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MATHEMATICAL NECESSITY AND REALITY

Einstein said:

As far as the propositions of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality. ([2]).

It is clear that by ‘certain’ he meant ‘necessary’, and philosophers of this century
have mostly agreed with him that there cannot be mathematical truths that are at once
necessary and about reality.

This proposition is denied.
If the proposition were affirmed, it would be natural to begin by explaining away

either the apparent necessity of mathematics or its apparent reference to reality. The case is
different with a denial. Here the correct course is to exhibit some examples of mathematics
which appear to be both necessary and about reality, and then reply to the standard
objections. The aim, of course, is to choose examples that make the replies easy.

Example 1.
It is impossible to tile my bathroom floor with (equally-sized) regular pentagonal lines.

It is a proposition of geometry that ‘it is impossible to tile the Euclidean plane with
regular pentagons’. That is, although it is possible to fit together (equally-sized) squares or
regular hexagons so as to cover the whole space, thus:

and

it is impossible to do this with regular pentagons:



12

No matter how they are put on the plane, there is space left over between them.
Now the ‘Euclidean plane’ is no doubt an abstraction, or a Platonic form, or an

idealisation, or a mental being – in any case it is not ‘reality’. If the ‘Euclidean plane’ is
something that could have real instances, my bathroom floor is not one of them, and it may be
that there are no exact real instances of it at all. It is a further fact of mathematics, however,
that the proposition has ‘stability’, in the sense that it remains true if the terms in it are varied
slightly. That is, it is impossible to tile a (substantial part of) an almost Euclidean-plane with
shapes that are nearly regular pentagons. (The qualification ‘substantial part of’ is simply to
avoid the possibility of taking a part that is exactly the shape and size of one tile; such a part
could of course be tiled). This proposition has the same status, as far as reality goes, as the
original one, since ‘being an almost-Euclidean-plane’ and ‘being a nearly-regular pentagon’
are as purely abstract or mathematical as ‘being an exact Euclidean plane’ and ‘being an
exactly regular pentagon’. The proposition has the consequence that if anything, real or
abstract, does have the shape of a nearly-Euclidean-plane, then it cannot be tiled with nearly-
regular-pentagons. But my bathroom floor does have, exactly, the shape of a nearly-
Euclidean-plane. Therefore, it cannot be tiled with tiles which are, nearly or exactly, regular
pentagons.

The ‘cannot’ in the last sentence is a necessity at once mathematical and about
reality.

Example 2.
It is impossible to build a circular or nearly-circular staircase that goes up all the way round
and ends at its starting point. (The famous Escher drawings which seem to show this kind of
thing happening are thus impossible to realise.) The impossibility is not just empirical, since
no change in the laws of nature would make such a staircase possible. There is a purely
mathematical fact underlying the impossibility, namely, that there is no continuous function
from the circle to the real numbers which is increasing all the way round. The proposition has
therefore nothing to do with the Euclideanness or otherwise of space; in any space where ‘up’
makes sense, the statement is true.)

If a staircase as described were to be built, there would be a real thing which violated
the mathematical theorem. So the existence of the real thing is mathematically impossible.

The two examples given were examples of impossibility. The last one will be an
example of necessity in the full sense.

Example 3.
For simplicity, let us restrict ourselves to two dimensions, though there are similar examples
in three dimensions. A body is said to be symmetrical about an axis when a point is in the
body if and only if the point opposite it across the axis is also in the body. Thus a square is
symmetrical about a vertical axis, a horizontal axis and both its diagonals. A body is said to
be symmetrical about a point P when a point is in the body if and only if the point directly
opposite is across P is also in the body. Thus a square is symmetrical about its centre. The
following is a necessarily true statement about real bodies: All bodies symmetrical about both
a horizontal and a vertical axis are also symmetrical about the point of intersection of the
axes:
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Again, the space need not be Euclidean for this proposition to be true. All that is
needed is a space in which the terms make sense.

These examples appear to be necessarily true mathematical propositions which are
about reality. It remains to defend this appearance against some well-known objections.

Objection 1.
The proposition 7+ 5 = 12 appears at first both to be necessary and to say something about
reality. For example, it appear to have the consequence that if I put seven apples in a bowl
and then put in another five, there will be twelve apples in the bowl. A standard objection
begins by noting that it would be different for raindrops, since they may coalesce. So in order
to say something about reality, the mathematical proposition must need at least to be
conjoined with some proposition such as, ‘Apples don’t coalesce’, which is plainly
contingent. This consideration is reinforced by the suspicion that the proposition 7 + 5 = 12 is
tautological, or almost so, in some sense.

Perhaps these objections can be answered, but there is plainly at least a prima facie
case for a divorce between the necessity of the mathematical proposition and its application
to reality. The application seems to be at the cost of introducing stipulations about bodies
which may be empirically false.

Examples 1-3 above are not susceptible to this objection. Being nearly-pentagonal,
being symmetrical and so on are properties that real things can have, and the mathematical
propositions say something about things with these properties, without the need for any
empirical assumptions.

Objection 2.
This objection is perhaps in effect the same as the first one, but historically it has been posed
separately. It does at least cast more light on how the examples given escape objections of
this kind.

The objection goes as follows: Geometry does not study the shapes of real things.
The theory of spheres, for example, cannot apply to bronze spheres, since bronze spheres are
not perfectly spherical ([1], [4], pp. 10-11). Those who thought along these lines postulated a
relation of ‘idealisation’ variously understood, between the perfect spheres of geometry and
the bronze sphere of mundane reality. Any such thinking, even if not leading to fully
Platonist conclusions, will result in a contrast between the ideal (and hence necessary) realm
of mathematics and the physical (and contingent) world.

It has been found that the problem was simply a result of the primitive state of Greek
mathematics. Ancient mathematics could only deal with simple shapes such as perfect
spheres. Modern mathematics, by studying continuous variation, has been able to extend its
activities to more complex shapes such as imperfect spheres. That is, there are results not
about particular imperfect spheres, but about the ensemble of imperfect spheres of various
kinds. For example, consider all imperfect spheres which differ little from a sphere of radius
one metre – say which do not deviate by more than one centimetre from the sphere anywhere.
Then the volume of any such imperfect sphere differs from the volume of the perfect sphere
by less than one tenth of a cubic metre. So imperfect-sphere shapes can be studied
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mathematically just as well as – though with more difficulty than – perfect spheres. But real
bronze things do have imperfect-sphere shapes, without any ‘idealisation’ or ‘simplification’.
So mathematical results about imperfect spheres can apply directly to the real shapes of real
things.

The examples above involved no idealisations. They therefore escape any problems
from objection 2.

Objection 3.
The third objection proceeds from the supposed hypothetical nature of mathematics. Bertrand
Russell’s dictum, ‘Pure mathematics consists entirely of assertions to the effect that, if such
and such a proposition is true of anything, then such and such another proposition is true of
that thing.’ ([5], p. 75) suggests a connection between hypotheticality and lack of content.
Even those who have not gone so far as to think that mathematics is just logic have thought
that mathematics is not about reality, but only, like logic, relates statements which may
happen to be about reality. Physicists, Einstein included, have been especially prone to speak
in this way, since for them mathematics is primarily a bag of tricks used to deduce
consequences from theories.

The answer to this objection consists fundamentally in a denial that mathematics is
more hypothetical than any other science. The examples given above do not look
hypothetical, but they could easily be cast in hypothetical form. But the fact that
mathematical statements are often written in if-then form is not in itself an argument that
mathematics is especially hypothetical. Any science, even a purely classificatory one,
contains universally quantified statements, and any ‘All A’s are B’s’ statement can equally
well be expressed hypothetically, as ‘If anything is an A, it is a B’. A hypothetical statement
may be convenient, especially in a complex situation, but it is just as much about real A’s and
B’s as ‘All A’s are B’s’.

No-one argues that

All applications of 550 mls/hectare Igran are effective against normal
infestations of capeweed

is not about reality because it can be expressed hypothetically as

If 550 mls/hectare Igran is applied to a normal infestation of capeweed, the
weed will die.

Neither should mathematical propositions such as those in the examples be thought
to be not about reality because they can be expressed hypothetically. Real portions of liquid
can be (approximately) 550 mls of Igran. Real tables can be (approximately) symmetrical
about axes. Real bathroom floors can be (nearly) flat and real tiles (nearly) regular pentagons
(see [3], §5).

The impact of this argument is not lessened even if the process of recasting
mathematics into if-then form goes as far as axiomatisation. Einstein thought it was: his
quotation with which the article began continues:

As far as the propositions of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality. It seems to me that
complete clarity as to this state of things became common property only through
that trend in mathematics which is known by the name of ‘axiomatics’. ([2] p.
233)

Einstein goes on to argue that deductive axiomatised geometry is mathematics, is
certain and is ‘purely formal’, that is, uninterpreted; while applied geometry, which includes
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the proposition that solid bodies are related as bodies in three-dimensional Euclidean space,
is a branch of physics. Granted that it is a contingent physical proposition that solid bodies
are related in this way, and granted that an uninterpreted system of deductive ‘geometry’ is
possible, there remain two main problems about Einstein’s conclusion that ‘mathematics as
such cannot predicate anything about … real objects’ ([2], p. 234)

Firstly, non-mathematical topics, such as special relativity, can be axiomatised
without thereby ceasing to be about real things. This remains so even if one sets up a parallel
system of ‘purely formal axiomatised special relativity’ which one pretends not to interpret.

Secondly, even if some of the propositions of ‘applied geometry’ are contingent, not
all are, as the examples above showed. Doubtless there is a ‘proposition’ of ‘purely formal
geometry’ corresponding to ‘It is impossible to tile my bathroom floor with regular
pentagonal tiles’; the point is that the modality, ‘impossible’, is still there when it is
interpreted.

In theory this completes the reply to the objection that mathematics is necessary only
because it is hypothetical. Unfortunately it does nothing to explain the strong feeling among
ordinary users of mathematics, such as physicists and engineers, that mathematics is a kind of
tool kit for getting one scientific proposition out of another. If an electrical engineer is
accustomed to working out currents by reaching for his table of Laplace transforms, he will
inevitably see this mathematical method as a tool whose ‘necessity’, if any, is because
mathematics is not about anything, but is only a kind of theoretical juice extractor.

It must be admitted that a certain amount of applicable mathematics really does
consist of tricks or calculatory devices. Tricks, in mathematics or anywhere else, are not
about anything, and any real mathematics that concerns them will be in explaining why and
when they work; this is a problem the engineer has little interest in, except perhaps for the
final answer. The difficulty is to explain how mathematics can have both necessity and
application to reality, without appearing to do so to many of its users.

The short answer to this lies in the mind’s tendency to think of relations as not really
existing. Since mathematics is so tied up with relations of certain kinds, its subject matter is
easy to overlook. A familiar example of how mathematics applies in physics will make this
clearer.

Newton postulated the inverse square law of gravitation, and derived from it the
proposition that the orbits of the planets are elliptical. Let us look a little more closely at the
derivation, to see whether the mathematical reasoning is in some way about reality or is only
a logical device for deriving one scientific law from another.

First of all, Newton did not derive the shape of the orbits from the law of gravitation
alone. An orbit is a path along which a planet moves, so there needs to be a proposition
connecting the law of force with movement; the link is, of course,

force = mass × acceleration
Then there must be an assertion that net accelerations other than those caused by the

gravitation of the sun are negligible. Ideally this should be accompanied by a stability
analysis showing that small extra net forces will only produce small deviations from the
calculated paths. Adding the necessary premises has not, however, introduced any ellipses.
What the premises give is the local change of motion of a planet at any point; given any
planet at any point with any speed, the laws give the force, and hence the acceleration –
change of speed – that the planet undergoes. The job of the mathematics – the only job of the
mathematics – is to add together these changes of motion at all the points of the path, and
reveal that the resulting path must be an ellipse. The mathematics must track the path, that is,
it must extract the global motion from the local motions.

There are two ways to do this mathematics. In this particular case, there are some
neat tricks available with angular momentum. They are remarkable enough, but are still
purely matters of technique that luckily allow an exact solution to the problem with little
work. The other method is more widely applicable and is here more revealing because more
direct; it is to use a computer to approximate the path by cutting it into small pieces. At the
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initial point the acceleration is calculated and the motion of the planet calculated for a short
distance, then the new acceleration is calculated for the new position, and so on. The smaller
the pieces the path is cut into, the more accurate the calculation. This is the method actually
used for calculating planetary orbits, since it can easily take account of small extra forces,
such as the gravitational interaction of the planets, which render special tricks useless. The
absence of computational tricks exposes what the mathematics is actually doing – extracting
global structure from local.

The example is typical of how mathematics is applied, as is clear from the large
proportion of applied mathematics that is concerned one way or another with the solution of
differential equations. Solving a differential equation is entirely a matter of getting global
structure from local – the equation gives what is happening in the neighbourhood of each
point; the solution is the global behaviour that results. (see [6]) A good deal of mathematical
modelling and operations research also deals with calculating the overall effects of local
causes. Examples 1-3 above all involved some kind of interaction of local with global
structure.

Though it is notoriously difficult to say what ‘structure’ is, it is at least something to
do with relations, especially internal part-whole relations. If an orbit is elliptical globally, its
curvature at each point is necessarily that given by the inverse square law, and vice versa. In
general the connections between local and global structure are necessary, though it seems to
make the matter more obscure rather than less to call the necessity ‘logical’. Seen this way,
there is little temptation to regard the function of mathematics as merely the deducing of
consequences, like a logical engine. It is easy to see, though, why mathematics has been seen
as having no subject matter – the western mind has had enormous difficulty focussing on the
reality of relations at all ([7]), let alone such abstract relations as structural ones.
Nevertheless, symmetry, continuity and the rest are just as real as relations that can be
measured, such as ratios of masses; bought and sold, such as interest rate futures; and
litigated over, such as paternity.

Typically, then, a scientist will postulate or observe some simple local behaviour in a
system, such as the inverse square law of attraction or a population growth rate proportional
to the size of the population. The mathematical work, whether by hand or computer, will put
the pieces together to find out the global effect of the continued operation of the proposed
law – in these cases elliptical orbits and exponential growth. There are bad reasons for
thinking the mathematics is just ‘turning the handle’ – for example it costs less than
experiment, and many scientists’ expertise runs to only simple mathematical techniques. But
there are no good reasons. The mathematics investigates the necessary interconnections
between the parts of the global structure, which are as real properties of the system studied as
any other.

This completes the explanation of why mathematics seems to many to be just a
deduction engine, or to be purely hypothetical, even though it is not.

Objection 4.
Certain schools of philosophy have thought there can be no necessary truths that are
genuinely about reality, so that any necessary truth must be vacuous. ‘There can be no
necessary connections between distinct existences.’

Answer: The philosophy of mathematics has enough to do dealing with mathematics,
without taking upon itself the refutation of outmoded metaphysical dogmas. Mathematics
must be appreciated on its own terms, and wider metaphysical theories adjusted to take
account of whatever is found.

Nevertheless something can be said about the exact point where this objection fails to
make contact with examples 1-3. The clue is the word ‘distinct’. The word suggests a kind of
logical atomism, as if relations can be thought of as strings joining point particulars. One
need not be F.H. Bradley to find that view too simple. It is especially inappropriate when
treating things with internal structure, as above. In an infinitely divisible thing that the
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surface of a bathroom floor, where are the point particulars with purely external relations?
(The points of space, perhaps? But the relations between tile-sized parts of space and the
whole space, as in example 1, either have nothing to do with points at all, or are properties of
the whole system of relations between points.)

All the objections are thus answered. The conclusion stands, therefore, that the three
examples are, as they appear to be, mathematical, necessary and about reality.

The thesis defended has been that some necessary mathematical statements refer
directly to reality. The stronger thesis that all mathematical truths refer to reality seems too
strong. It would indeed follow, if there were no relevant differences between the examples
above and other mathematical truths. But there are differences. In particular, there are more
things dreamed of in mathematics than could possibly be in reality. Some mathematical
entities are just too big; even if something in reality could have the structure of an infinite
dimensional vector space, it would be too big for us to know it did. Other mathematical
entities seem obviously fictions from the way they are introduced, such as negative numbers.
Statements about negative numbers can refer to reality in some way, since one can make true
conclusions about debts by using negative numbers. But the references is indirect, in the way
that statements about the average wage-earner refer to reality, but not in the direct sense of
asserting something about an entity, ‘the average wage-earner’. Indirect reference of this kind
is not in principle mysterious, though it needs to be explained in each particular case. So it
can be conceded that many of the entities mentioned in mathematics are fictional, without
any admission that this makes mathematics unique; minus-1 can be seen as like fictional
entities elsewhere, such as the typical Londoner, holes, the national debt, the Zeitgeist and so
on.

What has been asserted is that there are properties, such as symmetry, continuity,
divisibility, increase, order, part and whole which are possessed by real things and are studies
directly by mathematics, resulting in necessary propositions about them.

School of Mathematics Received August 1987
University of New South Wales

REFERENCES

[1] Aristotle, Metaphysics 997b33-998a6, 1036a4-12.
[2] A. Einstein, Ideas and Opinions. (New York, 1954)
[3] A. Musgrave, ‘Logicism revisited’, British Journal for the Philosophy of Science 28 (1977), pp. 99-127.
[4] Proclus, Commentary of the First Book of Euclid’s Elements trans. G. R. Morrow. (Princeton, N.J., 1970)
[5] B. Russell, Mysticism and Logic and Other Essays. (London, 1917)
[6] S. Smale, ‘What is global analysis?’, American Mathematical Monthly 76 (1969), pp. 4-9.
[7] J. Weinberg, Abstraction, Relation and Induction (Madison, Wisc., 1965), section 2.


	Australasian Journal of Philosophy
	University of New South Wales


