: In both schemata, the variable a must not appear in the lower sequent.
The schematic display follows pp. 192–3 of Gentzen’s original manuscript, in which various dualities are
visually recognizable, and not Szabo’s translation, which does not preserve this feature.

27On page 688 of 2009 von Plato suggests that Gentzen is referring to the consequences of treating
one or more of the logical connectives as an abbreviation of some complex expression, e.g., defining ∨ in
terms of & and ¬ via DeMorgan’s equivalence, and observes that the relevant equivalences ‘can be put
to use’ after such measures ‘only by using them as cut formulas’.
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in [its] endsequent’ (pp. 87-8). Thus the Hauptsatz shows that everything provable in
the predicate calculus can in fact be proved with a derivation exhibiting this subformula
property. Gentzen added (Ibid.) that ‘[t]he final result [of such a derivation] is, as it
were, gradually built up from its constituent elements’—i.e., that the derivation is an
analysis, in the Aristotelian sense, of the truth of the derived sequent.

The synthetic nature of ‘cut’ as opposed to the analytic nature of the operational
rules is reflected in Gentzen’s formulation of lk. It is well-known today that classical
logic can be presented equivalently in context-sharing and context-free sequent calculi.
In the context-sharing presentation, rules with multiple upper sequents have the same
side formulas Γ, Θ, etc., while the same rules are presented in context-free calculi with
different side formulas in each upper sequent. Thus for example in the context-free
version of ⊃(L),

Γ → Θ,A B,∆ → Λ ⊃(L),
A ⊃ B,Γ,∆ → Θ,Λ

the contexts of the upper sequents are joined together into larger contexts in the lower
sequent. It is obvious that, in the presence of the weak structural rules for thinning,
contraction, and interchange, this rule is equivalent to Gentzen’s context-sharing ver-
sion: To emulate an instance of a context-sharing ⊃(L) in the context-free calculus,
simply perform a context-free ⊃(L) and then apply interchange and contraction rules to
its lower sequent until all redundancies are erased; to emulate an instance of a context-
free ⊃(L) in the context-sharing calculus, apply thinning and interchange rules to the
upper sequents until their contexts agree and perform a context-sharing ⊃(L) on the
resulting sequents. Similar observations confirm that analogous presentations of ∨(L),
&(R), and ‘cut’ are equivalent. This equivalence notwithstanding, how one chooses to
treat contexts can simplify or complicate the proofs of meta-logical theorems involv-
ing proof-transformations. Therefore the preference for context-sharing or context-free
presentations is often determined by how one intends to apply the calculus.

In 1932 Gentzen had already presented a context-free version of ‘cut’, so one might
expect to find fully context-free calculi in the Untersuchungen. Oddly though, Gentzen
did not treat context consistently in his presentation of lk: He gave ∨(L), &(R), and
⊃(L) context-sharing presentations alongside a context-free presentation of ‘cut’. This
lack of uniformity does not evidently simplify his proof of the Hauptsatz and demands
explanation. If one distinguishes, as Aristotle did, between the two methods of logical
discovery σύνθεσις and ὰνάλυσις, then the explanation is forthcoming. In synthesis,
one generates new theorems by methodically combining previously established results
that may be obtained from disparate sources—i.e., they may have different contexts.
But in analysis, context is determined in advance and can only be narrowed: One begins
with a claim and successively breaks it down to components in order either to refute the
claim through the discovery that it rests on some untenable premise or to uncover the
elementary facts that attest to the claim’s truth. Thus sequent calculus rules that are
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supposed to be analytic should be read upwards from the bottom sequent to its analyzing
upper sequent(s). Clearly this reading necessitates a context-sharing presentation. But
logical synthesis is more naturally understood ‘downward from the top’: The premises
of a ‘cut’ are typically drawn from distant quarters, and the inference generates new
information about how their contexts are related simultaneously with the dispensation
of the cut formula. Only a context-free presentation brings out this reading.

Gentzen’s conception of ‘cut’ as consequence thus leads to a new formulation of the
original completeness question, a conception of cut-elimination as completeness. Seman-
tic completeness is about the coordination of the syntactic and semantic realms. The
former, immanent realm hosts the logical system, and the latter, transcendent realm is
home to the notion of logical consequence. In this framework, the question of the com-
pleteness of a logical system asks whether all logical consequences can be demonstrated
in the logical system. But on Gentzen’s view, the question of the completeness of the
calculi nk and lk is trivial: nk is engineered to ensure its adequacy with respect to the
inferences that mathematicians make, and lk is deductively equivalent to it (section V
of Gentzen 1934–35 ). So it is uninteresting to ask whether all valid inferences can be
recovered in these systems. Nevertheless, Gentzen conceived of logical consequence as
the ubiquitous activity of logical synthesis, represented in lk by the cut rule, and he
asked whether the activity of logical analysis suffices to demonstrate the truth of all log-
ical consequences (so conceived) of previously analyzed truths. Thus lk invites a highly
non-trivial completeness question, about the adequacy of its purely analytic, cut-free
fragment: Is this fragment closed under the synthetic operation of logical consequence
(cut)? Far from being a question about the correspondence of realms, this question is
about the coordination of methods—analysis and synthesis. Logical consequence is on
the synthetic side of this methodological divide, but both analytic and synthetic styles
of reasoning live side by side in the immanent features of the proof system.

The dispensability of the ‘cut’ rule follows immediately from two straightforward ob-
servations one can make from the point of view of syntax and semantics coordination:
First, prove that with respect to the usual quantificational semantics the cut-free frag-
ment of lk is complete. Then verify the full calculus’s soundness with respect to that
same semantics. The possibility that a formula could be provable in the full calculus
but not in its cut-free fragment is thereby ruled out. This ‘semantic proof of Gentzen’s
Hauptsatz’ was discovered by Stig Kanger and included in his 1957 dissertation ‘Prov-
ability in logic’.

In Buss 1998, the dispensability of ‘cut’ is initially established in just this manner,
and Buss describes the method as ‘slick’ (p. 16). He cautions, though, that this method
affords no insight into how an arbitrary lk proof can be effectively transformed into
an analytic, cut-free one and is for that reason not of interest in proof-theoretical re-
search. Gentzen’s proof of cut-elimination in the Untersuchungen takes a completely
different form and provides maximal insight by specifying an algorithm for the step-wise
transformation of a given lk proof of a sequent into a purely analytic derivation of that
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same sequent. This constructive approach highlights many of the quantitative aspects
of cut-elimination that are crucial in ordinal analyses and other applications, and it is
fair to say that these aspects of the proof have been more influential than the fact of
cut-elimination itself.

Reflecting on this situation, historians have conjectured that Gentzen subscribed to
a constructivist ideology, which paid off in the end because the content of his theorems
has been rivaled in importance by the structure of his proofs. In his 1976 essay on
the origins of set-theoretical semantics, van Heijenoort suggests more modestly that the
route to the Hauptsatz via semantic completeness and soundness was certainly open
to Gentzen, but that he deliberately avoided it because he thought that it ‘was a bit
like cheating’ compared to the transformation algorithm (p. 47). The present view of
Gentzen’s work sheds more light on the line of thought that led to the constructive proof
of the Hauptsatz and casts suspicion on these conjectures.

The third theorem of Gentzen’s 1932 paper states: ‘If a nontrivial sentence q is prov-
able from the sentences p1, . . . , pv, then there exists a normal proof for q from p1, . . . , pv’.
It is illuminating to contrast Gentzen’s comments about this normalization result with
his approach in the Untersuchungen. He wrote:

This follows at once from theorems I [informal soundness] and II [informal
completeness of normal-form proofs] together. The theorem can also be ob-
tained directly without reference to the notion of consequence by taking an
arbitrary proof and transforming it step by step into a normal proof. The rea-
son for the approach chosen in this paper is that it involves little extra effort
and yet provides us with important additional results, viz., the correctness
and completeness of our forms of inference. (p. 38)

By following this same line of thought in the Untersuchungen, Gentzen could have es-
tablished the correctness and completeness of the forms of inference of the calculus lk
simultaneously with the eliminability of its cut rule. It is evident in Gentzen 1932 that
he did not consider nonconstructive proofs of normalization results to be in any way
illegitimate and that he even recognized the additional value that they usher in. So it
would have been perfectly natural for Gentzen to provide the ‘slick’ proof of the Haupt-
satz, if not in place of his constructive one, at least in addition to it, for the sake of the
‘important additional results’ obtainable along the way.

The relevant observations were technically and methodologically within Gentzen’s
reach in 1935: The fact that lk and its cut-free fragment are sound and complete is
guaranteed by the proofs in section V of their deductive equivalence with the Hilbert cal-
culus (for which Gödel had proved semantic completeness five years earlier) and with nk
(which Gentzen had carefully designed to be complete in his more traditional sense), and
the template of inferring normalization from such results appeared already in Gentzen’s
own earlier work. But on Gentzen’s conception of logic, the parallel between the sequence
〈Theorem I, Theorem II, Theorem III〉 of the 1932 paper and the sequence 〈lk sound-
ness, cut-free completeness, cut-elimination〉 breaks down. Theorems I and II of Gentzen
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1932 were Gentzen’s verification that the notion of logical consequence is fully analyzed
by the formal rule ‘cut’. Because the notion of logical consequence appears again in this
exact form in the immanent features of the calculus lk, the question of the completeness
of that logical system was not for Gentzen a question about how the system corresponds
with something beyond itself, but a question about the ability of its analytic fragment
to keep pace with its internal consequence relation. If one thinks of cut-elimination as
the completeness of the analytic methods with respect to the synthetic notion of logical
consequence, then the idea of inferring the Hauptsatz from the ‘semantic completeness’
of those methods does not arise.

5. Concluding remarks

In a recent series of monographs and papers,28 Jean-Yves Girard has stressed a
technical coincidence between semantic completeness and the subformula property.

The semantic completeness of a logical system is the property that all closed formulas
of the system that are true under every interpretation are provable. Traditionally, one
summarizes Gödel’s theorem by saying that first-order quantification theory is complete
in this sense. Trivially, the same result can be expressed in the setting of higher-order
quantification theory by saying that all closed, true Π1 formulas are provable. (First-
order quantificational expressions are generally not closed in this setting, because their
predicate symbols are unbounded—so in higher order logic, where one quantifies over
sets, sets of sets, etc., one constructs the closure of first-order expressions simply, by
prefixing such expressions with the universal quantifiers needed to bind each predicate
symbol.) Now consider an instance of first-order numerical quantification (a numerical
Σ0

1 formula) ∃nA(n) and note that, by Dedekind’s definition of natural number x ∈
N ⇔ ∀X((X(0) & ∀y(X(y) ⊃ X(Sy))) ⊃ X(x)), this formula can be translated into
pure quantification theory as the Π1 formula ∃x(x ∈ N & A(x)). In the same way,
numerical Π0

1 formulas can be rewritten as Σ1 formulas of pure quantification theory.29

Gödel’s 1931 incompleteness theorem exhibits a numerical Π0
1 formula that is true but

unprovable, which implies that the completeness phenomenon does not extend beyond
the logical Π1 class—i.e., there is a true but unprovable formula already in the class
Σ1.30

‘Now’, Girard notes, ‘if we formulate logic in sequent calculus, we discover that the
subformula property holds for the same class Π1, and fails outside’ (2003, p. 139). In
other words, although the Hauptsatz extends to higher-order logic, the cut-free fragment
of the logical system fails to be analytic beyond the class Π1. He claims that ‘such
a property cannot be an accident’ and concludes that ‘the subformula property is the
actual completeness’ (Ibid).

281999, 2001, 2003, The Blind Spot
29One obtains ∀x(x ∈ N ⊃ A(x)), and the suppressed second-order universal quantifier in x ∈ N

becomes a second-order existential quantifier after prenex operations.
30Here I have followed Girard’s exposition in section 2.A.2 of The Blind Spot.
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Girard proceeds to explain how it is possible to think of completeness as an internal
property of logical systems. Much of the conceptual exposition of his ludics program31

is devoted to making vivid such a construal, and the accompanying announcements are
conscientiously iconoclastic: He calls the syntax/semantics distinction ‘schizophrenic’,
refers to research in the orthodox paradigm as ‘scholasticism’, and suggests that the
entire field of foundational research that fits that paradigm can ‘be compared to the
attraction of political and religious systems which retain their believers long after having
failed in practice’ (1987, p. 36)

This is not the time for me to weigh in on the relative benefits and drawbacks of
the various conceptions of logic that have been proposed. But it does seem to dampen
the iconoclastic overtones of Girard’s work to consider that his ‘internal’ conception
of completeness already flourished in Gentzen’s thought. Of course, Gentzen was not
driven to the view by reflecting on the coincidental scope of the subformula property
and the semantic completeness phenomenon. The construals of ‘cut’ as consequence and
of its eliminability as completeness were native to Gentzen’s approach to thinking about
logical systems. Another point can be added in favor of the naturalness of Gentzen’s
view: Because cut-elimination concerns the coordination of various parts of the immanent
features of a logical system, its proof is of substantially lower computational complexity
than proofs of semantic completeness, which concern the correspondence of entire logical
systems with a set-theoretical realm that transcends them. The entire proof of the
Hauptsatz can in fact be formalized and carried out in pra.

The details of Herbrand’s thought appear to be much more difficult to reconstruct
than those of Gentzen’s. But it is fitting to conclude with one striking similarity between
the two. In section 6 of the fifth chapter of Recherches sur la théorie de la démonstration,
Herbrand pointed out as a consequence of his fundamental theorem that ‘the only rules
of reasoning that are needed are the rules of passage, the two rules of generalization
and the generalized rule of simplification. The rule of implication [= modus ponens]
drops out’. Considerable attention has been drawn to the first of two comments he
then made: ‘Because of the difficulties that the rule of implication might create in
certain demonstrations that proceed by recursion on proofs, we consider this result most
important’.32 But Herbrand’s second comment addresses the conceptual significance of
the result more than its importance in applications: ‘It shows, moreover, that the rule
of implication, whose origin, after all, is in the classical syllogism, is not necessary in
building logic’ (p. 175). This second point is repeated in an abstract that Herbrand
prepared to accompany his thesis:

[T]he theorem in question permits us to show that the system of rules of
reasoning can be changed profoundly while still remaining equivalent to the
original ones, so that the rule of the syllogism, the basis of Aristotelian logic,

31For example, the absurdist appendix of Locus Solum.
32See, for example, p. 45 of Mostowski 1965.
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is of no use in any mathematical argument’ (1931a, p. 276).

Gentzen went beyond Herbrand in pointing out that the rule variously known as ‘syl-
logism’ (here and in Hertz’s writing), ‘modus ponens’, ‘implication’, ‘detachment’, and
‘cut’ not only was the basis of Aristotelian logic, but is a self-sufficient formalization
of the intuitive concept of logical consequence. One can only conjecture that the ‘pro-
fundity’ that Herbrand saw in its eliminability derives from the same coordination of
analysis and synthesis that motivated Gentzen.
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