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1 IntroductionClassi�cation means to identify whether an object is contained in a class or not.In the present paper, the objects of classi�cation are sets of natural numbers. Sincethese objects have no �nite description, the classi�cation algorithmmakes up its mindfrom longer and longer approximations of the object and outputs at the same time asequence of guesses which signal in the limit whether the current object is accepted,i.e., supposed to be in the class, or rejected, i.e., supposed to be outside the class. Inparticular a symmetric (two-sided) and more general asymmetric (one-sided) versionto de�ne acceptance and rejection is given.The analysis of the task shows, that classi�cation has to cope with two aspects ofdi�culty: the topological appearance of the class and its computational complexity.The present work is dedicated to look for a certain kind of classes on these topologicaland computational aspects of classi�cation and the relation between them. Further-more the process of classi�cation is compared with that to compute or enumerate aset. Before going into the details, a brief summary of the overview on classi�cationw.r.t. neighbouring subjects is given.One of the �rst approaches to classi�cation was to design �nite automata whichdecide in the limit whether an in�nite string (representing the characteristic functionof a language) belongs to a given !-language or not [3, 14, 15, 26]. The restrictivecomputational ability of these �nite automata led B�uchi [3] and his successors to con-sider non-deterministic automata. The present paper takes the alternate approach ofchoosing Turing machines as classi�ers. In fact already B�uchi and Landweber [4, 12]did some �rst research into this direction.The next main root of classi�cation is inductive inference. Wiehagen and Smith[27] introduced a model, in which a �nite number of classes is given and the classi�erhas to detect at least one class where the language to be classi�ed belongs to. As inmany other de�nitions in the �eld of inductive inference [2, 9], the process has onlyto converge in the limit and so the machine has the right to withdraw hypothesesand to replace them by new ones. Wiehagen and Smith expected the process only toconverge on the domain, so they avoided the topological problems which arize whenthe classi�er has also to signal that a language does not belong to any class of thegiven collection.Ben-David [1] and Kelly [10] started to investigate these topological aspects ofclassi�cation: they showed that a (not necessarily computable) device can classify allsets with respect to one class in the limit i� the given class is the union of count-ably many closed classes and the intersection of countably many open classes at thesame time; for this de�nition they use the Baire topology generated by the subbasisAx;y = fA : A(x) = yg (x 2 lN; y 2 f0; 1g). Gasarch, Pleszkoch and Velauthapillai[7, 8] extended the result by establishing a close relation between the topological Borelhierarchy and the quanti�er-hierarchy of query-languages during classi�cation.This paper now returns to the computational aspect of classi�cation. Ben-David2



and Kelly already showed that a class is classi�able in the limit i� it is a (relativized)�02 class; Rogers [21] called the �02 classes also �(s)2 classes. An other natural conceptfrom learning theory is reliable inference which is implicit classi�cation: if a functionbelongs to the inferred class then the learner converges to an index of this function, ifa function does not belong to the class then the learner diverges. Such a mechanism iscalled a one-sided classi�er since the learner signals only for the elements in the classthe membership by convergence but not for those outside the class. It is equivalent tothe notion of �02 classes or �(s)2 classes as Rogers [21] called them. So one can isolatetwo natural notions of classi�cation which coincide with the quite natural recursion-theoretic notions of �02 and �02 classes. So a machineH is a classi�er for a class A i�H accepts every set in A by converging to 1 and rejects every set outside A by eitherdiverging (one-sided classi�cation) or converging to 0 (two-sided classi�cation); theformal de�nition follows.De�nition 1.1 H is a one-sided classi�er for A i�(8A 2 A) (81� � A) [H(�) = 1]and (8A =2 A) (91� � A) [H(�) = 0];M is a two-sided classi�er for A i�(8A 2 A) (81� � A) [M(�) = 1]and (8A =2 A) (81� � A) [M(�) = 0]:This paper now relates these two natural concepts of classi�cation to each other. Foreach n, the concepts of �0n sets relate to that of the �0n almost in the same wayas that of the enumerable (= �01) sets to to that of the computable (= �01) sets.This work will show that on one hand for one-sided versus two-sided classes thisanalogy basically also holds but that on the other hand the similarities are muchmore restricted than the parallel de�nitions suggest at the �rst glance.Example 1.2 [21] The notions of e�ective topology follow the de�nitions as statedby Ko [11, p. 72, p. 165] and Rogers [21, Chapter 15]: A class A is recursively open i�there is a recursive sequence �0; �1; : : : of strings such that A 2 A , (9n) [�n � A].A class A is a recursively G� class i� there is a recursive array �m;n of strings suchthat A 2 A , (9m) (8n) [�m;n 6� A].Now any recursively open class is two-sided and any recursively G� class is one-sided. There are recursively G� classes which are one-sided but not two-sided, e.g.,the class of all �nite sets.One important tool in recursion theory is that there is an acceptable numbering of allenumerable sets. Similarly one can obtain an acceptable numbering of all one-sidedclasses given by total one-sided classi�ers.Theorem 1.3 There is an e�ective list H0;H1; : : : of one-sided classi�ers such thatevery one-sided class is generated by such a classi�er and every machine He is total.The so de�ned numbering of the one-sided classes is acceptable: every further e�ectivenumbering G0;G1; : : : can be represented via a computable function: Hs(e) = Ge.3



This e�ective list of classi�ers He is generated from an acceptable numbering 'e ofall partial computable functions which of course contains all classi�ers. The formalde�nition is He(�) = 8<:'e(� ) for the longest � � � such that'e(� ) outputs 0 or 1 within j�j steps;0 if there is no such � .It is easy to verify that whenever 'e is a one-sided classi�er for A, then so is He; andwhenever 'e is a two-sided classi�er for A, then so is He.At many places this listHe of one-sided classi�ers will be quite useful; in particularit is much more handy to use the He in diagonalizations than the 'e since the He arealways total and f0; 1g-valued. He denotes the one-sided class generated by He.Both, one-sided and two-sided classes form a lattice. Furthermore a class is two-sided i� the class and its complement are one-sided [21, Chapter 15]. The nexttheorem shows, that a further well-known result from the hierarchy of sets, namelythat every in�nite �0n set has an in�nite �0n subset, does not hold for classes andneeds \uncountable" instead of \in�nite".Theorem 1.4 Every uncountable one-sided class has a two-sided subclass of samecardinality. There is a one-sided in�nite class which has no two-sided in�nite subclass.Proof Ak = fA 2 A : H outputs on input A exactly k 0sg. Every class Ak istwo-sided via the following algorithm Mk: Mk(�) = 1 i� H outputs on exactly kinputs � � � a 0 and Mk(�) = 0 otherwise; so M makes on each set A 2 Ak at mosttwo mind changes. Since the cardinality of A is not countable, one of the countablymany two-sided subclasses Ak has the same cardinality as A. So the �rst statementof the theorem holds.The second statement is proven by constructing an in�nite one-sided class A =fA0; A1; : : :g without any in�nite two-sided subclass. For each machine Hk and each�nite set D, F (D; k; n) denotes the length of the shortest string � � D such thateither Hk(� ) = 1 for at least n strings � � � or Hk(� ) = 0 for all strings � with� � � � D. The function F is computable relative to K. The class A is given viathe following inductive de�nition:A0 = ;;G(n) = n+ F (An; 0; n) + F (An; 1; n) + : : :+ F (An; n; n);An+1 = An [ fG(n)g = fG(0); G(1); : : : ; G(n)g:G is computable relative to K and has therefore a computable approximation Gs.Now the following machine H is a one-sided classi�er for A:H(�) = 8><>: 1 if there is a � such that � = �0 andrange(� ) = fGj�j(0); Gj�j(1); : : : ; Gj�j(ones(� ))g;0 otherwise; 4



where ones(� ) is the number of all x with � (x) #= 1. Assume that A has the �nitecardinality n. H converges to 1 if A = An and H converges to 0 if A 6= An. OtherwiseA is in�nite and in�nitely many � � A have the form �1. So H outputs for these thevalue 0 and H rejects every in�nite set.It remains to show that every two-sided subclass of A is �nite. Let the machineM = He be any two-sided classi�er for some subclass of A and consider the setA = fG(0); G(1); : : :g = range(G). If M outputs during the classi�cation of someset Ak with k � e at least k 1s, then M outputs at least k of them on strings � � Akwhich are shorter than G(k). Thus these � are also pre�xes of A and M outputs onA at least k 1s. Since M converges on A to 0, M outputs on A only �nitely often a1 and there are only �nitely many Ak with k � e which M classi�es with 1 in thelimit. It follows that M is a classi�er for a �nite subclass of A and so also the thirdstatement holds.2 Classi�cation and Turing ComplexityPost [19] studies the enumerable sets w.r.t. their Turing degrees. His main questionwas whether for the decision procedures of all noncomputable enumerable sets havethe same complexity. The work to solve this and similar problems initiated a largestudy of the Turing degrees of enumerable sets which Soare [25] gives a comprehensiveoverview.The analogous question for one-sided classes is to determine the amount of com-plexity which is necessary to compute a two-sided classi�er for them. The straightforward implementation of this idea would be to identify each class with the easiesttwo-sided classi�er for it { but somehow such two-sided classi�er sometimes do notexist and if they exist, there may be no one of least complexity.Therefore classes are (in general) not related to a single Turing degree but to acollection of Turing degrees. This collection is called the Turing complexity of a classand consists of all oracles which allow to compute a two-sided classi�er for the givenclass.The one-sided classes are ordered in terms of their Turing complexity: So A hasTuring complexity below that of B i� the class of all oracles relative to which A istwo-sided is a superset of of the corresponding class for B. W.r.t. this ordering, thereare one-sided classes of least and greatest Turing complexity. Furthermore amongthose of intermediate Turing complexity, there are some classes whose Turing com-plexity can be identi�ed with a single Turing degree: Such a class has Turing degreea i� the Turing-degrees of the two-sided classi�ers just form a cone above a:fdegT (M) :M is a two-sided classi�er for Ag = fb : a � bg:So there are four types of one-sided classes with respect to their Turing complexity.5



� A two-sided class has the least possible Turing complexity since it is two-sidedrelative to every oracle. ; and f0; 1g1 are examples of two-sided classes. Everytwo-sided class has a Turing degree, namely the degree 0 of the computablesets.� There are one-sided classes which are not two-sided relative to any oracle. Sothey have the greatest possible Turing complexity: Example 2.6 gives threesuch one-sided classes.� There is a one-sided class which has a non-recursive Turing degree.� There is a one-sided class which is two-sided relative to some oracles but whichdoes not have a Turing degree.The next results deal with the classes of intermediate Turing complexity according tothe third and fourth case. Sacks [22, Section II.4] called a set A a �02 singleton i� Ais the only set B which satis�es (8x)(9y)[R(x; y;B)] for some recursive predicate R.Such �02 singletons allow to construct a one-sided classes A which has a nonrecursiveTuring degree.Theorem 2.1 The cosingle class A = fB : B 6= Ag has a Turing degree whichis exactly that of A. Furthermore A is one-sided i� A is a �02 singleton. So everyhyperarithmetic set is below the Turing degree of some one-sided class.Proof Assume that M classi�es two-sided A. Then there is a �nite string � � Asuch that M(� ) = 0 for all � with � � � � A. The binary treeT = f� : (8� � � ) [� � � _M(�) = 0]gis recursive in M and A is its only recursive branch. Therefore M �T A. On theother hand, an A-oracle is obviously su�cient for two-sided classi�cation since thismeans only to compare with A.To show the second statement, assume that A is one-sided via H. Then letR(x; y;B) = � 1 if H(B(0)B(1) : : : B(z)) = 0 for at least x numbers z � y;0 otherwise.R is recursive. It is easy to see that (8x) (9y) [R(x; y;B)] i� H outputs on B in�nitelymany 0s i� B = A. So A is a �02 singleton.For the other way round let A be a �02 singleton, i.e., there is a recursive predicateR such that A is the only set B for which (8x) (9y) [R(x; y;B)] holds. W.l.o.g.R(x; y;B) is computed only by making queries at B below y, to obtain this onecould replace y by a pair hy; zi, R by R0 and say that R0(x; hy; zi; B) is satis�ed i�R(x; y;B) holds and z is the place of the largest query to B during the computationof R(x; y;B). Now leth(B;n) = maxfm � n : (8x � m) (9y � n) [R(x; y;B)]g6



and H(�a) = ( 1 if h(�a; j�aj) = h(�; j�j);0 otherwise, i.e., h(�a; j�aj) > h(�; j�j);where the expression h(�; n) abbreviates maxfh(B;n) : � � Bg. The statementh(�; j�j) can in fact be computed without looking at the values of any B beyond j�jand so depends only on �. Having this in mind one can see that H outputs on inputB in�nitely often a 0 i� limn!1 h(B;n) = 1 i� for every x there is an y such thatR(x; y;B) holds. So H outputs in�nitely many 0s on input A and only �nitely manyon any input B 6= A; thus H is a one-sided classi�er for A.The third statment follows from the fact that the hyperarithmetic sets are just theTuring closure downward of the �02 singletons [22, Section II.4].The single one-sided classes fAg are less complex than the cosingle ones: they arealready two-sided without oracle and so have least Turing complexity. Some of thecocountable classes, which are a natural generalization of the cosingle classes, do nothave a Turing degree, but they all are two-sided relative to some hyperarithmeticoracle. Theorem 2.2 gives an example of a class which does not have a Turing degreeand whose Turing complexity is just the collection of all high Turing degrees. Thereare also countable and cocountable examples with the same property, but in order tohave a better readable proof the easiest example is chosen.Theorem 2.2 There is a one-sided class A whose Turing complexity is the collectionof all high Turing degrees. A does not have a Turing degree.Proof Let A contain all non-empty sets A such that We is �nite for e = min(A). Aone-sided classi�er H for A is given viaH(�) = � 1 if � � 0e1 and We;j�j+1 = We;j�j;0 otherwise.If A � 0e1 and We is �nite, then We;s+1 = We;s for almost all s. Thus H convergesto 1 on these A. Otherwise A = ; and H always outputs 0 or A � 0e1 and We isin�nite. In this latter case, We;s+1 6= We;s for in�nitely many s and H(�) = 0 forin�nitely many � � A. So H is a one-sided classi�er for A.On the other hand it is easy to see that a two-sided classi�er M converges on0e11 to 1 i� We is �nite. Since this problem is m-equivalent to K 0, the set K 0 canbe computed in the limit relative to M and this is possible i� M has high Turingdegree.The second statement of the theorem follows from the fact that the high Turingdegrees do not form a cone.The next three theorems establish further results for classes of intermediate Turingcomplexity.Theorem 2.3 If a one-sided class is two-sided relative to some oracle, then it istwo-sided relative to an oracle in �12. 7



Proof Let H be a computable one-sided classi�er for C. Assume furthermore thatC is two-sided relative to some oracle. Now any, not necessarily recursive, two-sidedclassi�er M satis�es the following �11 equation:(8A) [ ( (91� � A) [H(�) = 0] ) (81� � A) [M(�) = 0] ) ^( (81� � A) [H(�) = 1] ) (81� � A) [M(�) = 1] ) ]It states that for all A, whenever H accepts or rejects A one-sidedly, so does M two-sidedly. It follows that M is a solution to the predicate i� M is a two-sided classi�erfor C. So M is speci�ed via a �11 predicate. Provided that this predicate has at leastone solution, Addison and Kondo [22, Corollary 9.4] showed that there is a further�11 predicate (8A)[P (M;A)] which has exactly one solution and whose solution Nis also a solution to the original predicate. The sets f� : N(�) = cg are in �12 forc = 0; 1: N(�) = c , (9M) (8A) [M(�) = c ^ P (M;A)]:Since one set is the complement of the other, it follows that the machine N is in�12.Theorem 2.4 Let H be a one-sided classi�er for A and for any A =2 A let fA(m)denote the �rst k > m such that H(A(0)A(1) : : : A(k)) = 0. Then A has a two-sidedclassi�er of degree a i� there is a function g of degree a which dominates the functionsfA for all A =2 A.Proof Assume that g dominates the functions fA for all A =2 A. The followingM �T g is a two-sided classi�er for A:M(A(0)A(1) : : : A(n)) = 8<: 1 if g(m) < n for all m � nwith H(A(0)A(1) : : : A(m)) = 0;0 otherwise.IfA 2 A then there are only �nitely manym withH(A(0)A(1) : : : A(m)) = 0. Almostall n are greater than g(m) for each such m and thus M(A(0)A(1) : : : A(n)) = 1 foralmost all n. Otherwise A =2 A and g dominates fA. So for almost all m there is a kwith m < k � g(m) and H(A(0)A(1) : : : A(k)) = 0. So for almost all n, the greatestm � n with H(A(0)A(1) : : :A(m)) = 0 satis�es this condition and since by the choiceof m there is no such k between m and n, the relation n � g(m) holds. It followsthat M(A(0)A(1) : : : A(n)) = 0 for almost all n. So M is a two-sided classi�er for A.For the other way round let M �T E be a two-sided classi�er for A. The followingfunction g is computable relative to E:g(n) = 2 +maxfj�j : � 2 Tng whereTn = f� : (8� � �) [ j� j � n _ (M(� ) = 0 ^H(� ) = 1) ] g:8



Assume that g would be unde�ned for some n. Then Tn is in�nite and by K�onig'sLemma the tree Tn has an in�nite branch A. M converges on A to 0 while H outputson input A only �nitely many 0s, i.e.,M and H classify A di�erently in contradictionto the choice of M and H. So Tn is �nite and g is total. Since Tn is computablerelative to E, its maximal string can be found using the oracle E and g �T E.Let A =2 A. There is an n such that M(A(0)A(1) : : : A(m)) = 0 for all m � n.Assume now by way of contradiction that fA(m) > g(m) for some m � n. ThenM(�) = 0 and H(�) = 1 for all � � A with m < j�j � g(m) and the stringA(0)A(1) : : : A(g(m)) is in Tm in contradiction to g(m) being greater than the lengthof all strings in Tm. Thus such an m does not exist and fA(m) � g(m) for almostall m.A consequence of this is that every one-sided class, which is two-sided relative to ahyperimmune-free oracle, is already two-sided via a classi�er without any access tooracles.Theorem 2.5 If A has a Turing degree then A has a hyperarithmetic Turing degree.Proof Assume that A has Turing degree a and let M be a two-sided classi�er forA of degree a. Theorem 2.4 implies that a � b whenever every a-recursive functionis dominated by a b-recursive function. There is a function f0 dominating everyfunction computable relative to a such that whenever g is a majorant of f0 thenM �T g. First it has to be shown that this can be done via a single index, i.e.,(9e; f) (8 majorants g of f) [M = fegg]and in a second step it is deduced that M is a hyperarithmetic. The existence ofsuch e and f is shown via an algorithm which either provides the information to �nde and f or which constructs a majorant of g of f0 such that M 6�T g. In this proof�0; �1; : : : denote strings of numbers and not of bits. �0 is the empty string.Given �n and fn check whether there is a majorant fn+1 of fn and anextension �n+1 � �n such that� �n � �n+1 � fn+1 and� there is some � 2 f0; 1g� such that either fng�n+1(�) # 6= M(�) orfngg(�)" for all majorants g of fn+1 with g � �n+1.If there are such �n+1; fn+1 the algorithm proceeds with them in the nextstep otherwise it terminates.If the algorithm goes through all steps, then g = limn �n exists and is a majorant of f0.By construction, for all e there is some � 2 f0; 1g� such that either fegg(�)# 6=M(�)(since feg�e+1(�)# 6=M(�) and �e+1 � g) or fegg(�)" (since g is a majorant of fe+1).9



So M is not computed relative to g via any e in contradiction to the choice of f0.Thus the algorithm terminates in some stage n. Now for each g the following setis not empty:F (g; �) = f� � �n : fng� (�)# ^ (8m 2 dom(� )� dom(�n)) [� (m) � g(m)]g:Furthermore whenever g is a majorant of fn and � 2 F (g; �) then fng�(�)#=M(�).Using these two facts it is possible to construct e:If within j�j steps no triple (�; �1; �2) has been enumerated witnessinginconsistency in the way that �1; �2 2 F (g; �) and fng�1(�) 6= fng�2(�)then fegg(�) = fng� (�) for the �rst � found in F (g; � )else fegg(�)" .So M = fegg for all majorants g of fn and fegg is partial if M 6= fegg. The secondstep is now easy. The sets Mc = f� : M(�) = cg are �11 according to the followingde�nition: M(�) = c , (8g) [fegg is total ) fegg(�) = c]:SinceM0 is the complement of M1, both sets are in �11 andM is hyperarithmetic.Example 2.6 The following classes are one-sided but not relatively two-sided:(a) A = fA : A is co�niteg [7, Corollary 3.3].(b) B = fB : B is primitive recursiveg.(c) C = fC �D : D 6= C 0g.Proof(a) The one-sided classi�er H outputs a on input �a. It takes almost always thevalue 1 i� the input is a co�nite set. On the other hand this class is not relativelytwo-sided since for any function g there is a set A =2 A such that g does not dominatefA. Namely for given g, this set is A = lN� fx0; x1; : : :g where x0 = g(0) + 1 andxn+1 = g(xn) + xn + 1. From the de�nition of H it follows that fA(xn) = xn+1 =g(xn) + xn + 1 > g(xn) and g does not dominate fA.(b) Let A0; A1; : : : be a uniform enumeration of all primitive recursive sets. Nowon input �a, the one-sided machine looks for the �rst k with � � Ak. If then also�a � Ak it outputs 1 otherwise it outputs 0. It is easy to see that the machineoutputs 1 on almost all inputs � � A i� A = Ak for some k. The other part of theproof uses that B is not the intersection of countably many open sets and thus not arelativized �02 class [21, Theorem IX(b)].(c) For each set C there is a uniform approximation of C 0 via strings Cn of C suchthat each Cn queries C only at the places 0; 1; : : : ; n, jCn j � n and Cn � C 0 in�nitelyoften. Now the one-sided machine H outputs on strings of odd length an 1 andprocesses strings of even length as follows:H(C(0)D(0)C(1)D(1) : : : C(n)D(n)) = � 0 if Cn � D(0)D(1) : : : D(n);1 otherwise.10



As mentioned, Cn can be computed using only the C(m) with m � n, thus the wholeprocedure needs no oracle but retrieves the answers from the input. If D 6= C 0 thenCn 6� D for almost all n; therefore H accepts all sets in C. If D = C 0 then thereare in�nitely many n with Cn � D(0)D(1) : : : D(n). H takes 0 at these n and thusrejects all sets outside C. So H is a one-sided classi�er for C.Assume now by the way of contradiction that C is two-sided via M . Now M canalso be viewed as a set and so one can consider the class fC�D : C 6=M _D 6=M 0g.A machine to identify this set can be derived from M as follows:N(�) = �M(�) if �(x) =M(x2 ) for all even x 2 dom(�);1 otherwise;N is obviously recursive in M . On the other hand, the new class is cosingle andcontains all sets except M �M 0. Then M �M 0 has to be recursive in M , a contra-diction.Singleton one-sided classes are always two-sided and therefore less complex thancosingleton ones which can have a Turing degree above every given hyperarithmeticTuring degree. Somehow the relation between countable and cocountable one-sidedclasses is the other way round: While some countable one-sided classes can have thehighest possible Turing complexity this is not true for cocountable classes.Theorem 2.7 Any cocountable one-sided class A = fB : (8n) [B 6= An]g is two-sidedrelative to some hyperarithmetic set.Proof Let H be a one-sided classi�er for A. Sacks [22, Theorem III.6.2] showedthat every �11 class either contains a perfect subclass (and is just uncountable) or hasonly members below some hyperarithmetic set. Since each one-sided class is de�nedwithout quanti�cation over sets or functions, its complement is a �11 class (indeed itis even a �11 class). So there is a hyperarithmetic set C such that An �T C for all n.Now for each n the function fAn as de�ned in Theorem 2.4 is recursive in An. Somefunction g �T C 0 dominates all functions computable relative to C, in particular gdominates each function fAn. By Theorem 2.4 the class A is two-sided relative to C 0which has hyperarithmetic Turing degree since the hyperarithmetic Turing degreesare closed under the jump.3 Complete ClassesThere are some other reducibilities between sets besides Turing reduction. Post [19]introduced the concept of 1-reduction: A set A is 1-reducible to B i� there is a one-one computable function f such that x 2 A , f(x) 2 B. The set K is completewithin the enumerable sets, i.e., every enumerable set can be 1-reduced to K.It is possible to transfer the notion of 1-reduction to the world of classi�cation.11



Here a 1-reduction from a class A to a class B is a one-one computable and continuousoperator � translating every set A into a set �(A) such that A 2 A , �(A) 2 B.De�nition 3.1 A computable operator � is called a 1-reduction from A to B if� � is strictly monotone (w.r.t.�), i.e., �(�) � �(� ) i� � � � for all �; � 2 f0; 1g�.� A 2 A i� �(A) = lim��A �(�) 2 B for all sets A.A class A is called 1-complete i� every one-sided class is 1-reducible to it and A itselfis one-sided.It is easy to see that if A �1 B and B is two-sided via a (nonrecursive) machineM then A is also two-sided via a classi�er computable relative to M . Since thereare classes which are not relatively two-sided, the following 1-complete class is notrelatively two-sided and does not have a Turing degree.Theorem 3.2 The class K = fA : (81even x) [x 2 A]g is 1-complete.Proof The classi�er H(a0a1 : : : an) = � 1 if n is odd;an if n is even;witnesses that K is one-sided. Assume now that L is a computable one-sided classi�erfor a further class A. A 1-reduction � from A to K is de�ned as follows:�(�) = L(�);�(�a) = �(�)aL(�a):From this equation it follows that H(�(�)) = L(�) and that whenever � � �(A) andH(�) = 0 then � = �(�) for some �. Therefore the following two statements areequivalent:L(�) = 0 for in�nitely many � � A,H(�) = 0 for in�nitely many � � �(A).It follows that A 2 A i� �(A) 2 K and A is 1-reducible to K. So K is 1-complete.Theorem 3.3 The class A of all co�nite sets has greatest Turing complexity but isnot 1-complete.Proof By Example 2.6 (a), the class A of all co�nite sets has greatest Turingcomplexity. But A is not 1-complete: Consider the full class f0; 1g1 of all sets. Iff0; 1g1 is 1-reducible to A via � then every in�nite branch of the tree �(f0; 1g�)would be contained in A. This contradicts the fact that A contains only countablymany sets.Post [19] showed that simple sets are not complete under various constructions. In-deed it is possible to de�ne something analogue to simple set and to show that it is12



not 1-complete: A one-sided class is called simple i� it intersects every other in�niteone-sided class.Theorem 3.4 No 1-complete class is simple.Proof Let A be a 1-complete class. Then the class C of all co�nite sets is 1-redu-cible to A via some reduction �. Now it is shown that A is not simple via showingthat the class f�(A0);�(A1); : : :g is a two-sided in�nite class disjoint to A whereAx = fxg. No set Ax = fxg is contained in C. Thus also no set �(Ax) is in A andB = f�(A0);�(A1); : : :g is an in�nite class disjoint to A. It remains to be shown thatB is one-sided; indeed it will be shown that the following machine M is a two-sidedclassi�er for B.M(�) = � 1 if there is an x with �(0x1) � � � �(0x101);0 otherwise.The check whether such an x exists, is computable: Only the x � j�j have to beconsidered since the string �(0x1) is longer than � for x > j�j. Furthermore thesets �(Ax) are uniformly recursive, so the whole check and thus M is a computableprocedure.During the classi�cation of any set A, M makes only two mind changes: fromthe initial guess 0 to 1 if it turns out that �(0x1) � A for some x. A further mindchange back to 0 if A turns out to be di�erent from �(Ax). Since no string �(0y1)with y 6= x extends �(0x1), there is no danger of a third mind change from 0 to 1because of such a �(0y1) being a pre�x of A.It is now easy to verify is that M converges on the sets �(Ax) to 1 and on allother sets to 0; so M is a classi�er for B.In particular B is a one-sided in�nite class which is disjoint toA and thus witnessesthat A is not simple.4 Index Sets of One-Sided ClassesLet G be a collection of classes and He denote the class generated by the e-th one-sided classi�er He. Then the set E = fe : He 2 Gg is called the index set of G andevery such set E belonging to such a G is called an index set. So this section triesto look at the analogon of the index sets of classes of enumerable sets; while thoseare mostly situated in the arithmetical hierarchy these index sets of one-sided classeshave often the complexity �11. The �rst example of such an index set is the equalityproblem fhe; e0i : He = He0g.Theorem 4.1 The set fhe; e0i : He = He0g is �11 complete.Proof The formula(8A) [ (91� � A) [He(�) = 0] , (91� � A) [He0(�) = 0] ]13



witnesses that equality is in �11. Fixing e0 to be an index of f0; 1g1 the next Theo-rem 4.2 witnesses that the set is also �11 complete.Theorem 4.2 The sets I = fe : He is two-sidedg and J = fe : He = f0; 1g1g are�11 complete.Proof The set J = fe : (8A) (81� � A) [He(�) = 1] g in in �11. Furthermore e 2 Ii� there is an index e0 such that He = He0 and He0 makes on any A only �nitely manymind changes, i.e.,e 2 I , (9e0) [ (8A) [(91� � A) [He(�) = 0] , (91� � A) [He0(�) = 0] ] ^(8A) (9c) (81� � A) [He0(�) = c] ]So it follows that also I is in �11.Now it is shown that both sets are complete via the same m-reduction s. LetT0; T1; : : : � lN� be a computable enumeration of all primitive recursive trees. Theset E = fe : Te is well-foundedgis �11 complete [22] where a tree is well-founded i� it does not contain an in�-nite branch. For any string � say that � codes a �nite branch a0a1 : : : an i� � =1ha0;b0i01ha1 ;b1i0 : : : 1han;bni0. E is m-reducible to both index sets via the followingreduction:Hs(e)(�) = 8<: 0 if � codes a �nite branch of Te,i.e., if � = 1ha0;b0i01ha1;b1i0 : : : 1han ;bni0 and a0a1 : : : an 2 Te;1 otherwise.If Hs(e) outputs in�nitely many 0 on some set A then A codes an in�nite branch of Te.So if Te is well-founded then Hs(e) outputs on each A only �nitely many 0s. ThereforeHs(e) = f0; 1g1 and is a two-sided class; in particular s(e) 2 I and s(e) 2 J .Otherwise Te has an in�nite branch a0a1 : : : and for any sequence b0b1 : : : theset A with the characteristic function 1ha0;b0i01ha1;b1i0 : : : is not in Hs(e). It followsthat Hs(e) 6= f0; 1g1 and s(e) =2 J . Furthermore for each function g the sequenceb0b1 : : : can be chosen such that han+1; bn+1i � bn+1 > g(cn) where cn = n+ ha0; b0i+ha1; b1i + : : : + han; bni. It follows that fA(cn) > g(cn) for each n and that g doesnot dominate fA. So there is no function g dominating the functions fA for allA =2 Hs(e). By Theorem 2.4, Hs(e) is not two-sided { even not relative to any oracle{ and s(e) =2 I.Theorem 4.2 has an immediate application: it shows that there is nothing equivalentto a Friedberg numbering. If all one-sided classes would have a Friedberg numbering,then there would be also a numbering where one class, namely f0; 1g1, is omitted.But such a numbering does not exist.Theorem 4.3 No numbering contains all one-sided classes except f0; 1g1.14



Proof Assume by the way of contradiction that there is a computable function ssuch that the numbering Hs(0);Hs(1); : : : covers all one-sided classes except f0; 1g1.Then the set fe : (9e0) [He = Hs(e0)]g is in �11 since �11 is closed under quanti�cationon numbers as e0 and since the equality problem is in �11. For any given e such an e0exists i� He 6= f0; 1g1. So the complement of this �11 set is the �11 complete indexset of f0; 1g1 and the function s can not exist, at least s can not be recursive.Theorem 4.4 The sets fe : He �1 Ag and fe : He �1 Ag are in �11 for everyone-sided class A. In particular fe : He is 1-completeg is in �11.Proof The proofs are very similar. There is an enumeration of all operators �isuch that whenever �i is total then it is strictly monotone. Furthermore there is aone-sided classi�er H for A. NowHe �1 A , (9i) (8A) [ �i is total ^((81n) [He(A(0)A(1) : : : A(n)) = 1],(81n) [H(�i(A(0)A(1) : : : A(n))) = 1]) ]He �1 A , (9i; j) (8A) [ �i and �j are total ^((81n) [He(A(0)A(1) : : : A(n)) = 1],(81n) [H(�i(A(0)A(1) : : : A(n))) = 1]) ^((81n) [H(A(0)A(1) : : : A(n)) = 1],(81n) [He(�j(A(0)A(1) : : : A(n))) = 1]) ]Since the existential quanti�er ranges over numbers, these expressions are �11. Theycharacterize the two index sets.These classes are not �11 complete for every A. In particular if A = ; then they arein �02: He �1 ; i�He = ; i� for each n there is anm such that every string � 2 f0; 1gmhas at least n pre�xes � � � with He(� ) = 0. The di�erence in the complexity of thequestion whether He is empty or equals f0; 1g1 is the mirror image of the fact thatthe question whether We = ; is �01 complete while the question whether We = lN is�02 complete.Furthermore it can be shown that the index set fe : He = ;g has the leastcomplexity of an index set of classes. Rice [20] showed for the world of enumerablesets that every non-trivial index set is �01 hard or �01 hard. In the world of one-sidedclasses it can be shown that every nontrivial index set E is �02 hard or �02 hard. Inparticular it is shown that the �02 complete set Fin is m-reducible to E or E.Theorem 4.5 Let E be a non-trivial index set of some collection G of classes. Thenthe set Fin = fe : We is �niteg is m-reducible either to E or to E.Proof First consider the case f0; 1g1 2 G. In this case it is shown that Fin �m Evia a m-reduction s. This s then witnesses that E has at least complexity �02. SinceE is not trivial there is some one-sided class A =2 G with some computable one-sided15



classi�er H. Now s is de�ned implicitly via giving an informal description for theclassi�er Hs(e):Hs(e) outputs on A at least n 0s i� jWej � n and H outputs on A at leastn 0s.If We is �nite, Hs(e) outputs on every A only �nitely often a 0 and thus accepts everyset; so Hs(e) = f0; 1g1 and s(e) 2 E for every e 2 Fin. If We is in�nite then Hs(e)accepts a set A i� H does; so Hs(e) = A and s(e) =2 E for every e =2 Fin. It followsthat J is m-reducible to E via s.The other case that G does not contain the class f0; 1g1 just gives an m-reductionfrom Fin to E using the above proof with E in place of E and fA : A =2 Gg in placeof G.5 Classi�cation and MeasureThe measure � given by �(;) = 0, �(f0g) = �(f1g) = 0:5, �(f0; 1g) = 1 has anin�nite product � on the space f0; 1g1. This can be extended in such a way thatevery subclass of a class with measure 0 is again measurable and has measure 0.For the classes of measure 0 { and thus indirectly by considering the complementsalso for the classes of measure 1 { there is a characterization via martingales [6, 13, 23].A martingale is a function m which associates to every � 2 f0; 1g� a rational numbersuch that:� m(�0) +m(�1) = 2m(�);� m(�) > 0 and m(�) = 1.A martingale witnesses that a class A has measure 0 i� for each A 2 A and for eachk there is an n such that m(A(0)A(1) : : :A(n)) � k. It witnesses that a class hasmeasure 1 i� it witnesses that the complement of this class has measure 0. A class hasrecursive measure 0 or 1 i� some recursive martingale witnesses that is has measure0 or 1, respectively.It is well-known that every class, which is Borel, is also measurable. Since everyone-sided class is Borel [1], every one-sided class is measurable. For two-sided classesit is even possible to compute the measure in the limit from the classi�er.Theorem 5.1 The measure �(A) of a two-sided class can be computed from anyindex e of a two-sided classi�er He for A.Proof For each set A there is a unique n such that He converges at A(0)A(1) : : : A(n)either to 1 or to 0. Now let Ae = fA : He converges to 1 at ng and Be = fA :He converges to 0 at ng. Since He converges on every set A either to 1 or to 0,16



these classes A0;A1; : : : and B0;B1; : : : form a partition of f0; 1g1. In particular�(A0) + �(B0) + �(A1) + �(B1) + : : : = 1. Now consider the computable sequenceqn = 2�1�n ��a0;a1 ;:::;an2f0;1gHe(a0a1 : : : an)of rational numbers. This sequence converges to �(A) since �(A0) + �(A1) + : : : +�(An) � qn � 1� (�(B0)��(B1)� : : :��(Bn)) and therefore j�(A)� qnj � �n where�n = �(An+1) + �(Bn+1) + �(An+2) + �(Bn+2) + : : :; the �n converge to 0 since thesum �(A0) + �(B0) + �(A1) +�(B1) + : : :+�(An) + �(Bn) approaches monotonly to1. Thus the sequence of the qn converges to �(A) and so the measure of A can becomputed in the limit from any two-sided classi�er for A.This is not longer true for one-sided classes. The class class of all sets A which arelexicographic before K 0 has the measure 2�1K 0(0) + 2�2K 0(1) + : : : which can notbe computed in the limit since otherwise K 0 would be computable in the limit. Soone might ask whether the measure is at least in those cases computable where themeasure of the class is a recursive real. Easier than computing such a measure is toverify that a class has measure 0 or 1 via presenting a recursive martingale whicheither succeeds on the class or on its complement. But { as the next example shows{ also this fails for certain one-sided classes with measure 1: there is just no suchmartingale.Example 5.2 There is a cosingle one-sided class A which does not have recursivemeasure 1.Proof Every set A �T K is a �02 singleton. Therefore it follows that for everyA �T K the class A = fB : B 6= Ag is one-sided and it remains to be shown thatthere is some A 6�T K such that no recursive martingale succeeds on A. This is justthe well-known fact that there is a random-set A �T K.Somehow it is easier to determine that a one-sided class is small than that it is large.As already seen the index set of the empty class is much easier than that of thefull class f0; 1g1. This result has a parallel w.r.t. measure. While some cosingleone-sided classes do not have measure 1, every one-sided class of measure 0 does alsohave recursive measure 0.Theorem 5.3 If a one-sided class A has measure 0 then A has recursive measure 0.Proof Let A be one-sided via a machine H and have measure 0. Now a recursivemartingale m is constructed in order to witness that A has recursive measure 0. Theinductive de�nition starts with m(�) = 0.Now in each step chose (one of) the shortest � such that m(�) is de�ned but notm(�0) and m(�1). Let Ln be the set of all � 2 f0; 1gn such that H(��) = 1 for allnon-empty � � � . If for each n the cardinality of Ln would be larger than 2n�2 thenH would output on a \quarter" of all sets A � � never a 0 after processing � whichimplies �(A) � 2�j�j�2 in contradiction to the choice of A. Thus there is an n > 017



such that Ln has at most 2n�2 elements, w.l.o.g. n is the smallest such number.Now let m(�� ) = 1:5 �m(�) for every � 2 Ln and let m(�� ) = 2n�1:5�jLnj2n�jLnj �m(�)for the other strings � of length n. All values are above 0 and there sum is 2n �m(�).Furthermore de�ne m(��) for strings � of length n� 1; n� 2; : : : ; 0 according to theformula m(�) = 12 � (m(�0) +m(�1)). This �nishes the extension step.Each such step �nishes and since each step takes the shortest � with m(�0);m(�1)being unde�ned,m becomes a total function. Furthermore all values of m are positiverational numbers and it can be veri�ed that the equation m(�0) +m(�1) = 2 �m(�)holds for all �. Thus m is a recursive martingale.Let now A 2 A. Let �0 � �1 � : : : � A being that sequence of strings such that�n+1 is always a string of the form �n� when m is extended at �n. By the constructionthe following holds:m(�n+1) < m(�n) , H(�) = 0 for some � with �n � � � �n+1m(�n+1) = 1:5 �m(�n) , H(�) = 1 for all � with �n � � � �n+1Since H outputs on A almost always 1s, the second case holds for almost all n andit follows that m takes on A arbitrary large values. So A has recursive measure 0witnessed by the recursive martingale m.Example 5.2 showed already that one-sided classes of measure 1 do not need to haverecursive measure 1. So it is natural to look for the help of oracles and the next resultstates, that a K-oracle is su�cient to do the job: If a class has measure 1 then ithas already K-recursive measure 1, i.e., a K-recursive martingale witnesses that theclass has measure 1.Theorem 5.4 If a one-sided class A has measure 1 then A has K-recursive mea-sure 1.Proof For given one-sided class A with measure 1 a K-recursive martingale m isconstructed which succeeds on every A =2 A and so witnesses that A has K-recursivemeasure 1. Let H be a one-sided classi�er for A. Let � denote the standard measureon f0; 1g1 and for any computable tree T let�(T; �) = �( fA � � : A is in�nite branch on Tg ):Starting with m(�) = 1, the inductive de�nition of m runs as follows:(1) Choose the shortest � such that m(�0)" and m(�1)" .Indeed the domain of m will be a tree at each stage and by extending thedomain on some shortest leaf, it is guaranteed that m is total at the end. This� can be found using the oracle K.(2) Let Tn = f� : jfm 2 dom(� ) : H(� (0)� (1) : : : � (m)) = 0gj � ng. Find using theoracle K a suitable n such that �(Tn; �) > 2�j�j�1.18



Such an n exists since the union of all Tn contains almost all branches through� and so �(�; Tn) must approach to 2�j�j by the continuity of �. Furthermore�(�; Tn) = 2�j�j ��� is leaf of Tn2�j� jis computable via K-oracle and thus a suitable n can be found.(3) De�ne m on all nodes of Tn above � such that m(� ) � 1:5 �m(�) for every leaf� of Tn above �.The de�nition m0(� ) = m(�) � (0:95 � 2j� j�j�j � �(�; Tn)=�(�; Tn) + 0:05) satis�esall requirements but has the disadvantage of not giving rational numbers. Butm0 can be approximated by an extension of m onto Tn above � such that m hason this extended domain the same computational complexity as m0, takes onlyrational values and satis�es 0:9 �m0(�) � m(�) � 1:1 �m0(�) for all �. Since evenm0(� ) � 1:9 �m(�) for all leaves of Tn, it follows that m(� ) � 0:9 � 1:9 �m(�) �1:5 �m(�) for these � .At each stage of the de�nition, a set A stays on the corresponding tree Tn only if Houtputs a �nite number of 0s on input A. Thus starting with �0 = �, a given A =2 Aleaves this tree through a leaf �1 and when m is extended on a tree above �1 then Aleaves this tree through a leaf �2 and so on. So A goes through an in�nite sequence�0; �1; : : : of nodes such that m(�k+1) � 1:5 � m(�k) for all these nodes. It followsthat m takes on A arbitrary high values and so m witnesses that A has K-recursivemeasure 0.Let I be an interval of real numbers. It follows from the de�nition of the Lebesguemeasure, that every measurable set E � I is approximable via a F� set F in thesense that the symmetric di�erence of E and F has measure 0. Lusin [18, Satz 8.2]showed a function f : I ! I is measurable i� for each � > 0 there is a set D ofmeasure less than � such that the restriction of f to the domain I �D is continuous.These results motivate to look at the question to which extend from the view-pointof measure theory, a one-sided class can be approximated by a two-sided one.Theorem 5.5 For every one-sided class A and every � > 0 there is a two-sided classB such that the symmetric di�erence of both classes has a measure less than �. Butthere is also a one-sided class A such that every two-sided class di�ers from A on aset of positive measure.Proof First note that every one-sided class is Borel [1] and thus measurable. Forgiven one-sided class A and � > 0 consider the classes Ak containing all sets Aon which H outputs at most k times a 0. These classes are two-sided and theyapproximate A from below. Since the measure is continuous, �(A) is the upper limitof the �(Ak) and so �(A) � � < �(Ak) � �(A) for some k. Since Ak � A, thesymmetric di�erence has the measure �(A)� �(Ak) which is less than �.For the second result let G be 1-generic and below K. Consider the class A =19



fA : A <lex Gg. This class is one-sided via outputting 1 if � <lex Gj�j and 0 otherwisewhere Gs is a recursive approximation to G. Now let B be any two-sided class withclassi�er M . M converges on G to some value a, with only �nitely many changesone can obtain that M(�) = a for all � � M . Thus G avoids the computable setf� :M(� ) 6= ag and so there is some pre�x � such that M(� ) = a for all � � �. Onthe other hand there are �0; �1 � � such that all sets extending �0 belong to A andall sets extending �1 belong to A, in particular all sets A � �1�a are in the symmetricdi�erence of A and B so that this symmetric di�erence has a measure larger than2j�1�aj > 0:There are two natural properties, one-sided classes can take: being simple and max-imal. The �rst one was already introduced above: a simple class is one-sided andintersects every in�nite one-sided class. The second one is the following: A one-sidedclass A is maximal if it is coin�nite and has the property that either A[B or A[Bis co�nite for every one-sided class B. The easiest way to construct a maximal classis just to convert a maximal set into it: Let U be a set which is maximal relative toK, i.e., U is enumerable relative to K, coin�nite and no further set which is enumer-able relative to K can split the complement of U into two in�nite parts. The classfA : jAj 6= 1 _ (A = fxg ^ x 2 U)g is maximal. So maximal classes exist. Simpleand maximal classes are not only large in the sense that they intersect every in�niteone-sided class. They are also large w.r.t. measure theory.Theorem 5.6 If A is simple then �(A) > 0. If A is maximal then �(A) = 1.Proof First it is shown that no one-sided class A of measure 0 is simple. So letA be a one-sided class of measure 0. A then also has recursive measure 0 andthere is a computable martingale m witnessing this fact. The class Bc = fA :(9n) [m(A(0)A(1) : : :A(n)) > c]g of all sets on which m obtains some value greaterthan c has measure at most 1c . So the class B2 has at least measure 12 and is thereforein�nite. B2 is disjoint to A since the martingale succeeds on every set in A. Further-more B2 is one-sided via guessing 1 on input A as long as m(A(0)A(1) : : :A(n)) � 2and then making a mind change to 0. So the in�nite one-sided class B2 is disjoint toA and A is not simple.Second it is shown that �(A) = 1 for all maximal classes A. Given a maximalclass A some kind of \kernel" B of A is constructed as follows: for each n one of theclasses fA =2 A : A(n) = 0g and fA =2 A : A(n) = 1g is �nite and the other one isin�nite; so let B(n) take that value b for which fA : A(n) = bg is in�nite. It followsthat for every n the class fA =2 A : A(n) 6= B(n)g is �nite and thus their union iscountable. So A has at most countably many members: those just mentioned plusperhaps B itself. Therefore the complement of any maximal class is countable andso every maximal class has measure 1.Theorem 5.6 has two limitations: �rst it is only claimed that maximal classes havemeasure 1 but not that they have recursive measure 1. Indeed this is not possible20



since by Example 5.2 there is a cosingle class A not having a recursive measure 1and taking any maximal class B, the new class A \ B does also not have recursivemeasure 1 but is still maximal.The second restriction is that there are simple classes with measure below 1 aswill be proven below. Indeed this tradeo� between the size of maximal and simpleclasses has an analogon in recursion theory given by the fact that a simple set canbe arbitrary thin { there is for every given computable function f a simple set whichhas only n elements among the numbers 0; 1; : : : ; f(n) { while no similar result holdsfor maximal sets.Example 5.7 For each � > 0 there is a simple class A with �(A) < �.Proof Each string � generates a open class � � f0; 1g1 of sets. This open classis said to meet the one-sided class He generated by He e�ectively i� there is a setA 2 � � f0; 1g1 such that He(A(0)A(1) : : :A(n)) = 1 for all n � j�j. This conditionis coenumerable, i.e., for each class He given by He the setNe = f� : � � f0; 1g1 does not meet He e�ectivelygis enumerable. Furthermore almost all sets A(0)A(1) : : : A(n) � f0; 1g1 meet He e�ec-tively whenever A 2 He. There is an algorithm which generates a three-dimensionalarray �e;i;j of strings such that(1) each string �e;i;j has length at least j;(2) if He 6= ; then �e;j = limi!1 �e;i;j exists;(3) if �e;j exists then the open class �e;j � f0; 1g1 meets He e�ectively.This algorithm works after a simple schema: �e;i;j is just the �rst string (w.r.t. somegiven ennumeration of all strings) whose length is at least j and which is not enu-merated to Ne within i computation steps. So this algorithm converges to some �e;jif He 6= ; and diverges otherwise. Let E denote the index set of all nonempty classesHe, i.e., the set of all e where the sequences �e;0;j; �e;1;j; : : : converge.Given � there is a number n such that 21�n < �. Now A is taken to be theunion of all classes �e;n+e � f0; 1g1 with e 2 E. The measure of A is bounded by�(A) � �e2E 2�e�n � 21�n < � and so the requirement on the measure of A is satis-�ed. So it remains to show that A is one-sided. A one-sided classi�er for A is givenas follows:H outputs on A at least n 0s i� there is i � n such that�e;i;j 6= A(0)A(1) : : :A(m) for all m � n and e � n.If A 2 A then some �e;i;j converges to a pre�x of A. So there are m;k such that�e;i;j = A(0)A(1) : : :A(m) for all i � k. It follows that H does not output more thane+ k +m 0s and H accepts A.If A =2 A then for each n there is a stage i such that all strings A(0)A(1) : : :A(m)21



with m � n are enumerated to all Ne with e � n. It follows that all �e;i;j with e � nare di�erent from all A(0)A(1) : : :A(m) with m � n and H outputs on A eventuallyat least n 0s. Since this holds for each n, H rejects A.So H is a one-sided classi�er for A. By construction, A meets every nonemptyset He, so A is a simple class. Furthermore �(A) < � and so A satis�es all conditionsof the theorem.6 Classifying Recursive Sets OnlySmith, Wiehagen and Zeugmann [24, 27] looked at classi�cation tasks where only thebehaviour on computable sets is considered. Case, Kinber, Sharma and Stephan [5]extended this work. Many of the anomalies of classi�cation (compared to the settingof enumerable versus computable sets) disappear, if classi�cation of only computableis considered. In this model, every one-sided class is two-sided relative to a high oracleand cosingle classes are already two-sided without any help of an oracle. This sectionnow looks at the relation of the general model where all sets are classi�ed versus therestricted model where only computable sets are classi�ed. The next theorem showsthat there is a class which is two-sided in the restricted model but does not have anytwo-sided classi�er relative to any oracle in the general model.Theorem 6.1 There is a class A of computable sets such that some computableM classi�es all computable sets w.r.t. A but there is even no non-recursive classi�erwhich converges on every input-set and classi�es all computable sets w.r.t. A.Proof Let S be a simple set and A = f�nite A : A \ S = ; ^ jAj is oddg. First it isshown that some M classi�es S one-sided where M converges on every computableset. This M is given byM(�) = � 0 if fx : �(x)#= 1g meets Sj�j or has even cardinality;1 otherwise.That means that M outputs 0 or 1 depending on the cardinality of the 1s in � untilM discovers that some x with �(x)#= 1 is enumerated into S { then M switches to0 forever.Now it is shown that M converges on every computable set. If A is �nite then Mchanges only �nitely often its mind { either when M �nds a new element or whensome already found element is enumerated into S. If A is computable and in�nitethen M also makes only �nitely often a mind change since M eventually discoversthat there is an x 2 A \ S and from this time on only outputs 0.The second part is to show that every classi�er N which is correct on all �nitesets w.r.t. A diverges on some in�nite set A = fa0; a1; : : :g where this set is de�nedinductively starting with n = 0 and some a0 =2 S.Take some �n � fa0; a1; : : : ; ang such that j�nj > an and N(�n) = 1 i�n+ 1 is odd. Then take some an+1 =2 S [ dom(�n).22



The �n is found since N classi�es fa0; a1; : : : ; ang w.r.t. A. The an+1 exists since S iscoin�nite and dom(�n) is �nite. So the construction works for all n and the resultingset A is in�nite and disjoint to S. Furthermore N(�n) = 0 for all even n, N(�n) = 1for all odd n and the �n are all di�erent pre�xes of A, so N does not converge on A.So sometimes two-sided classi�ers for computable sets can not be extended to two-sided classi�ers for all sets. But as the next theorem shows, they can be extended toone-sided classi�ers for all sets such that the corresponding class has measure 1.Theorem 6.2 Every one-sided class A has a one-sided \extension" B of measure 1such that A 2 A , A 2 B for every computable set A.Proof Let H be a one-sided classi�er for A. Now a new one-sided classi�er N isconstructed such that the class B de�ned via N has the desired properties. N justslows down the output of the 0s and meets the following de�nition:N outputs on A at least n 0s if H outputs on A at least n 0s and there ism � n such that 'm(x)#= A(x) for all x � m.So whenever A is recursive, A has in�nitely many indices and in particular for eachn there is an index m � n of A. This m satis�es of course 'm(x) #= A(x) for allx � m. ThereforeM outputs on A in�nitely many 0s if H does and N classi�es A tobe in B i� H classi�es A to be in A. So A and B coincide on the computable sets.Let Am = fA : (8x � m) ['m(x) #= A(x)]g. Each class Am has measure 2�m�1provided that 'm is de�ned on the input 0; 1; : : : ;m. So whenever N outputs on a setA at least n 0s, then A belongs to some Am with m � n. Since �(An [An+1 [ : : :) ��(An) + �(An+1) + : : : � 2�n�1 + 2�n�2 + : : : = 2�n, it follows that the measure ofthe class of all A on which N outputs at least n 0s has the upper bound 2�n. Thusthe measure of B which is the class of all sets on which N outputs in�nitely many 0sis bounded by each number 2�n and so is 0. It follows that B has measure 1.A similar Theorem does not hold with measure 1 in place of measure 0. Taking theone-sided class A = f0; 1g1 of all sets, every one-sided class B which agrees with Aon all computable sets just has to contain every computable set. The measure of Bcan not be 0 since then B had recursive measure 0 and so there would be a recursivemartingale succeeding on all computable sets - which does not exist.7 ConclusionThe paper deals with the notion of one-sided and two-sided classes. It is shown thatthere are several similarities between the relation of one-sided to two-sided classeson one hand and the well-studied relation of enumerable to computable sets on theother hand.Similar to the study of Turing degrees of enumerable sets, the Turing complexity23



of one-sided classes is de�ned as { roughly spoken { the amount of information whichis needed to construct a two-sided classi�er for a one-sided class. It turns out thatthe classes with the highest Turing complexity which are not two-sided relative toany oracle are intractable more because of topological reasons than because of com-putational di�culty.Studying the classes with intermediateTuring complexity (which are not two-sidedbut have a two-sided classi�er operating with some oracle) are linked to hyperarith-metic Turing degrees. In particular if a class is two-sided relative to a cone above aTuring degree a but not relative to any other Turing degree then this Turing degreeis generated by a �02 singleton. On the other hand every �02 singleton A generatesthe one-sided class fB : B 6= Ag which has exactly the same Turing degree as A.Furthermore there are intermediate one-sided classes which do not have a Turingdegree but are linked to a collection of Turing degrees, e.g., there is a one-sided classwhich is two-sided relative to an oracle i� that has high Turing degree. Within thisarea the following questions remained open.� Is there a one-sided and relatively two-sided class which has no hyperarithmeti-cal two-sided classi�er?� Is the structure of the one-sided classes concerning 1-reduction isomorphic toany well-known degree-structure?Further research deals with index sets fe : He belongs to Gg where G is a collectionof some classes. Most natural index sets as those of the two-sided classes, of the classf0; 1g1 and of the 1-complete sets are �11 complete. Some as the problem whether aclass is empty have the complexity �02 and are therefore easier.Every one-sided class is Borel (in the standard topological sense) and thereforealso measurable. So the question was investigated how e�ective this measure is. Dueto the asymmetric de�nition of one-sided classi�cation, one-sided classes of measure 0have already recursive measure 0 while some cosingle one-sided classes does not havea recursive measure.Arun Sharma [5] proposed to study the classi�cation of only recursive sets. Inthis world, topological constraints are weakened and the concept becomes quite moresimilar to the scenario of enumerable versus computable sets. E.g., every one-sidedclass is two-sided relative to a high oracle in this world. Section 6 is therefore dedi-cated to the relation between these two worlds. The main result is that a two-sidedclassi�er for the world of classifying computable sets only can not be extended to onefor the world of classifying all sets { even not with oracles.Acknowledgments The author would like to thank Klaus Ambos-Spies, BerndBorchert, John Case, Rusins Freivalds and Arun Sharma for discussions. He is alsograteful to the University of New South Wales where he worked on this and relatedtopics during a visit. 24
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