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Abstract

We extend Meyer’s 1972 investigation of sets of minimal indices. Blum showed
that minimal index sets are immune, and we show that they are also immune
against high levels of the arithmetic hierarchy. We give optimal immunity
results for sets of minimal indices with respect to the arithmetic hierarchy, and
we illustrate with an intuitive example that immunity is not simply a refinement
of arithmetic complexity. Of particular note here are the fact that there are
three minimal index sets located in Π3−Σ3 with distinct levels of immunity and
that certain immunity properties depend on the choice of underlying acceptable
numbering. We show that minimal index sets are never hyperimmune, however
they can be immune against the arithmetic sets. Lastly, we investigate Turing
degrees for sets of random strings defined with respect to Bagchi’s size-function
s.

1 A short introduction to shortest programs

The set of shortest programs is

{e : (∀j < e) [ϕj 6= ϕe]}. (1.1)

In 1967, Blum [4] showed that one can enumerate at most finitely many shortest
programs. Five years later, Meyer [13] formally initiated the investigation of minimal
index sets with questions on the Turing and truth-table degrees of (1.1).

Meyer’s research parallels inquiry from Kolmogorov complexity where one searches
for shortest programs generating single numbers or strings. The clearest confluence
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of Kolmogorov randomness and minimal index sets manifests itself in Schaefer’s set
of shortest descriptions, [16]

{e : (∀j < e) [ϕj(0) 6= ϕe(0)]}, (1.2)

which serves as the set of minimal indices for Kolmogorov complexity. The size-
minimal random strings discussed in the last section of this paper are generalizations
of both the Kolmogorov numberings and the minimal index set (1.2).

For underlying Kolmogorov numberings ϕ, the set (1.1) forms a subset of the
Kolmogorov random strings. The converse inclusion fails in general since multiple
Kolmogorov random indices can represent the same function. Moreover, one can
choose a Gödel numbering ψ such that (1.1) lies entirely within the non-random
strings, except for a finite set. For example, let ψi = ϕj whenever 2j ≤ i < 2j+1. In
this case, all minimal indices are of the form 2i and have a Kolmogorov complexity
which is, up to a constant, the same as i.

In contrast to Meyer [13], we shall focus on the set of minimal indices with respect
to domains,

MIN = {e : (∀j < e) [Wj 6= We]},

rather than functions. We also consider natural variants of MIN.

Definition 1.1. We call MIN and following sets sets of minimal indices. Minimal
index sets are based on equivalence relations and each set contains the least repre-
sentative from each equivalence class:

MIN∗ = {e : (∀j < e) [Wj 6=∗ We]},
MINm = {e : (∀j < e) [Wj 6≡m We]},

MINT(n)

= {e : (∀j < e) [Wj 6≡T(n) We]},

and

MINT(ω)

=
⋂
n∈ω

MINT(n)

= {e : (∀j < e)(∀n) [(Wj)
(n) 6≡T (We)

(n)]},

where A ≡T(n) B is shorthand for A(n) ≡T B(n). Here A(n) denotes the nth Turing
jump of A. If n = 0, we omit “(n)” from the notation.

For simplicity, we place ω and ∅ in the same m-equivalence class as the rest of the
recursive sets (for the remainder of this paper). If the particular Gödel numbering is
relevant to the discussion, we shall add a subscript, as in MINϕ.

We recall the following definitions:

Definition 1.2. Let (De)e∈ω be the canonical numbering of the finite sets.

(i) A set is immune if it is infinite and contains no infinite r.e. sets.
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(ii) A set A is hyperimmune if it is infinite and there is no recursive function f such
that:

(a)
(
Df(i)

)
i∈ω is a family of pairwise disjoint sets, and

(b) Df(i) ∩ A 6= ∅ for all i.

The following is a generalization of Definition 1.2 (i).

Definition 1.3. Let C be a family of sets. A set is C-immune if it is infinite and
contains no infinite members of C. If C is the class of r.e. sets, then we write immune
in place of C-immune.

Blum showed that MIN is immune [4], and Meyer showed that MIN is not hyperim-
mune [13]. Sections 2.1–2.2 contain analogous immunity results for the other minimal
index sets. In Theorem 2.6, in particular, we use immunity or “thinness” to distin-
guish among minimal index sets contained in the same level of the arithmetic hier-
archy. Section 2.3 provides a counterexample which is useful for intuition: it shows
that immunity is not, in fact, a simple refinement of arithmetic complexity. After
inspecting the minimal index sets in Definition 1.1, one might suspect that greater
immunity implies greater arithmetic complexity, however this is not true in general.

Section 3 shows that the Πn-immunity of some, but not all, minimal index sets
depends on the Gödel numbering. We show that minimal index sets are not hy-
perimmune (Section 4). Using this fact, we construct a set which neither contains
nor is disjoint from any arithmetic set, yet is majorized by a recursive function and
contains a minimal index set (Corollary 4.6). Lastly, in Section 5, we show that size-
minimal Kolmogorov random strings need not be Turing complete. This contrasts
with the more usual random strings, the special case where size is simply length,
which are wtt-complete under any Gödel numbering and truth-table complete under
any Kolmogorov numbering [7].

For further background on minimal index sets, we refer the reader to [16] and [19].
Notation not mentioned here follows [14] and [18].

2 Immunity and fixed points

2.1 The Π3-Separation Theorem

Marcus Schaefer [16] made the following observations with regards to minimal func-
tions, but the results translate easily into sets. He attributes the main idea of (i) to
Blum [4, Theorem 3] and (ii) to John Case:

Theorem 2.1 (Schaefer [16]).

(i) MIN is immune.

(ii) MIN∗ is Σ2-immune.

Proposition 2.2 and Lemma 2.3 will be needed to prove the Π3-Separation Theorem.
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Proposition 2.2.

(i) MIN∗ ∈ Π3.

(ii) MINm ∈ Π3.

(iii) MIN≡1 ∈ Π3.

Proof. (i). {〈j, e〉 : Wj =∗ We} ∈ Σ3 [18].

(ii). For any r.e. sets A and B,

A ≤m B ⇐⇒ (∃e)(∀x) [ϕe(x) ↓ ∧ (x ∈ A ⇐⇒ ϕe(x) ∈ B)] ,

which shows that A ≤m B is a Σ∅
′

2 relation. It follows that A ≡m B is also a Σ∅
′

2

relation. In particular, for

C = {〈j, e〉 : Wj ≡m We},

we have
C ∈ Σ∅

′

2 = Σ3.

Hence
e ∈ MINm ⇐⇒ (∀j < e) [〈j, e〉 6∈ C] ,

which places MINm ∈ Π3.

(iii). The same proof idea as for (ii) works because injectivity can be tested with a
∅′ oracle.

Lemma 2.3 (i) is an immediate consequence of Schaefer’s theorem, MIN∗ ⊕ ∅′ ≡T ∅′′′
[16], however we give a more direct proof below.

Lemma 2.3.

(i) MIN∗ 6∈ Σ3.

(ii) MINm 6∈ Σ3.

(iii) MIN≡1 6∈ Σ3.

Proof. (i). Suppose MIN∗ ∈ Σ3, let a be the *-minimal index for ω and recall that
the set of cofinite indices

COF = {e : We =∗ ω}
is Σ3-complete [18]. Note that

Wj 6=∗ We ⇐⇒ (∀y) (∃x > y) (∃s) (∀t > s) [Wj,t(x) 6= We,t(x)] (2.1)

and

COF = (MIN∗ ∩ COF) ∪ (MIN∗ ∩ COF)

= {a} ∪ {e : (∀j ≤ e) [j ∈ MIN∗ − {a} =⇒ Wj 6=∗ We]} .

Now COF ∈ Π3, by (2.1) and because MIN∗ − {a} ∈ Σ3 by assumption. This
contradicts the fact that COF is Σ3-complete.
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(ii). {e : We ≡m C} is Σ3-complete whenever C is r.e. This set now plays the role of
COF from part (i) [20].

(iii). {e : We ≡1 C} is Σ3-complete whenever C is r.e., infinite and coinfinite [5].
Since Wj ≡1 We is decidable in Σ3, the same argument again applies.

This completes the proof of the theorem.

The proofs of Theorem 2.6 and Corollary 2.7 illustrate the connection between immu-
nity for minimal indices and generalized fixed points. In the following theorem, the
cases ≡m and ≡T were first proven by Arslanov [3], [2], and =∗ is due to Arslanov,
Nadyrov, and Solov’ev [1]. The remaining cases are due to Jockusch, Lerman, Soare
and Solovay [6].

Theorem 2.4 (generalized fixed points, Arslanov, Nadyron, Solov’ev, Jockusch, Ler-
man, Soare, Solovay). For every n ≤ ω,

(i) f ≤T ∅′ =⇒ (∃e) [We =∗ Wf(e)],

(ii) f ≤T ∅′′ =⇒ (∃e) [We ≡m Wf(e)],

(iii) f ≤T ∅(n+2) =⇒ (∃e) [We ≡T(n) Wf(e)].

Furthermore, e can be found effectively from n and an index for f (in an acceptable
numbering of a ∅′-, ∅′′- or ∅(n+2)-recursive function, respectively).

Definition 2.5. An integer n is an ith prime power if n = pki for some k ≥ 1, where
pi is the ith prime number.

The following theorem shows that immunity can be used to distinguish between cer-
tain MIN-sets, even when the arithmetic hierarchy can not.

Theorem 2.6 (Π3-Separation). MINm, MIN∗ and MIN≡1 are all in Π3 − Σ3, but

(i) MINm is Σ3-immune, whereas

(ii) MIN∗ contains an infinite Σ3 set and

(iii) MIN≡1 contains an infinite Σ2 set.

Proof. We already showed MINm,MIN∗,MIN≡1 ∈ Π3 − Σ3 in Theorem 2.3.

(i). MINm is known to be infinite as there are infinitely many many-one degrees of r.e.
sets. If MINm had an infinite Σ3-subset, then there would be a ∅′′-recursive function
f such that f(e) > e and f(e) ∈ MINm for all e. This would imply

(∀e) [Wf(e) 6≡m We],

in contradiction to Theorem 2.4 which says that such a ∅′′-recursive function does not
exist.
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(ii). Recall that
INF = {e : We is infinite}

and for every k, let

Pk = {n : n is a kth prime power},
Ak = {e : We ⊆∗ Pk} ∩ INF,

A = {e : (∃k) (∀j < e) [e ∈ Ak ∧ j 6∈ Ak]}.

Now A ⊆ MIN∗, as e ∈ A implies Wj 6=∗ We for all j < e. Since the Ak’s are disjoint,
any infinite B satisfies B ⊆∗ Ak for at most one k. Moreover, each Ak contributes a
distinct element to A, hence A is infinite. Finally,

We ⊆∗ Pk ⇐⇒ (∃y) (∀x ≥ y) [x ∈ We =⇒ x ∈ Pk]
⇐⇒ (∃y) (∀x ≥ y) [x 6∈ We ∨ x ∈ Pk]
⇐⇒ (∃y) (∀x ≥ y) (∀t) [x 6∈ We,t ∨ x ∈ Pk],

which makes Ak ∈ ∆3, on account of INF ∈ Π2. It follows that A ∈ Σ3.

(iii). Define a sequence of finite sets by

Ak = {x : 0 ≤ x ≤ k}.

Furthermore, define

Bk = {e : We has at least k elements} ∈ Σ1,

which means that

Ck = {e : We has exactly k elements} = Bk ∩ Bk+1 ∈ ∆2.

It follows from the Pigeonhole Principle that

We ≡1 Ak ⇐⇒ e ∈ Ck,

and therefore
{〈e, k〉 : We ≡1 Ak} ∈ ∆2.

Now
A = {e : (∃k) (∀j < e) [Wj 6≡1 Ak ∧ We ≡1 Ak]}

is a Σ2 set. Moreover, A is infinite because each Ak represents a distinct ≡1 class.
Since A ⊆ MIN≡1 , it follows that MIN≡1 is not Σ2-immune.

This completes the proof.

Remark. It is worth noting that MIN≡1 is immune (simply because it is a subset of
MIN).
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2.2 Upper minimal index sets

The goal of this section is to determine the immunity of MINT(n)

.

Corollary 2.7. For all n < ω, MINT(n)

is Σn+3-immune.

Proof. We follow the proof of the Π3-Separation Theorem 2.6(i) and as before, MINT(n)

is infinite (this will follow from Corollary 4.5).

Let n ≥ 0 and let A be an infinite, Σn+3 set. Suppose A ⊆ MINT(n)

. Since A is
infinite and r.e. in ∅(n+2), A has a ∅(n+2)-recursive subset B. Define a ∅(n+2)-recursive
function g by

g(e) = (µi) [i > e ∧ i ∈ B].

Now for all e, g(e) > e and g(e) ∈ MINT(n)

. Therefore

(∀e) [We 6≡T(n) Wg(e)],

contradicting Theorem 2.4.

We now show that Corollary 2.7 is optimal. This will follow from a result by Lempp
and Lerman:

Theorem 2.8 (Lempp and Lerman [8]). Any countable partial order P with jump
which is consistent with:

(i) its order relation,

(ii) the order-preserving property of the jump operator,

(iii) the property of the jump operator that the jump of an element is strictly greater
than the element, and

(iv) the property that a non-jump element lies between 0 and 0′, a single jump
element lies between 0′ and 0′′, etc.

can be effectively embedded into the r.e. degrees.

The next corollary follows from Theorem 2.8 and will be useful in the proof of The-
orem 2.11. In the case of n = 0, Corollary 2.9 says that there exists a recursive
sequence of low, pairwise minimal r.e. sets.

Corollary 2.9. For every n, there exists a recursive sequence of r.e. sets A0, A1, . . .
such that for all C r.e. in ∅(n) and i 6= j,

(i) ∅ <T(n) Ai.

(ii) (Ai)
′ ≡T(n) ∅′,

(iii)
[
C ≤T (Ai)

(n) ∧ C ≤T (Aj)
(n)
]

=⇒ C ≤T ∅(n).

Definition 2.10. For n ≥ 0,
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(i) LOWn = {e : We ≡T(n) ∅},

(ii) HIGHn = {e : We ≡T(n) ∅′}.

Theorem 2.11. For all n ≥ 0, MINT(n)

is not Σn+4-immune.

Proof. Let n ≥ 0 and let A0, A1, . . . be the corresponding sequence of sets obtained
from Corollary 2.9. Define

Bk =

[
{x : Wx ≤T(n) Ak} ∩ LOWn

]
,

B = {e : (∃k) (∀j < e) [e ∈ Bk ∧ j 6∈ Bk]} .

Note that B ≤T(n) A is a ΣB⊕A′

n+2 relation. Since, for any x, both Wx ≤T(n) ∅′ and
(Ak)

′ ≤T(n) ∅′, it follows that

{x : Wx ≤T(n) Ak} ∈ Σ∅
′

n+2 = Σn+3.

This places Bk ∈ ∆n+4, on account of LOWn ∈ Πn+3. Therefore B ∈ Σn+4.

It remains to show that B is an infinite subset of MINT(n)

. Note that Bi ∩ Bj = ∅
for i, j with i 6= j. Indeed, if e ∈ Bi ∩ Bj, then

We ≤T(n) Ai ∧ We ≤T(n) Aj ∧ e 6∈ LOWn,

contradicting Property (iii) of Corollary 2.9. Now since Bk 6= ∅ and each Bk con-
tributes exactly one element to B, B must be infinite.

Finally, assume e ∈ B and let k be such that e ∈ Bk and j 6∈ Bk for all j < e.
Then for j < e,

We ≤T(n) Ak ∧ Wj 6≤T(n) Ak,

which implies We 6≡T(n) Wj. So e ∈ MINT(n)

. That is, B ⊆ MINT(n)

.

Remark. Any set is ∆n-immune iff it is Σn-immune. Therefore our theorems regarding
Σn-immunity also give the results for ∆n-immunity.

2.3 Intuition

The immunity results from Sections 2.1–2.2 are summarized in Figure 1. The arith-
metic results are optimal by Lemma 2.3 and [19, Theorem 1.3.4]. The set-theoretic
inclusions are immediate from the definitions.

Based on this diagram, one might be tempted to believe that minimal index sets
which are higher in the arithmetic hierarchy are also more immune. This is not true,
and we devote the remainder of this section to a counterexample. Indeed, the set
MINThick-∗, defined below, is in Σ4−Π4 and only Σ2-immune, whereas MINm ∈ Π3 is
Σ3-immune. Our omission of MINThick-∗ from Figure 1 makes the diagram coherent.
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...
MINT′′

MINT′

MINT

MINm

MIN∗

MIN

Σ5-immune

Σ4-immune

Σ3-immune

Σ2-immune

immune

Π6

Π5

Π4

Π3

Σ2

Figure 1: A näive approach to minimal index sets, by reverse inclusion.

Definition 2.12. For A,B ⊆ ω, define the equivalence relation

A ≡Thick-∗ B ⇐⇒ (∀n)
[
A[n] =∗ B[n]

]
,

where A[n] = {x : 〈x, n〉 ∈ A}.

Theorem 2.13.

(i) MINThick-∗ ∈ Σ4.

(ii) MINThick-∗ 6∈ Π4.

Proof. (i). {〈j, e〉 : Wj =∗ We} ∈ Σ3, so {〈j, e〉 : Wj ≡Thick-∗ We} ∈ Π4.

(ii). Let A ∈ Π4. Then there exists a relation R ∈ Σ3 such that

x ∈ A ⇐⇒ (∀y) [R(x, y)].

Since COF is Σ3-complete [18], there exists a recursive function g such that R(x, y)
iff Wg(x,y) is cofinite. Therefore

x ∈ A ⇐⇒ (∀y)
[
Wg(x,y) =∗ ω

]
.

Define a recursive function f by

ϕ
[y]
f(x) = ϕg(x,y).

Then

Wf(x) ≡Thick-∗ ω ⇐⇒ (∀y)
[
Wg(x,y) =∗ ω

]
⇐⇒ x ∈ A,
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which makes
Thick-COF = {e : We ≡Thick-∗ ω}

Π4-complete.
Suppose towards a contradiction that MINThick-∗ ∈ Π4, and let a be the ≡Thick-∗-

minimal index for ω. Then

Thick-COF = {e : We ≡Thick-∗ ω}
= {a} ∪

{
e : (∀j < e)

[
j ∈ MINThick-∗ − {a} =⇒ Wj 6≡Thick-∗ We

]}
.

Now Thick-COF ∈ Σ4, since Wj ≡Thick-∗ We can be decided in Π4 and because

MINThick-∗ − {a} ∈ Π4

by assumption. This contradicts the fact that Thick-COF is Π4-complete.

Thickness contributes nothing to immunity, as evidenced by Corollary 2.15.

Lemma 2.14 (semi-fixed points). There exists a recursive function ν such that

(∀f ≤T ∅′) (∃e)
[
Wν(e) ≡Thick-∗ Wf(e)

]
.

Proof. Using the s-m-n Theorem, define a recursive function ν by

ϕν(x)(〈z, n〉) =

{
ϕϕx(n)(z) if ϕx(n) ↓
↑ otherwise.

so that for any x ∈ TOT,
W

[n]
ν(x) = Wϕx(n).

Let f ≤T ∅′ and define, again using the s-m-n Theorem, a recursive sequence of
∅′-recursive functions {fn} by

ϕfn(x)(z) = ϕf(x)(〈z, n〉)

so that
Wfn(x) = W

[n]
f(x).

By the Generalized Fixed Point Theorem (Theorem 2.4), we can uniformly find a
recursive sequence {en} such that for all n,

Wen =∗ Wfn(e).

Let e be an index so that
ϕe(n) = en.

Then for all n,
W

[n]
ν(e) = Wϕe(n) = Wen =∗ Wfn(e) = W

[n]
f(e).

This means that
(∃e)

[
Wν(e) ≡Thick-∗ Wf(e)

]
, (2.2)

which is what we intended to show.
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Comparing Corollary 2.15 with the results from Section 2.1, we note that the thick
operator does not at all affect immunity:

Corollary 2.15. MINThick-∗ is Σ2-immune but not Σ3-immune.

Proof. MINThick-∗ is Σ2-immune follows immediately from the fact that MIN∗ ⊇
MINThick-∗ and Theorem 2.1 (ii). We show MINThick-∗ is not Σ3-immune by mod-
ifying the proof of Theorem 2.6 (ii). All that is needed is to change the definition of
Ak so that it only applies to the first row of each r.e. set:

Ak =
{
e : W [0]

e ⊆∗ Pk
}
∩ INF.

The rest of the proof is the same.

3 Πn-immunity

Our discussion from the previous section gives tight bounds with respect to Σn-
immunity. With the exception of MINm however, in which case Theorem 2.6 gives an
optimal immunity result, we are still left with open questions regarding Πn-immunity.
Unlike the other results from Section 2, Π1-immunity for MIN, Π2-immunity for MIN∗

and Πn+3-immunity for MINT(n)

depend on the numbering for the partial-recursive
functions.

Theorem 3.1. There exist Gödel numberings ψ and ν such that

(i) MINψ contains an infinite Π1-set,

(ii) MINν is Π1-immune.

Proof. Let ϕ be a given Gödel numbering from which the numberings ψ and ν are
built. We denotes domϕe throughout this proof.

(i). Define a Gödel numbering ψ such that ψ2x = ϕx and domψy = {y} when y is
not a power of two. Furthermore, define a partial recursive function θ by

θ(x) =

{
n if n is the first element enumerated into Wx,

↑ otherwise

and a Π1-set A by

A = {y : (∀x) [y 6= 2x ∧ [(2x < y ∧ θ(x) ↓) =⇒ θ(x) 6= y]]}.

We now show A ⊆ MINψ. Let y ∈ A, z < y and assume by way of contradiction that
domψz = domψy. Now z = 2x for some x by definition of ψ, since y is not a power
of two. It follows that

Wx = domψ2x = domψz = domψy = {y},
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and so θ(x) = y. On the other hand, 2x < y and θ(x) ↓, which means that θ(x) 6= y
by definition of A. This is a contradiction.

It remains to verify that A is infinite. For every x > 2, there is a member y ∈ A
between 2x and 2x+1. This follows from easy cardinality reasons: there are 2x − 1
domains, namely {{2x+1}, . . . , {2x+1−1}}, represented among the ψ-indices between
2x and 2x+1. The only ψ-indices between 2x and 2x+1 that are not members of A are
those which have one of the following domains: {{θ(0)}, . . . , {θ(x)}}. It follows that
there are at least (2x − 1)− (x+ 1) members of A between 2x and 2x+1.

(ii). Define the numbering ν such that

ν0 is everywhere undefined

and for x ≥ 0, j ∈ {0, 1, . . . , 2x − 1},

ν2x+j =


ϕx if there are at least 2x − j − 1 indices n ≤ x

such that {2x, 2x + 1, . . . , 2x + j} ⊆ Wn,

ν0 otherwise.

Note that ν2x+(2x−1) = ϕx for all x, which makes ν a Gödel numbering.
Suppose there were an infinite, Π1-set We such that We ⊆ MINν . Choose x large

so that x ≥ e and
2x + j ∈ We ⊆ MINν . (3.1)

Now
{2x, 2x + 1, . . . , 2x + j − 1} ⊆ MINν ⊆ We. (3.2)

By the definition of ν and (3.1),

There are 2x − j − 1 indices n ∈ {0, 1, . . . , x} − {e}
such that {2x, 2x + 1, . . . , 2x + j} ⊆ Wn.

(3.3)

By (3.2) and (3.3),

There are 2x − j indices n ∈ {0, . . . , x}
such that {2x, 2x + 1, . . . , 2x + j − 1} ⊆ Wn.

Thus ν2x+(j−1) = ϕx, contradicting the fact that 2x + j ∈ MINν . This means that
MINν is Π1-immune.

This completes the proof.

Theorem 3.2. There exists Gödel numberings ψ and ν such that

(i) MIN∗ψ contains an infinite Π2-set,

(ii) MIN∗ν is Π2-immune.

Proof. Let ϕ be a given Gödel numbering from which the numberings ψ and ν are
built. We denotes domϕe throughout this proof.
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(i). Let E0, E1, E2, . . . be a recursive partition of the natural numbers into infinitely
many infinite sets, e.g.

En = {〈x, n〉 : x ∈ ω}.

Define

A = {n : (∃k, e) [2e < n ∧ |We − En| < k ∧ |We ∩ En| > k]}, (3.4)

and let
P = {0, 20, 21, 22, . . . }.

Let B[e, k, n] denote the bracketed clause in (3.4). We verify that A ∩ P is an infinite
Π2-set. Note that for a fixed 〈k, e〉, B[e, k, n] can be decided with a halting set oracle.
It follows that A ∈ Σ2, hence A ∩ P ∈ Π2. Moreover, for each index e, there exists
at most one n satisfying B[e, k, n] (whether or not Wn is finite) because the En’s are
pairwise disjoint. It follows that A contains at most e + 1 indices below 2e+1. In
particular, A has a member between 2e and 2e+1 for every e > 2, which proves that
A ∩ P is infinite.

Define a Gödel numbering ψ so as to satisfy:

• ψ2n = ϕn;

• Vn = En if n ∈ A ∩ P ,

where Vn = domψn. This can be done as follows. Let {As}s∈ω be a recursive Σ2-
approximation of A satisfying

n ∈ A ⇐⇒ (∀∞s) [n ∈ As].

For n ∈ P , enumerate 〈x, n〉 into Vn iff there is a stage s > x such that n /∈ As. Then
Vn = En if n ∈ A, and Vn is finite subset of En otherwise.

It remains to show that A ∩ P ⊆ MIN∗ψ. Assume that n ∈ A ∩ P . By definition
of A, for all numbers 2x ∈ P satisfying 2x < n,

V2x = Wx 6=∗ En = Vn.

For the remaining indices x 6∈ P with x < n, we have

Vx = Ex 6=∗ En = Vn,

Therefore n ∈ MIN∗ψ.

Remark. The proof above shows even a bit more. Since finite sets are not =∗-minimal,
we see that there is a recursive set, namely P , such that MIN∗ψ ∩ P is an infinite
Π2-set.

(ii). We use the fact that the Π2-sets are those which are co-r.e. relative to K. Let
W0,W1,W2, . . . be an acceptable numbering of the r.e. sets with corresponding partial
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recursive functions ϕ0, ϕ1, ϕ2, . . . , let UK
0 , U

K
1 , U

K
2 , . . . be an acceptable numbering

relative to K and let

B = {2x + j : 0 ≤ j < 2x ∧ there are at least 2x − j − 1

indices n ≤ x such that {2x, 2x + 1, . . . , 2x + j} ⊆ UK
n }.

Since B ∈ Σ2, let {Bs} be a recursive approximation to B satisfying

z ∈ B ⇐⇒ (∃t) (∀s > t) [z ∈ Bs].

We define the numbering ν0, ν1, . . . with corresponding domains V0, V1, . . . so that
the following three conditions hold:

• V0 = ω;

• For j ∈ {0, 1, 2, . . . , 2x − 1},

V2x+j = Wx ∪ {t : (∃s > t) [2x + j 6∈ Bs]};

• ν2x+(2x−1) = ϕx.

This ordering satisfies

V2x+j =∗

{
Wx if 2x + j ∈ B,

ω otherwise.
(3.5)

The third bullet makes ν a Gödel numbering, so it remains only to show that MIN∗ν
does not contain an infinite Π2-subset. Assume to the contrary, that UK

e ⊆ MIN∗ν .
As in Theorem 3.1 (ii), choose x large so that x ≥ e and

2x + j ∈ UK
e ⊆ MIN∗ν . (3.6)

Note that j > 0 because 2x /∈ B. It now follows from the definition of ν that

{2x, 2x + 1, . . . , 2x + j − 1} ⊆ MIN∗ν ⊆ UK
e . (3.7)

From (3.5) and (3.6) we have that 2x + j ∈ B, so by definition of B,

There are 2x − j − 1 indices n ∈ {0, 1, . . . , x} − {e}
such that {2x, 2x + 1, . . . , 2x + j} ⊆ UK

n .
(3.8)

Finally by (3.7) and (3.8),

There are 2x − j indices n ∈ {0, . . . , x}
such that {2x, 2x + 1, . . . , 2x + j − 1} ⊆ UK

n .

This means that 2x + j − 1 ∈ B and therefore V2x+j−1 =∗ Wx, contradicting that
2x + j ∈ MIN∗ν .

This completes the proof.
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An analogous result holds for MINT(n)

, using the following two lemmata.

Theorem 3.3 (Sacks Jump Theorem [15], [18]). Let B be any set and let S be r.e.
in B′ with B′ ≤T S. Then there exists a B-r.e. set A with A′ ≡T S. Furthermore, an
index for A can be found uniformly from an index for S.

Lemma 3.4 (Schwarz [17]). Let B be a Σk+3 set, where k ≥ 0. Then there exists a
recursive function f satisfying

x ∈ B =⇒ f(x) ∈ LOWk,

x 6∈ B =⇒ f(x) ∈ HIGHk.

Proof. It is known [18, Theorem IV.4.3] that for any A ∈ Σ3, there exists a recursive
function f satisfying

x ∈ B =⇒ f(x) ∈ COF,

x 6∈ B =⇒ f(x) ∈ HIGH0.

where HIGH0 is the index set of the Turing complete r.e. sets. This proves the lemma
for the case n = 0. Relativizing [18, Theorem IV.4.3], we obtain for each B ∈ Σk+3 a
recursive g satisfying

x ∈ B =⇒ W ∅(k)
g(x) is cofinite,

x 6∈ B =⇒ W ∅(k)
g(x) ≡T ∅(k+1).

k iterations of the Sacks Jump Theorem 3.3 now yield the result.

Theorem 3.5. For every k ≥ 0, there exist Gödel numberings ψ and ν such that

(i) MINT(k)

ψ contains an infinite Πk+3-set,

(ii) MINT(k)

ν is Πk+3-immune.

Proof. Fix k ≥ 0. Let ϕ be any Gödel numbering and let We denote domϕe.

(i). Let E0, E1, . . . be a sequence of r.e. sets satisfying

• (∀n) [(En)′ ≡T(k) ∅′];

• (∀i 6= j) [Ei 6≡T(k) Ej].

For example, we can take E0, E1, . . . to be the sets constructed in Corollary 2.9. Let

A = {n : (∀e) [2e < n =⇒ We 6≤T(k) En]}.

Since (En)′ ≡T(k) ∅′ for all k, we have A ∈ Πk+3. Let

P = {20, 21, 22, . . . }.

Finally, define the Gödel numbering ψ to satisfy

15



• ψ2n = ϕn;

• Vn = En if n ∈ P ,

where Vn denotes the domain of ψn.
Note that A ∩ P is infinite, as there are at most e non-members below 2e for every

e. As A ∩ P ∈ Πk+3, it remains only to show that A ∩ P ⊆ MINT(k)

ψ . Let n ∈ A ∩ P .
If 2x < n, then

V2x = Wx 6≤T(k) En = Vn.

If x < n and x /∈ P , then
Vx = Ex 6≡T(k) En = Vn.

Hence n ∈ MINT(k)

ψ .

(ii). Let U0, U1, . . . be an acceptable numbering relative to ∅(k+2). Define

B = {2x + j : 0 ≤ j < 2x ∧ there are at least 2x − j − 1

indices n ≤ x such that {2x, 2x + 1, . . . , 2x + j} ⊆ Un}.

Since B ∈ Σk+3, Lemma 3.4 gives off a corresponding recursive function f . Let g be
the recursive “jump inversion” from Lemma 3.3 and let

g(k) = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
k

.

We define the Gödel numbering ν0, ν1, . . . with corresponding domains V0, V1, . . . by

• V0 = K ;

• For 0 ≤ j < 2x − 1,

V2x+j = g(k)
(

(Wx)
(k) ⊕

(
Wf(2x+j)

)(k))
;

• ν2x+(2x−1) = ϕx.

Now ν satisfies

V2x+j ≡T(k)

{
Wx if 2x + j ∈ B,

K otherwise.
(3.9)

Due to the similarity between (3.9) and (3.5), we can now proceed exactly as in
Theorem 3.2 (ii).

This completes the proof.

Remark. All of the Gödel numberings in this section can be converted into Kolmogorov
numberings using a method such as [16, Theorem 2.17].
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4 Properties of MINT(ω)

We investigate the minimal index set MINT(ω)

. The main lemma of this section is
Corollary 4.1, which follows from Lerman’s revision [9] of Theorem 2.8 to account for
the join operator. That the jump operator can be included when greatest element is
omitted from the language was also mentioned in the discussion following [8, Theorem
7.10].

Corollary 4.1. There exists a recursive sequence {xk} such that for all n and i,

(Wxi)
(n) 6≤T ⊕

j 6=i

(
Wxj

)(n)
. (4.1)

In particular, (Wxi)
(n) |T (Wxj)

(n) whenever i 6= j.

A direct proof of Corollary 4.1, without reference to [8] or [9], appears in [19, Theorem
6.1.1].

Remark. According to Lerman’s result, it is even possible to replace (4.1) with the
stronger relation

(Wxi)
(n) 6≤T

(
⊕
j 6=i

Wxj

)(n)

.

Definition 4.2. Let f be a total function and let A = {a0, a1, . . . } be an infinite set
where the an are indexed in ascending order: an < an+1.

(i) The function pA(n) = an is called the principal function of A.

(ii) A function f majorizes a set A if (∀n) [f(n) > pA(n)].

Lemma 4.3 (Medvedev [12]). An infinite set A is hyperimmune iff A is not majorized
by a recursive function.

We obtain the following satisfying result:

Theorem 4.4 (peak hierarchy). MINT(ω)

(i) is infinite,

(ii) contains no infinite arithmetic subsets, and

(iii) is not hyperimmune.

Proof. (i). Corollary 4.1 provides an infinite list of distinct ≡T(ω) classes.

(ii). Follows from Corollary 2.7, because MINT(ω) ⊆ MINT(n)

for every n.
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(iii). We verify that MINT(ω)

gets majorized. Let {xk} be as in Corollary 4.1. Then
for all n and i 6= j,

Wxi 6≡T(n) Wxj .

Without loss of generality, x0 < x1 < . . . since {xk} is recursive. Define the recursive
function

f(0) = x1

f(n+ 1) = x[2f(n)],

and let p be the principal function of MINT(ω)

. Note that f(0) > 0 = p(0) and assume
for the purposes of induction that f(n) > p(n). Note that

p(n) ≤ xp(n) < xf(n) < xf(n)+1 < . . . < x2f(n) = f(n+ 1),

so at least f(n) xk’s lie strictly between p(n) and f(n+ 1), namely

{xf(n), xf(n)+1, . . . , x2f(n)−1}.

Hence, at least f(n) distinct ≡T(ω)-equivalence classes are represented by indices
strictly between p(n) and f(n + 1). Since less than f(n) classes are represented
in indices up to p(n), there necessarily must be a new ≡T(ω)-class introduced strictly
between p(n) and f(n + 1). This forces p(n + 1) < f(n + 1). Hence f majorizes

MINT(ω)

. The result now follows immediately from Lemma 4.3.

This completes the proof.

Consequently, the other minimal index sets in this paper share properties (i) and (iii):

Corollary 4.5. Every set containing MINT(ω)

, including MIN∗, MINm and MINT, is
infinite but not hyperimmune.

Remark. ∅(ω) is another familiar set which is hyperarithmetic and majorized by a

recursive function. However, unlike MINT(ω)

, ∅(ω) contains a copy of ∅′. This means
that ∅(ω) is not at all immune.

Lusin once constructed a set of reals which neither contains nor is disjoint from any
perfect set [10], [11, Theorem 2.25]. By modifying Lusin’s construction and gently

expanding MINT(ω)

, we obtain an analogous construction for the arithmetic hierarchy
which contains a familiar subset:

Corollary 4.6. There exists a set X ⊇ MINT(ω)

such that X:

(i) contains no infinite arithmetic sets,

(ii) is not disjoint from any infinite arithmetic set, and

(iii) is majorized by a recursive function.
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5 Size-minimal random strings

We recall a theorem of Arslanov.

Theorem 5.1 (Arslanov Completeness Criterion [2]). For any r.e. set A,

A ≡T ∅′ ⇐⇒ (∃f ≤T A) (∀x) [Wf(x) 6= Wx].

In this section, s is a recursive function whose name stands for “size.” Size-minimal
indices and descriptions of smallest size have received attention in [16, Section 3].
Schaefer [16] shows that there exists a recursive size-function s (independent of the
Gödel numbering ϕ) such that

MINϕ,s = {e : (∀j) [s(j) < s(e) =⇒ ϕj 6= ϕe]}

is hyperimmune, although this can not happen as long as s(e) ≤ s(e + 1) for all e.
When MINϕ,s is hyperimmune we have MINϕ,s 6≥wtt ∅′ [16] and when s is the identity
function we have MINϕ,s ≡T ∅′′ [13], however the Turing degree of MINϕ,s remains
open in general.

Our investigation of size-minimal indices leads us to a generalization of the Kol-
mogorov random strings. Recall that the Kolmogorov random strings are defined
as

Rϕ = {x : (∀j) [l(j) < l(x) =⇒ ϕj(0) 6= x]},

where l is the length function for integers encoded in binary. l could be taken to be
any recursive function s, however, as in

Rϕ,s = {x : (∀j) [s(j) < s(x) =⇒ ϕj(0) 6= x]}.

Let
N = {x : (∃j) [s(j) < s(x) ∧ ϕj(0) = x]}

be the complement of Rϕ,s. Clearly N is an r.e. set.

Theorem 5.2. The Turing degree of N depends on which of the following two cases
applies:

(a) For all c there is an x /∈ N with s(x) > c.

(b) There is a constant c such that for all x /∈ N it holds that s(x) < c.

In the first case, N ≡T K. In the second case, N can have any many-to-one r.e.
degree (other than ∅ or ω).

Proof. Assume (a). Let t be a recursive function such that ϕt(e)(0) is the first element
enumerated into We whenever it exists; so ϕt(e)(0) is defined iff We 6= ∅. Now define
a function fN such that for every e, WfN (e) = {x}, where x is the first number found
such that x /∈ N and s(x) > s[t(e)]. This means ϕt(e)(0) /∈ WfN (e). It follows that
We 6= WfN (e) for all e, and hence the Turing degree of N is fixed-point free. By
Arslanov’s Completeness Criterion 5.1, N ≡T K .
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Assume (b). In this case, not much can be said about the Turing degree of N .
Indeed, the m-degree of N can be chosen to be equivalent to the m-degree of any r.e.
B as follows, with B,B both not empty.

Given ϕ and B, one constructs s via a sequence a0, a1, a2, . . . in stages. For this,
let b0, b1, b2, . . . be a recursive one-one enumeration of the set B. Now a0, a1, a2, . . . is
chosen using the Padding Lemma such that the following holds:

• ax ≥ ay + 2 for all y < x;

• ax /∈ {2b0, 2b0 + 1} ∪ {2b1, 2b1 + 1} ∪ . . . ∪ {2bx, 2bx + 1};

• ϕax(0) =

{
2bx if s(2bx) = 1,

2bx + 1 if s(2bx) = 0;

• if x ∈ {a0, a1, . . . , ax} then s(x) = 0 else s(x) = 1.

In the last condition, s designates a0, a1, . . . to be the “small” indices, all other indices
are “large”. Note that the first and last condition together imply that s(x) and
s(x + 1) are never both 0. Thus, according to the third condition, B ≤m N by
x ∈ B ⇔ 2x+ 1− s(2x) ∈ N . Furthermore,

(N(2x), N(2x+ 1)) =


(0, 0) if s(2x) = 0 and x /∈ B;

(0, 1) if s(2x) = 0 and x ∈ B;

(0, 0) if s(2x) = 1 and x /∈ B;

(1, 0) if s(2x) = 1 and x ∈ B.

This can be used to show that N ≤m B. So N and B are many-one equivalent.
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