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The ability to discover groupings in continuous stimuli on the basis of distributional infor-
mation is present across species and across perceptual modalities. We investigate the nat-
ure of the computations underlying this ability using statistical word segmentation
experiments in which we vary the length of sentences, the amount of exposure, and the

number of words in the languages being learned. Although the results are intuitive from
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the perspective of a language learner (longer sentences, less training, and a larger language
all make learning more difficult), standard computational proposals fail to capture several
of these results. We describe how probabilistic models of segmentation can be modified to
take into account some notion of memory or resource limitations in order to provide a clo-
ser match to human performance.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Human adults and infants, non-human primates, and
even rodents all show a surprising ability: presented with
a stream of syllables with no pauses between them, indi-
viduals from each group are able to discriminate statisti-
cally coherent sequences from sequences with lower
coherence (Aslin, Saffran, & Newport, 1998; Hauser,
Newport, & Aslin, 2001; Saffran, Johnson, Aslin, & Newport,
1999; Saffran, Newport, & Aslin, 1996; Toro & Trobalon,
2005). This ability is not unique to linguistic stimuli (Saf-
fran et al., 1999) or to the auditory domain (Conway &
Christiansen, 2005; Kirkham, Slemmer, & Johnson, 2002),
and is not constrained to temporal sequences (Fiser &
Aslin, 2002) or even to the particulars of perceptual stimuli
(Brady & Oliva, 2008). This “statistical learning” ability
may be useful for a large variety of tasks but is especially
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relevant to language learners who must learn to segment
words from fluent speech.

Yet despite the scope of the “statistical learning” phe-
nomenon and the large literature surrounding it, the com-
putations underlying statistical learning are at present
unknown. Following an initial suggestion by Harris
(1951), work on this topic by Saffran and colleagues (Saf-
fran, Aslin, & Newport, 1996; Saffran et al., 1996) suggested
that learners could succeed in word segmentation by com-
puting transitional probabilities between syllables and
using low-probability transitions as one possible indicator
of a boundary between words. More recently, a number of
investigations have used more sophisticated computa-
tional models to attempt to characterize the computations
performed by human learners in word segmentation
(Giroux & Rey, 2009) and visual statistical learning (Orban,
Fiser, Aslin, & Lengyel, 2008) tasks.

The goal of the current investigation is to extend this
previous work by evaluating a larger set of models against
new experimental data describing human performance in
statistical word segmentation tasks. Our strategy is to
investigate the fit of segmentation models to human per-
formance. Because existing experiments show evidence
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of statistical segmentation but provide only limited quan-
titative results about segmentation under different condi-
tions, we parametrically manipulate basic factors leading
to difficulty for human learners to create a relatively de-
tailed dataset with which to evaluate models.

The plan of the paper is as follows. We first review some
previous work on the computations involved in statistical
learning. Next, we make use of the adult statistical seg-
mentation paradigm of Saffran et al. (1996) to measure hu-
man segmentation performance as we vary three factors:
sentence length, amount of exposure, and number of
words in the language. We then evaluate a variety of seg-
mentation models on the same dataset and find that
although some of the results are well-modeled by some
subset of models, no model captures all three results. We
argue that the likely cause of this failure is the lack of
memory constraints on current models. We conclude by
considering methods for modifying models of segmenta-
tion to better reflect the memory constraints on human
learning.

There are three contributions of this work: we intro-
duce a variety of new human data about segmentation un-
der a range of experimental conditions, we show an
important limitation of a number of proposed models,
and we describe a broad class of models—memory-limited
probabilistic models—which we believe should be the fo-
cus of attention in future investigations.

1.1. Computations underlying statistical learning

Investigations of the computations underlying statisti-
cal learning phenomena have followed two complemen-
tary strategies. The first strategy is the strategy of
evaluating model sufficiency: whether a particular model,
given some fixed amount of data, will converge to the cor-
rect solution. If a model does not converge to the correct
solution within the amount of data available to a human
learner, either the model is incorrect or the human learner
relies on other sources of information to solve the problem.
The second strategy evaluates fidelity: the fit between
model performance and human performance across a
range of different inputs. To the extent that a model cor-
rectly matches the pattern of successes and failures exhib-
ited by human learners, it can be said to provide a better
theory of human learning.

Investigations of the sufficiency of different computa-
tional proposals for segmentation have suggested that
transitional probabilities may not be a viable segmentation
strategy for learning from corpus data (Brent, 1999b). For
example, Brent (1999a) evaluated a number of computa-
tional models of statistical segmentation on their ability
to learn words from infant-directed speech and found that
a range of statistical models were able to outperform a
simpler transitional probability-based model. A more re-
cent investigation by Goldwater, Griffiths, and Johnson
(2009) built on Brent’s modeling work by comparing a uni-
gram model, which assumed that each word in a sentence
was generated independently of each other word, to a bi-
gram model which assumed sequential dependencies be-
tween words. The result of this comparison was clear:
the bigram model substantially outperformed the unigram

model because the unigram model tended to underseg-
ment the input, mis-identifying frequent sequences of
words as single units (e.g. “whatsthat” or “inthehouse”).
Thus, incorporating additional linguistic structure into
models may be necessary to achieve accurate segmenta-
tion. In general, however, the model described by Goldwa-
ter et al. (2009) and related models (Johnson, 2008; Liang &
Klein, 2009) achieve the current state-of-the-art in seg-
mentation performance due to their ability to find coher-
ent units (words) and estimate their relationships within
the language.

It is possible that human learners use a simple, under-
segmenting strategy to bootstrap segmentation but then
use other strategies or information sources to achieve
accurate adult-level performance (Swingley, 2005). For this
reason, investigations of the sufficiency of particular mod-
els are not alone able to resolve the question of what com-
putations human learners perform either in artificial
language segmentation paradigms or in learning to seg-
ment human language more generally. Thus, investigations
of the fidelity of models to human data are a necessary part
of the effort to characterize human learning. Since data
from word segmentation tasks with human infants are lar-
gely qualitative in nature (Saffran et al., 1996; Jusczyk &
Aslin, 1995), artificial language learning tasks with adults
can provide valuable quantitative data for the purpose of
distinguishing models.

Three recent studies have pursued this strategy. All
three have investigated the question of the representations
that are stored in statistical learning tasks and whether
these representations are best described by chunking mod-
els or by transition-finding models. For example, Giroux and
Rey (2009) contrasted the PARSER model of Perruchet and
Vinter (1998) with a simple recurrent network, or SRN (EI-
man, 1990). The PARSER model, which extracts and stores
frequent sequences in a memory register, was used as an
example of a chunking strategy and the SRN, which learns
to predict individual elements on the basis of previous ele-
ments, was used as an example of a transition-finding
model. Giroux and Rey compared the fit of these models
to a human experiment testing whether adults were able
to recognize the sub-strings of valid sequences in the expo-
sure corpus and found that PARSER fit the human data bet-
ter, predicting sub-string recognition performance would
not increase with greater amounts of exposure. These re-
sults suggest that PARSER may capture some aspects of
the segmentation task that are not accounted for by the
SRN. But because each model in this study represents only
one particular instantiation of its class, a success or failure
by one or the other does not provide evidence for or
against the entire class.

In the domain of visual statistical learning tasks, Orban
et al. (2008) conducted a series of elegant behavioral
experiments with adults that were also designed to distin-
guish chunking and transition-finding strategies. (Orban
et al. referred to this second class of strategies as associa-
tive rather than transition-finding, since transitions were
not sequential in the visual domain.) Their results sug-
gested that the chunking model, which learned a parsimo-
nious set of coherent chunks that could be composed to
create the exposure corpus, provided a better fit to human
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performance across a wide range of conditions. Because of
the guarantee of optimality afforded by the ideal learning
framework that Orban et al. (2008) used, this set of results
provides slightly stronger evidence in favor of a chunking
strategy. While Orban et al.’s work still does not provide
evidence against all transition-finding strategies, their re-
sults do suggest that it is not an idiosyncrasy of the learn-
ing algorithm employed by the transition-finding model
that led to its failure. Because this result was obtained in
the visual domain, however, it cannot be considered con-
clusive for auditory statistical learning tasks, since it is
possible that statistical learning tasks make use of different
computations across domains (Conway & Christiansen,
2005).

Finally, a recent study by Endress and Mehler (2009)
familiarized adults to a language which contained three-
syllable words that were each generated via the perturba-
tion of one syllable of a “phantom word” (labeled this way
because the word was not ever presented in the experi-
ment). At test, participants were able to distinguish words
that actually appeared in the exposure corpus from dis-
tractor sequences with low internal transition probabilities
but not from phantom words. These data suggest that par-
ticipants do not simply store frequent sequences; if they
did, they would not have indicated that phantom words
were as familiar as sequences they actually heard. How-
ever, the data are consistent with at least two other possi-
ble interpretations. First, participants may have relied only
on syllable-wise transition probabilities (which would lead
to phantom words being judged equally probable as the
observed sequences). Second, participants might have been
chunking sequences from the familiarization corpus and
making the implicit inference that many of the observed
sequences were related to the same prototype (the phan-
tom word). This inference would in turn lead to a prototype
enhancement effect (Posner & Keele, 1968), in which partic-
ipants believe they have observed the prototype even
though they have only observed non-prototypical exem-
plars centered around it. Thus, although these data are
not consistent with a naive chunking model, they may well
be consistent with a chunking model that captures other
properties of human generalization and memory.

To summarize: although far from conclusive, the cur-
rent pattern of results is most consistent with the hypoth-
esis that human performance in statistical learning tasks is
best modeled by a process of chunking which may be lim-
ited by the basic properties of human memory. Rather than
focusing on the question of chunking vs. transition-finding,
our current work begins where this previous work leaves
off, investigating how to incorporate basic features of hu-
man performance into models of statistical segmentation.
Although some models of statistical learning have incorpo-
rated ideas about restrictions on human memory (Perru-
chet & Vinter, 1998, 2002), for the most part, models of
segmentation operate with no limits on either memory
or computation. Thus, one goal of the current work is to
investigate how these limitations can be modeled and
how modeling these limitations can improve models’ fit
to human data.

We begin by describing three experiments which
manipulate the difficulty of the learning task. Experiment

1 varies the length of the sentences in the segmentation
language. Experiment 2 varies the amount of exposure par-
ticipants were given to the segmentation language. Exper-
iment 3 varies the number of words in the language. Taken
together, participants’ mean performance in these three
experiments provides a set of data which we can use to
investigate the fit of models.

2. Experiment 1: sentence length

When learning to segment a new language, longer sen-
tences should be more difficult to understand than shorter
sentences. Certainly this is true in the limit: individually
presented words are easy to learn and remember, while
those presented in long sentences with no boundaries are
more difficult. In order to test the hypothesis that segmen-
tation performance decreases as sentence length increases,
we exposed adults to sentences constructed from a simple
artificial lexicon. We assigned participants to one of eight
sentence-length conditions so that we could estimate the
change in their performance as sentence length increased.

2.1. Methods

2.1.1. Participants

We tested 101 MIT students and members of the sur-
rounding community, but excluded three participants from
the final sample based on performance greater than two
standard deviations below the mean for their condition.

2.1.2. Materials

Each participant in the experiment heard a unique and
randomly generated sample from a separate, randomly
generated artificial language. The lexicon of this language
was generated by concatenating 18 syllables (ba, bi, da,
du, ti, tu, ka, ki, la, lu, gi, gu, pa, pi, va, vu, zi, zu) into six
words, two with two syllables, two with three syllables,
and two with four syllables. Sentences in the language
were created by randomly concatenating words together
without adjacent repetition of words. Each participant
heard 600 words, consisting of equal numbers of tokens
of each vocabulary item.

Participants were randomly placed in one of eight sen-
tence-length conditions (1, 2, 3, 4, 6, 8, 12, or 24 words per
sentence). All speech in the experiment was synthesized
using the MBROLA speech synthesizer (Dutoit, Pagel, Pier-
ret, Bataille, & Van Der Vrecken, 1996) with the us3 di-
phone database, in order to produce an American male
speaking voice. All consonants and vowels were 25 and
225 ms in duration, respectively. The fundamental fre-
quency of the synthesized speech was 100 Hz. No breaks
were introduced into the sentences: the synthesizer cre-
ated equal co-articulation between every phone. There
was a 500 ms break between each sentence in the training
sequence.

Test materials consisted of 30 target-distractor pairs.
Each pair consisted of a word from the lexicon paired with
a “part-word” distractor with the same number of sylla-
bles. Part-word distractors were created as in Saffran
et al. (1996): they were sequences of syllables of the same
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lengths as words, composed of the end of one word and the
beginning of another (e.g. in a language with words badutu
and kagi, a part word might be dutuka, which combines the
last two syllables of the first word with the first syllable of
the second). In all conditions except the length 1 condition,
part-word sequences appeared in the corpus (although
with lower frequency than true words). No adjacent test
pairs contained the same words or part-word distractors.

2.1.3. Procedure

Participants were told that they were going to listen to a
nonsense language for 15 min, after which they would be
tested on how well they learned the words of the language.
All participants listened on headphones in a quiet room.
After they had heard the training set, they were instructed
to make forced-choice decisions between pairs of items
from the test materials by indicating which one of the
two “sounded more like a word in the language they just
heard.” No feedback was given during testing.

Experiment 1
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100
1
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percent correct

30

2.2. Results and discussion

Performance by condition is shown in Fig. 1, top left.
Participants’ individual data were highly variable, but
showed a very systematic trend in their mean perfor-
mance across conditions. Although the spread in partici-
pants’ performance could have been caused by random
variation in the phonetic difficulty of the languages we
created, the variability was not greater than that ob-
served in previous studies (Saffran et al., 1996). Thus,
we focused on modeling and understanding mean perfor-
mance across groups of participants, rather than individ-
ual performance.

We analyzed test data using a multi-level (mixed-
effect) logistic regression model (Gelman & Hill, 2006).
We included a group-level (fixed) effect of word length
and a separate intercept term for each sentence-length
condition. We also added a participant-level (random) ef-
fect of participant identity. We fit a separate model with

Experiment 2
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Fig. 1. Data from Experiments 1-3. The percentage of test trials answered correctly by each participant (black dots) is plotted by sentence length, number of
tokens, or number of types, respectively. Overlapping points are slightly offset on the horizontal axis to avoid overplotting. Solid lines show means, dashed

lines show standard error of the mean, and dotted lines show chance.
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an interaction of word length and sentence-length condi-
tion but found that it did not significantly increase model
fit (x%(7)=10.67, p =.15) so we pruned it from the final
model.

There was no effect of word length (f=-.00022,
z=.028, p=.99). In contrast, coefficient estimates for sen-
tence lengths 1, 2, 3, 4, 6, and 8 were highly reliable
(B=2.31, 1.56, 1.64, 1.39, 1.32, and 1.31 respectively, and
z=7.00, 5.16, 5.10, 4.47, 4.24, and 4.20, all p-val-
ues <.0001), while length 12 reached a lower level of sig-
nificance (8=.86, z=2.82, and p =.004). Length 24 was
not significant (p=0.45, z=1.55, p=.12), indicating that
performance in this condition did not differ significantly
from chance. Thus, longer sentences were considerably
more difficult to segment.

3. Experiment 2: amount of exposure

The more exposure to a language learners receive, the
easier it should be for them to learn the words. To measure
this relationship, we conducted an experiment in which
we kept the length of sentences constant but varied the
number of tokens (instances of words) participants heard.

3.1. Methods

3.1.1. Participants

We tested 72 MIT students and members of the sur-
rounding community. No participants qualified as outliers
by the criteria used in Experiment 1.

3.1.2. Materials

Materials in Experiment 2 were identical to those in
Experiment 1, with one exception. We kept the number
of words in a sentence constant at four words per sentence,
but we manipulated the total number of words in the lan-
guage sample that participants heard. Participants were
randomly placed in one of six exposure length conditions
(48, 100, 300, 600, 900, and 1200 total tokens). Numbers
of tokens were chosen to ensure that they were multiples
of both 4 (for sentence length to be even) and 6 (for the fre-
quencies of words to be equated). There were a total of 12
participants in each condition.

3.1.3. Procedure
All procedures were identical to those in Experiment 1.

3.2. Results and discussion

The results of Experiement 2 are shown in Fig. 1, top
right. As in Experiment 1, we analyzed the data via a mul-
ti-level logistic regression model. There was again no inter-
action of condition and word length, so the interaction
term was again pruned from the model (}*(5)=1.69,
p =.89). Coefficient estimates for the 48 and 100 conditions
did not differ from chance (f=.082 and .39, z=.31 and
1.47, p=.76 and .14). In contrast, coefficients for the other
four conditions did reach significance (=.75, .76, 1.03,
and 1.33, z=2.78, 2.81, 3.77, and 4.72, all p-values <.01).
Performance rose steeply between 48 tokens and 300 to-

kens, then was largely comparable between 300 and
1200 tokens.

4. Experiment 3: number of word types

The more words in a language, the harder the vocabulary
of that language should be to remember. All things being
equal, three words will be easier to remember than nine
words. On the other hand, the more words in a language,
the more diverse the evidence that you get. For a transi-
tion-finding model, this second fact is reflected in the de-
creased transition probabilities between words in a larger
language, causing part-word distractors to have lower
probability. For a chunking model, the same fact is reflected
in the increase in complexity of viable alternative segmen-
tations. For example, in a three-word language of the type
described below, hypothesizing boundaries after the first
syllable of each word rather than in the correct locations
would result in a segmentation requiring six words rather
than three—a relatively small increase in the size of the
hypothesized language. In contrast, a comparable alterna-
tive segmentation for a nine-word language would contain
72 “words,” which is a much larger increase over the true
solution, and therefore much easier to rule out. Across mod-
els, larger languages result in an increase in the amount and
diversity of evidence for the correct segmentation.

In our third experiment, we varied the number of distinct
word types in the languages we asked participants to learn.
If the added cost of remembering a larger lexicon is larger
than the added benefit given by seeing a word in a greater
diversity of contexts, participants should do better in seg-
menting smaller languages. If the opposite is true, we should
expect participants to perform better in larger languages.

4.1. Methods

4.1.1. Participants

We tested 63 MIT students and members of the sur-
rounding community. We excluded two participants from
the final sample due to performance lower than two stan-
dard deviations below the mean performance for their
condition.

4.1.2. Materials

Materials in Experiment 3 were identical to those in
Experiments 1 and 2, with one exception. We fixed the
number of words in each sentence at four and fixed the
number of tokens of exposure at 600, but we varied the
number of word types in the language, with 3, 4, 5, 6,
and 9 types in the languages heard by participants in each
of the five conditions. Numbers of types were chosen to
provide even divisors of the number of tokens. Note that
token frequency increases as the number of types de-
creases; thus in the 3 type condition, there were 200 to-
kens of each word, while in the 9 type condition, there
were approximately 66 tokens of each word.

4.1.3. Procedure
All procedures were identical to those in Experiments 1
and 2.
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4.2. Results and discussion

Results of the experiment are shown in Fig. 1, bottom.
As predicted, performance decreased as the number of
types increased (and correspondingly as the token fre-
quency of each type decreased as well). As in Experiments
1 and 2, we analyzed the data via multi-level logistic
regression. We again pruned the interaction of word length
and condition from the model (x?(4)=7.06, p=.13). We
found no significant effect of word length (f=.031,
z=.91, p=.36), but we found significant coefficients for
all but the 9 types condition (= 2.12, 1.77, 1.17, .84, and
.39, z=5.46, 4.92, 3.17, 2.25, and 1.32, p <.0001 for 3 and
4 types and p =.0015, .025, and .19, for 5, 6, and 9 types,
respectively). Thus, performance decreased as the number
of types increased.

One potential concern about this experiment is that
while we varied the number of types in the languages par-
ticipants learned, this manipulation co-varied with the
number of tokens in the language. To analyze whether the
results of this experiment were due to the number of tokens
of each type rather than the number of types per se, we con-
ducted an additional analysis. We consolidated the data
from Experiments 2 and 3 and fit a multi-level model with
two main predictors: number of types and number of to-
kens per type, as well as a binary term for which experiment
a participant was in. Because of the relatively large number
of levels and because the trend in Experiment 3 was roughly
linear, we treated types and tokens per type as linear pre-
dictors, rather than as factors as in the previous analyses.
(We experimented with adding an interaction term but
found that it did not significantly increase model fit.) We
found that there was still a negative effect of number of
types (=-.11, z= —-2.81, p=.004), even with a separate
factor included in the model for the number of tokens per
type (B =0.0049, z=5.31, p<.0001). Thus, although the
type-token ratio does contribute to the effect we observed
in Experiment 3, there is still an independent effect of num-
ber of types when we control for this factor.

5. Model comparison

In this section, we compare the fit of a number of recent
computational proposals for word segmentation to the
human experimental results reported above. We do not at-
tempt a comprehensive survey of models of segmenta-
tion.! Instead we sample broadly from the space of
available models, focusing on those models whose fit or lack
of fit to our results may prove theoretically interesting. We
first present our materials and comparison scheme; we next
give the details of our implementation of each model. Final-
ly, we give results in modeling each of our experiments.

Because all of the models we evaluated were able to
segment all experimental corpora correctly—that is, find
the correct lexical items and prefer them to the distractor
items—absolute performance was not useful in comparing
models. In the terminology introduced above, all models

1 See e.g. Brent (1999a, 1999b) for a systematic explanation and
comparison of models and Goldwater et al. (2009) for more results on
recent probabilistic models.

passed the criterion of sufficiency for these simple lan-
guages. Instead, we compared models’ fidelity: their fit to
human performance.

5.1. Details of simulations

5.1.1. Materials

We compiled a corpus of twelve randomly generated
training sets in each of the conditions for each experiment.
These training sets were generated identically to those
seen by participants and were meant to mimic the slight
language-to-language variations found in our training cor-
pora. In addition, because some of the models we evalu-
ated rely on stochastic decisions, we wanted to ensure
that models were evaluated on a range of different training
corpora. Each training set was accompanied by 30 pairs of
test items, the same number of test items as our partici-
pants received. Test items were (as in the human experi-
ments) words in the generating lexicon of the training
set or part-word distractors.

We chose syllables as the primary level of analysis for
our models. Although other literature has dealt with issues
of the appropriate grain of analysis for segmentation mod-
els (Newport & Aslin, 2004), in our experiments, all syllables
had the same structure (consonant-vowel), so there was no
difficulty in segmenting words into syllables. In addition,
because we randomized the structure of the lexicon for each
language, we chose to neglect syllable-level similarity (e.g.,
the greater similarity of ka to ku than to go). Thus, training
materials consisted of strings of unique syllable-level iden-
tifiers that did not reflect either the CV structure of the syl-
lable or any syllable-syllable phonetic similarities.

5.1.2. Evaluation

Our metric of evaluation was simple: each model was
required to generate a score of some kind for each of the
two forced-choice test items. We transformed these scores
into probabilities by applying the Luce choice rule (Luce,
1963):

S(a)

PO =5+ s @
where a and b are test items and S(a) denotes the score of a
under the model. Having produced a choice probability for
each test trial, we then averaged these probabilities across
test trials to produce an average probability of choosing
the correct item at test (which would be equivalent over
repeated testing to the corresponding proportion correct).
We then averaged these model runs across training cor-
pora to produce a set of average probabilities for each con-
dition in each experiment.

Overall model performance was extremely high. There-
fore, rather than comparing models to human data via
their absolute deviation (via a measure like mean squared
error), we chose to use a simple Pearson correlation coeffi-
cient? to evaluate similarities and differences in the shape of
the curves produced when run on experimental data. By

2 Pearson (parametric) correlations allow us to fit the shape of curves.
We also ran Spearman (rank-order) correlations; the results are compara-
ble, so we have neglected these values for simplicity of comparison.
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evaluating model performance in this way, our approach fo-
cuses exclusively on the relative differences between condi-
tions rather than models’ absolute fit to human
performance, as in Orban et al. (2008). Note that the use of
a correlation rather than mean squared error is conserva-
tive: a model which fails to fit even the shape of human per-
formance will fail even more dramatically when it is
evaluated against the absolute level of human performance.

The Luce choice rule is not the only way to combine two
scores into a single probability of success on a two-alterna-
tive forced-choice trial. In the following discussion of sim-
ulation results we will return to the issue of why we chose
this particular evaluation metric.

5.2. Models

5.2.1. Transitional probability/mutual information

As noted in the Introduction, one common approach to
segmentation employs simple bigram statistics to measure
the relationship between syllables. To model this approach,
we began with the suggestion of Saffran et al. (1996) to use
transitional probability as a cue for finding word bound-
aries. We calculated transitional probability (TP) by creat-
ing unigram and bigram syllable counts over the training
sentences in our corpus with a symbol appended to the
beginning and end of each sentence to indicate a boundary.
TP was defined with respect to these counts as
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where C(s;_1) and C(s;_1,S;) denote the count (frequency) of
the syllable s;_; and the string s;_s;, respectively. We addi-
tionally investigated point-wise mutual information, a bi-
directional statistic that captures the amount that an ob-
server knows about one event given the observation of
another:
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Having computed transitional probability or mutual infor-
mation across a corpus, however, there are many ways of
converting this statistic into a score for an individual test
item. We consider several of these proposals:
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1. Local minimum: the lexicon of the language is created
by segmenting the corpus at all local minima in the rel-
evant statistic. Those test items appearing in the lexicon
are assigned a score relative to their frequency in the
corpus. Words not appearing in the lexicon are assigned
a constant score (0 in our simulations).

2. Within-word minimum: words are assigned scores by
the minimum value of the statistic for the syllable pairs
in that word.

3. Within-word mean: words are assigned scores based on
the mean of the relevant statistic.

4. Within-word product: words are assigned scores based
on the product of the relevant statistic.

Only some of these options are viable methods for mod-
eling variability in our corpus. For instance, the local min-

imum method predicts no differences in any of our
experiments, since frequencies are always equated across
items and all conditions have statistical minima between
words. Therefore, we evaluated the within-word models:
minimum, mean, and product. We found that within-word
minimum and within-word product produced identical re-
sults (because we always compared words of the same
length at test). Within-word mean produced slightly worse
results. Therefore we report within-word product results
in the simulations that follow.>

Both the TP and MI models explicitly took into account
the boundaries between sentences. We implemented this
feature by assuming that all sentences were bounded by
a start/end symbol, #, and that this symbol was taken into
account in the computation of transition counts. Thus, in
computing counts for the sentence #golabu#, a count
would be added for #go as well as for gola. This decision
was crucial in allowing these models to have defined
counts for transitions i