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Abstract

Brains, unlike artificial neural nets, use sym-
bols to summarise and reason about percep-
tual input. But unlike symbolic AI, they
“ground” the symbols in the data: the sym-
bols have meaning in terms of data, not just
meaning imposed by the outside user. If neu-
ral nets could be made to grow their own sym-
bols in the way that brains do, there would be
a good prospect of combining neural networks
and symbolic AI, in such a way as to combine
the good features of each.

It is argued that the secret of growing sym-
bols in neural nets lies in cluster analysis. Al-
gorithms for clustering, many of them natu-
rally implementable in neural hardware, would
produce clusters, which are discrete entities
summarising data that have all the properties
of symbols.

1 Introduction

The war between symbolic artificial intelli-
gence and its neural net rival continues be-
cause each has strengths that the other lacks,
and it has proved impossible to combine them

successfully. It is agreed that symbolic sys-
tems work well on discretely structured prob-
lems, like chess, and give a transparent under-
standing of what they are doing, which allows
their use in new situations through adding and
deleting rules. But it is difficult to make them
adaptive to data, especially in situations where
there is only data to go on, and almost no
understanding via rules, such as face recogni-
tion. Scaling up from toy to real problems is
also hard. Neural nets, on the other hand,
are strong where symbolic AI is weak, and
vice versa. They adapt easily to data, but the
black-box nature of their processing makes it
very difficult to understand what they do, and
hence to improve it, or adapt it to a different
problem.

Naturally, one would like to combine the two
approaches, to take advantage of the strengths
of each. Unfortunately, current attempts,
though not wholly unsuccessful, generally find
themselves saddled also with the weaknesses
of both approaches. Machine learning, for ex-
ample, will certainly produce rules from data,
but in all but the simplest problems, there are
so many rules that the system is no more com-
prehensible, and no more adaptable to new sit-
uations, than neural nets are. And attempts
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to extract rules from trained neural nets have
also not proved very successful. [?] [?] They
face a fundamental problem in tying the terms
in the rules to data. The meaningfulness of
a rule “If X then Y” depends on making the
symbol “X” meaningful in terms of the data.
Into how many “X”s should the space of pos-
sible data points or inputs be cut up? Should
some “X”s cover more of the space than oth-
ers? What happens at the joins? And so
on. These “symbol-grounding” problems, con-
cerning how to tie symbols to their mean-
ing in data, have been too often ignored, and
their neglect has vitiated attempts to combine
symbolic and neural approaches to AI. (Fuzzy
rule systems tuned by data are more hopeful,
but they are close to the approach to be de-
scribed [?]).

It is clear that the brain has solved these
problems. It is clear also, at least in a very
general way, how it has done it. Somehow,
the brain does manipulate discrete symbols in
a way that makes those symbols meaningful
in terms of the flow of experience. The dis-
crete symbols are grounded in continuous ex-
perience.

It is further clear that this will be a very dif-
ficult feat to imitate. But the promised payoff
is large. This is a first attempt.

2 The Problem: Experi-

ence into Symbol

What is sought is an algorithm which takes
experience (perceptual experience, or a list of
vectors in feature space, or raw images) and
outputs symbols – discrete entities which at-
tach to items in the experience which “natu-
rally” go together. All cat experiences should
get one label, all dog experiences another.
Then those labels can be used in rules. If such
an algorithm could be found, it would solve

three problems:

• The engineering problem of how to link
neural nets with rule-based AI, in such
a way that the symbols in the rules are
correctly tied to the data.

• The “symbol grounding” problem in cog-
nitive science, or the philosophy of lan-
guage; that is, the problem of how the
meaning of a word is connected to the rel-
evant experience – what “cat” has to do
with the experience of cats.

• The data reduction problem – that is,
how to explain, and imitate, the brain’s
ability to operate with huge quantities of
noisy (perceptual) data, by recognising in
it small numbers of persistent items.

These problems are each hard, but have
much in common: they all require for their
solution a principled method of reducing a
large continuous space of experience to a set
of discrete items, while losing as little informa-
tion as possible. The aim of this paper is to
cast light on the first (engineering) problem,
by analysing what is known about the other
two. They are cognitive science problems, but
ones which are amenable to a certain amount
of purely abstract analysis in terms of data-
processing algorithms. The problems are ex-
amined in turn.

3 The Symbol Grounding

Problem

The symbol grounding problem, posed in Har-
nad’s famous article, [?] concerns the old
chestnut of how words get their meanings.
How does a symbol, internal or external, like
“cat” comes to refer to cats, not dogs? “How
can the semantic interpretation of a formal
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symbol system be made intrinsic to the sys-
tem, rather than just parasitic on the mean-
ings in our heads? How can the meanings
of meaningless symbol tokens, manipulated
solely on the basis of their (arbitrary) shapes,
be grounded in anything but other meaning-
less symbols?” “Grounding” must be a process
which takes experience, of cats or other things,
and issues in some entity sufficiently discrete
to be a representation of the class of cats, and
to which a symbol can be attached. That is, it
must perform some sort of clustering on (pre-
processed) experiences, which recognises that
cat-experiences have sufficient similarity, and
sufficient dissimilarity to dog-experiences, to
form a natural category, or cluster. Of course,
there is also a grounding problem at a lower
level. The world appears to be more or less
uniquely divided into things, which themselves
are more or less uniquely divided into kinds.
The division of experience into persistent ob-
jects – should we think of it as the symbol
grounding problem for proper names? – is the
prior one. The grounding problem for com-
mon nouns, the one chiefly considered by Har-
nad, takes as given the persistent objects and
their features, and aims to create discrete and
natural clusters of the objects, considered as
vectors in the multidimensional feature space.

Since clusters can themselves form clusters,
cluster analysis gives the potentiality for auto-
matic construction of the is-a hierarchies that
are crucial to knowledge representation: “a cat
is a (kind of) animal” simply because the clus-
ter of cats is a subset of the cluster of animals.

And its being a cluster is explicitly repre-
sented, by the label that is given by the clus-
ter algorithm to all and only those points in
the cluster. Thus cluster analysis of this hi-
erarchical kind is capable of extracting a dis-
crete structure, a tree, from essentially contin-
uous or inchoate input. The belief that this is
somehow impossible seems to be behind some
of the assertions that neural nets do not natu-

rally form the structures found in, for example,
language, because “Connectionist architecture
recognizes no combinatorial structure in men-
tal representations”. [?], p. 49.

Suppose we ask how human cognition dif-
fers from the “thermometer model” of knowl-
edge. [?] A correctly-working thermometer
records or tracks the ambient temperature, in
that its mercury reading goes through a time
pattern of states which is literally identical to
the time pattern of variations in the ambient
temperature. The totality of readings – and by
extension, an individual reading – can there-
fore be said to represent temperature. Coun-
terfactuals are supported: if the temperature
had been different, the reading would have
been different. The model also makes sense
of perceptual error, at least up to a point: if
the readings are correct for all temperatures
up to 40oC, but wrong for the rare cases when
the temperature is over 40o, then it can be
said that the thermometer is generally reli-
able, but in error when the temperature is over
40o. The thermometer model, especially if we
think of a thermostat attached, does provide
an adequate model of knowledge for a suffi-
ciently simple organism, which responds to its
environment in a simple and pre-programmed
way. It is still a reasonable model for knowl-
edge in a trained artificial neural net, which
also responds to inputs in the same automatic
way as a thermometer responds to tempera-
ture (although the way it acquires the ability
to do so is very different). Similar remarks
could be made about any dynamical systems
view of cognition. [?]

The feature of cognition in humans and the
higher animals that is not captured by the
temperature model is fiction. This means fic-
tion in a wide sense, including expectation
and anticipation (of, for example, what other
cars on the road will do), planning (forseeing
the results of one’s own actions) and history
(inferring the probable nationality of Homer’s

3



mother, for example) as well as the construc-
tion of whole fictional narratives like novels.
The fictive faculty must be able to represent
scenarios not presently actual, including ones
that may attain actuality in the past or fu-
ture. A thermometer cannot do fiction. It is
too mired in the present, the actual, to cope
with the sphere of the possible. It is much the
same with a trained artificial neural net, as
the symbolic AI experts regularly point out.
Although a net can, in a sense, have memory
traces from its actual past, it is useless on any
task other than the exact one on which it has
been trained (or at least, it is impossible to
tell on which tasks it will work). It does not
allow the transfer of learned expertise to a new
domain. [?] Now the possible, or at least the
epistemically possible, consists of recombina-

tions of items acquired from experience of the
actual. In an older idiom, the “imagination”,
the faculty of fiction, is the organ of “recom-
bining and dividing”, [?] inhabited by such en-
tities as winged horses and golden mountains.
The thermometer cannot do anything like this,
simply because it does not identify items at all.
Similarly, a neural net trained on data cannot
divide its ability into parts and reuse the ap-
propriate parts in other circumstances.

The emphasis, then, in getting beyond
merely causal tracking to real cognition, has
to be on first dividing the flow of perception
into meaningful “items” which are capable of
recombination, cutting and pasting, omission
and reincorporation. This brings us back to to
symbol-grounding problem in Harnad’s sense,
if it is agreed that a useful “item” should have
at least a measure of internal homogeneity,
compared to its surrounds.

4 The Data Reduction

Problem

Natural intelligence operates in a data rich en-
vironment. This is not the case for standard
symbolic AI. The preference of symbolic AI for
calculation over either remembering or learn-
ing has been widely recognised as explaining
its success in structure-rich but data-poor sit-
uations like chess, but lack of success as a flex-
ible model of, for example, common-sense rea-
soning.

The situation of natural intelligence is very
different. It is presented with a massive flow
of perceptual information (over 100 million re-
ceptors in each retina, responding many times
per second, to take just the visual system).
It must “drink from the firehose of data”, [?]
that is, achieve its goal in real time – in fact,
in better than real time, since it must pre-
dict the state of the world ahead of time. The
flux of information contains gross structures,
the “affordances” like the continuity of the op-
tic flow, [?] that contain information about
the world and the organism’s changing rela-
tionship to it. That information does not lie
on the surface: a great deal of processing of
some sort is needed to extract, for example,
an object’s 3D motion from the flow of projec-
tions on its retina. The immediate problem is
where to start, or how to even begin to reduce
the mass to some manageable and meaningful
quantity. [?] Tasks one will need to perform,
at some stage between registering perceptions
at the retina or other sensory extremities and
object recognition, include:

• Identifying an object across time, that is,
across “frames”, despite gradual changes
in its and the organism’s position, and de-
spite noise and occlusions.

• Identifying regions; for example, recognis-
ing that foreground pixels should go to-
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gether, and separating them from back-
ground.

• Distinguishing sudden
from gradual changes of colour, texture,
loudness and so on; with the definition of
“sudden” being appropriately sensitive to
context (for example, a leaf should stand
out against a plain background, but not
against a background of other leaves).

5 The Answer: Cluster

Analysis

What is sought, then, are algorithms that per-
form data-reduction on huge data-sets in a fast
and robust manner. Ideally, they should be
parallelizable in a way that suits a neural net-
work architecture. The kind of algorithm that
will eventually be able to extract the correct
structure from a huge data flow must be like
present-day cluster analysis.
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Figure 1: : Two clusters

The essential idea of cluster analysis, as nor-
mally understood, is simply described. [?] [?]
It takes unlabelled points in a space. It clus-
ters or “clumps” together those which lie close
together, and are separated by empty space
from other clusters. It outputs a labelling of
all the data points, identifying which cluster
they are in. Thus, the two-dimensional data
in figure 1 fall naturally into two clusters.

The space in which the points lie may be
a physical space. But cluster analysis is ac-
tually most used in “feature spaces”, where
the dimensions represent features of objects,
and a point is the aggregate of features that a
particular object has. Close points thus repre-
sent similar objects. Cluster analysis is used to
find natural groupings for the classification of
neuroses, shoplifters, markets and so on. The
tendency of cluster analysis to concentrate on
such ill-defined subject matters, where there
is a suspicion that there are no clear clusters
to be found, has led to cluster analysis having
a low profile among statistical methods, and a
generally poor reputation. But that is no rea-
son to doubt its applicability to perception.

Since there are many algorithms that per-
form clustering, let us attempt a high-level
specification of the task. Any algorithm
that takes unlabelled data on which there is
some measure of similarity or distance between
points, and apportions them to groups such
that the within-group similarity is high, com-
pared to the between-group similarity, is a
form of cluster analysis. Normally, one wants
the algorithm to issue also in a division of the
space, not just of the input points (since one
wants to say of a new point which of the clus-
ters it would be in).

It is important that cluster analysis is thus
specified at a higher level than the algorith-
mic – at the level of “what the system does”,
not “how it does it”. It is a level somewhat
vaguely characterised in the cognitive science
literature, under a variety of names such as
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the “ecological” or “intentional” or “seman-
tic” level, or the “computational” level [?], all
of them intended to name a level in which the
task of a system is described “in ways that are
noncommittal on how the system does it”. [?]
There is a better understanding of this level
in certain other disciplines, especially those in-
volving the design of systems, since analysis of
what the system has to do naturally precedes
the detailed design. “Task analysis” in facto-
ries is one example. [?] Research has gone fur-
thest in the computer scientists’ “formal spec-
ification”, which has the aim of specifying pre-
cisely the task that software is to perform, be-
fore any writing of it begins. [?] Working at
this level makes it possible to discuss in more
general terms the possible applications of clus-
ter analysis, without needing to specify what
clustering algorithms are being used. More
importantly, it allows us to classify as clus-
ter analysis various algorithms developed for
quite other purposes.

It is argued, not merely that cluster analy-
sis might be helpful for the problems of early
perceptual grouping and of symbol grounding,
but that the nature of the problems means
that any solution to them must be some form
of cluster analysis. They all involve forming a
discrete object out of a cluster, that is, a mass
of neighbouring data points that are all reason-
ably well separated from other data points.

There are many subtleties and matters to
be considered in performing clustering, which
will be mentioned briefly later. But let us as-
sume the existence of algorithms meeting the
specifications just outlined, and inquire what
tasks in early perceptual organization could be
performed by them.

Consider a large black spot seen against a
white background. To oversimplify, a retina
could report this situation to its brain by
transmitting many 3D vectors (x, y, c), where
x and y specify the location of a pixel and c

specifies its colour value, white or black. The

brain’s task is to “stick together” the black
ones and also the white ones, to construct
two coherent objects, spot and background.
It must, that is, join together, or cluster, the
black dots, which form a tight cluster in the
3D space. That cluster is well separated from
the cluster of white dots, as the value in the
last (colour) coordinate is quite different. [?]

It is to be observed that this “region grow-
ing” approach [?] to identifying patches is
quite different to one that relies wholly on de-
tecting edges and joining edge portions. Clus-
tering pixels is a method that generalizes au-
tomatically to more realistic cases where the
colour value is more complicated (when it is
grey scale, or red-green-blue colour, or even
includes more complicated continuously vary-
ing quantities like shine and texture). Take for
example a somewhat textured patch against
a plain background, such as the moon. The
moon pixels are all still close to each other,
relative to the background pixels, and are eas-
ily identified as one object. A cluster method
is in principle more robust to noise than edge
detection methods, since fuzziness in the edges
simply means the clusters are not so well sep-
arated; nevertheless there will be few points
between the clusters, and a reasonable cluster
algorithm should have plenty of information
to recognise the clusters. The red spot and
other swirls on Jupiter have enough internal
homogeneity to be picked out as coherent ob-
jects, though most are not recognisable as any
describable shape, and have no clear edges. A
cluster analysis approach, that “grows” homo-
geneous regions, is also suggested by the many
psychological experiments in which the visual
system imposes contours even when they are
not present in real luminance. [?]

To recognize objects across time, one simply
adds a time coordinate to the above exam-
ple, and performs clustering in the resulting
4D space. There is the opportunity to identify
objects with temporal gaps, such as balls that
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disappear behind chairs and later reappear,
and also to join parts of objects that move
parallel to each other – that have a “common
fate”, in Gestalt terminology. The pixels of the
before and after temporal parts of the continu-
ant differ in their time coordinate, but if agree-
ment is sufficient in other coordinates, such as
colour and speed (compared, as always, with
the background), then there is some hope of
identifying the parts, if they are not too dis-
tant in time. This also gives the opportunity
to correct any noise in the individual frames by
the pixel values in the frames immediately be-
fore and after. This is a general phenomenon,
which makes work with large data sets essen-
tially different from attempting to “scale-up”
AI methods that work on toy problems: the
algorithms used must be noise-loving, so as
to take advantage of the noise-correction ca-
pabilities of having many modalities available
simultaneously. As far as possible, one should
identify everything simultaneously, not work
with one data type at a time and wonder how
to integrate the answers later. [?] Cluster anal-
ysis does this naturally; few other AI methods
do.

One has to observe, also, that even before
the symbol-grounding problem is posed, one
has to identify the symbols themselves in the
flow of perception. It is all very well to imag-
ine that a child learns the meaning of “cat”
by hearing the word said many times in the
presence of cats, but there are two problems
the child must solve first. What portions of
the ambient world is it supposed to recog-
nise as cats? And what portion of the sound
stream is it supposed to recognise as “cat”?
Any “associative learning” presupposes iden-
tified items in both the world and the sound
stream. In view of the difficulty of making
commercial speech recognition systems that
can even segment continuous speech correctly,
it is something of a mystery how children learn
to do so. The word is a particularly diffi-

cult unit to identify, and very young children
prefer the syllable and the longer continuous
sound. They gradually construct the word
from syllables that co-occur frequently, and
use the resulting words to gradually learn to
find the meaningful units in speech. [?] That
is, blocks of similar sound profiles heard at dif-
ferent times are clustered to form a coherent
entity, which can be recognised and extracted
from the sound stream later.

6 The Cluster Analysis

Smorgasbord

Having specified cluster analysis at such a high
level, it is not surprising that there is an enor-
mous diversity of actual clustering algorithms.
Which does the brain use? Little is known.
Which should be recommended to a neural net
engineer? A great number of issues have to be
considered in deciding between cluster algo-
rithms. There is space here only to indicate
briefly some of these.

Some of the algorithms are bottom-up (that
is, they begin by joining close data points),
while others are top-down (they begin by look-
ing at ways to divide the whole data cloud).
Some are fast, some are slow. Naturally, the
fast ones lose something, in that they do not
check for good clustering, or consider vari-
ous alternatives. Some of the faster ones give
results sensitive to the order of presentation
of the data; “leader” clustering, for example,
takes the first points seen as cluster centres,
and compares later ones with them. Some al-
gorithms allow fuzzy clusters, or overlapping
ones, or allow a few “outliers” to belong to
no clusters. Some have a preference for cer-
tain shapes of clusters, for example, elliptical
or convex shapes (as do humans [?]). Some
decide on the appropriate number of clusters,
some have to be told. Here, just one issue will
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be taken up: which cluster algorithms are well
adapted to implementation in neural network
style hardware?

There is some problem, admittedly, in char-
acterising what is rightly called a “neural net-
work”. It is possible, for example, to imple-
ment clustering that fits a mixture of elliptical
data clouds in a kind of neural network, if one
is prepared to allow the neurons to have (train-
able) Gaussian receptive fields (as opposed to
the usual simple dot product of the incom-
ing vector with the fan-in weight vector). [?]
To some extent, the problem is simply one
of deciding the appropriate definition of the
“matching” of two vectors. In cluster analy-
sis, one normally takes the Euclidean distance
between them, but in the usual neural nets,
one takes distance in projective space instead,
so that one ignores differences of scale: vec-
tors match if one is a multiple of the other.
“Radial basis function” networks show that
one can use the distributed-processing style of
neural network architecture with the usual Eu-
clidean definition of matching. It is true that
one can therefore illustrate virtually any al-
gorithm that involves comparison of vectors
with a “neural” diagram, and call the algo-
rithm a neural net in the hope of securing a
larger grant. Still, it is not wholly dishonest
to do so; the essence of neural networks really
is massively parallel processing based on the
results of matching of vectors.

Of special interest are the ART1 algorithms
and their descendants. [?] [?] Originally cast
in a neural network framework, they have
been seen more accurately as implementations
of adaptive leader clustering algorithms. [?]
Combining the speed of leader clustering with
a reasonable adaptivity to the data, these algo-
rithms and slight modifications of them have
had a number of successes in classifying large
and awkward data sets, such as fingerprint im-
ages and Chinese characters. While the clus-
tering performed by ART-type networks is not

hierarchical, certain close relatives of them can
produce hierarchies: by training a top-level
net on all the data, and using its output to
divide the training data into clusters which in
turn are used as the training sets for several
lower-level nets, one can obtain a partially par-
allelizable method for identifying multilevel
statistical structure in novel data. [?]

Obviously, there is much more to be done in
the area of neural net cluster algorithms, but
there is already a solid beginning.

7 Conclusion

Cluster algorithms implementable in neural
nets are available. They can identify recom-
binable items, or “symbols”, in the flux of sen-
sation. The next task is to use their outputs
in rules, to imitate the range of tasks that the
brain can perform well, but current AI cannot.
To begin, one can learn relations between sym-
bols by associative learning – now that there
are items to associate.
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