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JAMES FRANKLIN 

DIAGRAMMATIC REASONING AND MODELLING 

IN THE IMAGINATION: THE SECRET WEAPONS 

OF THE SCIENTIFIC REVOLUTION 

Tartaglia's Italian Euclid of 1543 is geometry in the narrow sense. But the big 

two books of 1543, Copernicus' De revolutionibus and Vesalius' De humani 

corporis fabnca are also geometry, if a slightly wider sense of the term is 

allowed. Though Copernicus writes on physics, he does not speak of forces, 

energies, masses or the like: there are only the appearances of the heavens 

from certain points of view. Though Vesalius is biology, there is little 

physiology, or mechanical analogy, or discussion of causes: the emphasis is on 

how parts of the body look from suitable points of view. But the three books 

share more than just pictures, and it is this extra element that is the focus of 

this article. Euclid's Elements is not a picture book of shapes. The point of 

Euclid is to reason about the diagrams, and expose the necessary interrelations 

of the spatial parts. So it is with Copernicus and Vesalius. The text of 

Copernicus is an exercise in reasoning about which geometrical scheme will 

best fit the sequences of spatial points recorded in the astronomical tables. 

Vesalius uses the best of the discoveries of artists to make easy for the reader 

inference about how the systems of the body look in isolation, and in relation 

to one another. The difference between a Vesalian diagram and a photograph 

is exactly that the former allows one to work out structural facts which are 

almost invisible in the photograph. The plates also allow muscles in the 

partially dissected cadaver to be drawn with the natural tensions of the living 

body-obviously impossible with a photograph. 

An exclusively geometrical focus persisted in science in the work of Kepler, 

in both his ellipse theory and his Platonic solids theory of the planets l (as well 

as in his optical theory). Galileo's first success, the Sidereus nuncius, is, 

amongst other things, about inferring the shape of the moon's surface from 

optical considerations of light and shadow.2 Galileo's famous saying that the 

universe is written in the language of mathematics, which when quoted in 
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isolation makes us think, for example, 's = Yz gt2
', continues in the original, 'its 

characters are triangles, circles, and other geometrical figures, without which it 

is humanly impossible to understand a single word of it'.3 Descartes still 

believes that the way forward for science is to ignore all properties of matter 

except the purely geometrical, but he is already starting to be old-fashioned. By 

then the next generation had begun to invest science with the many things 

beyond pure geometry that we now regard as essential to it, and which it was 

the achievement of the Scientific Revolution to put together-experiment, for 

example, and forces, and algebraic formulas. 

Since a Scientific Revolution was plainly under way by 1610, and since at that 

time it had achieved almost nothing except in geometry, the thesis, 'The 

Scientific Revolution was kick-started by geometry' is well-supported. This 

article is intended to explain this fact, by tracing how medieval and 

Renaissance reasoning with diagrams, both physical and mental, trained 

Europeans to think adequately to do science. 

Part 1 deals with physical diagrams, part 2 with mental ones. The two parts 

are not as distinct as may appear at first glance, since diagrams are pictures that 

are especially simplified to cause a mental construct stripped of irrelevancies, 

while an imagined diagram is imagined as like a physical picture. 

1. DIAGRAMMATIC REASONING 

1.1 Image and Diagram 

First, a little precision is desirable on the entities like 'diagrams' and 'images'. 

This is especially necessary because of the very wide and imprecise usage of 

the word 'image'. 'Image' is commonly used as a dead metaphor, meaning 

something like 'implicit theory', so that a phrase like 'the medieval image of 

the world' has no specially visual or spatial content.4 Or take titles which do 

claim to refer to pictures, like, 'Images of the other in incunabular woodcuts: 

Renaissance constructions of ethnicity and gender'. The post-modernistfrisson 

makes the author's commitments clear enough, but in the process neglects 

certain necessary distinctions among 'images'. These are the distinctions that 

are common ground in artificial vision research and satellite image processing, 

where 'images' are classified according to the amount of cognitive processing 

incorporated into them. One distinguishes at least the following three stages: 
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1. The raw image, such as a photograph, or the moving dots on a TV screen. 

Or perhaps the Shroud of Turin, to take a medieval example. 

2. A line drawing, like a Durer rabbit. The edges and regions are explicitly 

identified, but there is as yet no labelling of the objects in the scene. 

3. A map or plan. Here there are symbols attached, identifying some line as a 

road, or some dot as a church. The symbols are on the map in places that 

preserve the spatial relations between the entities symbolised-all the 

spatial relations if the map is ' to scale', or only some of them in examples 

like the usual plans of the London Underground, where only spatial order 

is preserved. 

Beyond these three there are purely textual descriptions of space, as with a list 

of objects in a scene, or a description of how to get to the East. The 

representation of information can be compressed and informative, but also 

subject to alarming errors of scale, of the kind made famous by Columbus and 

the Children's Crusade. 

'Diagram' is a wider term than 'map' or 'plan', in that what a diagram 

represents need not be spatial. A diagram is a picture, in which one is intended 

to perform inference about the thing pictured, by mentally following around 

the parts of the diagram. The famous saying, 'A picture is worth a thousand 

words' is true especially of diagrams, those pictures streamlined for inference 

by removal of irrelevancies (such as, usually, shading and real colour). (A 

photograph may not be worth any words at all, as a beginning student of 

biology realises when confronted with slides of the view down a microscope.) 

'Worth a thousand words' for what purpose? As a store of information, from 

which inference can proceed.s 

Consider the common medieval diagram of the Wheel of Fortune6 (fig. 1 

shows Villard de Honnecourt's especially abstract representation of it7
). One is 

supposed to start at any of the positions (most naturally the top), then follow 

the circle clockwise to infer the order of events, and eventually return to the 

starting point. The (spatial) circle of the diagram thus represents time in the 

cycle of events. The Wheel is in fact a particularly bad diagram of fortune, 

because of the incorrect inferences it encourages. For example, it suggests that 

reversals of fortune happen inevitably, and even at inevitable intervals, as the 
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Figure 1. Villard's Wheel of Fortune. The Sketchbook of Villard de Honnecourt. 

Wheel turns inexorably. Seeing fortune in terms of the Wheel must, then, 

inhibit any thinking of it in terms of randomness, where the time until a 

reversal is completely unknown, as it is in real life. From the present point of 

view, this simply casts light on what a diagram is: it represents spatially the 

structure, or what is believed to be the structure, of something, in a way that 

facilitates the reaching of conclusions about it. A diagram thus contrasts with 

a single drawn figure (of a saint, for example), in which there is no intention 

that one should follow from part to part and infer anything. It also contrasts 

with such things as Islamic geometrical decoration, where there are complex 

arrangements of geometrical parts, but parts that have no meaning. 

A diagram of higher quality, where the inference is good, is the Square of 

Opposition in logic (fig. 2). Here, lines in space represent logical relations 

between propositions. The Square is apparently due to Apuleius of Madaura, 

in the second century AD. The original text contains not a diagram, but a 

description of how to draw one.8 The logical relation between any proposition 

and any other can be read off immediately from the diagram. 

Before going further, it will be useful to have a rough classification of the 

kinds of pictorial representation, which will help organise the topics to follow. 

Let us represent the classification itself with the usual diagram, a tree (fig. 3). 
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Every pleasure 

is good 

inconsistent 

al res 

No pleasure 

is good 

Some pleasure Some pleasure 

~~ ~~~ 

Figure 2. Apuleius' Square of Opposition. 

The dotted line indicates the connection that gives perspective its peculiar 

fascination: by drawing something according to geometrical rules (and filling 

in with colours) one has something recognisably like a photograph. (On the 

controversy as to whether images literally resemble their objects, the present 

article accepts the affirmative side.9) On the connections between geometrical 

diagrams and perspective, more will be said later. 

Medieval texts are often rich in diagrams, even if that is not always clear 

from modern editions which criminally leave them out.!O Our survey begins 

from the bottom left of the tree below. 



58 JA ..... \IE S FR ~ '\"KLr-.-

naive 

representing 

circles trees 

piclOrial 

representations 

I 

photographic outline 

graphs 

Figure 3. Classification of pictures. 

1.2 Circle Diagrams 
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The Wheel of fortune is far from the only circle diagram common in medieval 

texts. Isidore of Seville's Etymologies, the standard medieval encyclopedia, is 

sometimes called the Liber rotarum on account of the number of rotae, or 

wheel diagrams. Among the most popular were ones linking the four elements 

and the four humours, and those linking the zodiac, months and seasons. ll 

There are a few medieval diagrams in which the wheels are physically 

separate pieces joined to the page with string, so that the rotation can be done 

in reality and not just in the imagination. A fourteenth century book on 

divination includes two geared wheels; the smaller one is rotated on a peg, and 

the larger one comes to rest at a number which is interpreted according to the 

instructions in the book. Ramon Lull's Art (a method for demonstratively 

confuting the heathen and recovering Jerusalem) used rotating discs (as well as 

various trees). 12 The various complicated wheels illustrating parallels between 

the seven virtues, the seven vices, the seven Beatitudes and the seven gifts of 
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the Holy Spirit are perhaps better imagined than pictured.13 The English phrase 

'by rote' probably derives from the ubiquity of wheel diagrams in medieval 

education (or if not, it is from the French 'route', wruch refers to another 

diagrammatic way of organising facts).14 

1.3 The Rank Growth Of Trees 

One of the most widely visible of medieval diagrams, in the full sense of 

something geometrical on which one performs inference by following the 

diagram around, was the Jesse tree. A Jesse tree is the family tree of Christ, 

going back to Jesse, represented in stained glass or some other medium. 

Typically, it is rather abbreviated, but some examples have up to fifty 

personages in the leaves.1s The reference is to Isaiah 11:1, 'A shoot springs 

from the stock of Jesse, a scion thrusts from his roots'. Whether an actual 

family tree is envisaged in the original is not entirely clear-the Bible is not 

rich in visual imagery, except for the apocalyptic books. The ancient sources 

mention family trees displayed by Roman families in their homes,!6 but no 

examples are known. Medieval texts, on the other hand, are full of them. There 

are family trees of kings;!7 also of gods. 18 

The legal world was also familiar with family trees. A kind of generic family 

tree was common in legal texts to illustrate family relationships, and the 

degrees of consanguinity to be inferred from them; an example available to 

almost everyone literate is in Book 9 of Isidore of Seville's Etymologies.19 The 

same information on family relationships can be depicted by quartering a coat 

of arms. Sir Anthony Wagner's Historic Heraldry of Britain explains the 

complexity of the inferences involved in interpreting arms: 

A husband impales his wife's Arms with his own, unless she be her father's 

heir or coheir in blood (that is to say, if she has no brothers), when he displays 

them on an escutcheon of pretence, superimposed in the centre of his own 

shield. In the latter case only, the children acquire a right to quarter the Arms 

of their mother's family (and any quarterings previously acquired in the same 

way by that family) with their father's. In this way a shield with many 

quarterings indicates a succession of heiress marriages, so that the bearer 

represents in blood all the families whose Arms he quarters. 20 
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These Gothic extravagances belong especially to the very late medieval period 

examined in Huizinga's Waning of the Middle Ages. Huizinga acutely observes 

how the excessive growth of trees is part of 'symbolism in its decline', and tends 

to substitute for serious causal thought: 

The world unfolds like a vast whole of symbols, like a cathedral of ideas. It is 

the most richly rhythmical conception of the world, a polyphonous expression 

of eternal harmony ... All notions of one thing proceeding from another took 

the naive form of procreation or ramification. The image of a tree or 

pedigree sufficed to represent any relations of origin or cause. An arbor de 

origine juris et legum, for example, classified all law in the form of a tree with 

numerous branches ... From the causal point of view, symbolism appears as 

a sort of short-circuit of thought ... all mental association based on any casual 

similitude whatever will immediately set up the idea of an essential and 

mystic connexion.21 

Still, there is structure other than the causal, which can be worthwhile but 

difficult to investigate. Some trees, at least, summarise genuine information. 

One is the logical diagram known as Porphyry's Tree, which classifies the kinds 

of being. In accordance with Stigler's Law of Eponymy,22 this is not due to 

Porphyry, but to one of his Latin translators, at the latest Boethius.23 

A tree diagram (fig. 4) which, unlike Porphyry's Tree, is for the 

classification of something more or less useful, is the division of the kinds of 

proportion in Pacioli's Summa de arithmetica, of 1494.24 Pacioli notes that the 

diagram continues indefinitely off the bottom of the page. The modern 

mathematician is unlikely to find any but the top few levels of any assistance in 

understanding ratios, but the basic plan is reasonable enough. 

Some historical perspective may be gained by noting that diagrams of 

essentially the same type have since proved widely useful in the sciences. 'Tree 

of life' diagrams are important in Darwin's early notebooks, for example.25 In 

this century, there are theorems in logic like 'the propositional calculus is a 

distributive lattice', 'diagram-chasing' in category theory,26 and 'semantic net' 

or 'frame' representations in artificial intelligence.27 'Venn' diagrams (due to 

Euler28
) rely on the fact that the transitive relation of set inclusion is represented 

geometrically by the obviously transitive relation of containment of areas. 
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Figure 4. Pacioli's Classification of Ratios. 

Networks of nodes and connections, which are in general more complicated 

than trees in that they contain cycles, can be very useful in analysing 

telecommunications links, games and so on. The first mathematically 

sophisticated use of such a network was in Vandermonde's study of the knight's 

tour in chess, in 1771.29 He used the nodes to represent positions of the knight, 

and connected with a line those nodes which can be reached from one another 

by a legal knight's move. It is clear, then, that the medievals were essentially 
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correct in seeing tree diagrams as suitable for the representation of abstract 

structure. 

1.4 Diagrams Of Everything 

Space is three-dimensional. Diagrams can use all three dimensions, if someone 

is prepared to pay for the extra cost. If the money is there, they can also be very 

big. The iconography of the medieval church is inventive in detail, but 

standardised in plan: the cycles of frescos are a diagram of the history of the 

universe, also of the life of Christ, also of the pilgrimage of the individual soul. 

The cycles end at the back wall, on reaching which one is intended to impose 

a logical IF-THEN-ELSE structure: IF the soul chooses virtue, THEN go to 

the top part of the wall, and view the delights of paradise; ELSE, see the lurid 

detail below. 

It is possible to use spatial relations to suggest to the viewer parallels 

between different stories: between the life of Christ and the life of the Virgin, 

for example, whose cycles sometimes appear on the same wall at different 

levels. The Church of St Francis at Assisi uses the same device to suggest 

parallels between the life of Christ and that of St Francis.3D 

One cannot avoid noticing that Dante's heaven and hell are topographically 

very complex, compared with the simple Biblical entities of the same name, or 

even with the most elaborate Biblical described spaces, the Ark and the New 

JerusalemY 

More abstruse possible structural parallels, such as the Globe Theatre's 

alleged representation of the universe,32 remain somewhere in the limbo between 

the speculative and the proved. It can at least be said that the medieval and 

Renaissance mind would have regarded a complex building that did not 

represent the zodiac, or the virtues, or the macrocosm, or all of these at once, 

as a crying waste of representational possibilities. 

When funds did not permit grandiose construction, there was always the 

human body available for moralising as a diagram or 'microcosm' of the 

universe.33 



DIAGRAMMATIC REASONING AND MODELLING 63 

1.5 Graphs 

Graphs, as in graphs of yearly profits, daily temperatures and the like, are one 

of the few mathematical inventions since ancient times that are needed to read 

the newspapers. The important thing in reasoning with a graph is that at least 

one of the dimensions should represent a quantity that is not spatial. Most 

commonly, the horizontal axis is reserved for time, and the vertical axis for 

some quantity that varies with respect to time, such as profits, temperature, or 

the distance travelled by a falling body. Graphs appear to be an invention of 

Oresme, about 1350, earlier diagrams that look something like graphs being 

only maps of purely spatial quantities. His horizontal axes can represent time 

or space, and his vertical axes any quantity that varies in intensity, such as 

velocity, intensity of colour, or joy. But his graphs have no scales on the axes: 

he is solely concerned with the differences in the shapes of different graphs.34 

A printed edition of 1486 is liberal with the diagrams.35 

Consider a graph with time on the horizontal axis and pitch (of sound) on 

the vertical axis. Discretize both axes; that is, cut up time and pitch into 

suitable intervals. Then one has, in effect, musical notation. The staff, invented 

in about the eleventh century, provides a scale for the vertical axis.36 Despite 

Oresme's musical interests, it seems unlikely that he saw any connection 

between musical notation and graphs; if he had, he would surely have put 

scales on the axes of his graphs. 

The usual 'Renaissance' gap in the development of science is evident with 

graphs, which appear to have had no use until 1600. Then their time came 

(surely it is the Wheel). GaWeo's discovery of the uniform acceleration of free 

fall involved essential reference to a graph. At first, he drew a diagram of an 

inclined plane which pictured only spatial quantities. In such a diagram, there 

is no place for the time variable, making it difficult to reason about time. 

Galileo was misled by it into thinking that the speed of a falling body is 

~roportional to the distance it has travelled from rest. Later, he drew almost 

:rre same diagram, but with one axis now representing time, and arrived at the 

':0ITcct conclusion: that speed is proportional to the time from rest, and hence 

':i~ tance travelled proportional to the square of the timeY 

\\ lllle Galileo is not thought to have read Oresme, the evidence is 

~ -.;;:-whelming that he did read certain printed books which incorporated 

C~=-;;3::r.c·S ideas. In particular. one can find antecedents of Galileo's graphical 
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proof of the 'Merton mean speed theorem' (that in uniformly accelerated 

motion, the distance travelled is equal to the distance that would be travelled 

by a body with uniform velocity equal to half the maximum velocity of the 

original accelerated body38). 

1.6 Tables 

Academics, especially at exam time, become very aware of the importance of 

'setting out', that is, the arrangement of pieces of information in a spatial 

pattern that allows the information to be grasped easily. Simple uses of space 

like indentation of new paragraphs, blank lines between sections, justification 

of type, headings in large type (or illuminated capitals) can reduce the reader's 

cognitive load remarkably.39 The main principle is that a spatial division, such 

as a blank line, should correspond to a major division in the text's meaning. 

Similar considerations apply to tables of figures. While a table is not precisely 

a kind of diagram, it is not unlike the 'negative' of a tree diagram: blanks, 

rather than lines, represent the relations between parts. 

A page from a book of accounts, such as that of Impyn's textbook,40 is 

notable in several geometrical ways. It is not all text; in fact half of it is empty 

space. The text comes in aligned blocks, and (besides the sums of money) there 

are also important non-text items, like lines, crossings-out, and marginal 

numbers indexing where the entries in the journal have been transferred into 

the more permanent ledger. All of these things might be different; if they were, 

making the inferences about the state of the owner's finances would be much 

more difficult. (These inventions are not sixteenth century; they are all visible 

in fourteenth-century accounts.41 ) 

The neat tables of the accountants can give the impression that Renaissance 

statistical information is generally arranged to allow perspicuous inference about 

it. This is far from true. Nef records the experience of trying to get a picture of 

the increase of coal shipments in England in the period after 1550.42 The Public 

Record Office contains hundreds of port books with entries about coal 

shipments, but separating them from those dealing with glass, salt and so on is 

an exercise for the modern researcher. That is, the records are a mass of items 

of information, but contain no suitable setting out of what it means; of 

statistical summaries, in modern language. The modern user of spreadsheets will 

notice that the account books, themselves much more sophisticated in these 
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matters than the public records, contain places for ' totals', but none for 

'averages' . And no bar graphs or pie charts, either. 

Tables of compound interest were produced by the fourteenth century 

Italian merchants,43 and for some time thereafter were regarded generally as 

trade secrets. Stevin produced the first printed tables.44 

Astronomy was, as usual, rather in advance. The Alfonsine tables are ruled 

very neatly.45 Astronomical tables differ from accounts in that they are 

projections onto the discrete realm, so to speak, of something continuous. 

Inference with them needs to keep in mind that they tabulate only a succession 

of points in a motion that is really continuous. Such inference is essential to 

Napier's invention of logarithms, about 1600. One can learn logarithms from a 

purely numerical point of view, as a set of rules about how to manipulate 

numerals, but that was not how Napier thought. Trained in spherical 

trigonometry for the calculation of astronomical tables, he actually defined 

logarithms in terms of moving points on continuous scales.46 

The spatial organisation of text to facilitate a grasp of its meaning will shade 

off into considerations of punctuation, which improved markedly in late 

medieval times,47 and such matters as decimals and algebraic notation in 

mathematics (to both of which Stevin made notable contributions). Interesting 

as these matters are, they would take us too far afield. 

We now move on to diagrams whose geometry represents something which 

is literally geometrical itself. The material here is generally better known than 

are the more abstract kinds of diagrams just considered. Here, we will briefly 

survey the field, calling attention to the reasoning processes needed to 

interpret the pictures. 

1. 7 Scientific Illustrations 

Drawings of machines are particularly interesting, from the point of view of 

reasoning, because the viewer has to infer how the machine works. To work is, 

among other things, to change over time, and neither time nor change can 

appear in the diagram. (In principle, it is possible to draw a series of diagrams 

representing the phases, as is often done in showing how a car piston works, or 

as the Bayeux tapestry shows the Battle of Hastings; pre-modem machine 

diagrams do not attempt this, and in any case, one must understand a single 

diagram of such a series reasonably well before being able to infer how it 
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changes to the next.) Nor can the diagram explicitly show forces and their 

transmission, or the direction in which a part is intended to move. The difficulty 

of the exercise is shown by the fact that it is usually impossible to discover how 

a machine works from a photograph of it. 

An added difficulty with interpreting diagrams of machines is that one has 

to infer their 3D structure from a 2D picture. Techniques of perspective drawing 

were useful, after their invention, but are neither necessary nor sufficient for a 

clear diagram. They are not necessary, since there are other ways of including 

all the essential information, like drawing sections, or flat diagrams that one 

imagines folded. They are not sufficient, since a perspective drawing that is of 

the outside of a machine lacks the working parts entirely, while a perspective 

projection of everything will normally be too cluttered to understand. 

Ancient and medieval machine diagrams have been unfairly disparaged 

because the conventions by which they solve these problems differ from the 

modern ones. The few surviving ancient diagrams of pulleys, war machines and 

the like, are reasonably easy to interpret, though they are neither exactly 

perspective nor plan views: each part is shown from its own most natural view

point.48 For the modern viewer, the convention is initially confusing, but not 

hard to learn. It simply requires some mental origami to rotate the parts suitably. 

Islamic and medieval drawings use the same convention,49 and it is only replaced 

by more modern perspective-based techniques in the fifteenth century. 50 

Medical illustrations do not have the problem of the time dimension (until 

one begins to think of the heart as a pump). But a body is much harder to 

understand by looking at it than a machine is, being more complex, and largely 

invisible when in working order. So medical illustrations have serious problems 

in showing internals, and simplifying enough to show the main structure, or 

separate different kinds of structure. Here the convention of cut away diagrams 

was essential. The perfection of Leonardo and Vesalius51 should not blind us 

from perceiving that the essentials are present in Guido da Vigevano's 

Anathomia, ofthe 1340s.52 There seems to be some connection with anatomical 

models.53 

Printing obviously has something to do with the spread of scientific 

illustrations. But the excitement over Gutenberg (or Koster, or whoever) can 

make one forget the fact (which of course one knows, when reminded) that he 

did not invent printing itself, but only printing with movable type (an invention 

which itself needs-indeed consists in-a basic act of spatial imagination). 
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Movable type is only useful for printing text, especially in alphabetic languages. 

Printing of pictures came first, and was reasonably common in Europe from 

about 1400.54 Again, the path to the perfection of the art in Durer is one of 

evolution, not revolution. 

Edgerton, in arguing for the importance of scientific illustration in the 

Scientific Revolution, usefully juxtaposes some European machine diagrams 

with Chinese copies of them. At first glance, the copies are reasonable, but it 

is soon clear that the Chinese artist has misunderstood the diagrams at exactly 

the places where inference is required. Where a rope carrying tension is shown 

in a cut away section, and a continuation is shown in another part of the 

diagram, for example, the Chinese copy does not have the two parts collinear.55 

Mahoney, replying to Edgerton's thesis, points to the crucial role of algebra in 

the work of, for example, Huygens and Newton.56 True as that is, Mahoney's 

examples are from a different period. The later phase of the Scientific 

Revolution is indeed algebraic, but the earlier one is diagrammatic. 

Modern research on cross-cultural psychology has tended to confirm that 

there are major differences in how cultures perceive pictures, although 

research has concentrated on cultures that differ from the Western more than 

does the Chinese.57 

1. 8 Plan and Elevation 

A building poses different drafting problems to a machine. It typically has more 

detail, but it is conveniently hollow. More importantly, most buildings are 

approximately rectangular prisms, so most of the information on their 3D shape 

can be incorporated in three 2D diagrams, their 'plan' and two 'elevations'. 

Not much is known about ancient plans, though there are such things as 

scale drawings of Greek temples, and construction lines can sometimes be seen 

on the actual buildings. 58 Not a great deal is known about medieval building 

plans either, but there is enough to show that reasoning with plans was a 

normal part of cathedral building. There is a suggestion that making inferences 

about a building from plan and elevation was part of the famous 'secrets' of the 

masons.59 It is interesting that the Rheims Palimpsest, of about 1250, which is 

one of the very few surviving early plans, sketches one half of the elevation in 

detail, and the other only roughly. The artist knows about using symmetry for 

inference.6O 
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The Renaissance classic on architecture is Alberti's On Building. It well 

explains the difference between a plan and a picture: 

The difference between the drawings of a painter and those of the architect 

is this: the former takes pains to emphasize the relief of objects in paintings 

with shading and diminishing lines and angles; the architect rejects shading, 

but takes his projections from the ground plan, and, without altering the lines 

and by maintaining the true angles, reveals the extent and shape of each 

elevation and side-he is the one who desires his work to be judged not by 

deceptive appearance but according to certain calculated standards.61 

That is, the inference in the case of plans is performed consciously. 

The requirements of plan and elevation are, it must be emphasised, opposite 

in a way Alberti does not mention to those of a sketch which 'looks like' its 

object. The plan and elevation of a cube are both just squares, which are not 

very informative about the three-dimensional structure. To get a sketch of a 

cube that does convey the shape at a glance one should take a view from a 

'generic' angle; that is, one that bears no special relationship to the edges of 

the cube.62 It is notable that the stylised pictures of buildings and cities in the 

backgrounds of Byzantine and early medieval paintings take such a generic 

view (without being very expert in getting the angles right).63 

1.9 Maps and Projections 

A map, like an anatomical diagram, will simplify, select and label to facilitate 

inference (whether true or false ).64 

Medieval mappaemundi are more like diagrams, in the sense of the London 

Underground map, than maps drawn to scale, or according to a definite 

projection.65 Some of them are combined with Wheels of Fortune, to illustrate 

conditions on earth,66 and various other purposes can dominate the purely 

spatial information. Matthew Paris's itinerary map of the journey to the Holy 

Land is spatial, but essentially one-dimensional: it draws a road with icons of 

towns indicating the stages of the journey.67 

Conceiving of a map as unlike a simple picture suggests the idea of adding 

something to it to indicate such spatial relations as direction. Latitude and 

longitude were reasonably familiar to the Arabs and medievals, but more in 
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connection with the time differences between places than in drawing maps. 

Grids on maps are first found in diagrams of the planetary motions against the 

star background.68 

The idea of a projection is especially important for inference from maps. 

The maker of a world map must understand some way of projecting round 

onto flat, and the user must understand it well enough to infer back from flat 

to round. Roger Bacon explains the need for a projection: 

Since these climates [i.e. , zones] and the famous cities in them cannot be 

clearly understood by mere words, our sense must be aided by a figure. In the 

first place, then, I shall give a drawing of this quarter with its climates, and I 

shall mark the famous cities in their localities by their distance from the 

equinoctial circle, which is called the latitude of the city or region; and by the 

distance from the west or east, which is called the longitude of the region.69 

There follows a scheme of projection where the spacing of parallels decreases 

systematically towards the Pole. Projections became much better understood 

with the rediscovery of Ptolemy's work in the fifteenth century,7° and in the 

sixteenth, Mercator discovered his famous projection. Apart from aggrandising 

the circumpolar powers, its advantage is that of allowing the direction between 

any two places to be inferred directly from the map. 

The inferring of directions is also the point of the fourteenth-century 

portolan charts, which were practical aids for navigation. These include accurate 

maps of the Mediterranean coast, criss-crossed by many rhumb lines, which one 

follows with the eye to work out the directions between the important locations. 

Some also have compass roses and scales.71 Navigation involves difficult geo

metrical reasoning, as one must mentally co-ordinate three different spaces: 

that of a chart, that of an instrument, and that of the surrounding actual space. 

A great deal of effort was expended on the subject, in view of the costs of 

mistakes. 

Local maps for legal and administrative purposes were occasionally found 

in the middle ages, but seem not to have been the normal thing until after 

1500.72 Hence, it seems that in general the ability to read maps and plans 

belonged only to certain specialised professions before about 1500, but became 

more general thereafter. Alberti describes how to construct a plan of Rome 
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using an odometer and triangulation; surveying as a standard practice is also 

common after 1500, but not before.73 

1.10 Instmments 

Diagrams are not necessarily drawn on paper. For purposes of use, it may be 

better to inscribe them on something more durable, like metal. For making the 

inferences, it may be useful to include moving parts. The most impressive of 

the common instruments at the time was the astrolabe, useful for measuring 

anything from the position at sea to heights of towers. It is an analogue 

computing device, in the same sense as a slide rule is: it represents various 

continuously varying quantities by lengths on the instrument, and makes 

inferences back from the instrument to the quantities represented.74 

One can have diagrams of the universe that incorporate the time dimension 

by having moving parts. There is a single ancient example, the Antikythera 

mechanism,75 and various medieval 'equatories'.16 If the mechanism is automated, 

it will become more and more like a clock. The earliest mechanical clocks of 

which there are reasonably complete descriptions are the complicated mid

fourteenth century planetary models of Richard of Wallingford and Giovanni 

de Dondi, which also happen to tell the time. The image of the universe as a 

clock, which we think of as so much an emblem of the Scientific Revolution, 

is an idea of Oresme77 (though the phrase mundi machina is already in 

Sacrobosco's Sphere78). 

Clocks provide the public with extensive training in spatial reasoning, since 

they pose a difficult three-way co-ordination problem. The circular space of 

the dial, actual (linear) time, and the numerals must be mentally identified. 

The addition of a minute hand makes the problem even worse, since the dial 

must be read as two spaces, one for each hand. No wonder it takes forever to 

teach a child to tell the time.79 

All these diagrams are circular, as is one of Oughtred's original slide rules of 

1632, and Galileo's 'geometrical and military compass', which is an analogue 

calculating device more than a compass.80 'Mathematics' did not have the 

suggestion of an abstract subject divorced from reality that it has today, but was 

much more closely associated with practical skills with a variety of 

instruments.81 
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Figure 5. Stevin 's Wreath of Spheres. 

1.11 Forces 

A central place in the medieval applications of geometry was held by the 

science of weights, as classically expounded by Jordanus Nemorarius in his 

thirteenth-century treatise. His derivation of the law of the lever is interesting 

in that, unlike Archimedes, he relies on 'virtual displacements ': he 

demonstrates that weights are in equilibrium by considering the movements 

they would undergo if they were not. The movements with which he calculates 

exist only in the imagination.82 

It is the science of weights that includes one of the earliest actual discoveries 

of the Scientific Revolution, a successful application of reasoning with a 

diagram. In 1586 Stevin printed the 'Wreath of Spheres' diagram (fig. 5) as the 
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title page of his Elements of the Art of Weighing. 83 The text which decorates it 

says, approximately, 'Wonderful, but not incomprehensible', which it is. It is 

clear that the circle of balls does not tend to rotate either clockwise or 

anticlockwise. But the balls hanging below the horizontal line are in 

equilibrium. One could cut them in the middle, and allow them to hang down, 

or even remove them altogether, without disturbing the balls resting on the two 

inclined planes. These upper balls, then, are at rest. The numbers of balls on 

each side of the apex are in inverse proportion to the sine of the angles at 

which the planes are inclined. One has derived, therefore, the law of the 

inclined plane, or, equivalently, the resolution of forces into components.84 

From the point of view of this paper, it is important that this, probably the only 

significant discovery of the early Scientific Revolution concerning forces, is 

expressed as pure geometry. 

There seem to be no medieval or early modern diagrams that represent 

forces by arrows (even in the sections on stresses in beams in Galileo's Two 

New Sciences where one is almost forced to imagine arrows85). Nevertheless, 

someone who can design a flying buttress must have some mental 

representation of the direction of stresses;86 likewise Brunelleschi in 

understanding that the hemispherical dome of the Cathedral of Florence could 

be constructed without scaffolding, a feat impossible with an arch.87 Cannon 

and crossbows redirect forces, but it may have been possible to design and use 

them without imagining the forces. On the other hand, it is surely impossible 

to tack into the wind88 without keeping constantly in mind the relations 

between the wind direction and the angle of the sails. 

1.12 Euclid's Geometry 

The history of geometry, in the formal sense, is a well-worn topic, and here we 

may just select a few aspects that are especially relevant to the thesis of the 

article. 

As is well known, Euclid's reasoning cannot be carried out purely in terms 

of propositions, but relies essentially on the diagrams.89 Kant is only the most 

famous of many who have been greatly impressed by the indispensability of 

'constructions' in geometrical reasoning.90 In Book I, proposition 1 Euclid 

draws a line, and then two circles with centres on the ends of the line and with 

radius equal to the length of the line, as in fig. 6. He next considers the points 
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Figure 6. Euclid I.1. 

where the circles interest. He does not use any axiom to justify the fact that 

they do intersect, but simply infers that from the diagram. 

The intrinsic importance of whatever is in the early propositions of Euclid is 

magnified a thousandfold, as far as the history of ideas is concerned, by the 

central place the Elements has played in Western education since about 1200.91 

The pedagogical profession, to its lasting credit, held firm on Euclid (at least 

until around 1960), despite the immense consumer resistance that has left us the 

phrase pons asinorum (Euclid 1.5).92 A whole civilisation followed Euclid across 

that narrow bridge, into a bright new land of expanded horizons of the intellect. 

The transferability of the skills learned with Euclid is of course an issue for 

debate, as it is when any modern mathematics educator demands more money 

on the grounds that 'mathematics teaches you to think'. Nevertheless, those 

involved seem to have had little doubt about the usefulness of geometrical 

training. Ramelli, for example, in his profusely illustrated book of 1588 on 

ingenious machines, praises Euclid at length; a modern commentator cannot 

understand the point of this, when Ramelli does not actually use any Euclidean 
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theorems.93 The answer must be, as it is to the modern question about the 

usefulness of training in abstract mathematics, that the more intelligent the 

pupil, the more transferable his skills, while even the most intelligent of pupils 

cannot be expected to recapitulate the history of mathematical discovery on his 

own. (Interestingly, the case for the usefulness of training in logic is much 

weaker.94 While it is not impossible that training in formal logic should prove 

useful-as happened in the 1940s during the development of computers-there 

seems no reason to think that the immense effort the medievals put into formal 

logic had any input into the Scientific Revolution.) 

Nevertheless, while there is a certain amount of agreement that the West's 

possession of Euclid was important,95 there is room for confusion on what that 

means. For Euclid represents two very different things: logical rig our, and 

geometry. Philosophers emphasise the ideal of rigorous proof, according to 

which Euclid fulfils the goal set for all science by Aristotle's Posterior Analytics, 

of a set of theorems deduced from self-evident axioms. That is the aspect of 

Euclid that Matteo Ricci saw as lacking in Chinese mathematics: 

Nothing pleased the Chinese as much as the volume on the Elements of 

Euclid. This perhaps was due to the fact that no people esteem mathematics 

as highly as the Chinese, despite their method of teaching, in which they 

propose all kinds of propositions but without demonstrations. The result of 

such a system is that anyone is free to exercise his imagination relative to 

mathematics without offering a definitive proof of anything.96 

That is, Chinese geometry lacks the discipline of rigorous inference. Modern 

studies have found that indeed mathematics in traditions that do not descend 

from the Greeks, though often excellent at developing complicated algorithms, 

is almost entirely lacking in proof.97 Non-western mathematics resembles 

modern computer programming much more than it resembles modern 

mathematics. But, though the ideal of rigour is exciting, it is not obviously 

useful for anything outside geometry. For all the talk about axioms and 

certainty, no other science was put on an axiomatic basis, nor were there even 

any serious attempts. Not even the sciences closest to geometry became 

axiomatised: Ptolemy'sAlmagest has no self-evident axioms, and there is hardly 

a proof in number theory between Diophantus and Fermat, let alone an axiom. 
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Still less are there any medieval or Renaissance attempts like Spinoza's to 

develop ethics, for example, more geometrico. 

On the other hand, Euclid represents geometry, understood as reasoning 

about spatial magnitudes and shapes. Here, the evidence is clearer for the 

usefulness of geometrical training. There was a medieval tradition of 'practical 

geometry' that depends on Roman surveying techniques and pre-dates the 

influence of the translations of Euclid. 98 Nevertheless, it was already 

consciously about inference: 'Practical [geometry] is that which is done by 

certain instruments and by inferring (coniciendo) proportionally one [distance] 

from others'.99 When Euclid did become available, the practical geometries 

incorporated some of his ideas. Thus, even those interested only in the practical 

applications of geometry were encouraged to take some interest in reasoning. 

The widely-discussed medieval split between theory and practice, while genuine 

enough in general, is probably at its narrowest in geometry.lOO This is important, 

if the view is taken that a necessary condition for a scientific revolution is a 

feedback loop between theoretical science and technological innovation. 

A sign of how deeply Euclid penetrated is the non-trivial use made of it by 

Bartolus, the foremost medieval authority in law, a discipline legendary for its 

innumeracy. Bartolus wrote a book applying Euclid to the division of lands 

affected by flooded rivers; it remains one of the few legal books with 

geometrical diagrams.lol He also indulges in some simple optical reasoning: 'I 

saw Titius in the mirror at the barber shop, and recognised him' is not 

completely certain evidence that I saw Titius, because an image in a mirror is 

smaller than the thing, and so harder for the eye to discern.102 

Yet, there are several respects in which Euclid is unsatisfactory as a training 

in spatial reasoning. For one thing, the proofs are difficult, so difficult that 

struggling through them can make learning the actual geometry very slow 

going. Secondly, the geometry of the Elements is almost all two-dimensional. It 

is true that Euclid knew some three-dimensional geometry, and something 

about how to represent it in two dimensions, as is clear from the diagram of 

parallelepipeds (fig. 7) from the oldest manuscript.103 

But three-dimensional geometry occupies only small portions of the text, 

and they are in the little-read later books. This is a pity, as the difficulties of 

applying geometry to optics or astronomy or architecture lie mainly in coping 

with the third dimension. Finally, there is no motion; Euclid does not train the 

reader in what happens when shapes move, and avoids methods of proof that 
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Figure 7. Euclid XI.31, from The 'Heiberg' Manuscript. 

involve, for example, superimposing one figure on another. 'Geometry is 

occupied with immobile magnitude', Hugh of St Victor says, but adds, 

'astronomy with mobile'. 104 Astronomy supplied all the other lacks in Euclid, 

too. 

1.13 Astronomy 

The standard introduction to astronomy in the university curriculum from 

about 1300 to 1600 was one of the best-written textbooks ever, the Sphere of 

Sacrobosco. The Sphere was the book on which Copernicus received his 

training on celestial orbs and their revolutions. It explains the celestial spheres, 

the zodiac, equinoxes and solstices, eccentrics and epicycles (very briefly) in a 

way that is always concise, clear and to the point. It expects of its readers a 

considerable willingness to imagine in three dimensions, but rewards average 

persistence with genuine understanding. Its strengths are illustrated by the two 

definitions of a sphere, which open the first chapter: 
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A sphere is thus described by Euclid: A sphere is the transit of the 

circumference of a half-circle upon a fixed diameter until it revolves back to 

its original position. That is, a sphere is such a round and solid body as is 

described by the revolution of a semi-circular arc. 

By Theodosius a sphere is described thus: A sphere is a solid body contained 

within a single surface, in the middle of which there is a point from which all 

straight lines drawn to the circumference are equal, and that point is called 

the 'center of the sphere' .105 

A diagram on paper is no use here: the reader must construct one in his 

imagination. Anyone who has done so and understood that the two definitions 

are equivalent has learned something substantial about modelling in the 

imagination. 

Some of the later portions of the book are helped by illustrations. The 

edition of Venice, 1485, prints an eclipse diagram in three colours. Many ofthe 

sixteenth-century printed editions had sheets of volvelles to be cut out and 
pasted in.106 

The capacity to visualise the universe from different points of view was not 

restricted to professional astronomers. The round earth itself required some 

work in the imagination for everyone: Madeville's Travels explains that the 

inhabitants of the southern hemisphere are upside down, to us, but seem to 

themselves to be the right way Up. J07 (As far as is known, no other civilisation 

"as asked to contemplate such a thing of other peoples.) There is something 

similar in the Divine Comedy,108 a work generally heavy with geometry-its last 

thirteen lines contain a geometer, a circle, an image, the (faculty of) phantasy, 

and astronomical revolutions.109 Dante imagines looking down from the sphere 

of the fixed stars and seeing the northern hemisphere from Cadiz to Asia. l1O 

\\"e might think of it as a NASA's-eye view,lll and see a connection between it 

3.nd a good deal of later speculation about what is 'out there';112 in any case, it 

i ~ exactly the view shown in the map in Ptolemy's Cosmographia of 1482, which 

~~e5 some interesting techniques to make the spherical shape of the earth 

:,:-\·ious.,L' Edgerton remarks, 'Only by this kind of three-dimensional mind's

=y= imagining could [Columbus] convince himself, as well as others, that it 

·.':" .. :<ld be possible to reach the East by sailing west'.u4 It would be possible to 

=:'':LI 3. brge thesis concerning the effect on Western thought of the 'what if? ' 
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style of counterfactual imagining, implicating everyone from the Pre-Socraticsll5 

to science fiction, and no doubt such a thesis would be as defensible as ones of 

comparable size on religion and the rise of capitalism and the like. 'Here's fine 

revolution, an we had the trick to see't' (Hamlet Y.i.89). 

Since we are speaking of revolutions, it is pertinent to observe that the use 

of this astronomical metaphor to describe any major change is a medieval 

idea.116 

So, when we speak of the 'heritage of Greek geometry', we should keep in 

mind not only Euclid, but Parmenides (or his contemporary), who first 

concluded the earth was round from a leap of geometrical imagination,117 and 

Hipparchus, who fitted the numerical data of the Greeks and Babylonians to a 

geometrical schemeYs Astronomy has had a wide sphere of influence. 

1.14 Optics and Perspective 

Perspective in painting is an even more well-worn topic than geometry, and 

again we select just those aspects most relevant to spatial inference. 

Geometrical optics, including the theory of vision, was, as is well-known, one 

of the best developed of medieval sciences.119 The books of Alhazen, Bacon, 

Grosseteste, Witelo and Pecham are as scientifically sophisticated as anything 

the medievals produced. Optics include possibly the high point of medieval 

science, Theodoric of Freiberg's explanation of the rainbow (which depends 

essentially on a diagram).l2° 

Books on perspective still sometimes read as if perspective sprang fully 

formed from the head of Brunelleschi.121 This is ridiculous from the point of 

view of geometrical reasoning, and also from the point of view of illusionistic 

art. The rules of perspective are a marvellous discovery, but they are of the 

same sort as a number of earlier and simpler ones. (Giotto was 'the inventor 

and discoverer of many methods which had been buried for about six hundred 

years', according to Ghiberti.122 The best one or two surviving antique 

perspective paintings do seem to justify the claims that the ancients knew some 

geometrical rules;123 Giotto should have had little trouble reverse engineering 

them.) Consider the view of a ceiling with rafters in fig. 8. 

Five lines in different directions, all converging, are more than a 

coincidence; the artist clearly knows something about how to represent three 

dimensions in two. The artist in question did not have the benefit of 
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Figure 8. Duccio 's 'Perspective'. 

Brunelleschi's and Alberti's tuition, as he lived a century earlier. The view is 

from Duccio's Maesta of 1308-11;124 he repeats it a number of times, as does 

Giotto, who on one ceiling has eleven converging lines, all in slightly different 

directions.125 Duccio also has a complicated array of boxes seen from a generic 

angle, with the angles correct. Giotto draws the circular rims of jars seen from 

an angle as ellipses. 126 In these cases, the ellipses are rather flat, and could as 

well be lozenge shapes. This is not the case, however, with the quite wide 

ellipses Giotto uses to represent circles in his coretti in the Arena Chapel, 

perhaps the first genuine trompe l'oeil, at least since antiquity,127 

The history of ellipses makes an interesting microcosm of the thesis of this 

paper. Ellipses are, in theory, fully treated in Apollonius' Conics, but as that 

work is almost impossible to read, they had only a marginal role in geometry 

in the tradition of Euclid's Elements.!28 They have little part in practical 

geometry either, which is based on straight rules and strings, and compasses. 

But in ancient painting, it was well-known that a shield or wheel seen side-on 

should be drawn as an ellipse, and theorem 36 of Euclid's Optics says that a 

wheel is seen sometimes as a circle, sometimes as an ellipse.129 The ellipse 

belongs more to 'perspective'130 than to formal geometry until its scientific 

apotheosis in Kepler's planetary theory. The method of constructing an ellipse 

with a string stretched between two pins was mentioned by Anthemius of 

Tralles, the architect of Hagia Sophia, and investigated by Kepler. Kepler opens 

his New Astronomy with a lament that is hard to find suitably prepared readers, 
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as hardly anyone works through Apollonius, so that few can understand 

diagrams well. l3l 

The most obvious way in which Giotto's and Duccio's 'perspective' differs 

from the real thing, as in the fifteenth-century masters, is that the earlier 

painters are not prepared to make the lines orthogonal to the picture plane 

long, with the result that they cannot have their perspective scheme covering 

the whole painting. They do not attempt real depth for the whole scene: there 

is, for example, always a blank wall preventing the rafters from continuing into 

the picture away from the viewer, covering the vanishing point (the 

'perspective fig-Ieaf'). 

One of the things necessary to make this step-arguably the main one, in 

view of the effort Alberti and his contemporaries make in explaining it-is a 

conscious, general method of foreshortening. Lines parallel to the picture plane 

must recede into the distance, with the distances between equally spaced real 

things (for example the edges of tiles) diminishing in the picture in geometrical 

proportion. A method of accomplishing this appears in Pietro Lorenzetti's Birth 

of the Virgin of 1342, which Kemp calls 'the tour de force of fourteenth

century perspective'. It uses simply similar triangles, in much the same way as 

Alberti later describes; the construction lines can be traced incised in the wall 

in some parts.132 Some of the painters' methods of geometrical construction on 

walls are described in Cennini's handbook of the late fourteenth century.133 

The step from a collection of special tricks to a method of organising a whole 

picture requires the addition of geometrical theory. The part played by 

theoretical geometry and optics in the invention of perspective is not as clear 

as it might be, because neither Brunelleschi's two original perspective panels, 

nor his method of constructing them, has survived. It has been argued with at 

least some show of reason that he did not know any rules.134 But the oldest 

relevant written evidence, the treatises of Alberti and Ghiberti, are fully based 

on geometrical theory. Book I of Alberti's On Painting is entirely an exposition 

of geometry, though punctuated by claims that he speaks 'as a painter', not as 

a mathematician. All that means is that his lines have a finite width, unlike the 

abstract widthless lines of the mathematicians. In fact, he goes so far as to 

retain barely relevant theory from Euclid, such as the axion that 'all right 

angles are equal'.135 The point is to reason about what to draw in a painting: 
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Now, since we have said that the picture is a cross-section of the pyramid we 

ought to investigate what importance this cross-section has for us. Since we 

have these knowns, we now have new principles with which to reason about 

the plane from which we have said the pyramid issues.136 

What the reader is supposed to reason with is, in effect, an imagined three

dimensional diagram, containing a pyramid of visual rays and a cross-section of 

it, the plane of the painting. There follows a set of recipes on what lines to draw 

on the picture plane. Alberti promises that he possesses demonstrations of the 

recipes from reasoning about the visual pyramid, but omits them 'for the sake 

of brevity'.137 The connection of early perspective with optical theory is even 

clearer in Ghiberti's Third Commentary, which is a series of extracts from the 

optical writings, especially Alhazen.138 Though Ghiberti did not write the 

Commentary until the 1450s, when he was old, he claims to have studied optics 

when young and still learning the art of painting. 139 

The various Renaissance treatises on perspective provide the best examples 

of genuinely applied mathematics of the time. They are highly theoretical, but 

universally recognised as successful in practice. 

An interesting application of optical reasoning in the Scientific Revolution 

itself is Galileo's reinvention of the telescope. He claims that the Dutch 

discovered it by accident, but that he, 'incited by the news mentioned above, 

discovered the same by means of reasoning'; that is, by reasoning as to what 

combination of convex and concave glasses would give a clear magnified 

image.14o 

1.15 The Mathematical Revolution 

The thematic survey of geometrical reasoning just undertaken has perhaps 

obscured the broad chronological outlines of the Mathematical Revolution 

which preceded the Scientific one. Let us briefly review the chronology, 

emphasising how much was geometry, in the broad sense. To begin with, the 

ancient inheritance was extremely geometrical: the three most successful 

ancient sciences (not counting geometry itself) were astronomy, optics and statics, 

which consisted of great super-structures of geometry anchored in only few 

and easily acquired observations.141 For later developments, a table (fig. 9) will 

provide the most perspicuous representation, as time is linear. Something that 
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PURE GEOMETRY OPTICS ASTRONOMY OTHER SPATIAL NUMERICAL 

1100 Latin Euclid, Music with staff 

Archimedes Compass, quadrant 

1200 Euclid in cuniculum Perspeclives Alfonsine tables Villard's sketchbook Arabic numerals 

Fibonacci's gcometty Glass minors Sacrobosco's Sphere Cathedral plans Fibonacci 

Jordanus on weights 

1300 Theodoric on rainbow Wallingford Portolan charts Double-entty 

Spectacles Chaucer's Astrolabe Oresme on graphs Insurance 

Giotto's "perspective" Merton "intension of fonns" Abacus schools 

Anatomical diagrams Dice calculations 

Vigevano: machine drawings 

Compound interest tables 

1400 Rules of perspective Leonardo's sketches 

Henry "the Navigator" 

1500 Italian, English Euclids Telescope Copernicus DUrer's illustrations Solution of cubic 

Brahe V esalius' ilIusttations Decimals 

Mercator's projection Viete's algebra 

Slevin's "wreath of spheres" Logarit\uns 

Figure 9. Table of developments. 

is clearer from the table than it would be from a mass of text is the clustering 

of applications of mathematics in the fourteenth century. The Scientific 

Revolution thus inherited a tradition of applying mathematics already two 

hundred years old. In some sense, it did not inherit much else of use-there 

was, for example, no comparable tradition of controlled experimentation. A 

glance at Grant's Source Book of Medieval Science shows that almost all 

medieval and Renaissance science is included in the above table, except for 

some depressing nonsense on matters like alchemy and herbs. 

A snapshot of the state of mathematics after the Mathematical Revolution, 

but at the very beginning of the Scientific Revolution, as usually calculated, can 

be found in Billingsley's Euclid, the first English translation, of 1570 (a book 

otherwise notable for its pop-up figures of 3D geometry142). It has a preface by 

John Dee, 'specifying the chief Mathematicall Sciences, what they are, and 

wherunto commodious'. He arranges in a tree the two principal sciences, 

arithmetic and geometry, and some thirty derivative sciences. There are 'vulgar' 
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arithmetic and 'vulgar' geometry, the latter divided into eleven sciences, 

concerned with surveying, in one, two and three dimensions, on both land and 

sea. Then there are nineteen miscellaneous sciences, most with a distinctly 

geometrical aspect. Of these, perspective, astronomy, music, cosmography, 

astrology, statics and navigation are clear enough, but the remaining eleven 

have names now unrecognisable. :Anthropographie' is about the proportions in 

the human body; 'Zographie' is something like the modern theory of rendering 

in computer graphics; 'Trochilike' studies circular motions, simple and 

compound; 'Hydragogie' 'demonstrateth the possible leading of Water by 

Natures Law, and by artificiall helpe, from any head' and 'Pneumatithmie' 

'demonstrateth by close hollow Geometrical figures (Regular and Irregular) 

the straunge properties (in motion or stay) or the Water, Ayre, Smoke and 

Fire'. Some of these are plainly more commodious unto nascent capitalism 

than others, but the total picture is of a suite of mathematical, mostly 

geometrical, sciences, in common and successful use, with investors queuing. 143 

One of the mathematical sciences that certainly did attract serious money was 

navigation. l 44 Military engineering was another steady earner. 145 Renaissance 

universities, for all the obloquy heaped on them, were also reliable sources of 

money for research into geometry, and especially astronomy (though not for 

algebra or non-medical experimental research).146 

The evidence is, then, that when all due allowance has been made for the 

religious, hermetic, scholastic, military, astrological, ancient, alchemical and 

mercantile roots of the Scientific Revolution, the true compost in which those 

roots struck and grew strong was mathematics, and especially applied geometry. 

2. THE VIEW FROM THE INSIDE 

'One must consider the affection which is produced in the sou~ and in that part of 

the body which contains the soul-the affection, the lasting state of which we call 

memory-as a kind of picture ': Aristotle147 

'There are no such things as mental pictures': Ryle148 

We live at the end of a period which, perhaps more than any other, has hidden 

the pictorial life of the mind from intellectual view. Philosophy in the mid-
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century regarded 'sense data' as fictions, arrived at by (bad) inference and 

suitable for disposal as an undergraduate exercise.149 It was seriously maintained 

that all inner representation was propositionaJ.l50 (That is philosophy in the 

English-speaking tradition, continental philosophy being, if anything, even 

more word-oriented.) Psychology in the behaviourist decades was not much 

concerned with any inner life, pictorial or not, and 'imagery' tended to be 

associated with the Gestalt school, labelled 'unscientific'. Introspection, despite 

being reproducible with reasonable consistency, was ruled out as a source of 

experimental data. Frege, Russell and Hilbert, followed by Turing and the 

computer scientists and Artificial Intelligentsia, imposed on the learned world 

a view of inference as the manipUlation of uninterpreted symbols according to 

formal rules. No room for pictures there. Even mathematics, once centred on 

geometry, maintained hardly any formal role for pictures, holding that 

geometrical intuition is unreliable. Galton was surprised to find even at the end 

of the nineteenth century that scientists were claiming to think in symbols, not 

images, and supposed that science had atrophied the imagination.151 It is true 

that in the physical sciences there has been a kind of tradition of remarks on the 

need for mental geometrical intuition, but it is one of those 'traditions' that 

presents itself as a novelty every time it is reinvented.152 At about the time Ryle 

was denying the reality of mental pictures, Einstein was saying: 

The words or the language, as they are written or spoken, do not seem to play 

any role in my mechanism of thought. The psychical entities which seem to 

serve as elements in thought are certain signs and more or less clear images 

which can be 'voluntarily' reproduced and combined .. . The above mentioned 

elements are, in my case, of visual and some of muscular type. Conventional 

words or other signs have to be sought for laboriously only in a secondary 

stage, when the mentioned associative play is sufficiently established and can 

be reproduced at will. 153 

Generally, though, the image was left to intellectual marginals: diagrammatic 

inference to the engineers, with their slide rules, flow charts and circuit 

diagrams, and mental images to the Freudians and their dream fantasies. 

The result is that the late-millennial intellectual has several layers of defence 

against accepting the medieval unselfconsciousness about using the imagination 
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as a tool for doing science. First, we doubt the existence of the inner life at all. 

Or, we regard it as reached only by a chain of inference, not open to view. Or, 

we regard it as vague, and primarily emotional, not precise and scientific. Or, 

we presume the 'stream of consciousness', if there is one, is a flow of words, the 

preserve of psychiatrists and novelists. Or, if we do take the visual side of the 

imagination seriously, we think of it as something like a muse, 'inspiring' artists 

and poets in a manner too sublime to analyse. We have every excuse for 

misunderstanding. 

At the leading edge of science, this picture is no longer true. Two 

developments especially have made the difference: psychological experiments 

on mental images, and scientific visualisation by computer. The psychological 

work is especially relevant. Around 1970, Shepard and Metzler found that the 

time subjects took to decide whether one 3D figure could be rotated to fit in the 

same space as another was proportional to the angle required, suggesting that 

the subjects were actually performing the rotation in some kind of mental 

space. 154 Since then, similar techniques have been used to investigate how 

subjects imagine themselves in an environment while mentally searching it,155 

and how they construct a mental model from a description of a scene.156 It is 

found generally that reasoning about space is done by means of mental models, 

not via chains of propositions.157 In view of what was said above about the 

importance of reasoning in three dimensions, it is significant that 3D imagining 

is found to be remarkably powerful: one can, for example, mentally scan across 

an imagined space from any viewpoint: the space is mentally encoded in 3D, 

but can be 'displayed' from any viewpoint in 2D.158 

The other development that has given images scientific respectability is the 

very recent availability of computer-intensive visualisation tools, used for such 

purposes as understanding complex fluid flows. 159 The images are not 

themselves mental, but of course the point of computer visualisation is to create 

pictures that lead to understanding, that is, cause suitable mental representations. 

To some extent, the two themes are connected by research in education, which 

finds that mental visualisation is a necessary skill for learning in the sciences.160 

Anyone with some sympathy for the idea that ontogeny recapitulates phylogeny 

will be ready to look for some parallel process in the history of science. 

These developments are yet to flow through into general intellectual 

consciousness, but progress has been sufficient to assert, at least, that Aristotle 
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was more right than Ryle, and that there are no longer any barriers in principle 

to taking literally what the medievals were saying about mental images. 

These studies also encourage us to add some further subtleties to the photo/ 

line-drawing/diagram distinction drawn at the beginning of the paper. In order 

to infer something, whether from a diagram or from propositions, those entities 

must be represented internally, in the mind, soul or brain. In recent years some 

understanding has been reached of how this is done: put crudely, there is 

something like a picture inside; a kind of mental image which one can inspect. 

The image is, however, much more like a diagram than a photograph, in that it 

leaves out some things, while emphasising and labelling others.161 So it is not 

quite correct to distinguish sharply between an image and a 'model' or 

metaphor. 162 Because the image is labelled, it contains information about, and 

can replicate (some of) the structure of its object; and hence support inference 

about the object. Speaking in an older idiom, Albertus Magnus says that 

memory is the storehouse not of images alone, but also of the intentiones drawn 

from them by the estimative power, with the image including the intentio within 

itself.163 (Conversely, of course, from a purely physical point of view, photos, line 

drawings and diagrams are all just marks on paper. So to distinguish even them 

one must at least implicitly refer to the internal representation that they cause.) 

2.1 The History Of Mental Images: Phantasms, Memory Theatres And Visions 

We are now ready to see with new eyes the image-laden, text-poor world of the 

late medieval at his devotions. It is impossible not to speculate on the richness 

of the inner imaginal life of those fortunate to have viewed Fra Angelico or 

Giotto when newly painted. Fortunately, it is not necessary to be content with 

speculation, since those who did master text (surely a sample biased the wrong 

way) are eager to tell us in detail all about what it looked like inside. 

The ancient legacy of discussion on mental images was moderately 

rich-richer, certainly, that the available ancient store of actual diagrams, of 

perspective pictures, or of psychological writings generally. 'There is no 

thinking without an image'l64 is one of Aristotle's most quoted sayings, and his 

discussion of imagination posits physical entities like pictures in the sensory 

apparatus.165 Talk of 'phantasms', or mental images, is common currency in 

Stoic and Neoplatonist discussion of perception.166 If Augustine is not the 

discoverer of the inner life here to the same extent as he is with autobiography, 
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he certainly talked enthusiastically of inner images. He writes (the portion in 

italics is quoted in Aquinas' Summa Theologiae): 

The bodily sight cannot exist without the spiritual sight, because at the very 

moment when the bodily sense is touched by a body, there is made in the soul 

a something which is not this but is like it. If this were not produced, there 

would be no sense able to perceive those things which lie outside. For the body 

does not sense, but the soul through the body, which it uses as a messenger for 

reproducing within itself what is announced from without. 167 

He applies the expression 'the mind's eye' (oculus mentis) to a kind of 

intellectual vision. 168 The 'phantasm' occurs in the famous passage of Augustine 

where he anticipates Descartes' Cogito, ergo sum: 

But without any delusive representations of dreams and phantasms, I am most 

certain that I am ... For if I am deceived, I am.169 

The western scholastics, following Avicenna, produced a very elaborate, and 

widely-known, theory of the 'inward wits'. It involved five internal faculties, 

including the 'imagination', which stored images, and the 'phantasy' (English 

'fancy'), which recombined them.170 There was also a baroque population of 

entities like the impressed and expressed species in which the various faculties 

dealt, but the most crucial one was still the 'phantasm'. The startlingly physical 

view of mental images that the scholastics took is preserved in later discussions 

of the effect of a mother's imagination on the foetus: 

Now from many instances it is clear that the imagination of the parents has an 

extraordinary power to modify and inflect the tempering and the formative 

power. So, if it is extremely strong and intent, sometimes the figure of what is 

thought, even if quite alien, is induced in the foetus. Thus it sometimes 

happens that a black child is born of two white parents, because the mother 

was turning over in her imagination an Ethiopian which she had depicted to 

herself in the bedchamber ... Given that the imagination can exercise such 

force, it is difficult to explain it. One opinion is this: The mother apprehends 

with intent thought, say, the form of an Ethiopian, whose image she imprints 

on the spirits which are carried back into the passages of the brain. The spirits 

then act as a vehicle to carry the image to the place of conception, where it 
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imbues the material that the foetus is made from with the black colour that 

later appears. It so modifies the formative power inherent in the semen that 

what should make the foetus like the parents now makes it like the image, and 

so what happens is that the foetus degenerates into the form of an 

Ethiopian.17l 

(Before laughing about quaint views on the efficacy of mental images, one 

should perhaps recall that imagining walking increases the heart-rate. 172) 
There is a dark side to regarding images as real things, which the soul 

somehow 'has' or 'receives'. It is that one can start brooding over tlieu' source, 

and suspecting their veracity. From Augustine again: 

Whatever we perceive by the body, even when not present to the senses, may 

be present to the imagination, as when we are asleep or angry: yet we cannot 

discern by the senses, whether what we perceive be the sensible object, or the 

deceptive image thereof.173 

One will be particularly worried if one believes in dark forces whose mission is 

to deceive, like devils or witches. 

Both in bodily sights and the images of bodies which appear in the spirit, good 

spirits instruct and bad ones deceive.174 

The result of these speculations in the fevered imaginations of the witch 

inquisitors makes an alarming and depressing story, an illuminating case study 

on the effects to which mistakes in abstract thinking can lead.175 (Though on the 

other side the optical writer Witelo wrote a book On the Nature of Demons, 

attributing them to optical mistakes in bad light.176
) Less harmful, but in 

principle much the same rationally, were beliefs in the efficacy of the 

imagination in Renaissance writings on magic and 'fascination'.177 

After that, the visual imagery (sic) in Shakespeare's sonnets reads less as the 

excesses of the poetical imagination (sic) than as sober science: 

Mine eye hath played the painter and hath stell'd 

Thy beauty's form in table of my heart 

My body is the frame wherin 'tis held 
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And perspective it is best painter's art. 

For through the painter must you see his skill 

To find where your true image pictured lies, 

Which in my bosom's shop is hanging still 

Since I left you mine eye is in my mind 

And that which governs me to go about 

Doth part his function and is partly blind, 

Seems seeing, but effectually is out, 

For it no form delivers to the heart 

Of bird, of flower, or shape, which it doth latch: 

Of his quick object hath the mind no part 

Nor his own vision holds what it doth catch. 

For some more Shakespearean science: 

Sonnet 24 

Sonnet 113178 

A foolish extravagant spirit, full of forms, figures, shapes, objects, ideas, 

apprehensions, motions, revolutions. These are begat in the ventricle of 

memory ... 179 

The references here to perspective and the theory of the internal senses are, it 

will be observed, not just decoration. They concentrate on perception as 

inference, with the possibility of that inference being faulty. 

Conversely, talk about the 'imagination' of poets still meant something 

literal. Philip Sidney'S Apology for Poetry explains that poetry is better than 

both philosophy and history, since the pictures it induces in the imagination 

have more force than the dry abstractions of philosophy, while still having a 

generality that the particular facts of history lack. He means by the 

'imagination', as usual, a faculty of visualising by recombining images.180 

Sidney occupies a place towards the end of a long tradition of connecting the 

activity of the poet with the exercise of the (literal) faculty of imagination. lSI 

So much for the vivid content of the medieval and Renaissance imagination. 

What was its purpose? In the first instance, it was for memory. Before memory 

was exported from the mind to written records, and the art of memory decayed, 

the geometrical resources of the visual imagination were used as a way of 

ordering any complicated body of ideas that had to be committed to memory, 
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such as a long speech. The invention of the art was ascribed to Simoni des of 

Ceos, who, leaving a banquet just before the dining hall collapsed, was able to 

identify the mangled bodies of the diners from the places where they lay; for he 

found he possessed a mental image of where the diners had been sitting.182 

From the start, a mental image was recognised as a structured entity, in which 

the relationship between the parts was useful for drawing conclusions. 

Simoni des' idea was taken up in the later antique and medieval 'art of memory' 

that was the subject of Yates' famous book.183 Cicero explains: 

The most complete pictures are formed in our minds of the things that have 

been conveyed to them and imprinted on them by the senses, but the keenest 

of all our senses is the sense of sight, and consequently perceptions received 

by the ears or by reflexion can be most easily retained if they are also conveyed 

to our minds by the mediation of the eyes. l84 

'Keenest' is perhaps not quite right; smells, for example, are 'keen', and one 

can recognise remarkable numbers of them. But the 'space' of smells does not 

seem to have a natural structure, whereas it is the geometry of images that 

makes them so structured, and hence useful for representing the structure of 

anything else. This is how the actual art works, as explained classically in the 

Rhetoric to Herennius: the orator imagines a building, with rooms, arches, 

statues. He places in them objects that will stimulate recall of the matter to be 

remembered. A ram with huge testicles, for example, will suggest testimony. 

Then while delivering the speech, he mentally visits the places in the correct 

order, thus recalling the speech. The medievals revived the art, applying it to the 

many texts that were memorised by all educated people, notably the Psalms. 

The illuminated capitals and marginal grotesques in medieval books are not just 

decoration. They are to enhance the visual memory of the page.185 

Memory was of course closely connected with education, especially training 

'by rote'. One of the architects of medieval pedagogy was Hugh of Saint 

Victor, inventor of possibly the largest diagram of the middle ages. It is his 

Mystical Ark of Noah, intended to organise the whole of knowledge and allow 

its recall. None of the surviving manuscripts attempt to picture it, as it is 

obviously too big to draw, and only fits in the imagination. It has all the 

patriarchs, popes and so on, also a map of the world, the vices, virtues, seasons 
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and so on and on. It is organised with ladders, wheels and trees. Everything is 

in it.186 

By what one may call the Cutty Sark phenomenon, the art of memory 

reached its most perfect form when it was already superseded, after the 

invention of printing. Father Ricci amazed the Chinese with this piece of 

Western technology, as with many others, using a vast memory theatre to 

achieve recall of Chinese characters.187 Even more remarkable were the vast 

museum pieces of Giulio Camillo and Robert Fludd. Camillo's description of 

what he is doing is too overgrown with Hermetic and occult accretions to 

understand, but it is interesting in that it was actually constructed, in wood 

(though on what scale is now impossible to tell). It also attracted a brief 

description by a not entirely sympathetic visitor, who found in the idea of it 

something still of note: 

The work is of wood, marked with many images, and full of little boxes; 

there are various orders and grades in it. He gives a place to each individual 

figure and ornament, and he showed me such a mass of papers that .. . He 

calls this theatre of his by many names, saying now that it is a built or 

constructed mind or soul, and now that it is a windowed one. He pretends 

that all things that the human mind can conceive and which we cannot see 

with the corporeal eye, after being collected together by diligent meditation 

may be expressed by certain corporeal signs in such a way that the beholder 

may at once perceive with his eyes everything that is otherwise hidden in the 

depths of the human mind. And it is because of this corporeal looking that he 

calls it a theatre.lBB 

A mind realised in hardware, with all human knowledge in it, arranged in a 

natural way, hence content-addressable and immediately accessible! It is a 

dream yet to be realised by the AI and database communities. The modern 

equivalent is Lenat's CYC project, which aims to achieve artificial intelligence 

by having teams of typists enter all commonsense knowledge;189 so far it is in the 

same state as Camillo's theatre appeared to his patron, the king of France: 

money goes in, and promises come back out. But one effect of the CYC project 

has been to make clear that AI confirms what the medievals presumed: to make 

sense of experience, one must know (that is, remember) a lot. 
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The unique aspect of Camillo's plan is that the organisation is topographic, 

in the most literal possible sense. The reader can no doubt visualise the place in 

his local library where the books on his favourite subject are kept, and finds 

unsettling the librarians' periodic rearrangements. 

The second use of mental images, perhaps the most widely applied in 

medieval and Renaissance times, was to encourage meditation during prayer. 

The majority of mental pictures, like the majority of physical pictures, were 

painted to assist the soul. The medieval soul is not, according to itself, full of 

voices, but of forms. If modern introspection reveals neuroses and a stream of 

words, the medieval tended rather to find sins and visions. If the soul of a 

medieval was touched by God, it did not experience a voice from God so much 

as a 'vision'. (Some of the visions are very diagrammatic, too, especially those of 

Joachim of Fiori and Hildegard of Bingen, regarded as having considerable 

meaning. l90) The imagination was made much of by the School of Saint Victor, 

in the twelfth century.191 Visions may be for saints, but 

anyone can enter into the interior of his conscience and meditate in his 

mind's eye on Christ's wound, so that he conforms to Christ's sufferings.192 

Each of Saint Ignatius of Loyola's Spiritual Exercises begins with a 'prelude' 

along the lines of: 

The second prelude is to form a mental image of the scene and to see in my 

imagination the road from Nazareth to Bethlehem. I will consider its length 

and breadth, and whether it is level or winding through valleys and over 

hills. 193 

Teresa of Avila's Interior Castle is more like a picture gallery than a library; 

though she is concerned to distinguish the true visions that adorn it from mere 

works of the imagination.194 

The typical late medieval, then, was trained to exercise his imagination from 

his first youth. 

2.2. The Imagination as a Tool of Scientific Visualisation 

It has been argued several times above that various scientific thinkers must 

have been reasoning spatially in their imagination, particularly in cases like 
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astronomy and perspective that involve heavy use of three dimensions. This 

ought to be obvious, but the ludicrous misunderstandings possible are illustrated 

by C.S. Lewis. Lewis would be expected to understand mental images, since, 

according to his student Ken Tynan, he was usually able to quote from a page, 

given the bay number in his room, the shelf number, how many books from the 

left, and the page number. Yet he comments on Albert the Great: 

I do not understand why boni imaginativi should tend, as he says they do, to 

be good at mathematics. Can this mean that paper was too precious to be 

wasted and you geometrised, as far as possible, with figures merely held 

before the mind's eye? But I doubt it; there was always sand.195 

No-one can reason in the sand, since his brain is not there. You might as well 

say that someone who reads music needs no internal sense of rhythm, on the 

grounds that the notes are all there on the page. Or that a reader of words does 

not need to know their meanings, since the meanings are all in the dictionary. 

One can only reason with internal representations. 

We now come to the evidence for saying that those who reasoned with the 

imagination were in general consciously aware of doing so, and saw the 

imagination as a tool of scientific visualisation. 

Plato sometimes uses mental diagrams to represent abstract relations of 

proportion,196 and Aristotle has the memory forming a kind of scale model of 

magnitudes, both spatial and temporal,197 but generally the earliest writers do 

not much emphasise the role of the imagination in mathematics. Proclus, 

however, in the only developed ancient philosophy of mathematics, holds that 

the imagination is where geometry is done. For the usual Platonist reasons, he 

thinks physical diagrams are unsuitable: 'the circle in sensible things is inferior 

in precision, infected with straightness, and falls short of the purity of 

immaterial circles'. On the other hand, the pure understanding cannot do 

geometry either, since its concepts are simple, or 'wrapped up', and there is 

only one of each kind, so that it cannot deal with circles of different sizes. So 

the understanding projects images 'distinctly and individually on the screen of 

the imagination', which provides a kind of 'intelligible matter' for them.19B The 

passage is an influential one. Kepler is enthusiastic,199 while A. Piccolomini 

claims that Proclus' placing of the mathematicals in the imagination explains 

the certainty of mathematics.20o 
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Alhazen remarks that visual rays are imaginary (lineae imaginabiles in the 

Latin);201 Clyne ymagined' is also Chaucer's phrase for meridians of longitude 

and the ec1iptic.202 The point that a diagram is a device to create a three

dimensional model in the imagination is made by a thirteenth-century Islamic 

writer: 

In drawing ... I have not aimed for completeness. My purpose was to present 

an arrangement so it can be understood in the whole and in detail. One 

realizes that there is obscurity in the representation of solid bodies, but in the 

imagination one can fit one thing to another, view it from any angle, dissect 

it, and thus assemble it step by step. All the drawings that I have made are 

simple, so that they give a clear picture.203 

Hence, the fact that medieval scientific and technological diagrams are 

sometimes hard to interpret for us does not show that those diagrams failed to 

support good scientific inference. Living in a post-perspective world, we have 
it easy.204 

There may be a case for connecting later medieval reasonings in the 

imagination with the use in philosophy of cases secundum imaginationem, 

which can only exist through God's absolute power.205 The work on 'physics' 

of the 'Merton School', it has been pointed out, is purely ' in the head': it 

considers only imaginary cases, and confronts real experience only via 'well

known' (that is, remembered) facts such as that a spinning top occupies the 

same place.206 Heytesbury says at one point that he is proceeding only 

secundum imaginationem: cases like acceleration to infinity and diminution to 

zero quantity are not physically possible, but are imaginable and should be 

considered.207 It has been maintained that this procedure separates the 

medieval scientific methodology from the modern, experimental one. It could 

just as well be maintained that medieval 'physics ' is really mathematics. In the 

modern theory of differential equations, one will certainly want to consider 

various limiting cases, and for the same reasons as the medievals. 

Still, the imaginative and the philosophical methods of reasoning are not 

entirely compatible. Henry of Ghent, about 1300, calls some opponents 

those of whom the Commentator says that in them the imaginative virtue 

dominates over the cognitive virtue, and so, he says, they do not believe 
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demonstrations unless the imagination accompanies them, for they cannot 

believe that there is neither plenum nor vacuum nor time outside the world 

... mathematical imaginations and what is outside the heaven seem to them 

infinite ... Therefore such people are melancholy and make the best 

mathematicians, but the worst metaphysicians, because they cannot extend 

their understanding beyond site and magnitude.208 

It will come as no surprise to find Oresme the most explicit on reasoning in the 

imagination. He thought of his graphs not, in the first instance, as on paper, but 

in the imagination: 

Every measurable thing except numbers is imagined in the manner of 

continuous quantity. Therefore, for the mensuration of such a thing, it is 

necessary that points, lines and surfaces, or their properties, be imagined. For 

in them [i.e. the geometrical entities], as the Philosopher has it, measure or 

ratio is initially found, while in other things it is recognized by similarity as 

they are being referred by the intellect to them [i.e., to geometrical entities]. 

Although indivisible points, or lines, are non-existent, still it is necessary to 

feign them mathematically for the measures of things and for the 

understanding of their ratios. Therefore every intensity which can be acquired 

successively ought to be imagined by a straight line perpendicularly erected 

on some point of the space or subject of the intensible thing, e.g., a quality. 

For whatever ratio is found to exist between intensity and intensity, in relating 

intensities of the same kind, a similar ratio is found to exist between line and 

line, and vice versa.209 

The imagination is better than paper for graphs in higher dimensions: 

By a like imagination the quality of a surface is imagined as a kind of body, 

whose longitude and latitude is the extent of the surface and whose depth is 

the intensity of the quality. 

So what about the quality of a three-dimensional object? Do we need a fourth 

dimension to graph its intensity? No, 

because while a flowing point is imagined as causing a line, a line a surface, 

and a surface a body, it is not necessary, if a body is imagined flowing, that it 

causes a fourth type of quantity, but only a body.210 
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This can only mean that the flow in the imagination is what represents the 

fourth dimension. Oresme himself describes the forerunners of his idea, in an 

effort to excuse himself from the vice of novelty: 

It is sought whether a quality is to be imagined as a surface. 

It is argued on the negative ... 

I respond that the statement is true and could be confirmed by the writers on 

perspective like Witelo and Lincoln [Grosseteste], who in this manner imagine 

the intensity of light, and by Aristotle, who in the fourth [book] of the Physics 

imagines time by means of a line, and by the Commentator [Campanus] in 

the fifth [book] of this [commentary on Euclid's Elements], where he holds, 

in expounding ratios, that everything having the nature of a continuum can 

be imagined as a line, surface or body.2l1 

The originals212 do use geometrical magnitudes to represent non-geometrical 

magnitudes, but only the optical writers speak of anything 'imaginary'. 

Aristotle had maintained that the form of a work of art, or a building, exists 

beforehand in the soul of the artist.213 According to Alberti, architecture does 

not happen on the building site, or even on paper, but in the imagination: 

It is quite possible to project whole forms in the mind without recourse to the 

material, by designating and determining a fixed orientation and conjunction 

for the various lines and angles. Since that is the case, let lineaments be the 

precise and correct outline, conceived in the mind, made up of lines and 

angles, and perfected in the learned intellect and imagination. 214 

It is clear that the role of the imagination in both pure and applied 

mathematical contexts was taken for granted by the time of the Scientific 

Revolution. 

2.3 Calileo's Thought Experiments 

It has been a source of embarrassment for many historians of science that 

Galileo, when he is supposed to be founding modern science by performing 

experiments, is actually caught doing his experiments in thought. Examples are 

common; let us take a crucial one in his early work, On Motion: 
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... a larger stone does not fall more swiftly than a smaller. Those who are 

surprised by this conclusion will also be surprised by the fact that a very large 

piece of wood can float on water, no less than a small piece. For the 

reasoning is the same. Thus, if we imagine (si mente conciperemus) that the 

water on which a large piece of wood and a small piece of the same wood are 

afloat, is gradually made successively lighter, so that finally the water 

becomes lighter than the wood, and both pieces slowly begin to sink, who 

could every say that the large piece would sink first or more swiftly than the 

small piece? 

Again, if we imagine, for example, a large piece of wax floating on water, 

and we mix this wax either with sand or some other heavier substances ... 

I argue as follows in proving that bodies of the same material but of 

unequal volume move with the same speed. Suppose there are two bodies of 

the same material, the larger a, and the smaller b, and suppose, if it is 

possible, as asserted by our opponent, that a moves more swiftly than b. We 

have, then, two bodies of which one moves more swiftly. Therefore, 

according to our assumption, the combination of the two bodies will move 

more slowly than that part which by itself moved more swiftly than the other. 

If, then, a and b are combined, the combination will move more slowly than 

a alone. But the combination of a and b is larger than a is alone. Therefore, 

contrary to the assertion of our opponents, the larger body will move more 

slowly than the smaller.215 

Where does the 'combination' of a and b take place? According to Aquinas, it 

is the 'phantasy or imagination' that is the organ of 'combining and dividing'.216 

Galileo's 'gradually' and 'successively' in this passage are significant: like 

Oresme with his 'flowing point', he regards the imagination as a (more or less) 

continuous medium. By movement through that continuous medium, he can 

perform his characteristic transformation to a limiting, ideal case, which is still 

physically meaningful, but inaccessible to real experiment.217 Where the 

medievals used imaginary cases, like motion in the void, largely for critical 

purposes, Galileo uses them constructively, regarding them as simple versions 

of reality, to which complex real cases approximate.218 

And is Galileo evasive about the imaginary nature of his experiments? 

Modest? Repentant? No, he is brazen: 



98 JAMES FRANKLIN 

SIMPLICIO: So you have not made a hundred tests, or even one? 

SALVIATI: Without experiment, I am sure that the effect will happen as I tell 

you, because it must happen that way.219 

As Kuhn remarks, 'Surely he did experiments, but he is even more noteworthy 

as the man who brought the medieval thought-experimental tradition to its 
highest form'.22o 

Experimenting in the imagination is a lot cheaper than in the lab, of course, 

and faster, like modern simulations by computer, but like them is exposed to 

the objection that it will not tell you how the real world is, since in thought, 

presumably, anything can happen. 

This is the nub of the matter. Imagination, used as a tool for scientific 

reasoning by an expert like Galileo, is not infinitely plastic, and hence divorced 

from reality, but incorporates a lot of structure, parts of which restrict what can 

happen in other parts. This is why actual experiments on motion on an inclined 

plane can be relevant to what would happen with vertical motion in a vacuum, 

and the imagination can mediate between the two. Feynman, a modern physicist 

who was champion of imagination over mathematical formalism, explains that 

the point of the scientific imagination is the constraints it incorporates: 

The whole question of imagination in science is often misunderstood by 

people in other disciplines. They overlook the fact that whatever we are 

allowed to imagine in science must be consistent with everything else we 

know .. . We can't allow ourselves to seriously imagine things which are 

obviously in contradiction to the known laws of nature. And so our kind of 

imagination is quite a difficult game.22J 

The question is, how does the imagination acquire that structure that mimics 

the world, and which allows it to be used as a bridge between real experiments 

and what would happen in counterfactual circumstances? One way or another, 

the imagination must be structured by the flux of ordinary experience. An 

indication of how it happens can be had by recalling Steven's Wreath of 

Spheres diagram, which is a thought experiment not unlike Galileo's. The fact 

that the spheres do not revolve in either direction, but hang in equilibrium, is 

a deliverance of the imagination, but is not a logical truth. It must, therefore, 

be a distillation of experience. It follows that the process of using the 
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imagination to learn the results of thought experiments is a kind of 

reminiscence. That is what Aquinas says: the 'phantasy or imagination' is for 

the 'retention and conservation' of forms.222 More to the point, it is what 

Galileo says. Salviati is encouraging Simplicio to realise that a stone released 

from a sling moves off tangentially: 

SALVIATI: The unraveling depends upon some data well known and 

believed by you just as much as by me, but because they do not strike you, I 

shall cause you to resolve the objection by merely recalling them. 

SIMPLICIO: I have frequently studied your manner of arguing, which gives 

me the impression that you lean toward Plato's opinion that nostrum scire sit 

quoddam reminisci [our knowing is a kind of reminiscence] ... 

SALVIATI: Well, then, what is its motion? 

SIMPLICIO: Let me think a moment here, for I have not formed a picture 

of it in my mind. 

SALVIATI: Listen to that, Sagredo; here is the quoddam reminisci in action, 

sure enough. Well, Simplicia, you are thinking a long time. 

SIMPLICIO: So far as I can see, the motion received on leaving the notch 

can only be along a straight line .. . 223 

Two other arguments in the Dialogue involve Socratic questioning of 

Simplicio's 'memory'; they are both purely geometric arguments. In one of 

them, Simplicio is gradually forced to draw a diagram of the Copernican 

universe, led by purely geometrical considerations.224 

Let us separate two questions that may occur on reading Galileo. Can one 

get a reasonably consistent answer by quizzing people's imagination on, for 

example, what happens when a body whirled on a string is released? And if so, 

is the answer the correct one, as Galileo suggests? Modern psychology has 

investigated and the answers are respectively 'yes' and 'sometimes'. Consistent 

patterns of expectation about motion are found on eliciting subjects' 'intuitive 

physics' or 'naive physics' by asking them to imagine what motion would occur 

in various circumstances. Some subjects give the correct answers, but a high 

proportion, even those educated in physics, persist in mistakes like expecting 

curved motion to continue in a curve when released.225 The authors of these 

studies claim that all the different medieval errors about the motion of 

projectiles and circular impetus can be found among present-day college 

students. This suggests, among other things, that the medievals were doing their 
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physics by the same kind of imaginative reasoning from experience as the 

psychologists are now studying. 

2.4 Epilogue: Philosophy Moves Inside 

The story would not be complete without at least a brief mention of the fact 

that a Philosophical Revolution occurred at the same time as the Scientific 

one, and that it too was driven by inference from mental images. 

Kant claimed to have effected a 'Copernican revolution ' in philosophy, 

meaning a fundamental change in viewpoint. He had in mind his claim that 

necessities, such as mathematical ones, previously thought to be in the world, 

were removed, in his philosophy, into the cognitive apparatus. Almost everyone 

has thought that such a reversal of point of view was indeed a revolution, but 

that its true Copernicus was Descartes. It is universally agreed that 'modern' 

philosophy began when the Cartesian cogito transferred the central question of 

philosophy from metaphysics to epistemology. It is the interior viewpoint that 

Descartes starts from which makes the problem of knowledge of the external 

world central. The point was argued at length by the modern Thomists, who 

saw Descartes as having diverted philosophy into several centuries of the 'way 

of ideas' and idealism by beginning with the certainty of mental images, and 

asking, 'How do we get out?'226 

Descartes certainly had a well-trained imagination, and its training was on 

geometry. In the Discourse, he says of his early studies in geometry: 

[Geometry] is so closely tied to the examination of figures that it cannot 

exercise the intellect without greatly tiring the imagination.227 

That is the opposite to the naive thought that imagining a few pictures should 

be easy, even if the logical reasoning is difficult. Not so difficult, though, that 

he will not recommend hard work with the imagination to others. Rule 14 of 

Rules for the Direction of the Mind is: 

The problem should be re-expressed in terms of the real extension of bodies 

and should be pictured in our imagination entirely by means of bare figures. 

Thus it will be perceived much more distinctly by our intellect.228 
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Among the figures suggested is a family tree. It is only with Rule 15 that 

permission is given for the diagrams to be drawn on paper. 

On the question of whether training in mathematics is for the purpose of 

learning imaginative modelling or logical reasoning, Descartes prefers the 

latter, but concedes it is possible to do mathematics imaginatively: 

The fact that there are some people who are clever at Mathematics but less 

successful in subjects like Physics, is not due to any defect in their powers of 

reasoning, but is the result of their having done Mathematics not by reasoning 

but by imagining-everything they have accomplished has been by means of 

imagination. Now, in Physics there is no place for imagination, and this 

explains their signal lack of success in the subject.229 

In the Meditations, Descartes examines the difference between the 

imagination and the 'pure understanding': 

When I imagine a triangle, for example, I do not merely understand that it is 

a figure bounded by three lines, but at the same time I also see the three lines 

with my mind's eye as if they were present before me; and this is what I call 

imagining. But if I want to think of a chiliagon, although I understand that it 

is a figure consisting of a thousand sides just as well as I understand the 

triangle to be a three-sided figure, I do not in the same way imagine the 

thousand sides or see them as if they were present before me .. . But suppose 

I am dealing with a pentagon: I can of course understand the figure of a 

pentagon, just as I can the figure of a chlliagon, without the help of the 

imagination; but I can also imagine a pentagon, by applying my mind's eye 

to its five sides and the area contained within them. And in doing this I notice 

quite clearly that imagination requires a peculiar effort of mind which is not 

required for understanding ... 230 

Elsewhere, Descartes claims that a heptagon or octagon can only be imagined 

with difficulty, but that was he, 'who is a fairly imaginative man and has trained 

his mind in this field for some time', can do it 'reasonably distinctly'. In the same 

place he emphasises how like imagination perception is, the only difference 

being that the images are imprinted in one case without and in the other case 

with external objects.231 Again, in defining his crucial term 'idea', Descartes 
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distinguishes an idea from an image in the imagination, but the difference is 

not large: 

Thus it is not only the images depicted in the imagination that I call 'ideas'. 

Indeed, in so far as these images are in the corporeal imagination, that is, are 

depicted in some part of the brain, I do not call them 'ideas' at all; I call 

them 'ideas' only in so far as they give form to the mind itself, when it is 

directed towards that part of the brain.232 

It is true that here, by agreeing with the scholastics that the imagination is 

'corporeal', Descartes distinguishes some internal pictures from what is really 

in the 'ego'.233 Nevertheless, it is clear that Descartes' 'idea' has a spatial 

content lacking in the modern 'concept', and that this survival of the medieval 

theory of the imagination is at the bottom of much of what moderns find bizarre 

in the seventeenth and eighteenth-century 'way of ideas' in philosophy.234 

And it is no accident that Descartes' 'representative' theory of perception is 

essentially the same as Aristotle's theory of memory. According to Aristotle, 

one can regard a memory image, like any picture, either simply as a painted 

thing or as a likeness.235 It is in the latter mode that memory is a kind of 

inference, from image to thing pictured. Indeed, Aristotle emphasises that 

recollecting is a sort of inference, hence, he thinks, peculiar to humans: 

For when a man is recollecting he infers that he has seen or heard or 

experienced something of the sort before, and the process is a kind of 

search.236 

Aristotle says that memory is inference from internal pictures. Descartes' 

Copernican revolution in philosophy is the claim that all perception is 

inference from internal pictures. 

School of Mathematics, University of New South Wales 
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