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Abstract

One-sided classifiers are computable devices which read the characteristic func-
tion of a set and output a sequence of guesses which converges to 1 iff the set
on the input belongs to the given class. Such a classifier is two-sided if the
sequence of its output in addition converges to 0 on sets not belonging to the
class. The present work obtains the below mentioned results for one-sided
classes (= X9 classes) w.r.t. four areas: Turing complexity, 1-reductions, index
sets and measure.

There are one-sided classes which are not two-sided. This can have two
reasons: (1) the class has only high Turing complexity. Then there are some
oracles which allow to construct noncomputable two-sided classifiers. (2) The
class is difficult because of some topological constraints and then there are also
no nonrecursive two-sided classifiers. For case (1), several results are obtained
to localize the Turing complexity of certain types of one-sided sets.

The concepts of 1-reduction, 1-completeness and simple sets is transferred
to one-sided classes: There are 1-complete classes and simple classes, but no
class is at the same time 1-complete and simple.

The one-sided classes have a natural numbering. Most of the common index
sets relative to this numbering have the high complexity II}: the index sets of
the class {0,1}°°, the index set of the equality problem and the index set of
all two-sided classes. On the other side the index set of the empty class has
complexity I19; I19 and X9 are the least complexities any non-trivial index set
can have.

Any one-sided class is measurable. It is shown that a one-sided class has ef-
fective measure 0 if it has measure 0, but that there are one-sided classes having
measure 1 without having measure 1 effectively. The measure of a two-sided
class can be computed in the limit.
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1 Introduction

Classification means to identify whether an object is contained in a class or not.
In the present paper, the objects of classification are sets of natural numbers. Since
these objects have no finite description, the classification algorithm makes up its mind
from longer and longer approximations of the object and outputs at the same time a
sequence of guesses which signal in the limit whether the current object is accepted,
i.e., supposed to be in the class, or rejected, i.e., supposed to be outside the class. In
particular a symmetric (two-sided) and more general asymmetric (one-sided) version
to define acceptance and rejection is given.

The analysis of the task shows, that classification has to cope with two aspects of
difficulty: the topological appearance of the class and its computational complexity.
The present work is dedicated to look for a certain kind of classes on these topological
and computational aspects of classification and the relation between them. Further-
more the process of classification is compared with that to compute or enumerate a
set. Before going into the details, a brief summary of the overview on classification
w.r.t. neighbouring subjects is given.

One of the first approaches to classification was to design finite automata which
decide in the limit whether an infinite string (representing the characteristic function
of a language) belongs to a given w-language or not [3, 14, 15, 26]. The restrictive
computational ability of these finite automata led Biichi [3] and his successors to con-
sider non-deterministic automata. The present paper takes the alternate approach of
choosing Turing machines as classifiers. In fact already Biichi and Landweber [4, 12]
did some first research into this direction.

The next main root of classification is inductive inference. Wiehagen and Smith
[27] introduced a model, in which a finite number of classes is given and the classifier
has to detect at least one class where the language to be classified belongs to. As in
many other definitions in the field of inductive inference [2, 9], the process has only
to converge in the limit and so the machine has the right to withdraw hypotheses
and to replace them by new ones. Wiehagen and Smith expected the process only to
converge on the domain, so they avoided the topological problems which arize when
the classifier has also to signal that a language does not belong to any class of the
given collection.

Ben-David [1] and Kelly [10] started to investigate these topological aspects of
classification: they showed that a (not necessarily computable) device can classify all
sets with respect to one class in the limit iff the given class is the union of count-
ably many closed classes and the intersection of countably many open classes at the
same time; for this definition they use the Baire topology generated by the subbasis
Ay ={A: A(x) = y} (¢ € N,y € {0,1}). Gasarch, Pleszkoch and Velauthapillai
[7, 8] extended the result by establishing a close relation between the topological Borel
hierarchy and the quantifier-hierarchy of query-languages during classification.

This paper now returns to the computational aspect of classification. Ben-David



and Kelly already showed that a class is classifiable in the limit iff it is a (relativized)
AY class; Rogers [21] called the A§ classes also A(QS) classes. An other natural concept
from learning theory is reliable inference which is implicit classification: if a function
belongs to the inferred class then the learner converges to an index of this function, if
a function does not belong to the class then the learner diverges. Such a mechanism is
called a one-sided classifier since the learner signals only for the elements in the class
the membership by convergence but not for those outside the class. It is equivalent to
the notion of X9 classes or 2(25) classes as Rogers [21] called them. So one can isolate
two natural notions of classification which coincide with the quite natural recursion-
theoretic notions of AY and X9 classes. So a machine H is a classifier for a class A iff
H accepts every set in A by converging to 1 and rejects every set outside A by either
diverging (one-sided classification) or converging to 0 (two-sided classification); the
formal definition follows.

Definition 1.1 H is a one-sided classifier for A iff
(VA€ A) (Vo < A)[H(o) =1]
and (VA¢ A)(I3*c < A)[H(c)=0];
M is a two-sided classifier for A iff
(VA€ A) (Vo < A)[M(o) =1]
and (VA ¢ A) (V<o < A)[M(o)=0].

This paper now relates these two natural concepts of classification to each other. For
each n, the concepts of X0 sets relate to that of the AY almost in the same way
as that of the enumerable (= YY) sets to to that of the computable (= Af) sets.
This work will show that on one hand for one-sided versus two-sided classes this
analogy basically also holds but that on the other hand the similarities are much
more restricted than the parallel definitions suggest at the first glance.

Example 1.2 [21] The notions of effective topology follow the definitions as stated
by Ko [11, p. 72, p. 165] and Rogers [21, Chapter 15]: A class A is recursively open iff
there is a recursive sequence oy, 0y, . .. of strings such that A € 4 < (In) [0, < A].
A class A is a recursively G class iff there is a recursive array o, of strings such
that A € A & (Im) (Vn) [omn X Al

Now any recursively open class is two-sided and any recursively G class is one-
sided. There are recursively (s classes which are one-sided but not two-sided, e.g.,
the class of all finite sets.

One important tool in recursion theory is that there is an acceptable numbering of all
enumerable sets. Similarly one can obtain an acceptable numbering of all one-sided
classes given by total one-sided classifiers.

Theorem 1.3 There is an effective list Hy, Hy, ... of one-sided classifiers such that
every one-sided class is generated by such a classifier and every machine H. is total.
The so defined numbering of the one-sided classes is acceptable: every further effective
numbering Go, G1, ... can be represented via a computable function: Hyey = Ge.
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This effective list of classifiers H, is generated from an acceptable numbering ¢, of
all partial computable functions which of course contains all classifiers. The formal
definition is

@e(7) for the longest 7 < o such that
H.(o) = @e(7) outputs 0 or 1 within |o| steps;
0 if there is no such 7.

It is easy to verify that whenever ¢, is a one-sided classifier for A, then so is H.; and
whenever ¢, is a two-sided classifier for A, then so is H..

At many places this list H. of one-sided classifiers will be quite useful; in particular
it is much more handy to use the H, in diagonalizations than the ¢, since the H, are
always total and {0,1}-valued. H. denotes the one-sided class generated by H..

Both, one-sided and two-sided classes form a lattice. Furthermore a class is two-
sided iff the class and its complement are one-sided [21, Chapter 15]. The next
theorem shows, that a further well-known result from the hierarchy of sets, namely
that every infinite Y2 set has an infinite A subset, does not hold for classes and
needs “uncountable” instead of “infinite”.

Theorem 1.4 Fuvery uncountable one-sided class has a two-sided subclass of same
cardinality. There is a one-sided infinite class which has no two-sided infinite subclass.

Proof A; = {A € A : H outputs on input A exactly k 0s}. Every class Ay is
two-sided via the following algorithm Mjy: My(c) = 1 iff H outputs on exactly k
inputs 7 < o a 0 and My(o) = 0 otherwise; so M makes on each set A € A, at most
two mind changes. Since the cardinality of A is not countable, one of the countably
many two-sided subclasses Aj has the same cardinality as A. So the first statement
of the theorem holds.

The second statement is proven by constructing an infinite one-sided class A =
{Ap, Ay, ...} without any infinite two-sided subclass. For each machine Hj, and each
finite set D, F(D,k,n) denotes the length of the shortest string o < D such that
either Hi(7) = 1 for at least n strings 7 < o or Hy(7) = 0 for all strings 7 with
o <7 =< D. The function F'is computable relative to K. The class A is given via
the following inductive definition:

Ay = 0
Gn) = n+ F(A,,0,n)+ F(A,, Lin)+...4+ F(A,,n,n);
A = A U{G(n)} ={G(0),G(1),...,G(n)}.

(G is computable relative to K and has therefore a computable approximation Gj.
Now the following machine H is a one-sided classifier for A:

1 if there is a 7 such that ¢ = 70 and
H(o) = range(t) = {G)5)(0), Glo(1), ..., Gjp(ones(T)) };

0 otherwise;



where ones(7) is the number of all # with 7(2)] = 1. Assume that A has the finite
cardinality n. H converges to 1 if A = A, and H converges to 0 if A # A,,. Otherwise
A is infinite and infinitely many o < A have the form 71. So H outputs for these the
value 0 and H rejects every infinite set.

It remains to show that every two-sided subclass of A is finite. Let the machine
M = H_. be any two-sided classifier for some subclass of A and consider the set
A ={G(0),G(1),...} = range(G). If M outputs during the classification of some
set Ay with k > e at least k£ 1s, then M outputs at least k of them on strings 7 < Ay
which are shorter than G/(k). Thus these 7 are also prefixes of A and M outputs on
A at least k£ 1s. Since M converges on A to 0, M outputs on A only finitely often a
1 and there are only finitely many A, with & > e which M classifies with 1 in the
limit. It follows that M is a classifier for a finite subclass of A and so also the third
statement holds. |

2 Classification and Turing Complexity

Post [19] studies the enumerable sets w.r.t. their Turing degrees. His main question
was whether for the decision procedures of all noncomputable enumerable sets have
the same complexity. The work to solve this and similar problems initiated a large
study of the Turing degrees of enumerable sets which Soare [25] gives a comprehensive
overview.

The analogous question for one-sided classes is to determine the amount of com-
plexity which is necessary to compute a two-sided classifier for them. The straight
forward implementation of this idea would be to identify each class with the easiest
two-sided classifier for it — but somehow such two-sided classifier sometimes do not
exist and if they exist, there may be no one of least complexity.

Therefore classes are (in general) not related to a single Turing degree but to a
collection of Turing degrees. This collection is called the Turing complexity of a class
and consists of all oracles which allow to compute a two-sided classifier for the given
class.

The one-sided classes are ordered in terms of their Turing complexity: So A has
Turing complexity below that of B iff the class of all oracles relative to which A is
two-sided is a superset of of the corresponding class for B. W.r.t. this ordering, there
are one-sided classes of least and greatest Turing complexity. Furthermore among
those of intermediate Turing complexity, there are some classes whose Turing com-
plexity can be identified with a single Turing degree: Such a class has Turing degree
a iff the Turing-degrees of the two-sided classifiers just form a cone above a:

{degr(M) : M is a two-sided classifier for A} = {b:a < b}.

So there are four types of one-sided classes with respect to their Turing complexity.



A two-sided class has the least possible Turing complexity since it is two-sided
relative to every oracle. ) and {0, 1}* are examples of two-sided classes. Every
two-sided class has a Turing degree, namely the degree 0 of the computable
sets.

o There are one-sided classes which are not two-sided relative to any oracle. So
they have the greatest possible Turing complexity: Example 2.6 gives three
such one-sided classes.

e There is a one-sided class which has a non-recursive Turing degree.

o There is a one-sided class which is two-sided relative to some oracles but which
does not have a Turing degree.

The next results deal with the classes of intermediate Turing complexity according to
the third and fourth case. Sacks [22, Section 11.4] called a set A a II9 singleton iff A
is the only set B which satisfies (Va)(3y)[R(x,y, B)] for some recursive predicate R.
Such TI9 singletons allow to construct a one-sided classes A which has a nonrecursive
Turing degree.

Theorem 2.1 The cosingle class A = {B : B # A} has a Turing degree which
is exactly that of A. Furthermore A is one-sided iff A is a 119 singleton. So every
hyperarithmetic set is below the Turing degree of some one-sided class.

Proof Assume that M classifies two-sided A. Then there is a finite string o < A
such that M(7) = 0 for all 7 with & <7 < A. The binary tree

I'={r:(Vn=7)[n =0V M(n)=0]}

is recursive in M and A is its only recursive branch. Therefore M >7 A. On the
other hand, an A-oracle is obviously sufficient for two-sided classification since this
means only to compare with A.

To show the second statement, assume that A is one-sided via H. Then let

1 if H(B(0)B(1)...B(z)) =0 for at least  numbers z < y;

0 otherwise.

Rz, B) = {
R is recursive. It is easy to see that (Va) (Jy) [R(x,y, B)]iff H outputs on B infinitely
many 0s iff B = A. So A is a II9 singleton.

For the other way round let A be a II9 singleton, i.e., there is a recursive predicate
R such that A is the only set B for which (V&) (3y)[R(z,y, B)] holds. W.l.o.g.
R(x,y, B) is computed only by making queries at B below y, to obtain this one
could replace y by a pair (y,z), R by R and say that R'(x,(y,z), B) is satisfied iff

R(x,y, B) holds and z is the place of the largest query to B during the computation
of R(x,y, B). Now let

h(B,n) =max{m <n: (Ve <m)(Jy <n)[R(z,y, B)]}
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and (0a, |7a]) = h(o, |o])
1 if h(oa,|oa|) = h(o,|o]|);
H(oa) = {0 otherwise, i.e., h(oa,|oal) > h(o,|o|);

where the expression h(o,n) abbreviates max{h(B,n) : ¢ < B}. The statement
h(o,|o|) can in fact be computed without looking at the values of any B beyond |o]|
and so depends only on . Having this in mind one can see that H outputs on input
B infinitely often a 0 iff lim, ., h(B,n) = oo iff for every x there is an y such that
R(x,y, B) holds. So H outputs infinitely many 0s on input A and only finitely many
on any input B # A; thus H is a one-sided classifier for A.

The third statment follows from the fact that the hyperarithmetic sets are just the
Turing closure downward of the 19 singletons [22, Section 11.4]. 1

The single one-sided classes {A} are less complex than the cosingle ones: they are
already two-sided without oracle and so have least Turing complexity. Some of the
cocountable classes, which are a natural generalization of the cosingle classes, do not
have a Turing degree, but they all are two-sided relative to some hyperarithmetic
oracle. Theorem 2.2 gives an example of a class which does not have a Turing degree
and whose Turing complexity is just the collection of all high Turing degrees. There
are also countable and cocountable examples with the same property, but in order to
have a better readable proof the easiest example is chosen.

Theorem 2.2 There is a one-sided class A whose Turing complexity is the collection
of all high Turing degrees. A does not have a Turing degree.

Proof Let A contain all non-empty sets A such that W, is finite for e = min(A). A
one-sided classifier H for A is given via

H(o) = {1 if o= Qel and We o141 = We o5
0 otherwise.

If A > 0°1 and W, is finite, then W, ,1; = W, s for almost all s. Thus H converges

to 1 on these A. Otherwise A = () and H always outputs 0 or A = 0°1 and W, is

infinite. In this latter case, W, 41 # W, for infinitely many s and H(o) = 0 for

infinitely many o < A. So H is a one-sided classifier for A.

On the other hand it is easy to see that a two-sided classifier M converges on
0°1°° to 1 iff W, is finite. Since this problem is m-equivalent to K’, the set K’ can
be computed in the limit relative to M and this is possible ifft M has high Turing
degree.

The second statement of the theorem follows from the fact that the high Turing
degrees do not form a cone. |

The next three theorems establish further results for classes of intermediate Turing
complexity.

Theorem 2.3 If a one-sided class is two-sided relative to some oracle, then it is
two-sided relative to an oracle in A}.



Proof Let H be a computable one-sided classifier for C. Assume furthermore that
C is two-sided relative to some oracle. Now any, not necessarily recursive, two-sided
classifier M satisfies the following II} equation:

) A
1]

It states that for all A, whenever H accepts or rejects A one-sidedly, so does M two-
sidedly. It follows that M is a solution to the predicate iff M is a two-sided classifier
for C. So M is specified via a I1} predicate. Provided that this predicate has at least
one solution, Addison and Kondo [22, Corollary 9.4] showed that there is a further
I} predicate (VA)[P(M, A)] which has exactly one solution and whose solution N
is also a solution to the original predicate. The sets {c : N(c) = ¢} are in ¥ for

c=0,1:

(VA) [((3*0 2 A)[H(o) = 0] = (V7o = A)[M(o)
=1

o | = (V®o < A)[M(0)

0
(Vo = A)[H(o) 1

N(o)=c & (AM)(VA)[M(0)=cA P(M, A).

Since one set is the complement of the other, it follows that the machine N is in

AL 1

Theorem 2.4 Let H be a one-sided classifier for A and for any A ¢ A let fa(m)
denote the first k > m such that H(A(0)A(1)... A(k)) =0. Then A has a two-sided

classifier of degree a iff there is a function g of degree a which dominates the functions

fa forall A¢ A.

Proof Assume that g dominates the functions f4 for all A ¢ A. The following
M <t g is a two-sided classifier for A:

with H(A0)A(L)... A(m)) = 0;

{1 if g(m) <n forallm <n
0 otherwise.

If A € Athen there are only finitely many m with H(A(0)A(1)... A(m)) = 0. Almost
all n are greater than g(m) for each such m and thus M(A(0)A(1)... A(n)) =1 for
almost all n. Otherwise A ¢ A and g dominates f4. So for almost all m there is a k
with m < k < g(m) and H(A(0)A(1)... A(k)) = 0. So for almost all n, the greatest
m < n with H(A(0)A(1)... A(m)) = 0 satisfies this condition and since by the choice
of m there is no such k between m and n, the relation n < g(m) holds. It follows

that M(A(0)A(1)... A(n)) = 0 for almost all n. So M is a two-sided classifier for A.
For the other way round let M <7 F be a two-sided classifier for A. The following

function ¢ is computable relative to F:

g(n) = 24+ max{|o|:0 €T,} where
T, = {o: (VT 20o)[|r|<nV(M(t)=0ANH(T)=1)]}.



Assume that ¢ would be undefined for some n. Then T, is infinite and by Konig’s
Lemma the tree T, has an infinite branch A. M converges on A to 0 while H outputs
on input A only finitely many 0s, i.e., M and H classify A differently in contradiction
to the choice of M and H. So T, is finite and ¢ is total. Since T, is computable
relative to £, its maximal string can be found using the oracle £/ and g <7 F.

Let A ¢ A. There is an n such that M(A(0)A(1)... A(m)) = 0 for all m > n.
Assume now by way of contradiction that fa(m) > g(m) for some m > n. Then
M(c) = 0 and H(o) = 1 for all ¢ < A with m < |o] < ¢g(m) and the string
A(0)A(1)... A(g(m)) is in T, in contradiction to g(m) being greater than the length
of all strings in T,,. Thus such an m does not exist and f4(m) < g(m) for almost

all m. 1

A consequence of this is that every one-sided class, which is two-sided relative to a
hyperimmune-free oracle, is already two-sided via a classifier without any access to
oracles.

Theorem 2.5 If A has a Turing degree then A has a hyperarithmetic Turing degree.

Proof Assume that 4 has Turing degree a and let M be a two-sided classifier for
A of degree a. Theorem 2.4 implies that a < b whenever every a-recursive function
is dominated by a b-recursive function. There is a function fy dominating every
function computable relative to a such that whenever ¢ is a majorant of fy then
M <t g. First it has to be shown that this can be done via a single index, i.e.,

(de, f) (V majorants g of f)[M = {e}’]

and in a second step it is deduced that M is a hyperarithmetic. The existence of
such e and f is shown via an algorithm which either provides the information to find
e and f or which constructs a majorant of g of fy such that M €7 ¢. In this proof
09,01, - . . denote strings of numbers and not of bits. oy is the empty string.

Given o, and f, check whether there is a majorant f,;; of f, and an
extension 0,41 > o, such that

® 0, < 0,41 = for1 and

e there is some n € {0,1}* such that either {n}?+1(n) | # M(n) or
{n}?(n)1 for all majorants g of f,11 with g = o,41.

If there are such 0,41, f,1+1 the algorithm proceeds with them in the next
step otherwise it terminates.

If the algorithm goes through all steps, then ¢ = lim,, o, exists and is a majorant of fo.
By construction, for all e there is some n € {0, 1}* such that either {e}?(n) | # M(n)

(since {e}7+ (n) L # M(n) and o.41 =< g) or {e}?(n) T (since g is a majorant of f.i1).



So M is not computed relative to ¢ via any e in contradiction to the choice of fp.
Thus the algorithm terminates in some stage n. Now for each g the following set
i1s not empty:

F(g,n) = {7 = on : {n}"(n)} A (Vm € dom(r) — dom(0y,)) [r(m) = g(m)]}.

g
Furthermore whenever ¢ is a majorant of f, and 7 € F(g,n) then {n}"(n)} = M(n).
Using these two facts it is possible to construct e:

If within |n| steps no triple (8,71, 72) has been enumerated witnessing

inconsistency in the way that =, 7 € F/(g,0) and {n}™(8) # {n}™(0)

then {e}?(n) = {n}7(n) for the first 7 found in F(g, )

clse {e}/(n)1.
So M = {e}? for all majorants g of f, and {e}? is partial if M # {e}?. The second
step is now easy. The sets M. = { : M(n) = ¢} are II] according to the following
definition:

M(n)=c & (Vg)[{e}? is total = {e}?(n) = ¢|.

Since My is the complement of M, both sets are in A and M is hyperarithmetic. 1

Example 2.6 The following classes are one-sided but not relatively two-sided:
(a) A={A:A is cofinite} [7, Corollary 3.3].

(b) B ={B: B is primitive recursive}.

(¢c) C={Ca®&D:D#C'}.

Proof

(a) The one-sided classifier H outputs a on input ca. It takes almost always the
value 1 iff the input is a cofinite set. On the other hand this class is not relatively
two-sided since for any function ¢ there is a set A ¢ A such that g does not dominate
fa. Namely for given g, this set is A = IN — {xq, x1,...} where g = ¢(0) + 1 and
Tny1 = g(xn) + x, + 1. From the definition of H it follows that fa(x,) = v,41 =
g(x,) + 2, + 1 > g(x,) and g does not dominate f4.

(b) Let Ag, Ai,... be a uniform enumeration of all primitive recursive sets. Now
on input oa, the one-sided machine looks for the first & with ¢ < A,. If then also
ca = A it outputs 1 otherwise it outputs 0. It is easy to see that the machine
outputs 1 on almost all inputs ¢ < A iff A = Ay for some k. The other part of the
proof uses that B is not the intersection of countably many open sets and thus not a

relativized 19 class [21, Theorem IX(b)].

(c) For each set C there is a uniform approximation of C” via strings v of C' such
that each v& queries C only at the places 0,1,...,n, |7Y] < n and v¢ < ¢’ infinitely
often. Now the one-sided machine H outputs on strings of odd length an 1 and
processes strings of even length as follows:

H(C(0)D(0)C(1)D(1)...C(n)D(n)) = {0 if v < D(0)D(1)... D(n);

1 otherwise.
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As mentioned, v¢ can be computed using only the C'(m) with m < n, thus the whole
procedure needs no oracle but retrieves the answers from the input. If D £ C’ then
7S¢ £ D for almost all n; therefore H accepts all sets in C. If D = (' then there
are infinitely many n with 45 < D(0)D(1)... D(n). H takes 0 at these n and thus
rejects all sets outside C. So H is a one-sided classifier for C.

Assume now by the way of contradiction that C is two-sided via M. Now M can
also be viewed as a set and so one can consider the class {C @& D : C £ MV D # M'}.

A machine to identify this set can be derived from M as follows:

N(o) = {M(O‘) if 0'(1’)‘: M (%) for all even x € dom(o);

1 otherwise;
N is obviously recursive in M. On the other hand, the new class is cosingle and
contains all sets except M @& M’'. Then M @& M’ has to be recursive in M, a contra-
diction. 1

Singleton one-sided classes are always two-sided and therefore less complex than
cosingleton ones which can have a Turing degree above every given hyperarithmetic
Turing degree. Somehow the relation between countable and cocountable one-sided
classes is the other way round: While some countable one-sided classes can have the
highest possible Turing complexity this is not true for cocountable classes.

Theorem 2.7 Any cocountable one-sided class A = {B : (Yn)[B # A,]} is two-sided

relative to some hyperarithmetic set.

Proof Let H be a one-sided classifier for A. Sacks [22, Theorem II1.6.2] showed
that every ¥ class either contains a perfect subclass (and is just uncountable) or has
only members below some hyperarithmetic set. Since each one-sided class is defined
without quantification over sets or functions, its complement is a ¥{ class (indeed it
is even a A} class). So there is a hyperarithmetic set C' such that A, <7 C for all n.
Now for each n the function f4, as defined in Theorem 2.4 is recursive in A,. Some
function g <7 C’ dominates all functions computable relative to C, in particular ¢
dominates each function fu . By Theorem 2.4 the class A is two-sided relative to C’
which has hyperarithmetic Turing degree since the hyperarithmetic Turing degrees
are closed under the jump. |

3 Complete Classes

There are some other reducibilities between sets besides Turing reduction. Post [19]
introduced the concept of 1-reduction: A set A is 1-reducible to B iff there is a one-
one computable function f such that + € A & f(x) € B. The set K is complete
within the enumerable sets, i.e., every enumerable set can be 1-reduced to K.

It is possible to transfer the notion of 1-reduction to the world of classification.
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Here a 1-reduction from a class A to a class B is a one-one computable and continuous
operator I' translating every set A into a set I'(A) such that A € A & I'(A) € B.

Definition 3.1 A computable operator I' is called a 1-reduction from A to B if
e ['is strictly monotone (w.r.t. <), ie.,['(o) < I'(7) iff o < 7 forall o, 7 € {0, 1}*.
o Aec Aff I'(A) =lim,<4 I'(0) € B for all sets A.

A class A is called 1-complete iff every one-sided class is 1-reducible to it and A itself
is one-sided.

It is easy to see that if 4 <; B and B is two-sided via a (nonrecursive) machine
M then A is also two-sided via a classifier computable relative to M. Since there
are classes which are not relatively two-sided, the following 1-complete class is not
relatively two-sided and does not have a Turing degree.

Theorem 3.2 The class K = {A: (V*¥even x) [z € A} is [-complete.

Proof The classifier
1 if nis odd;

a, if n is even;

H(aoay ... ay) :{

witnesses that K is one-sided. Assume now that L is a computable one-sided classifier
for a further class A. A I-reduction I' from A to K is defined as follows:

[(A) = L(A);
['(ca) = T(o)al(oa).

From this equation it follows that H(I'(¢)) = L(o) and that whenever n < I'(A) and
H(n) = 0 then n = I'(0) for some o. Therefore the following two statements are
equivalent:

L(o) = 0 for infinitely many o < A,
H(n) = 0 for infinitely many n < I'(A).

It follows that A € Aiff ['(A) € K and A is 1-reducible to K. So K is 1-complete. |

Theorem 3.3 The class A of all cofinite sets has greatest Turing complexity but is
not 1-complete.

Proof By Example 2.6 (a), the class A of all cofinite sets has greatest Turing
complexity. But A is not 1-complete: Consider the full class {0,1}> of all sets. If
{0,1}* is 1-reducible to A via I' then every infinite branch of the tree I'({0,1}*)
would be contained in A. This contradicts the fact that A contains only countably
many sets. |

Post [19] showed that simple sets are not complete under various constructions. In-
deed it is possible to define something analogue to simple set and to show that it is
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not 1-complete: A one-sided class is called simple iff it intersects every other infinite
one-sided class.

Theorem 3.4 No I-complete class is simple.

Proof Let A be a 1-complete class. Then the class C of all cofinite sets is 1-redu-
cible to A via some reduction I'. Now it is shown that A is not simple via showing
that the class {['(Ao),'(A41),...} is a two-sided infinite class disjoint to A where
A, ={x}. Noset A, = {x} is contained in C. Thus also no set I'(A4,) is in A and
B ={I'(Ao),I'(Ay),...} is an infinite class disjoint to A. It remains to be shown that
B is one-sided; indeed it will be shown that the following machine M is a two-sided
classifier for B.

M(o) = { 1 if there is an @ with ['(0°1) < o < T'(0710%);

0 otherwise.

The check whether such an x exists, is computable: Only the # < |o| have to be
considered since the string I'(071) is longer than o for @ > |o|. Furthermore the
sets I'(A;) are uniformly recursive, so the whole check and thus M is a computable
procedure.

During the classification of any set A, M makes only two mind changes: from
the initial guess 0 to 1 if it turns out that I'(0"1) < A for some x. A further mind
change back to 0 if A turns out to be different from I'(A,). Since no string I'(0¥1)
with y # x extends I'(071), there is no danger of a third mind change from 0 to 1
because of such a I'(0¢1) being a prefix of A.

It is now easy to verify is that M converges on the sets I'(A,) to 1 and on all
other sets to 0; so M is a classifier for B.

In particular B is a one-sided infinite class which is disjoint to A and thus witnesses
that A is not simple. |

4 Index Sets of One-Sided Classes

Let G be a collection of classes and H. denote the class generated by the e-th one-
sided classifier H.. Then the set £ = {e : H. € G} is called the index set of G and
every such set F belonging to such a G is called an index set. So this section tries
to look at the analogon of the index sets of classes of enumerable sets; while those
are mostly situated in the arithmetical hierarchy these index sets of one-sided classes
have often the complexity II}. The first example of such an index set is the equality

problem {(e,€') : H. = H.'}.
Theorem 4.1 The set {{e,e') : H. = Ho} is I} complete.
Proof The formula

(VA)[(F7o 2 A)[He(0) = 0] & (370 X A)[He(o) = 0]]



witnesses that equality is in II. Fixing €’ to be an index of {0,1}* the next Theo-
rem 4.2 witnesses that the set is also II{ complete. |

Theorem 4.2 The sets [ = {e: H. is two-sided} and J = {e: H. = {0,1}*} are

111 complete.

Proof The set J = {e: (VA) (V<0 < A)[H.(o) = 1]} in in I}. Furthermore e € T
iff there is an index €’ such that H. = H. and H. makes on any A only finitely many
mind changes, i.e.,

ecl & () [(VA)[(F*0 R A)[H(o)=0] & (F*0 < A)[Ho(o)=0]] A
(VA) (3¢) (V¥ 2 A) [Ho(o) = ]

So it follows that also [ is in H%.

Now it is shown that both sets are complete via the same m-reduction s. Let
To,11,... C IN* be a computable enumeration of all primitive recursive trees. The
set

FE = {e: T, is well-founded}

is 1] complete [22] where a tree is well-founded iff it does not contain an infi-
nite branch. For any string o say that o codes a finite branch agpa; ...aq, iff 0 =
1(aobo)g{abig 1{enbe)0. [ is m-reducible to both index sets via the following
reduction:

0 if o codes a finite branch of T¢,
Hs(e)(U) = { le,if o = {aobo) (g (arb)gy  1{anbn)() and agay . .. a, € T.;

1 otherwise.

If Hy(cy outputs infinitely many 0 on some set A then A codes an infinite branch of 7T..
So if Tt is well-founded then H, outputs on each A only finitely many 0s. Therefore
Hse) = {0,1}> and is a two-sided class; in particular s(e) € I and s(e) € J.
Otherwise T. has an infinite branch aga;... and for any sequence bgb; ... the
set A with the characteristic function 1{%:b)g1{#1:b00  is not in Hyey. It follows
that Hyey # {0,1}* and s(e) ¢ J. Furthermore for each function g the sequence
boby . .. can be chosen such that (a,41,b,41) > bpy1 > g(c,) where ¢, = n+ (ag, bo) +
(a1,b1) + ... + (an,b,). It follows that fa(c,) > g(e,) for each n and that g does
not dominate f4. So there is no function g dominating the functions f4 for all

Ad Hse)- By Theorem 2.4, H,() is not two-sided — even not relative to any oracle
—and s(e) ¢ 1. 1

Theorem 4.2 has an immediate application: it shows that there is nothing equivalent
to a Friedberg numbering. If all one-sided classes would have a Friedberg numbering,
then there would be also a numbering where one class, namely {0, 1}, is omitted.
But such a numbering does not exist.

Theorem 4.3 No numbering contains all one-sided classes except {0,1}.
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Proof Assume by the way of contradiction that there is a computable function s
such that the numbering H (o), Hs(1), - - . covers all one-sided classes except {0,1}*.
Then the set {e: (3¢/) [He = Hyen]} is in II7 since T is closed under quantification
on numbers as ¢’ and since the equality problem is in II]. For any given e such an ¢’
exists iff H, # {0,1}*. So the complement of this IIj set is the II; complete index
set of {0,1}* and the function s can not exist, at least s can not be recursive. |

Theorem 4.4 The sets {e : H. <, A} and {e : H. =, A} are in I} for every

one-sided class A. In particular {e : H. is I-complete} is in I1}.

Proof The proofs are very similar. There is an enumeration of all operators I';
such that whenever I'; is total then it is strictly monotone. Furthermore there is a

one-sided classifier H for A. Now

He <4 A & (Fi)(VA) [T is total A
((Vn) [H(A(0)A(L) ... A(n)) =1] &

(Vo) [H(Li(A(0)A(L) ... A(n))) = 1])]
He=1 A & (Fi,7) (VA) [T and T'; are total A

al
)

((v=n) [H(A0)A(L) ... A(n)) =1] =
(Vn) [H(T:(A(0)A(1 ) An))) = 1]) A
((v*n) [H(A(0)A(1) .. ( =1«
(V*n) [He(T5(A(0)A(1 ) - A(n)) =1])]

Since the existential quantifier ranges over numbers, these expressions are II}. They
characterize the two index sets. |

These classes are not 1I{ complete for every A. In particular if A = () then they are
in 119: H, =, 0iff H. = 0 iff for each n there is an m such that every string o € {0, 1}™
has at least n prefixes 7 < o with H.(7) = 0. The difference in the complexity of the
question whether H, is empty or equals {0,1}* is the mirror image of the fact that
the question whether W, = () is 11 complete while the question whether W, = IN is
119 complete.

Furthermore it can be shown that the index set {e : H. = 0} has the least
complexity of an index set of classes. Rice [20] showed for the world of enumerable
sets that every non-trivial index set is 11 hard or X% hard. In the world of one-sided
classes it can be shown that every nontrivial index set F is IS hard or X hard. In
particular it is shown that the %9 complete set F'in is m-reducible to £ or .

Theorem 4.5 Let E be a non-trivial index set of some collection G of classes. Then
the set Fin = {c: W, is finite} is m-reducible either to E or to E.

Proof First consider the case {0,1}* € G. In this case it is shown that Fin <, £
via a m-reduction s. This s then witnesses that F has at least complexity I19. Since
F is not trivial there is some one-sided class A ¢ G with some computable one-sided
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classifier H. Now s is defined implicitly via giving an informal description for the

classifier H(cy:

H,() outputs on A at least n 0Os iff |W.| > n and H outputs on A at least
n Os.

If We is finite, H,() outputs on every A only finitely often a 0 and thus accepts every
set; so Hye) = {0,1}* and s(e) € E for every e € Fun. If W, is infinite then Hye
accepts a set A iff i does; so Hy) = A and s(e) ¢ E for every e ¢ Fin. It follows
that J is m-reducible to F via s.

The other case that G does not contain the class {0, 1} just gives an m-reduction
from Fin to E using the above proof with E in place of £ and {A: A ¢ G} in place

of G. 1

5 Classification and Measure

The measure v given by v(0) = 0, v({0}) = v({1}) = 0.5, v({0,1}) = 1 has an
infinite product g on the space {0,1}*. This can be extended in such a way that
every subclass of a class with measure 0 is again measurable and has measure 0.

For the classes of measure 0 — and thus indirectly by considering the complements
also for the classes of measure 1 — there is a characterization via martingales [6, 13, 23].
A martingale is a function m which associates to every o € {0,1}* a rational number
such that:

e m(o0)+m(ol) =2m(o);
e m(c) >0 and m(A) = 1.

A martingale witnesses that a class A has measure 0 iff for each A € A and for each
k there is an n such that m(A(0)A(1)...A(n)) > k. It witnesses that a class has
measure 1 iff it witnesses that the complement of this class has measure 0. A class has
recursive measure 0 or 1 iff some recursive martingale witnesses that is has measure
0 or 1, respectively.

It is well-known that every class, which is Borel, is also measurable. Since every
one-sided class is Borel [1], every one-sided class is measurable. For two-sided classes
it is even possible to compute the measure in the limit from the classifier.

Theorem 5.1 The measure u(A) of a two-sided class can be computed from any
index e of a two-sided classifier H. for A.

Proof For each set A there is a unique n such that H. converges at A(0)A(1)... A(n)
either to 1 or to 0. Now let A, = {A : H. converges to 1 at n} and B. = {A :
H. converges to 0 at n}. Since H. converges on every set A either to 1 or to 0,
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these classes Ag, Ay,... and By, By,... form a partition of {0,1}*. In particular
(Ao) + p(Bo) + p(Ay) + p(By) + ... = 1. Now consider the computable sequence

Gp=2"17" > H.(aoay .. .ay)

aQ,at .-, an€{0,1}

of rational numbers. This sequence converges to p(A) since u(Ag) + (A1) + ...+
(AL < g < 1—(u(Bo) —p(B1)—...—u(B,)) and therefore |u(A) — g,| < €, where
€n = W Ant1) + p(Brg1) + 1 Anga) + p(Brgz2) + .. the €, converge to 0 since the
sum p(Ao) + p(Bo) + (A +p(By) + ... + pu(A,) + pw(B,) approaches monotonly to
1. Thus the sequence of the ¢, converges to u(A) and so the measure of A can be
computed in the limit from any two-sided classifier for A. 1

This is not longer true for one-sided classes. The class class of all sets A which are
lexicographic before K’ has the measure 27'K’(0) + 272K’(1) + ... which can not
be computed in the limit since otherwise K’ would be computable in the limit. So
one might ask whether the measure is at least in those cases computable where the
measure of the class is a recursive real. Fasier than computing such a measure is to
verify that a class has measure 0 or 1 via presenting a recursive martingale which
either succeeds on the class or on its complement. But — as the next example shows
— also this fails for certain one-sided classes with measure 1: there is just no such
martingale.

Example 5.2 There is a cosingle one-sided class A which does not have recursive
measure 1.

Proof Every set A <7 K is a ) singleton. Therefore it follows that for every

A <7 K the class A = {B : B # A} is one-sided and it remains to be shown that
there is some A L7 K such that no recursive martingale succeeds on A. This is just
the well-known fact that there is a random-set A <7 K. 1

Somehow it is easier to determine that a one-sided class is small than that it is large.
As already seen the index set of the empty class is much easier than that of the
full class {0,1}*°. This result has a parallel w.r.t. measure. While some cosingle
one-sided classes do not have measure 1, every one-sided class of measure 0 does also
have recursive measure 0.

Theorem 5.3 [f a one-sided class A has measure 0 then A has recursive measure 0.

Proof Let A be one-sided via a machine H and have measure 0. Now a recursive
martingale m is constructed in order to witness that A has recursive measure (. The
inductive definition starts with m(A) = 0.

Now in each step chose (one of) the shortest o such that m(o) is defined but not
m(o0) and m(ol). Let L, be the set of all 7 € {0,1}" such that H(on) =1 for all
non-empty 1 < 7. If for each n the cardinality of L, would be larger than 272 then
H would output on a “quarter” of all sets A > o never a 0 after processing o which
implies p(A) > 27171=2 in contradiction to the choice of A. Thus there is an n > 0
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such that L, has at most 2772 elements, w.l.o.g. n is the smallest such number.

27— 15| Ly
2"—[Ln|

for the other strings 7 of length n. All values are above 0 and there sum is 2" - m(o).

Now let m(o7) = 1.5 - m(o) for every 7 € L,, and let m(o7) = m(o)
Furthermore define m(on) for strings n of length n — 1,n — 2,...,0 according to the
formula m(n) = 1 - (m(n0) + m(nl)). This finishes the extension step.

Each such step finishes and since each step takes the shortest o with m(c0), m(o1)
being undefined, m becomes a total function. Furthermore all values of m are positive
rational numbers and it can be verified that the equation m(c0) 4+ m(ol) =2-m(o)
holds for all . Thus m is a recursive martingale.

Let now A € A. Let 09 < 07 < ... < A being that sequence of strings such that
0,41 1s always a string of the form o, 7 when m is extended at o,,. By the construction

the following holds:

m(op41) < m(o,) < H(n) =0 for some n with o, <n < 0,41
m(op41) = 1.5 -m(o,) & H(n)=1forall n with o, < n < 0,41

Since H outputs on A almost always 1s, the second case holds for almost all n and
it follows that m takes on A arbitrary large values. So A has recursive measure 0
witnessed by the recursive martingale m. |

Example 5.2 showed already that one-sided classes of measure 1 do not need to have
recursive measure 1. So it is natural to look for the help of oracles and the next result
states, that a K-oracle is sufficient to do the job: If a class has measure 1 then it
has already K-recursive measure 1, i.e., a K-recursive martingale witnesses that the
class has measure 1.

Theorem 5.4 [f a one-sided class A has measure 1 then A has K-recursive mea-
sure 1.

Proof For given one-sided class A with measure 1 a K-recursive martingale m is
constructed which succeeds on every A ¢ A and so witnesses that A has K-recursive
measure 1. Let H be a one-sided classifier for A. Let 1 denote the standard measure
on {0,1}* and for any computable tree T' let

v(T,n) = u({A > n: Ais infinite branch on T} ).
Starting with m(A) = 1, the inductive definition of m runs as follows:

(1) Choose the shortest o such that m(c0)1 and m(ol)T.
Indeed the domain of m will be a tree at each stage and by extending the
domain on some shortest leaf, it is guaranteed that m is total at the end. This
o can be found using the oracle K.

(2) Let T, = {7 : {m € dom(7) : H(7(0)7(1)...7(m)) = 0}| < n}. Find using the
oracle K a suitable n such that v(7,, o) > 2717171,
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Such an n exists since the union of all T,, contains almost all branches through
o and so v(o, T,) must approach to 271l by the continuity of x. Furthermore

v(e,T,) = o=lol _ M 9-I7]

7 15 leaf of Tp

is computable via K-oracle and thus a suitable n can be found.

(3) Define m on all nodes of T}, above o such that m(7) > 1.5-m(o) for every leaf
T of T, above o.
The definition m/(7) = m(o) - (0.95 - 2"1=leb. w(7. T,)) Ju(o, T,) + 0.05) satisfies
all requirements but has the disadvantage of not giving rational numbers. But
m' can be approximated by an extension of m onto T,, above ¢ such that m has
on this extended domain the same computational complexity as m’, takes only
rational values and satisfies 0.9-m/(n) < m(n) < 1.1-m/(n) for all . Since even
m/(7) > 1.9-m(o) for all leaves of T, it follows that m(7) > 0.9-1.9-m(o) >
1.5 -m(o) for these 7.

At each stage of the definition, a set A stays on the corresponding tree T,, only if H
outputs a finite number of 0s on input A. Thus starting with oo = A, a given A ¢ A
leaves this tree through a leaf ; and when m is extended on a tree above oy then A
leaves this tree through a leaf o3 and so on. So A goes through an infinite sequence
00,01, ... of nodes such that m(ogy1) > 1.5 - m(oy) for all these nodes. It follows
that m takes on A arbitrary high values and so m witnesses that A has K-recursive
measure 0. ||

Let I be an interval of real numbers. It follows from the definition of the Lebesgue
measure, that every measurable set £ C [ is approximable via a F, set I in the
sense that the symmetric difference of £ and F' has measure 0. Lusin [18, Satz 8.2]
showed a function f : I — [ is measurable iff for each € > 0 there is a set D of
measure less than ¢ such that the restriction of f to the domain I — D is continuous.
These results motivate to look at the question to which extend from the view-point
of measure theory, a one-sided class can be approximated by a two-sided one.

Theorem 5.5 For cvery one-sided class A and every ¢ > 0 there is a two-sided class
B such that the symmetric difference of both classes has a measure less than €. But
there is also a one-sided class A such that every two-sided class differs from A on a
set of positive measure.

Proof First note that every one-sided class is Borel [1] and thus measurable. For
given one-sided class A and € > 0 consider the classes A containing all sets A
on which H outputs at most k times a 0. These classes are two-sided and they
approximate A from below. Since the measure is continuous, u(.A) is the upper limit
of the u(Ax) and so p(A) — e < p(Ag) < p(A) for some k. Since A, C A, the
symmetric difference has the measure p(A) — p(Ay) which is less than e.

For the second result let G be 1-generic and below K. Consider the class A =
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{A: A <., G}. This class is one-sided via outputting 1 if o <., G, and 0 otherwise
where G is a recursive approximation to G. Now let B be any two-sided class with
classifier M. M converges on (G to some value a, with only finitely many changes
one can obtain that M(o) = a for all ¢ < M. Thus G avoids the computable set
{7 : M(7) # a} and so there is some prefix o such that M(7) = a for all 7 <o. On
the other hand there are 1g,n; = 7 such that all sets extending 19 belong to A and
all sets extending n; belong to A, in particular all sets A > 1;_, are in the symmetric
difference of A4 and B so that this symmetric difference has a measure larger than
olm-al = 0.

There are two natural properties, one-sided classes can take: being simple and max-
imal. The first one was already introduced above: a simple class is one-sided and
intersects every infinite one-sided class. The second one is the following: A one-sided
class A is maximal if it is coinfinite and has the property that either AUB or AUB
is cofinite for every one-sided class 5. The easiest way to construct a maximal class
is just to convert a maximal set into it: Let U be a set which is maximal relative to
K, i.e., U is enumerable relative to K, coinfinite and no further set which is enumer-
able relative to K can split the complement of U into two infinite parts. The class
{A:|Al #1V (A ={a}ANa € U)}is maximal. So maximal classes exist. Simple
and maximal classes are not only large in the sense that they intersect every infinite
one-sided class. They are also large w.r.t. measure theory.

Theorem 5.6 If A is simple then p(A) > 0. If A is mazimal then p(A) = 1.

Proof First it is shown that no one-sided class A of measure 0 is simple. So let
A be a one-sided class of measure 0. A then also has recursive measure 0 and
there is a computable martingale m witnessing this fact. The class B. = {A :
(In) [m(A(0)A(L)... A(n)) > ¢]} of all sets on which m obtains some value greater
than ¢ has measure at most % So the class B has at least measure % and is therefore
infinite. B, is disjoint to A since the martingale succeeds on every set in A. Further-
more B; is one-sided via guessing 1 on input A as long as m(A(0)A(1)... A(n)) <2
and then making a mind change to 0. So the infinite one-sided class By is disjoint to
A and A is not simple.

Second it is shown that p(A) = 1 for all maximal classes A. Given a maximal
class A some kind of “kernel” B of A is constructed as follows: for each n one of the
classes {A ¢ A: A(n) =0} and {A ¢ A: A(n) = 1} is finite and the other one is
infinite; so let B(n) take that value b for which {A : A(n) = b} is infinite. It follows
that for every n the class {A ¢ A : A(n) # B(n)} is finite and thus their union is
countable. So A has at most countably many members: those just mentioned plus
perhaps B itself. Therefore the complement of any maximal class is countable and
so every maximal class has measure 1. |

Theorem 5.6 has two limitations: first it is only claimed that maximal classes have
measure 1 but not that they have recursive measure 1. Indeed this is not possible
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since by Example 5.2 there is a cosingle class A not having a recursive measure 1
and taking any maximal class B, the new class AN B does also not have recursive
measure 1 but is still maximal.

The second restriction is that there are simple classes with measure below 1 as
will be proven below. Indeed this tradeoff between the size of maximal and simple
classes has an analogon in recursion theory given by the fact that a simple set can
be arbitrary thin — there is for every given computable function f a simple set which
has only n elements among the numbers 0,1, ..., f(n) — while no similar result holds
for maximal sets.

Example 5.7 For each € > 0 there is a simple class A with p(A) < e.

Proof FEach string o generates a open class o - {0,1}* of sets. This open class
is said to meet the one-sided class H. generated by H. effectively iff there is a set
A € 0-{0,1}* such that H.(A(0)A(1)...A(n)) =1 for all n > |o|. This condition

is coenumerable, i.e., for each class ‘H. given by H, the set
N ={o:0-{0,1}* does not meet H, effectively}

is enumerable. Furthermore almost all sets A(0)A(1)...A(n)-{0,1}* meet H, effec-
tively whenever A € H.. There is an algorithm which generates a three-dimensional
array o, ; of strings such that

(1) each string o.;; has length at least j;
(2) if He # 0 then o, ; = lim;_., 0. ; exists;
(3) if o, ; exists then the open class o, ; - {0,1}*° meets H,. effectively.

This algorithm works after a simple schema: o, ; is just the first string (w.r.t. some
given ennumeration of all strings) whose length is at least j and which is not enu-
merated to N, within ¢ computation steps. So this algorithm converges to some o, ;
if H. # ) and diverges otherwise. Let I denote the index set of all nonempty classes
H., i.e., the set of all e where the sequences 0.9 j,0.1,,... converge.

Given ¢ there is a number n such that 2'™" < e. Now A is taken to be the
union of all classes o, 4. - {0,1}* with e € E. The measure of A is bounded by
p(A) < Xeep 277" < 217" < ¢ and so the requirement on the measure of A is satis-
fied. So it remains to show that A is one-sided. A one-sided classifier for A is given
as follows:

H outputs on A at least n 0s iff there is 1 > n such that
0eij 7 A0)A(1) ... A(m) for all m <n and e < n.

If A € A then some o.;; converges to a prefix of A. So there are m,k such that
e = A(0)A(1)... A(m) for all 1 > k. It follows that H does not output more than
e+ k+m 0s and H accepts A.

If A ¢ A then for each n there is a stage 7 such that all strings A(0)A(1)...A(m)
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with m < n are enumerated to all N, with e < n. It follows that all o.;; with e <n
are different from all A(0)A(1)...A(m) with m <n and H outputs on A eventually
at least n Os. Since this holds for each n, H rejects A.

So H is a one-sided classifier for A. By construction, A meets every nonempty
set H, so A is a simple class. Furthermore p(A) < € and so A satisfies all conditions
of the theorem. |

6 Classifying Recursive Sets Only

Smith, Wiehagen and Zeugmann [24, 27] looked at classification tasks where only the
behaviour on computable sets is considered. Case, Kinber, Sharma and Stephan [5]
extended this work. Many of the anomalies of classification (compared to the setting
of enumerable versus computable sets) disappear, if classification of only computable
is considered. In this model, every one-sided class is two-sided relative to a high oracle
and cosingle classes are already two-sided without any help of an oracle. This section
now looks at the relation of the general model where all sets are classified versus the
restricted model where only computable sets are classified. The next theorem shows
that there is a class which is two-sided in the restricted model but does not have any
two-sided classifier relative to any oracle in the general model.

Theorem 6.1 There is a class A of computable sets such that some computable
M classifies all computable sets w.r.t. A but there is even no non-recursive classifier
which converges on every input-set and classifies all computable sets w.r.t. A.

Proof Let S be a simple set and A = {finite A: ANS =0 A|A|is odd}. First it is
shown that some M classifies S one-sided where M converges on every computable
set. This M is given by
M(o) = {0 if {x: U(:L')iz 1} meets S|,| or has even cardinality;
1 otherwise.

That means that M outputs 0 or 1 depending on the cardinality of the 1s in ¢ until
M discovers that some x with o(x)] =1 is enumerated into S — then M switches to
0 forever.

Now it is shown that M converges on every computable set. If A is finite then M
changes only finitely often its mind — either when M finds a new element or when
some already found element is enumerated into S. If A is computable and infinite
then M also makes only finitely often a mind change since M eventually discovers
that there is an € AN S and from this time on only outputs 0.

The second part is to show that every classifier N which is correct on all finite
sets w.r.t. A diverges on some infinite set A = {ao, a1,...} where this set is defined
inductively starting with n = 0 and some ag ¢ 5.

Take some o, < {ag,a1,...,a,} such that |o,| > a, and N(o,) = 1 iff
n + 1 is odd. Then take some a,4+1 ¢ S U dom(c,).
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The o, is found since N classifies {ag, ay,...,a,} w.r.t. A. The a,4; exists since S is
coinfinite and dom(c,,) is finite. So the construction works for all n and the resulting
set A is infinite and disjoint to S. Furthermore N(o,,) = 0 for all even n, N(o,,) =1
for all odd n and the o, are all different prefixes of A, so NV does not convergeon A. |

So sometimes two-sided classifiers for computable sets can not be extended to two-
sided classifiers for all sets. But as the next theorem shows, they can be extended to
one-sided classifiers for all sets such that the corresponding class has measure 1.

Theorem 6.2 Fvery one-sided class A has a one-sided “extension” B of measure 1
such that A € A< A € B for every computable set A.

Proof Let H be a one-sided classifier for A. Now a new one-sided classifier N is
constructed such that the class B defined via N has the desired properties. N just
slows down the output of the 0s and meets the following definition:

N outputs on A at least n Os if H outputs on A at least n 0s and there is
m > n such that ¢, ()| = A(x) for all 2 < m.

So whenever A is recursive, A has infinitely many indices and in particular for each
n there is an index m > n of A. This m satisfies of course @,,(z)] = A(x) for all
x < m. Therefore M outputs on A infinitely many 0Os if H does and N classifies A to
be in B iff H classifies A to be in A. So A and B coincide on the computable sets.

Let A, = {A: (Vo < m)[pm(2)]= A(z)]}. Each class A,, has measure 271
provided that ¢, is defined on the input 0,1,...,m. So whenever N outputs on a set
A at least n 0s, then A belongs to some A, with m > n. Since p(A, UA,11U...) <
p(An) + p(Apgr) + ... < 27n=l 4 9=n=2 1 = 27" it follows that the measure of
the class of all A on which N outputs at least n 0s has the upper bound 27". Thus
the measure of B which is the class of all sets on which N outputs infinitely many Os
is bounded by each number 27" and so is 0. It follows that 5 has measure 1. |

A similar Theorem does not hold with measure 1 in place of measure 0. Taking the
one-sided class A = {0,1}* of all sets, every one-sided class B which agrees with A
on all computable sets just has to contain every computable set. The measure of B
can not be 0 since then B had recursive measure 0 and so there would be a recursive
martingale succeeding on all computable sets - which does not exist.

7 Conclusion

The paper deals with the notion of one-sided and two-sided classes. It is shown that
there are several similarities between the relation of one-sided to two-sided classes
on one hand and the well-studied relation of enumerable to computable sets on the
other hand.

Similar to the study of Turing degrees of enumerable sets, the Turing complexity
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of one-sided classes is defined as — roughly spoken — the amount of information which
is needed to construct a two-sided classifier for a one-sided class. It turns out that
the classes with the highest Turing complexity which are not two-sided relative to
any oracle are intractable more because of topological reasons than because of com-
putational difficulty.

Studying the classes with intermediate Turing complexity (which are not two-sided
but have a two-sided classifier operating with some oracle) are linked to hyperarith-
metic Turing degrees. In particular if a class is two-sided relative to a cone above a
Turing degree a but not relative to any other Turing degree then this Turing degree
is generated by a II singleton. On the other hand every II) singleton A generates
the one-sided class {B : B # A} which has exactly the same Turing degree as A.
Furthermore there are intermediate one-sided classes which do not have a Turing
degree but are linked to a collection of Turing degrees, e.g., there is a one-sided class
which is two-sided relative to an oracle iff that has high Turing degree. Within this
area the following questions remained open.

o Is there a one-sided and relatively two-sided class which has no hyperarithmeti-
cal two-sided classifierl"

o Is the structure of the one-sided classes concerning 1-reduction isomorphic to
any well-known degree-structurel’

Further research deals with index sets {e : H. belongs to G} where G is a collection
of some classes. Most natural index sets as those of the two-sided classes, of the class
{0,1}° and of the 1-complete sets are II{ complete. Some as the problem whether a
class is empty have the complexity 119 and are therefore easier.

Every one-sided class is Borel (in the standard topological sense) and therefore
also measurable. So the question was investigated how effective this measure is. Due
to the asymmetric definition of one-sided classification, one-sided classes of measure 0
have already recursive measure 0 while some cosingle one-sided classes does not have
a recursive measure.

Arun Sharma [5] proposed to study the classification of only recursive sets. In
this world, topological constraints are weakened and the concept becomes quite more
similar to the scenario of enumerable versus computable sets. E.g., every one-sided
class is two-sided relative to a high oracle in this world. Section 6 is therefore dedi-
cated to the relation between these two worlds. The main result is that a two-sided
classifier for the world of classifying computable sets only can not be extended to one
for the world of classifying all sets — even not with oracles.
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