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Forms of Life of Mathematical Objects 
What could be more inert than mathematical objects?  Nothing distinguishes them from 
rocks and yet, if we examine them in their historical perspective, they don't actually seem 
to be as lifeless as they do at first.  Conceived as they are by humans, they offer a glimpse 
of the breath that brings them to life.  Caught in the web of a language, they cannot 
extricate themselves from the form that the tensive forces constraining them have given 
them.  While they do not serve a specific biological purpose, they are still, above all, 
possibilities of life, objects imbued with power.  Though they know neither pain nor 
laughter, their mode or style of existence endows them with a special form of life that 
structures the givenness, the matter of the other entities in which they participate.  
Because of this, by intervening in the framework of these entities, mathematical objects 
condition their form of space, enjoining the entities to submit to a structure that they 
have not chosen. 

Forms of Life and the Plane of Immanence 

The expression "forms of life" seems to appear for the first time in the texts of 
Wittgenstein, particularly in Philosophical Investigations where there are no less than five 
examples of it.  In one example, probably the most important, Wittgenstein places the 
form of life in the lineage of the theory of language: more exactly, in that theory's project 
of a general pragmatics.  He gives more credit to cultural practices and linguistic 
variations than to architectonic, logico-structural elements: "[T]o imagine a language 
means to imagine a form of life."1  Naming a thing is not just giving the name of a thing, 
hearing the sound of the word that designates it, but also understanding the forms of life 
that make this word designate what it is.  We do not come to understand what the word 
means merely through a distinction between an expression and a content or between a 
signifier and a signified.  Its meaning has a broader scope, involving lived experience; 
environmental, social and cultural practice; an intertext as much as an extratext; and a 
way of considering the designated thing that is shared by everyone.  For Wittgenstein, all 
of these intraworldly relations are just so many grammatical forms, and for Bruno Latour, 
regimes of enunciation.  Understanding the word "compassion," for example, supposes 
the understanding of what afflicts the other person, of the intentional forms the word 
contains, and of the forms of life that constitute and shape it.  The interpretation or the 
arrangement is not limited to Hjelmslev's distinction between content and expression or 
Saussure's between signifier and signified: rather, it is a functional approach that abandons 
the sign in favor of the object.  It is oriented and defined by the coalescence of a single 
plane of immanence that arranges the objects regardless of their origins – whether they be 



signs, words, sounds, entities, or forms of life – according to the forces that group them 
together, independently of any interpretative presupposition.  A second example of the 
expression, also from Philosophical Investigations, demonstrates that forms of life are an 
activity that encompasses language-games.  "The word 'language-game' is used here to 
emphasize the fact that the speaking of language is part of an activity, or of a form of life."2  
It follows that forms of life are dynamic models that, depending on who is describing 
these models, are distinguishable or not from lifestyles marked by their static social 
determinations: they can reinvent themselves at any moment.  Therefore, for Jacques 
Fontanille, forms of life cannot – on principle and by definition – be the subjects either of 
any general typology or one of a sociological, anthropological or ideological nature, 
thereby setting them apart from any totalizing attempts at classification.3 

Giorgio Agamben has a radically different way of conceiving forms of life.  In Means 
Without End, he notes that the Greeks had two words for "life": zoē, which expressed the 
simple fact of being alive that all living beings share, and bios, which signified the form or 
way of life specific to an individual or group.  The modern world has not retained this 
distinction, using a single expression, "life," starkly designating the shared presupposition 
that one can always isolate within each of the countless forms of life.  "By the term form-
of-life, on the other hand, I mean a life that can never be separated from its form, a life in 
which it is never possible to isolate something such as naked life."4  For Agamben, the 
constitution of this bare life is the precise operation on which the political sphere is based. 

Each behavior and each form of human living is never prescribed by a specific 
biological vocation, nor is it assigned by whatever necessity; instead, no 
matter how customary, repeated, and socially compulsory, it always retains 
the character of a possibility; that is, it always puts at stake living itself. [...] 
But this immediately constitutes the form-of-life as political life. 5 

So Agamben's conception of the "form-of-life," made possible by the multitude of forms 
of life and influenced by Foucault's ideas on biopolitics, is founded on the impossibility of 
separating the individual from politics, science, arts or literature.  "I call thought the 
nexus that constitutes the forms of life in an inseparable context as form-of-life."6  
Thought "must become the guiding concept and the unitary center of the coming 
politics."7 

The idea reappears in the work of Yves Citton, for whom forms of life are expressions 
emphasizing the fact that human life is never a raw given (whether material, physical, or 
biological), but is constituted by a certain kind of shaping (always simultaneously social, 
historical and esthetic) of material conditions that could be arranged otherwise.8  In Lire, 
interpréter, actualiser ("Reading, Interpreting, Actualizing"), Citton draws the anatomical 
portrait of Homo hermeneuticus by trying to grasp what makes it at once the product and 
the co-producer of our forms of social life.9  By privileging a contemporary reading of 
historical texts, allowing them to be interpreted in the light of our modern world instead 
of reconstructing the context in which they were written, the author seeks to perform 



what he calls a "disruptive overcoding" (surcodage disruptif) in order to highlight, in the act 
of reading, both the analysis of contemporary forms of life and ontological reflections. 

To sum up, forms of life are eminently political and are indexed on the ambiguities of 
being.  Because of this, they interest semioticians as well as writers of fiction, architects as 
well as philosophers.  They participate, as Agamben says, in an ontology of style.  "What 
we call form-of-life corresponds to this ontology of style; it names the mode in which a 
singularity bears witness to itself in being and being expresses itself in the singular 
body."10  Some forms of life devote themselves to a search through time; others delve 
into territorialized spaces.  But all refer to a collective becoming, a shared immanent 
force that drives the object to become what it is.  To illustrate our ideas, we will use two 
examples of mathematical objects: the Fourier transform and the monad in mathematical 
category theory. 

Avatars of the Fourier Transform 

In 1811, Joseph Fourier began his work on the propagation of heat.  In 1822, five years 
after his election to the Académie des sciences, he published his 670-page magnum opus, The 
Analytical Theory of Heat.  In the first two chapters, he presents the physical aspects of the 
question and derives the partial differential equation that regulates the change in 
temperature within a homogeneous mass, which is now called the heat equation.  The 
solution of this equation depends upon the initial and the boundary values.  The third 
chapter presents the use of trigonometric series.  Fourier considers the canonical problem 
of a solid homogeneous mass contained between two planes that are vertical, parallel, and 
infinite, and endeavors to resolve the question of how to know what the temperature of 
this mass will be once the thermal equilibrium is established.  This is a classic Dirichlet 
problem that consists in finding a harmonic function (∆u = 0) on the basis of its boundary 
values.  By seeking a solution broken down into trigonometric series, Fourier arrives at 
it.  He then has to demonstrate the convergence of these series and rigorously establish 
their decomposition, which Dirichlet will accomplish some years later.  But in Fourier's 
text, he already sets out all the formulas that we use to calculate what we now call 
Fourier coefficients.  He was the first to understand that this new form of 
trigonometrically-based analysis could be extended to many other problems besides the 
heat equation.  He writes: 

If we apply these principles to the problem of the motion of vibrating strings, 
we can solve difficulties which first appeared in the researches of Daniel 
Bernoulli. The solution given by this geometrician assumes that any function 
whatever may always be developed in a series of sines or cosines of multiple 
arcs. Now the most complete of all the proofs of this proposition is that which 
consists in actually resolving a given function into such a series with 
determined coefficients.11 



Since then, the Fourier transform has found a wide variety of applications.  Its form 
participates in that ontology of style mentioned by Agamben.  We see it already in 
Fourier's work.  He takes a geometrician's problem and makes it an analytical one.  The 
applications to mathematical physics highlight this possibility of resolving differential 
equations by shifting from one space to its dual.  The Fourier transform converts an 
equation in time and space into an equation in the frequency domain that is usually easily 
resolved.  The inverse Fourier transform allows for a return to the desired solution in 
time and space.  Thus Euclidean space and the frequency domain, via the Fourier 
transform, become dual reciprocal spaces. 

The extension of the Fourier transform to topological groups has shifted the problem 
toward other styles: algebra and topology.  In mathematics, a group is a purely algebraic 
notion, which mathematicians have made topological as well by requiring that the group 
composition law and its inverse be two continuous applications.  Applying a topology to a 
space is, for the mathematician, simply choosing what the continuous applications are on 
that space.  Continuity is the fundamental essence of topological space, which is defined 
by sets of equivalent axioms, concerning open sets, closed sets or neighborhoods.  In 
order to extend the Fourier transform to locally compact abelian (or commutative) 
groups – in other words commutative topological groups whose underlying space is 
locally compact – mathematicians have devised the notion of a group's characters and 
considered the dual group, formed by the set of these characters.  With this notion of 
character, the calculations are transferred from an arbitrary group, whose objects may be 
fairly unusual, to the multiplicative group of non-zero complex numbers, whose 
calculation is well known.  To be more precise, let us say that a character is a group 
morphism of the group G toward the complex group, i.e. it is an application that respects 
the group's structure.  Thus the character χ(x) of an object x in G is a complex number 
that can be easily inserted into an integral, no matter how complex the object x is.  If G is 
a locally compact abelian group with a Haar measure µ and with χ as a character of G, 
then the Fourier transform of an integrable function ∫ of the Lebesgue space Ll(G) is the 
integral relative to the Haar measure of the product of f(x) and the complex conjugate of 
the character χ(x) 

 

This bounded continuous function is an element of the Lebesgue space L∞(Ĝ) where Ĝ is 
the set of characters of G, known as the dual group of G.  When Rn is the real space of 
dimension n, the characters are the exponential functions χa(x) = eiax.  When G is the 
torus R/2πZ, the characters are the functions x→einx for an integer n.  We thus 
reencounter the definition of Fourier series.  The generalized Fourier transform allows 
for an inverse transform that is the integral relative to the Haar measure V on the dual 
group.  It has the same properties as the regular transform.  The convolution product of 



two functions f and g, which is the mathematical representation of the notion of a linear 
filter, is represented analytically by the function: 

 

The main property of the Fourier transform is that it transforms a convolution product 
into a simple product of the Fourier transforms 

 

It satisfies Parseval's theorem on the conservation of the scalar product12 

 

whose corollary is the Plancherel formula13 obtained when the functions f and g are equal: 

 

What this generalization shows is that it transforms a problem of mathematical analysis 
into an algebraic problem.  The new form of life of the Fourier transform is only possible 
because the set of characters of a locally compact abelian group is itself an abelian (i.e. a 
commutative) group: the dual group.  This result, discovered by Lev Semenovich 
Pontryagin, is known as the Pontryagin duality theorem.14  This duality allows the 
Fourier transform to carry the algebra under convolution Ll(G) to a multiplicative algebra 
L∞(G), and reciprocally by inverse transform 

 

The generalizations of this duality did not allow the Fourier transform to change its way 
of life.  Throughout the 20th century, it remained an object whose essence was the 
duality of algebraic structures.  In 1938, Tadao Tannaka generalized the duality theorem 
to noncommutative compact groups.15  Mark Grigorievich Krein16 built upon Tannaka's 
work; William Forrest Stinespring 17 then extended duality to the case of unimodular 
locally compact groups (1959).18  Pierre Eymard (1964)19 extended the classic results of 
the harmonic analysis of abelian groups to the case of locally compact groups even when 
such groups are not unimodular.  The work of Nobuhiko Tatsuuma (1967) followed that 
of Eymard, establishing a weak duality on three types of topological groups.20  From 
around 1965 on, at the instigation of mathematical physics, the research turned toward 
the establishment of a duality for the Hopf and Von Neumann algebras.  One of the 



pioneers of operator algebra, Masamichi Takesaki, sought a general theorem of duality, 
which was ultimately established by Leonid Vainerman and Georgiy Kac (1973)21 and 
independently by Michel Enock and Jean-Marie Schwartz (1973)22 for von Neumann and 
Kac algebras. 

In the late 20th and early 21st century, the Fourier transform opened itself to yet another 
form of life through developments in category theory, which Samuel Eilenberg and 
Saunders Mac Lane had created in the 1950s.  We have just seen that the Fourier 
transform over abelian groups enabled the emergence of the Pontryagin duality, which is 
generalized in the non-commutative case as a Tannaka-Krein duality.  We will now see 
that what lies behind this Tannaka duality is precisely the category of representations of a 
group.  The representation of a group is a way of describing a set of abstract and unwieldy 
algebraic objects like the elements of a group by a set of matrices and to transform the 
operations on these algebraic objects or group elements into simple operations like 
adding or multiplying matrices.  When the representation is one-dimensional, matrices 
are reduced to numbers.  For example, instead of working with sets of algebraic 
operators like rotations, it is more convenient to work with matrices that represent 
them.  In this case, a simple product of matrices represents the composition of two 
rotations, the rotation at a given angle following another rotation.  When the 
determinant of matrices (or their volumes) is equal to unity, we say that the 
representation is unitary.  Representations are either reducible or irreducible.  An 
irreducible representation is one that has no subrepresentation (other than itself and 
{0}).  It therefore presents a character of uniqueness that reducible representations do 
not share. 

When the group G is commutative, its dual is the group of characters, in other words the 
group of unitary one-dimensional representations.  Calculations become possible because 
the dual of G is a group.  But when the group is no longer abelian, the group of characters 
no longer exists.  Its equivalent is the set of equivalence classes of irreducible unitary 
representations.  The analogue of the product of characters is the tensor product of 
representations.  Furthermore, since the irreducible representations of a given group 
generally do not form a group, we are limited to considering the monoidal (or tensor) 
category of all the irreducible representations of finite dimensions equipped with the 
tensor product of representations.  Tannaka then provides a way of constructing a 
compact group on the basis of the category of its representations, while Krein gives the 
necessary and sufficient conditions for a category to be a dual object of a compact group 
G.  The Tannaka-Krein duality theory is therefore the study of the interrelations between 
a group and the category of its representations.  This allows us to grasp the transition 
from an algebraic to a categorical way of life. 

To be somewhat more exact, we should say that the Tannaka duality was a product of the 
development of mathematical physics, low-dimensional topology (knot and link theory) 
and quantum groups.  As André Joyal and Ross Street23 emphasize, Shahn Majid24 
demonstrated that one could use the Tannaka duality to construct the quasi-Hopf algebras 



introduced by Drinfel'd in relation to the solution of the Knizhnik-Zamolodchikov 
equation.  Many questions in mathematical physics are linked to the Tannaka duality, such 
as the theory of the composition of angular momenta, Racah-Wigner algebras, knot 
invariants and Yang-Baxter operators.  All of these questions, which we cannot fully 
explore here, are centered on quantum groups and are deeply connected to the theory of 
monoidal categories. 

In a 2011 article, Brian Day25 gave a categorical construction of the Fourier transform.  A 
category is a broader mathematical notion than the set.  Unlike the set, the category has 
its own collection of operators and acts, involving objects, arrows and morphisms linking 
these objects together, which satisfy elementary properties such as the transitivity of 
morphisms.  Between two categories, functors are defined that carry both the objects of 
one category to the objects of the other and the arrows of one to the arrows of the other.  
They are called functors, not functions, as they apply to two kinds of entities at once: 
objects and morphisms.  When a category possesses a tensor product that satisfies certain 
axioms of compatibility, we say that the category is monoidal; if it only satisfies some of 
them, we say that the category is promonoidal.  In order to define a Fourier transform in 
the categorical sense, Day starts by defining a promonoidal category for which he 
establishes two convolution products of two functors: an upper convolution and a lower 
one.  Day then gives the definition of a multiplicative kernel K that is used to present the 
Fourier transform of f as the left Kan extension 

 

and its dual transform as the right Kan extension 

 

He then demonstrates that the Fourier transform K preserves the upper convolution 

 

and that its dual preserves the lower convolution 

 

Next, for the product defined as the coend of the tensor product of f and g 

 

Day establishes the Parseval relation  



 

To sum up, we have just seen that the Fourier transform has, in different realms, 
experienced ways of life inspired by key moments in the development of mathematics.  
First used in mathematical analysis where it was linked to harmonic theory, in its first 
generalization it became an essentially algebraic object.  The Pontryagin duality was then 
the Fourier transform's driving force.  Its generalization to the case of non-commutative 
groups brought about the Tannaka-Krein duality, which allowed for the emergence of 
strong categorical connections.  The definition via coends produced by Kan extensions 
breathed new life into the Fourier transform.  That new life reminds us that one of the 
subsections in Mac Lane's book was titled "All Concepts Are Kan Extensions."26 

The Monad and the Fold 

Mathematical category theory is currently the focus of many developments both in low-
dimensional topology and in quantum field theory.  As we have just seen, a category – in 
the mathematical sense – is a collection of objects and arrows that satisfy elementary 
axiomatic properties.  In a category, all objects have become featureless.  They belong to 
one and the same level and are ontologically equal, without distinction or quality.  
Category theory is therefore a flat ontology where all things are equal.27  But in the world 
we live in, things are placed in a hierarchy, structured, made of differences and intensities 
of all kinds.  Indeed, we must take into consideration the action of the ontological fields 
by which things are structured, mutate and become differentiated objects, objectively 
differentiable (through the interplay of a category's arrows) both by the mathematician 
and the philosopher.  The disembodied thing becomes a full, entire object, with all its 
references, relations and distances, which is something qua what it is.  It is both what 
constitutes it as a particular reality caught in the forms of its existence, and what produces 
it like the categorical objects from which it is derived, which are caught in the web of the 
world.  Thing and object are distinct, complex entities that are not limited to the 
inclusion of things within things and subsequently to their transformation into objects.  
But there are no hierarchies of objects and things in categorical ontology, just as there is 
no zoology of first- and second-level entities.  Thing and object are sufficient for the 
ontological interpretation of categories.  The definition of universality, the Yoneda 
lemma and Diaconescu's theorem are the most immediate examples of this toposic 
hermeneutics.28 

In category theory, the notion of the monad was introduced in the 1960s.  In 1958, 
Roger Godement,29 for reasons associated with homological algebra, constructed the first 
monad (a comonad, to be more precise) as the embedding of a sheaf in a flasque sheaf.30  
Three years later, Peter Huber31 demonstrated that each pair of adjoint functors results in 
a monad.  Heinrich Kleisli,32 as well as Samuel Eilenberg and John Coleman Moore,33 
independently demonstrated the reciprocal theorem (every monad is the result of an 
adjunction), Eilenberg and Moore referring to monads as "triples."  The first to use the 



term "monad" was Saunders Mac Lane in 1971.  This monad relies upon two 
mathematical concepts in category theory, adjunction and functoriality, both of which recall 
Leibniz's philosophy, as well as Gilles Deleuze's rereading of it.  Functoriality, or the 
functorial character, is the existence of a functor making it possible to envelop and 
represent a multitude in a unit and to define the monad.  Adjunction is this twofold 
character represented by the two leaves of the Deleuzian fold, symbolized mathematically 
by the two natural transformations that participate in the definition of the monad and that 
justify the principle of individuation.  As Gilles Châtelet emphasized repeatedly, the 
monad is a living mathematical object.34 

As mentioned earlier, the existence of functors between two categories is used to carry 
properties from one category to another, like the property of isomorphism, but also to 
transform categories, like the forgetful functor that abandons the structure of the initial 
category, or the abelianization functor that makes the laws of the final category 
commutative.  The non-existence of a given functor is another important result: the lack, 
for example, of a functor from the category of symplectic varieties, which form the 
mathematical framework of classical mechanics, to the category of Hilbert spaces, which 
constitute the framework of quantum mechanics, poses the problem of quantification or 
the transition from classical to quantum mechanics. 

In mathematical category theory, the monad is a functor equipped with two natural 
transformations, the unit and the multiplication, whose axioms of identity and 
associativity mimic the behavior of an algebraic germ.  This triad (on which the former 
name of "triple" was based) defines the monad of the category theorists.  For Leibniz, the 
monad is a simple substance that folds the world into a unit endowed with perception and 
appetite.  It is an astoundingly categorical conception: considering the monad as an object 
(a unit) bearing morphisms (of perception and appetite).  Going even further, the 
universe itself is seen as a category whose objects are the monads and the morphisms are 
the resulting phenomena. 

In his classes on Leibniz and the fold, Deleuze35 explains that the world is folded, that the 
fold has a particular inflection or curvature and that this curvature, as in the case of the 
foci of an ellipse, determines one or several points of view.  From this point of view, we 
can measure the curvature and become aware of the fold's inflection.  The curvature of 
things, Deleuze says, demands a point of view.  And the point of view is consequently the 
condition for the emergence or the manifestation of truth in things.  But why, asks 
Deleuze, are things folded?  Because what is folded is necessarily enveloped in something 
that occupies the point of view.  And what envelops the points of view is precisely the 
monad, which for Deleuze is the individual: an individual, however, who encompasses 
the infinite on their own, like the assemblages of monads or the bodies of which Leibniz 
speaks.  Saying the world is folded means that it can be individualized.  We must 
therefore comprehend the fold as an abstract notion, a functor, and not as the geometric 
pleats of physical space.  It follows that via a monadic interpretation, the principle of 
individuation intertwines with the functoriality of the fold. 



In category theory, the fold is created by the natural transformations of the monad, and 
individuation is the condition for a category's algebraicity.  Saying a category is 
individualized means that it can be likened to an algebra or to the category of its 
representations, that it can be the subject of a calculation.  Beck's theorem36 is precisely 
what stipulates the conditions of monadicity.  In order for there to be monadicity of a 
given category B toward a category C, one must be able to describe category B on the 
basis of a monad of category C.  Given a functor of B on C, category B is called monadic if 
B can be considered the category of algebras of a monad of C.  The existence of this 
monad enables algebraic calculation on B as if everything took place in category C or that 
C is calculable.  The monad then becomes the condition of algebraicity (and therefore of 
calculability) of a category.  As Lawvere has partly demonstrated, algebraic theories are 
the monads of mathematicians.  Even in the most recent cases of Hopf monads that are 
used to comprehend the differences between braided and non-braided universes, 
mathematics returns to Leibniz's idea that the monad contains a representation of the 
world and that in the universe defined as the ontological closure of things, the 
individuation of a category ultimately corresponds to its monadicity.  The monad 
becomes the indicator of the algebraic representations of a category and its possibilities of 
calculation. 
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