
Proof-Theoretic Semantics for Subsentential Phrases

Nissim Francez∗† and Roy Dyckhoff‡ and Gilad Ben-Avi§

November 24, 2009

1. Introduction

In [3], a proof-theoretic semantics (PTS) for a fragment E+
0 of English, the

core of which containing (common, count) nouns, determiners, (extensional)
verbs and the copula is a (abbreviated isa), was presented, providing proof-
theoretic sentential meaning: The proof-theoretic meaning of a sentence S ∈
E+

0 is a function from contexts (finite collections of sentences) Γ, returning
the collection of all canonical (see below) derivations of S from Γ, in a
“dedicated” proof-systemN+

0 (see Figure 1). This PTS is intended to replace
the more traditional model-theoretic semantics (MTS), that views meanings
as truth-conditions (in arbitrary models), that has been criticized by many
philosophers of language as an adequate theory of meaning. See (the full
version of) [3] for a more detailed discussion and the appropriate references.
The current paper extends the natural language PTS-programme by defining
proof-theoretic meanings for subsentential phrases, down to lexical elements
(single words), within the framework of type-logical grammar (TLG) [6],
based on Frege’s Context Principle (CP). By this principle, the meaning (i.e.,
semantic value) of a word is its contribution to the sentential meanings of
the sentences in which it occurs. Such an extension allows the incorporation
of proof-theoretic meanings into actual (type-logical) grammars, for use in
computational linguistics. A similar extension for the propositional calculus
and for the 1st-order predicate calculus is presented in [2].
∗Work started while the first author was on leave at St Andrews university.
†Computer Science dept., the Technion-IIT, Haifa, Israel (francez@cs.technion.ac.il)
‡School of Computer Science, University of St Andrews, Scotland, UK (rd@st-

andrews.ac.uk)
§Computer Science dept., the Technion-IIT, Haifa, Israel (bagilad@cs.technion.ac.il)

1

2

Ever since Gentzen’s casual remark, Proof-Theoretical Semantics (PTS)
is an approach that regards meaning of logical constant as determined by
rules of use, as embodied in a natural-deduction (ND) proof-system, instead
of being determined model-theoretically by truth-conditions (in arbitrary
models).

In spite of the vast literature on the proof-theoretic semantics for logical
constants, there is nowhere an explicit definition for a semantic value as
determined by the I-rules of the ND-system; something of the form

[[∗]] = · · ·

where ‘∗’ is a logical constant. Such a definition is needed, for example, to
facilitate a discussion of the compositionality of the meaning of the constant
as determined by the rules at hand. It is also needed when one wants to
consider a grammar for a logical language of which the constant is a part,
for computational purposes. In [2], such a definition is provided for logical
constants, also based on Frege’s context principle (CF) and a type-logical
grammar.

A central claim advocated here, originating in [2], is that it is sentential
meaning of compound sentences that is determined directly by the ND-
rules; contributions to sentential meanings are determined by the function-
argument relationships induced by the grammar, determined indirectly only
by the rules of the logic. We adhere to a common view in PTS, by taking
sentential meanings (semantic value) of compound sentences as constructed
by means of canonical derivations in the ND-system. Specifically, we take
the meaning of a sentence S to be a function from contexts (sets of (open)
assumptions) Γ to canonical derivations of S from Γ. This definition cor-
roborates, and makes precise, a common observation about PTS (cf. for
example, [8, 9] for recent discussions): sentential meanings are not directly
compositional. The reason here is, that a canonical derivation has as its
immediate sub-derivations arbitrary derivations of the premises, not just
canonical derivations. However, this does not mean that sentential mean-
ings do not depend on their component phrases: only the dependence is
somewhat indirect, “almost” compositional. This is reflected here by having
the ND-rules determining two semantic values (both for sentences and for
sub-sentential components). For an expression ξ (either a whole sentence or
a sub-sentential component), the one semantic value is its contributed value
[[ξ]], serving also as its meaning; the other, auxiliary, semantic value is its
contributing value [[ξ]]∗, used when ξ is part of some larger expression ξ′.
Thus, the function-argument relationships, induced by the given grammar
of the language, plays a central role in obtaining semantic values.

3

The paper is structured as follows. Section 2 briefly reviews the main
points of the PTS in [3] for sentential meanings. Section 3 discusses the use
of Frege’s context principle, and introduces a new, proof-theoretic, interpre-
tation of the type system needed for its use in a TLG-framework. Section 4
shows how to extract subsentential meanings from sentential meanings, here
for noun-phrases and determiners, and exhibits the resulting grammar.

2. Review of the Proof-Theoretic Semantics for sentences

The core fragment E+
0 of English consists of sentences headed by (exten-

sional) intransitive and transitive verbs, and determiner phrases (occasion-
ally called also noun-phrase, np) with a (count) noun∗ and a determiner. In
addition, there is the copula. This is a typical fragment of many NLs, syn-
tactically focusing on subcategorization, and semantically focusing on predi-
cation and quantification. Some typical sentences are listed below.
(1) every/some girl smiles

(2) every/some girl is a student

(3) every/some girl loves every/some boy

We omit here proper names that do appear in the detailed presentation of
sentential meanings (see [3]). Note the absence of negative determiners like
no (hence the superscript ‘+’). We refer to expressions such as every girl,
some boy as determiner phrases (dps).

The PTS is based on a dedicated natural deduction proof system N+
0

with introduction and elimination rules (I-rules, E-rules) (see Figure 1).
The structural rule of contraction (C) is assumed primitive (see [3] for a jus-
tification of its inclusion). The proof-system is formulated over the language
L+

0 , slightly extending E+
0 , disambiguating ambiguous E+

0 sentences. Meta-
variables X schematize nouns, P over intransitive verbs and R - transitive
verbs. Meta-variable S ranges over sentences, and boldface lower-case j, k,
etc., range over P, a denumerable set of (individual) parameters, artifacts of
the proof-system (not used to make assertions). Syntactically, a parameter
in L+

0 is also regarded as a dp. If a parameter occurs in S in some position,
we refer to S as a pseudo-sentence, and if all dps in S are parameters, the
pseudo-sentence S is ground. The ground pseudo-sentences play the role of
atomic sentences, and their meaning is assumed given, externally to the ND
proof-system. The latter defines sentential meanings of non-ground pseudo-
sentenses (and, in particular, E+

0 -sentences), relative to the given meanings
of ground pseudo-sentences.
∗Currently, only singular (and not plural) nouns are considered.

4

In contrast to logic, where the introduced operator by an I-rule is always
the (unique) main operator, in E+

0 sentences there is no such main operator:
every position that can be filled with a dp is a locus of introduction (of the
quantifier corresponding to the determiner of the introduced dp). This is a
major source of ambiguity in E+

0 , known as quantifier-scope ambiguity. See
[3] for the way ambiguity is treated, recapitulated briefly below. For any
dp-expression D having a quantifier, we use the notation S[(D)n] to refer to
a sentence S having a designated position filled by D, where n is the scope
level (sl) of the quantifier in D. In case D has no quantifier (i.e., it is a
parameter), sl = 0. The higher the sl, the higher the scope. For example,
S[(every X)1] refers to a sentence S with a designated occurrence of every X
of the lowest scope. An example of a higher scope is S[(some X)2], having
some X in the higher scope, like in the object wide-scope reading of
(every X)1 loves (some Y)2. We use the conventions that within a rule, both
S[D1], S[D2] refer to the same designated position in S, and when the sl can
be unambiguously determined it is omitted. We use r(S) to indicate the rank
of S, the highest sl on a dp within S. Note that for a ground S, r(S) = 0.
The notation is extended to more than one dp, where, say, S[(D1)i, (D2)j]
indicates a sentence S with two designated positions filled, respectively, by
D1, D2, each with its respective sl.

In a rule, the notation [· · ·]i indicates an assumption discharged by an
application of that rule. The indices of the assumptions discharged by a rule
appear as superscripts on the rule name. The usual notion of (tree-shaped)
derivation is assumed. We use D for derivations, where DΓ`S is a derivation
of sentence S from context Γ. We use Γ, S for the context extending Γ with
sentence S. F(Γ; j) means j is fresh for Γ.

The following is a convenient derived E-rule, that will be used to shorten
derivations.

Γ`S[(every X)r(S[j])+1] Γ`j isa X

Γ`S[j] (eÊ)

(see [3] for its easy proof of being derived). Below is an example derivation
establishing

some U isa X, (every X)2 R (some Y)1, every Y isa Z ` (some U)1 R (some Z)2

Let
D1

(some U)2 R (some Z)1 and
D2

(some U)1 R (some Y)2 be the following

5

Γ, S`S (Ax)

Γ, [j isa X]i`S[j]
Γ`S[(every X)r(S[j])+1]

(eIi)

Γ`j isa X Γ`S[j]
Γ`S[(some X)r(S[j])+1]

(sI)

Γ`S[(every X)r(S[j])+1] Γ`j isa X Γ, [S[j]]i`S′

Γ`S′ (eEi)

Γ`S[(some X)r(S[j])+1] Γ, [j isa X]j , [S[j]]i`S′

Γ`S′ (sEi,j)

where F(Γ, S[every X]; j) in (eI), and F(Γ, S[some X], S′; j) for (sE).

Figure 1. The meta-rules for N+
0

two sub-derivations.

D1 :
some U isa X

[r isa U]1
(every X)2 R (some Y)1 [r isa X]2

r R some Y
(eÊ)

(some U)2 R (some Y)1
(sI)

(some U)2 R (some Y)1
(sE1,2)

D2 :
[some U R j]3

every Y isa Z [j isa Y]4
j isa Z

(eÊ)

(some U)1 R (some Z)2
(sI)

The whole derivation combines the two sub-derivations by

D1

(some U)2 R (some Y)1

D2

(some U)1 R (some Z)2

(some U)1 R (some Z)2
(sE3,4)

For a derivation D of S, we define its root by ρ(D) = S. This function
is extended to collections of derivations ∆ by ρ(∆) = {ρ(D) | D∈∆}, and
further extended to contextualized functions F by ρ(F) = ∪Γρ(F(Γ)).

In order to understand better the PTS of E+
0 , consider one of its well-

known features: quantifier scope ambiguity. The following E+
0 sentences are

6

usually attributed to two readings each, with the following FOL expressions
of their respective truth-conditions in model-theoretic semantics.
(4) Every girl loves some boy
(5) Some girl loves every boy

Consider sentence (4).

Subject wide-scope (sws): ∀x.girl(x)→∃y.boy(y)∧love(x, y)
Subject narrow-scope (sns): ∃y.boy(y)∧∀x.girl(x)→love(x, y)

In our PTS, the difference in meanings reflects itself by the two readings
having different grounds of assertion. This is manifested in derivations by
different order of introduction of the subject and object dps. Following [7],
we disambiguate ambiguous sentences taking part in derivations.

Subject wide-scope (sws):

[r isa girl]i
D1

r loves j
D2

j isa boy

r loves (some boy)1
(sI)

(every girl)2 loves (some boy)1
(eIi)

Subject narrow-scope (sns):

[r isa girl]i
D1

r loves j
(every girl)1 loves j

(eIi)
D2

j isa boy

(every girl)1 loves (some boy)2
(sI)

Note that there is no way to introduce a dp with a narrow-scope where the
dp with the wider-scope has already been introduced. In the N+

0 calculus,
only disambiguated sentences participate.

A derivation is canonical if it ends with an application of an I-rule; we
use `c for canonical derivability. Denote by [[S]]cΓ the collection of canonical
derivations of S from Γ, and by [[S]]∗Γ the collection of all derivations of S
from Γ.

Definition (PTS-meaning, semantic values):

1. For a non-ground S∈L+
0 , its meaning (referred to also as its contributed

semantic value) is given by [[S]] =df. λΓ.[[S]]cΓ [= λΓ.{DΓ`cS}].
Recall that for a ground S, [[S]] is assumed given. The meaning of non-
ground pseudo-sentences (and E+

0 -sentences in particular) is defined rel-
ative to the given meanings of ground pseudo-sentences.

7

2. For an arbirary S∈L+
0 , its contributing semantic value is given by

[[S]]∗ =df. λΓ.[[S]]∗Γ.

By this way of defining sentential meanings, we do not allude to any “logical
form” of the sentence, differing from its surface form. In accordance with
many views in philosophy of language, every derivation in the meaning of
a sentence S can be viewed as providing G[[S]], grounds of asserting S. We
thus define, for S∈E+

0 , G[[S]] =df. {Γ | Γ`cS}, where Γ consists of E+
0 -

sentences only. Parameters are not “observable” in grounds of assertion.
A more comprehensive discussion of extensions of the fragment and some
technicalities accompany the original presentation of the PTS in [3].

3. Frege’s context principle and proof-theoretic types

3.1. The Context Principle and its use for meaning extraction

The original formulation of CP ([4], p. 116) is: “We must never try to define
the meaning of a word in isolation, but only as it is used in the context of a
proposition.” For a recent philosophical discussion (and scrutiny) of the CP,
see [10]. The CP can be generalized from words to arbitrary subsentential
phrases, yielding† ([5]):

Principle F: The meaning of a phrase w is the contribution that w
makes to the meanings of phrases u containing w.

Contributions: Frege did not give any explicit definition of ‘contribu-
tion’. We propose one here. Our general method of identifying contributions
is to decompose (in accordance to the TLG-categorization) the sentential
meanings into function-argument structures: In the base case, the subphrase
contributing the argument obtains its meaning from a ground sentence; in
general, the subphrase contributing the function obtains its meaning by ab-
straction over the argument’s contributing semantic value.

Suppose that by the TLG-categorization, a phrase w1 of functional cat-
egory is adjoined to a phrase w2 of the suitable argument category (w.l.o.g,
we consider the case where the function precedes the argument). We have
the following decomposition principle:

δ : [[w1w2]] = [[w1]]([[w2]]) (1)

Now, the subphrase w1 contributing the function can obtain its contributed
†We consider ‘subsentential phrase’ where Hodges considers ‘term’ in his more algebraic

setting.

8

semantic values by abstraction over the argument’s‡ contributing semantic
value. Thus, transitively, subsentential meanings are characterized by their
contribution to (the independently defined) sentential meanings, where the
extraction of contributions is driven by the TLG, which assigns syntactic
categories to phrases. We can observe here an important difference in the
role TLG plays in our PTS, as opposed to its traditional role in MTS. In
the latter, (1) is viewed from right to left, determining the [[w1w2]] based on
[[w1]] and [[w2]]. Here, (1) is viewed from left to right, using [[w1w2]] (given by
the proof-system for full sentences) to yield [[w1]] and [[w2]]. Recall that the
recursive decomposition terminates when a “pure argument” is reached, as
meanings of ground pseudo-sentences are given externally.

The whole approach is in concert also with Frege’s compositionality prin-
ciple: word-meaning extraction occurs once only; but when the extracted
word-meanings are combined – per (successfully) parsed sentence – accord-
ing to the grammar, they reconstruct compositionally its “original” senten-
tial meaning. This is shown in more detail below. This view of reconciling
the two of Frege’s principles, Context and compositionality, shows that dif-
ficulties like those pointed out in [8] are only apparent.

3.2. Proof-Theoretic Type-Interpretation

In order to express the above mentioned abstractions, we propose a proof-
theoretic interpretation of types, replacing the usual Montagovian model-
theoretic interpretation of those types ((full) Henkin models), using proof-
theoretic domains, comprised of functions from contexts to collections of
N+

0 -derivations or functions therein. The issue of a proof-term language, the
terms of which are typed using the proposed proof-theoretically interpreted
types, will be treated elsewhere. Here, those interpretations of types are
used only for forming proof-theoretic meanings for sub-sentential phrases.

Definition: (types, proof-theoretic type-interpretation) Let T+
0

be the following system of types, ranged over by α, β:

• t is a (basic) type, with Dt = {[[S]] | S∈L+
0 }.

• p is a (basic) type of (individual) parameters, with Dp = P .

• If α, β are types, then (α, β) is a functional type, with D(α,β) = DDα
β ,

the collection of all functions from Dα to Dβ.
‡Note that there is a strong dependency of the sub-sentential meanings obtained on the

categorization used by the grammar; changing it may lead to a change in the sub-sentential
meanings obtained from the same sentential meanings.

9

Note that for z∈Dt, ρ(z) is a singleton. Specifically, if z = λΓ.[[S]]cΓ, then
ρ(z) = {S}. We also assume that ρ([[S]]) = S for a ground S, to simplify the
notation. This facilitates the following definition, of a function mapping the
meaning of S to its contributing semantic value:

ex =df. λztλΓ.[[ρ(z)]]∗Γ

We refer to ex([[S]]) as the expansion of (the meaning of) S. Thus, the role of
the expansion is to take a sentential meaning (contributed semantic value),
comprised of canonical derivations only, and convert it to the collection
of all derivations of the sentence (the root of the meaning), constituting
the contributing semantic value. See its use below in the I-functions. This
function facilitates “burying” the difference between the two semantic values,
the source of non-direct-compositionality. Thus, in the TLG-lexicon, only
meanings need being provided.

We introduce a means for forming certain subtypes, for some of the more
frequently used functional types, where the argument parameter has to oc-
cupy some position in a pseudo-sentence type (i.e., preventing constant func-
tions).

• tp is a subtype of (p, t) (nouns), s.t. Dtp = {λj.[[S[j]]] | S[j]∈L+
0 }.

• tp,p is a subtype of (p, (p, t)), s.t. Dtp,p = {λkλj.[[S[j,k]]] | S[j,k]∈L+
0 }.

• n is a subtype of (p, t), s.t. Dn = {λj.[[j isa X]] | X a noun}. We let
ν(λj.[[j isa X]]) =df. X, recovering the noun from an element od Dn.

For expressing meanings we use PT+
0 -typed variables z1, z2.

3.2.1. I-functions

It is useful to view the I-rules as inducing I-functions, functions from (sets of)
derivations (or pairs thereof) to (sets of) derivations; the result derivations
are obtained by applying the respective I-rule to the argument derivation(s).
There are two such functions for the core of N+

0 , one for each determiner.
The functions are presented in Figure 2. Note that when Ie is applied to a
non-fresh j, the resulting set of derivations is empty. Note also the use of
expansions within the I-functions, the latter forming the interface between
contributed and contributing semantic values.

4. Extracting PTS subsentential meanings

In this section, we demonstrate the extraction of PT-meanings for the main
E+

0 subsentential phrases: determiner-phrases (dps) and determiners. The

10

Ie = λzn1λz
tp
2 λjλΓ.{

D
Γ`ρ(D)[(every ν(z1))r(ρ(D))+1/j]

(eIi)
:

D∈ex(z2(j))(Γ, [ρ(z1(j))]i&F(Γ, j)}
(2)

Note that the value of z1 does not contribute to the result, only its noun X
is used (retrieved via ν), by augmenting Γ with j isa X. This reflects the role
of j isa X as a discharged assumption in the N+

0 -derivation of S[every X]
from Γ.

Is = λzn1λz
tp
2 λjλΓ.{

D1 D2

Γ`ρ(D2)[(some ν(z1))r(ρ(D2))+1/j]
(sI)

:
D1∈ex(z1(j))(Γ)D2∈ex(z2(j))(Γ)}

(3)

Note that here the value of the argument z2 is used.

Figure 2. I-functions for the core of N+
0

syntactic lexicon driving the process is based on the (associative) Lam-
bek calculus L (see Appendix). The basic categories are n (noun§), dp
(determiner-phrase) and s (sentence). Directed arrows are used for form-
ing functional categories. Abbreviate the raised categories¶ of dp, namely
(s← (dp→s)) and ((s← dp)→s) as dpn ↑ and dpa ↑, respectively. Following
is a typical syntactic lexicon for (the core of) E+

0 .

nouns n
determiners (dpn ↑← n)

(dpa ↑← n)
intransitive verbs (dp→s)
transitive verbs ((dp→s)← dp)

4.1. Determiner-phrases and determiners

We start by noting that by applying decompositions δ as described above,
we extract semantic values for sub-sentential phrases that serve as functions,
§Note that we use n both as a category and as a type; as categories and types appear

in different contexts, no confusion should occur.
¶This distinction between nominative and accusative categories is morphologically re-

alized in the form of the determiner itself in many languages.

11

by abstracting over the argument (shown below in detail). However, some
expressions are “pure arguments” in their contribution to sentential meaning.
For such expression, their meaning is obtained via (the given) meanings of
ground pseudo-sentences. We have three such cases.

Nouns: Nouns are of a basic category, and can only contribute arguments.
We take their meaning (of type n, a subtype of (p, t)) to originate from the
corresponding (given!) meaning of the ground pseudo-sentence: [[X]] =
λj.[[j isa X]].

Intransitive verbs: If P is an intransitive verb, its meaning (of type tp)
originates from the (given) meaning of a ground pseudo-sentence headed
by it: [[P]] = λj.[[j P]].

Transitive verbs: If R is a transitive verb, its meaning (of type tp,p) orig-
inates from the (given) meaning of a ground pseudo-sentence headed by
it: [[R]] = λkλj.[[j R k]].

Our point of departure will be a schematic sentence, with a quantified dp in
its subject position, say of the form

S = every X V P

Here V P , a verb-phrase, can be either an intransitive verb, or a transitive
verb with its object dp with a quantifier, already incorporated, or with an
object being a parameter. Consider first the first two possibilities, behaving
identically. The (sentential) meaning of S is given by

[[S]] = λΓ.∪jIe([[X]])([[V P]])(j)(Γ) (4)

where the type of [[V P]] is tp. By the syntactic categorization, S has the
following derivation in the L-based TLG.

every X

dpn ↑: Qs
V P

(dp→s) : V
s : (QsV)

(← E)
(5)

Here Qs is a variable of type (tp, t), and V of type tp. From (5) we get

[[S]] = [[every X]]([[V P]]) (6)

By combining (4) and (6), introducing a variable z2 of type tp, and abstract-
ing over it, we obtain the following meaning (semantic value) for the subject
dp.

[[every X]] = λz
tp
2 λΓ.∪jIe([[X]])(z2)(j)(Γ) (7)

12

Note that in the second case, Ie introduces every X with sl = 2, since the
value of z2 has already an np with a quantifier incorporated.

Next, we have from the categorization and the inner derivation of every X
in the grammar that

[[every X]] = [[every]]([[X]]) (8)

Combining (8) with (7), we can introduce another variable z1, of type n, and
abstract over it, to obtain a meaning (semantic value) for the determiner
itself.

[[every]] = λzn1λz
tp
2 λΓ.∪jIe(z1)(z2)(j)(Γ) (9)

By a similar analysis of, say, S = some X V P , we obtain

[[some X]] = λz
tp
2 λΓ.∪jIs([[X]])(z2)(j)(Γ) (10)

and
[[some]] = λzn1λz

tp
2 λΓ.∪jIs(z1)(z2)(j)(Γ) (11)

Next, we consider the remaining case of the V P . If its object is a parameter,
say k, like in every X R k, then [[R]] is of type tp,p. The function Ie will cause
the introduction of every X with index sl = 1, bearing a low scope to the
object quantifier, once introduced too. Examples of determiners in object
position are shown below, in the discussion of reconstructing quantifier scope
ambiguity.

Below is a sample derivation (after β-reductions), with actual noun and
(intransitive) verb. This derivation exemplifies how, during parsing, the lex-
ical proof-theoretic meanings are combined, to reconstruct the pre-existing
sentential meaning. To save space, we ignore the unions ∪j, assuming j is
fresh.

every

(dpn ↑← n) :
λzn

1 λz
tp

2 λΓ.Ie(z1)(z2)(j)(Γ)

girl

n :
[[girl]]

dpn ↑:
λz

tp

2 λΓ.Ie([[girl]])(z2)(j)(Γ)

(← E) smiles

(dp→s) :
[[smiles]]

s :
λΓ.Ie([[girl]])([[smiles]])(j)(Γ) = [[every girl smiles]]

(← E)

We end the discussion of dp meanings by showing how the quantifier scope
ambiguity is generated. Note that in the following derivation, the power of
L to discharge assumptions is relied upon.

13

Our point of departure will be a schematic sentence, headed by a transi-
tive verb, with two determiners: S = every X R some Y . Recall that such an
S has quantifier scope ambiguity, reflected in N+

0 by the order of introduc-
tion into its two dps. By the syntactic categorization, S has two derivations
in L, one for each scopal relation, as shown below. We note here that in
displaying the derivation, we deviate somewhat from the standard TLG pre-
sentation (as explained in the appendix). The reason is, that in standard
TLG, meanings are themselves represented as λ-terms, that can be substi-
tuted for the respective free variables of the proof-term of the derivations,
bound variables left intact. Here, meanings are proof-theoretic objects, writ-
ten in a pseudo λ-notation in the meta-language. Hence, we use meanings in
the derivation “on-the-fly”. In particular, bound variables are those of L+

0 ,
over which our proof-theoretic objects are defined. Still, to keep readability,
we do use free meta-variables for the proof-theoretic objects, substituting for
them at the end of the derivation, and keep only bound variables as bound
parameters.

every X

dpn ↑:
Qs

[dp : j]2

R

((dp→s)← dp) :
R

[dp : k]1

(dp→s) :
R(k)

(← E)

s :
R(k)(j)

(→E)

(s← dp) :
λk.R(k)(j)

(← I1) some Y

dpa ↑:
Qo

s :
Qo(λk.R(k)(j))

(→E)

(dp→s) :
λj.Qo(λk.R(k)(j))

(→I2)

s :
Qs(λj.Qo(λk.R(k)(j)))

(← E)

(12)

14

every X

dpn ↑:
Qs

[dp : j]2

R

((dp→s)← dp) :
R

[dp : k]1

(dp→s) :
R(y)

(← E)

s :
R(k)(j)

(→E)

(dp→s) :
λj.R(k)(j)

(→I2)

s :
Qs(λj.Qo(λk.R(k)(j)))

(← E)

(s← dp) :
λk.Qs(λj.R(k)(j))

(← I1) some Y

dpa ↑:
Qo

s :
Qo(λk.Qs(λj.R(k)(j)))

(→E)

(13)
By substituting the dp meanings for Qs and Qo, namely

Qs = λz
tp
2 λΓ.∪jIe([[X]])(z2)(j)(Γ)

Qo = λz
tp
2 λΓ.∪kIs([[Y]])(z2)(k)(Γ)

we obtain the following two readings for the S above.

[[(every X)2 R (some Y)1]] =
λΓ.∪jIe([[X]])(λj′λΓ′.∪k.Is([[Y]])(λk′.[[j′ R k′])]])(k)(Γ′))(j)(Γ)

(14)

[[(every X)1 R (some Y)2]] =
λΓ.∪kIs([[Y]])(λj′λΓ′.∪jIe([[X]])([[j′ R k′]])(j)(Γ′))(k)(Γ)

(15)

We show the first derivation. Substituting the value of Qs into (12), renam-
ing j and omitting the type of z2, we obtain

λz2λΓ.∪jIe([[X]](z2)(j)(Γ)(λj′.Qo(λk.R(k)(j′)))

which reduces to

λΓ.∪jIe([[X]])(λj′.Qo(λk.R(k)(j′))(j)(Γ)

Substituting the value of Qo, renaming k and Γ, yields

λΓ.∪jIe([[X]])(λj′λz2λΓ′.∪kIs([[Y]])(z2)(k)(Γ′))(λk′.R(k′)(j′))(j)(Γ)

15

which reduces to

λΓ.∪jIe([[X]])(λj′λΓ′∪kIs([[Y]])(λk′.R(k′)(j′))(k)(Γ′))(j)(Γ)

and after substituting for R its lexical meaning [[j′ R k′]] the result follows.

4.2. The resulting E+
0 -TLG

We summarize the full grammar of E+
0 (i.e., including PT-meanings) in the

following lexicon. To fit it into the figure, we again omit the (standard)
categories.

type meaning

nouns X n λj.[[j isa X]]

every (n, (tp, t))
λzn

1 λz
tp

2 λΓ.
∪jIe(z1)(z2)(j)(Γ)

some (n, (tp, t))
λzn

1 λz
tp

2 λΓ.
∪jIs(z1)(z2)(j)(Γ)

intransitive verbs V tp λj.[[j V]]

transitive verbs R tp,p λkλj.[[j R k]]

copula (n, n) λzn.z

5. E+
1 : Adding Relative Clauses

5.1. Extending the proof system

Following [3], we next add to the fragment relative clauses. This fragment
transcends the locality of subcategorization in E+

0 , in having long-distance
dependencies. We refer to this (still positive) fragment as E+

1 . Typical
sentences include the following.
(6) Jacob/every boy/some boy loves every/some girl who(m) smiles/loves

every flower/Rachel loves

(7) Rachel/every girl/some girl is a girl who loves Jacob/every boy

(8) Jacob loves every girl who loves every boy who smiles (nested relative
clause)

16

So, girl who smiles and girl who loves every boy are compound nouns. We treat
somewhat loosely the issue of the case of the relative pronoun, in the form of
who(m), abbreviating either who or whom, as the case requires. We extend
our notation with S[−], that denotes, for S including a parameter in some
distinguished position, the result of removing that parameter, leaving that
position unoccupied. Examples are loves every girl (a parameter removed
from subject position in j loves every girl), and every girl loves (a parameter
removed from object position in every girl loves k).

The syntactic categories of the relative pronouns are

who ((n← n)← (dp→s))
whom ((n→n)← (s← dp))

forming a compound noun from a simpler noun and a sentence missing its
object. The L-derivations of compound nouns are given below.

X
n

who
((n→n)← (dp→s))

S[−]
(dp→s)

(n→n)
(← E)

n (→E) (16)

X
n

whom
((n→n)← (s← dp))

S[−]
(s← dp)

(n→n)
(← E)

n (→E) (17)

The corresponding ND-system N+
1 extends N+

0 by adding the following main
I-rules and E-rules.

Γ`j isa X Γ`S[j]
Γ`j isa X who S[−]

(relI)

Γ`j isa X who S[−] Γ, [j isa X]i, [S[j]]j`S′

Γ`S′ (relEi,j)

The simplified elimination-rules are:

Γ`j isa X who S[−]
Γ`j isa X

(relÊ)1

Γ`j isa X who S[−]
Γ`S[j] (relÊ)2

17

The familiar conjunctive behavior of relative clauses is exhibited here by its
rules, resembling the rules for logical conjunction.

As an example of a derivation in this fragment, consider

some girl who smiles sings `N+
1

some girl sings

exhibiting the upward monotonicity‖ of some in its first argument.

some X who P1 P2

[r isa X who P1]1
r isa X

(relÊ)1 [r P2]2
some X P2

(sI)

some X P2
(sE1,2)

The decidability of N+
1 -derivability is shown in [3].

5.2. Extracting meanings for relative clauses and relative pro-
nouns

As before, we introduce an I-function for (rel).

Ir = λzn1λz
tp
2 λjλΓ.{

D1 D2

Γ`j isa ν(z1) who ρ(D2)[−]
(relI)

: D1∈ex(z1)(j)(Γ)
&D2∈ex(z2)(j)(Γ) }

(18)
The meaning of compound nouns resembles that of lexical nouns.

[[X who(m) S[−]]] = λj.[[j isa X who(m) S[−]]] =
λjλΓ.Ir([[X]])([[S[j]]])(j)(Γ)

(19)

By (16,17),
[[X who(m) S[−]]] = [[who(m)]]([[S[−]]]([[X]])) (20)

Introducing a variable zn1 and abstracting over it in (19), by F, yields

[[who(m) S[−]]] = λzn1λjλΓ.Ir(z1)([[S[j]]])(j)(Γ) (21)

and by another variable introduction and abstraction over it,

[[who(m)]] = λz
tp
2 λz

n
1λjλΓ.Ir(z1)(z2)(j)(Γ) (22)

‖A proof-theoretical definition of monotonicity, as well as other properties of dps, like
conservativity, are presented and discussed in more detail in [1].

18

6. Conclusions

Our point of departure is a dedicated natural-deduction proof-system, by
which a sentential proof-theoretic semantics is defined for a fragment of nat-
ural language, providing an effective semantics. The original presentation of
proof-theoretical sentential meanings in (the full version of) [3] contains a
comparison to related approaches, which we do not repeat here. We show,
alluding to Frege’s context principle, how to extend the semantics, obtain-
ing the novel concept of proof-theoretic meanings for subsentential phrases,
down to single words. This is done by obtaining the contribution of word
meanings to sentential meanings, driven by the categories of a type-logical
grammar for the language fragment. The resulting semantics is “almost
compositional”: when sentencehood of a sequence of single words is derived
in the grammar, the meaning obtained by combining the word-meanings is
the original sentential meaning. The types of meanings used during this
process are proof-theoreticaly interpreted types, replacing Montague’s deno-
tational model-theoretic interpretation of types, the former interpreted as
derivations in the dedicated sentential system (and functions therein), while
the latter are interpreted in Henkin frames.

7. Appendix

The (associative, product-free) Lambek-calculus L, on which the TLG con-
sidered here is based, is presented (in its natural-deduction presentation) in
Figure 3 (cf. [6], p.120). Categories C are formed from a given finite set B
of basic categories by∗∗ directed implications. Note that contexts Γ here are
sequences (not sets or multisets) of signs, pairs c : x (c – a category, x – a
variable), where subjects(Γ), the variables in Γ, are pairwise distinct.

A type-logical grammar (TLG) G over a set Σ of terminal symbols (words
in case of natural language), is given by a lexicon αG, assigning to each σ∈Σ
a finite set of pairs of categories from C, and meanings (proof-theoretic mean-
ings here), and a designated category c0. The lexical assignment is naturally
lifted by concatenation to α[[w]], w∈Σ+ by setting αG[[σw]] = αG[[σ]]αG[[w]].
The interpreted language L[[G]] defined by G is:

L[[G]] =df. {(w,M)∈Σ+ × Term | ∃Γ∈αG[[w]]. Γ`L(c0,M)}

where M is a linear λ-term over subjects(Γ). The actual meaning of w is
obtained by substituting Mi, the meaning term of αG[[wi]] for xi in M , where
∗∗In Lambek’s original notation, \ and / are used instead of directed arrows.

19

c : x� c : x (Ax)

Γ1 � c1 : N Γ2 � (c1 → c2) : M
Γ1Γ2 � c2 : M(N)

(→ E)

Γ2 � (c2 ← c1) : M Γ1 � c1 : N
Γ2Γ1 � c2 : M(N)

(← E)

[c1]i : x, Γ � c2 : M
Γ � (c1 → c2) : λx.M

(→ Ii)

Γ, [c1]i : x� c2 : M
Γ � (c2 ← c1) : λx.M

(← Ii)
,

where in the I-rules Γ is not empty and x is fresh.

Figure 3. The L-calculus

w = w1, · · · , wn. See [6] for a detailed exposition of TLG.

8. Acknowledgements

The work reported in this paper was supported by EPSRC grant number
EP/D064015/1, and grant number 2006938 by the Israeli Academy for Sci-
ences (ISF), both gratefully acknowledged.

References

[1] Gilad Ben-Avi and Nissim Francez. A proof-theoretic reconstruction of generalized

quantifiers. Submitted for publication, 2009.

[2] Nissim Francez and Gilad Ben-Avi. Proof-theoretic semantic values for logical oper-

ators. Synthese, 2009. Under refereeing.

[3] Nissim Francez and Roy Dyckhoff. Proof-theoretic semantics for a natural language

fragment. In Proceedings of the 10th and 11th meetings of the Association for Math-

ematics of Language (MOL), July 2007, to appear. Full version under refereeing for

Linguistics and Philosophy.

[4] Gottlob Frege. Grundlagen der Aritmetik, 1884. translated as The Foundations of

Arithmetic, J.L. Austin (trans.), (2nd edition) Basil Blackwell, Oxford, 1953.

[5] Wilfrid Hodges. Formal features of compositionality. Journal of Logic, Language,

and Information, 10:7–28, 2001.

20

[6] Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter

Meulen, editors, Handbook of Logic and Language, pages 93–178. North Holland,

1997.

[7] Lawrence Moss. Logics with verbs. 2007. In preparation.

[8] Peter Pagin. Compositionality, understanding, and proofs. Mind, 2009, to appear.

[9] Jaroslav Peregrin. Inferentialism and the compositionality of meaning. International

Review of Pragmatics, 2009, to appear.

[10] Richard J. Stainton. Context principle. In Keith Brown (editor-in chief), editor,

Encyclopedia of Language and Linguistics, volume 3, pages 108–115. Elsevier, 2006.

Second edition.

