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a b s t r a c t

Determinism and unpredictability are compatible since deterministic flows can produce, if sensitive to
initial conditions, unpredictable behaviors. Within this perspective, the notion of scenario to chaos
transition offers a new form of predictability for the behavior of sensitive to initial condition systems
under the variation of a control parameter. In this paper I first shed light on the genesis of this notion,
based on a dynamical systems approach and on considerations of structural stability. I then suggest a link
to the figure of epigenetic landscape, partially inspired by a dynamical systems perspective, and offering
a theoretical framework to apprehend developmental noise.
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1. Introduction

In the laplacian view, the knowledge of the evolution laws of
a deterministic system should guarantee, to an ideal intelligence
able enough in analysis, to predict the future state of the system.
However, since the work of Poincaré on the three-body problem
(Poincaré, 1908; Barrow-Green, 1997; Béguin, 2006), we know that
this view is not any longer defendable. Predictability is not, in
general, guaranteed by the knowledge of the deterministic evolu-
tion laws of a system. The unavoidable uncertainty in the initial
conditions implies that one can make long-time predictions only if
the evolution law does not amplify the initial uncertainty too
rapidly. Limits of predictability on the trajectories of systems pre-
senting the property of sensitivity to initial conditions do exist.

In front of these limitations on the knowledge of the particular
trajectory of a system, dynamic systems theory (qualitative theory
of differential equations) offers the possibility of gaining a global
knowledge on all the possible trajectories of the system, studying
their asymptotic behavior in phase space.

For this kind of systems, the research work of several groups of
physicists led, during the 1970’s, to the notion of scenario to chaos
transition.

What is a scenario to chaos transition? Roughly it can be defined
as a generic series of bifurcations leading a system from a steady
state to a chaotic regime. In the light of a general study of dynamical
systems, a scenario to chaos transition allows for a new kind of

prediction e of probabilistic nature -e about the qualitative
behaviors of a dynamical system under the variation of an external
control parameter (Eckmann, 1981).

In this paper I will first provide a short overview of the modifi-
cations in the relationship between determinism and predictability
that the acknowledgment of the property of sensitivity to initial
conditions introduced in the history of classical mechanics. I will
then shed light on the genesis of the notion of scenario to chaos
transition, and on the kind of predictions, of probabilistic nature, this
notion allows. I will in particularly show that a notion from the
history of dynamical systems theory, structural stability, plays
a crucial role for the pertinence of the adoption of a dynamical
systems point of view for the study of the behavior of physical
systems. I will then suggest a link to the figure of epigenetic land-
scape, partially inspired by a dynamical systems perspective, and
offering a theoretical framework to apprehend developmental noise.

A preliminary remark: it is usual to contrast the term “deter-
ministic” with “stochastic”, or “probabilistic”. In this paper I
implicitly use this distinction, too, but in a sense that need to be
specified. I call “deterministic” a system if the equations repre-
senting its dynamics are deterministic, in the sense that they do not
contain stochastic or probabilistic terms. In my use of the term
“determinism”, I will not assume e as it was assumed in the lap-
lacian vision that dominated physics until the work of Poincaré e
that determinism implies predictability. In what follows, I will
employ the term “deterministic” only when referring to the
deterministic character of a mathematical model, as one can see it
by looking at its defining equations. As we will see in details in the
next section, this property does not imply the predictability of the
trajectories of the system: a deterministic system can produce an
erratic behavior, very difficult to distinguish from the behavior
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produced by a stochastic system.2 In other words, predictability
cannot be taken as a discriminating criterion between determin-
istic and non-deterministic (stochastic) systems.

2. Determinism and limits in predictability

The term “determinism” has entered the German academic
world through the school of Christian vonWolff, who introduced it
to refer to the theory of his master Leibniz. Even if Leibniz himself
did not use explicitly this term, he distinguishes between “neces-
sity” of logical truths and “determination” of events: one has
properly to speak of “determination” about moral and physical
truths. The rational principle that, following Leibniz, operates here
is the principle of “sufficient reason” or “determining reason”. It
would be too long here to retrace the history of the term “deter-
minism", and of the diffusion of this term outside the wolffian
school. The reader can refer on this topic to Gayon (1998a,
184e188). Laplacian determinism, as en epistemic vision, is
grounded both on an ontological (cosmological) and ametaphysical
vision (Gayon, 1998a; Popper (1982), 1995). Curiously, Pierre Simon
de Laplace did not use the term either. What is important for us is
that, in the laplacian conception, determinism is not only connoted
as an expression of a principle of causality (Laplace referring
explicitly in this text to Leibniz’s “sufficient reason”), but it is also
intimately connected to predictability.

“Nous devons donc envisager l’état présent de l’univers, comme
l’effet de son état antérieur, et comme la cause de celui qui va
suivre. Une intelligence qui pour un instant donné, connaîtrait
toutes les forces dont la nature est animée, et la situation
respective des êtres qui la composent, si d’ailleurs elle était
assez vaste pour soumettre ces données à l’analyse, embras-
serait dans la même formule, les mouvements des plus grands
corps de l’univers et ceux du plus léger atome: rien ne serait
incertain pour elle, et l’avenir comme le passé, serait présent à
ses yeux” (Laplace (1814), 1840, 4).

This often quoted passage, that constitutes the manifesto of
scientific determinism, states clearly that an intelligence that knew
the laws of evolution of the universe and its initial conditions, and
that was able enough in analysis, could predict its state at any time.

We know today that this optimism is unjustified. Due to sensi-
tivity to initial conditions, the trajectories of certain deterministic
systems exponentially diverge at a certain time, and become
unpredictable.

The consequences on the unpredictability of trajectories, due to
the impossibility of knowing initial conditions with an infinite
precision, were already clear to Poincaré, as well this passage from
the chapter on chance from Science et Méthode indicates:

“Une cause très petite, qui nous échappe, détermine un effet
considérable que nous ne pouvons pas ne pas voir, et alors nous
disons que cet effet est dû au hasard. Si nous connaissions
exactement les lois de la nature et la situation de l’univers à
l’instant initial, nous pourrions prédire exactement la situation
de ce même univers à un instant ultérieur. Mais, lors même que
les lois naturelles n’auraient plus de secret pour nous, nous ne
pourrons connaître la situation initiale qu’approximativement. Si
cela nous permet de prévoir la situation ultérieure avec la même
approximation, c’est tout ce qu’il nous faut, nous disons que le
phénomène a été prévu, qu’il est régi par des lois; mais il n’en
est pas toujours ainsi, il peut arriver que de petites différence

dans les conditions initiales en engendrent de très grands dans
les phénomènes finaux; une petite erreur sur les premières
produirait une erreur énorme sur les derniers. La prédiction
devient impossible et nous avons le phénomène fortuit”
(Poincaré (1908), 1999, 62).

At the time of Poincaré, another French savant-philosophe,
Duhem (1906) wrote about the limitations of predictability in
a mathematical model of the geodesics on a surface of negative
curvature presented by the mathematician Hadamard (1898). On
the basis of an analogy between geodesics and trajectories of point-
masses on the surface, defined by similar differential equations,
Hadamard’s work can be relevant both for geometry and for
mechanics. Duhem points out that the impossibility of using this
kind of mathematical models e presenting sensitivity to initial
conditions e for making predictions on physical systems depends
on the impossibility, for a physical measure, to be made with
infinite precision.

Today we know that for “sensitive to initial conditions” e or
hyperbolic e systems, temporal limitations on their predictability
can be quantified thanks to indicators measuring the rate of error
growth produced by the dynamical system, such as Lyapunov
exponents and KolmogoroveSinai entropy (Boffetta et al., 2002).

However, despite these limitations, dynamical systems theory
offers a global approach carrying the possibility of treating in
a rigorous, even if qualitative way, the study of the behavior of
hyperbolic systems.

David Ruelle, one of themain contributors to chaos theory in the
1970’s (namely to the study of transition to weak turbulence)
speaks of a change in idealization in physics: thanks to dynamical
systems theory, a mathematically rigorous approach to the study of
non-linear systems has become possible (Ruelle, 1988). The idea is
not any longer to report oneself to the properties of linear or
linearized systems, but to study the global properties of all the
possible trajectories of the system in phase space.

Before considering the genesis of the notion of scenario to chaos
transition, bound to this change in perspective, it will be useful to
consider a notion of stability emerged in the development of
dynamical systems theory, and playing a crucial role in establishing
a link between this high abstract branch of mathematics and the
study of physical systems.

3. Structural stability: is a model a good model?

Looking at the genesis of the notion of scenario to chaos tran-
sition, a striking feature is the shift, in dynamical systems theory,
from the study of the properties of a given dynamical system, to the
study of the properties of classes of systems, defined on the basis of
their structural stability. It is the structural stability of a system that
provides a justification for applying the e mathematical e quali-
tative theory of differential equations to the study of the behavior of
particular dynamical systems in the physical world. From the point
of view of structural stability, what it counts are not the details of
a dynamical system, for example as expressed by its equations. On
the contrary, one is interested in the invariance of some topological
properties of the system under the variation of one of the param-
eters of its defining equations. The idea is that a function F is
structurally stable if, for a small perturbation of the function, the
perturbed function has the same topological properties of the
previous one.

The notion of structural stability has been introduced in
dynamical systems theory by Aleksander Andronov and Lev Pon-
tryagin in 1937 (Andronov and Pontrjagin, 1937). However they did
not use this expression that has been introduced later in the first
English translation overseen by Solomon Lefschetz. They used the

2 See the contribution of Eric Bertin, this volume. See also the discussion about
determinism and undeterminism in a mathematical model by Adrien Douady
(1992).
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expression “rough systems” or “coarse systems” to indicate what
we call today “structurally stable” systems. The notion has exten-
sively been used in oscillations theory and plays an important role
to analyze oscillating physical systems in the book of 1937 by the
same Andronov, Vitt, and Kahikin (Andronov et al. (1937), 1966).
Structural stability emerges thus, inside dynamical systems theory,
as an essential feature that a dynamical system (in the sense of
a mathematical model) should present in order to correspond to
a real system (in the sense of being observable in the physical
world). It is difficult to express the idea clearly than in the following
passage, taken from the book Theory of oscillators, co-authored by
A.A. Andronov:

“What properties must dynamic systems (models) possess to
correspond to physical systems? In setting out the differential
equations we cannot take account of all the factors that
influence in some manner or other the behavior of the physical
system. On the other hand, none of the factors taken into
account can remain absolutely constant during a motion of the
system [.]. A certain number of parameters corresponding to
physical parameters of the problem occur in the functions P
and Q of our system equations, so these functions are never
known exactly. Small variations of these parameters must
leave unchanged the qualitative structure of the phase
portrait. Therefore, if certain qualitative features appear for
well-determined quantitative relations between the parame-
ters but vanish for an arbitrarily small variation of the
parameters, then it is clear that such qualitative features are
not, generally speaking, observed in real systems. It is natural,
therefore, to separate the class of dynamic systems whose
topological structure of the phase paths does not vary for
small variations of the differential equations. We call such
systems «coarse» or structurally stable [.]”. (Andronov et al.
(1937), 1966, 374e375)

The notion of structural stability expresses an ambition peculiar
of this branch of mathematics, developed inside one of the schools
pioneering the field of auto-oscillations and of control theory: the
use of mathematical criteria to evaluate the pertinence of mathe-
matical models.

This methodological perspective has been consolidated during
the 1960’s by a theorem of global analysis proved by a student of S.
Lefschetz, Mauricio Peixoto (1962). However it has been shown by
Stephen Smale that Peixoto theorem does not generalize for
dimensions higher than two.3 Despite this formal result and other
considerations that determined, following Guckenheimer and
Holmes ((1983), 1996, 259) in their influential book on dynam-
ical systems, a wakening of the “structural stability dogma”,
considerations of structural stability played a crucial role in
establishing the pertinence of the use of dynamical systems theory
for the study of the behavior of physical systems. This role is
particularly evident in the work of René Thom, father of catas-
trophes theory, a mathematical theory of morphogenesis based on
topology and differential geometry. Structural stability is for Thom
the natural and indispensable attribute of every identifiable form
(Thom, 1968).

The work of David Ruelle on the study of transition to weak
turbulence, one of the contributions to the genesis of the notion of
scenario to chaos transition, has been inspired by Thom’s
perspective.

4. Scenarios to chaos transition: a new form of predictability?

4.1. The genesis of the notion of scenario to chaos transition

At the origin of this notion, David Ruelle and Floris Takens wrote
a seminal paper, published in 1971, “On the Nature of Turbulence”,
that modified considerably the approach to this difficult problem of
fluid mechanics and of mathematical physics (Ruelle and Takens,
1971).

The problem of understanding how a viscous incompressible
fluid in a stationary state can evolve, under the effect of an external
stress,4 to a turbulent state, was first considered by Landau (1944)
and Hopf (1948) in the 1940’s. In scientific literature one speaks of
LandaueHopf road to turbulence, even if, historically, the two
scientists independently obtained their results. They both adopted
a perturbative approach, studying the successive destabilizations
(in the linear approximation) of the fluid beginning with the steady
state and proceeding to the turbulent state. The turbulent state is
seen as the superposition of an infinite number of quasi-periodic
movements, that is, as the superposition of an infinite number of
independent frequencies (“the independent modes”). Each inde-
pendent frequency can be seen as a new degree of freedom of the
system. Thus, within this picture, a turbulent transition is only
possible for a system with an infinite number of degrees of
freedom.

The problem of the transition to turbulence in a viscous
incompressible fluid submitted to a steady external action,
expressed by a control parameter m, is completely reconsidered
from a dynamical systems perspective by David Ruelle and Floris
Takens. Ruelle and Takens ask the question of the variation of the
behavior of the system under the variation of the control parameter
m. When m ¼ 0 the fluid is at rest, in equilibrium. For m > 0 one
obtains first a steady state, i.e., the physical parameters (velocity,
temperature, etc.) describing the fluid at any point are constant in
time, but the fluid is no longer in equilibrium. For further increases
of m various new phenomena may occur: the fluid motion may
remain steady but change its symmetry pattern; the fluid motion
may become periodic in time; for sufficiently large m, the fluid
motionmay become very complicated, irregular and chaotic (it is in
the turbulent state).

Instead of considering a particular dynamical system, Ruelle and
Takens deal with a one-parameter family of dynamical systems:

dV
dt

¼ XmðVÞ; Vðt ¼ 0Þ ¼ v0

Where Xm : H/H is a vectorial field defined on an infinite
dimensional vector space H and m is the experimental control
parameter, which can be varied. Because of dissipation, a reduction
to a small number of degrees of freedom is possible. Hence Ruelle
and Takens replace H by a finite dimensional manifold.

Assumed that the control parameter m remains fixed during the
whole duration of an experiment (physical or numerical), they are
interested in the changes of the attractors5 as m is varied. The values
of m for which the attractor changes are the bifurcation points,
which correspond to a local loss of the structural stability of the
system.

3 For a discussion on structural stability see Smale (1980), Chaperon (2007). The
importance of structural stability in explanatory arguments in contemporary
statistical physics has been acknowledged by the philosopher of physics Robert
Batterman (2002).

4 A control parameter, typically the Reynolds or the Rayleigh number, gives
a measure of the external stress.

5 To define an attractor, one has to define a non-wandering set. A point x belongs
to the non-wandering set (i.e. is non-wandering) if for every neighborhood U of x
and every T 0 one can find t T such that Dx,t(U) X U s 0, where Dx is the integral of
the vector field X. A closed subset A of the non-wandering set is an attractor if it has
a neighborhood U such that Xt0 Dx,t(U) ¼ A.

S. Franceschelli / Progress in Biophysics and Molecular Biology 110 (2012) 61e68 63



Ruelle and Takens criticize the LandaueHopf’s conclusions,
arguing that the LandaueHopf road is not generic. The definition of
genericity they refer to comes from Smale (1967): a property is
generic if it holds on a countable intersection of dense open sets
(called a residual set).6 Genericity can be considered as a minimal
way to judge if something is likely. Thus the lack of genericity of the
LandaueHopf road to turbulence means that a transition following
this road is not likely. Moreover, Ruelle and Takens claim that
a generic transition to turbulencemay occur after a small number of
bifurcations and that, in phase space, the turbulent behavior is
associated with a non-trivial attractor (a strange attractor), defined
as the product of a two dimensional manifold by a Cantor set. Thus,
the continuous frequency spectrum associated with turbulence is
no longer interpreted as the superposition of an infinity of inde-
pendent frequencies, as in the LandaueHopf picture, but as the
consequence of sensitivity to initial conditions, showed by the
presence of a strange attractor. In other words, if a system
undergoes three Hopf bifurcations, starting from a stationary
solution, as the parameter is varied, then it is likely that the system
possess a strange attractor after the third bifurcation.

The possibility of a turbulent transition after a low number of
bifurcations opened up the theoretical possibility of a direct
experimental test, which was difficult in the case of the preceding
LandaueHopf interpretation for the onset of turbulence, dealing
with an infinite number of successive destabilizations. Between the
beginning of the 1970’s and the beginning of the 1980’s, a large
amount of research has been carried out in this direction, aimed at
showing that in some systems a transition to turbulence can occur
after a low number of bifurcations. The first positive results came
from the study of TayloreCouette instability (Gollub and Swinney,
1975), RayleigheBénard instability (Bergé and Dubois, 1976;
Libchaber and Maurer, 1978), chemical oscillations (Pomeau et al.,
1981), or from the numerical study of the Lorenz’s system
(McLaughlin and Martin, 1974), or other truncations of the
NaviereStokes equations (Franceschini and Tebaldi, 1979). Both
experimental and numerical results suggested that the
RuelleeTakens transition was not the only possible alternative to
the LandaueHopf transition and that other “roads to chaos” could
exist, characterized by a different succession of bifurcations.7 The
fact that the LandaueHopf transition is not generic, as Ruelle and
Takens argue, does not imply that the RuelleeTakens transition is
the only possible generic alternative. Indeed, in the spirit of the
dynamical systems theory, one should be able to describe the non-
transient behavior of dynamical systems by a complete classifica-
tion of their attractors and of the motion on them. As one is,
however, far from any complete classification of attractors, or even
from a canonical choice of adequate classification criteria, the
notion of “scenario to chaos transition” has been created at the
beginning of the 1980’s. As far as I know, this term has been
introduced in a paper by Jean-Pierre Eckmann (1981).

4.2. The kind of predictability allowed by scenarios to chaos
transition

What is a scenario to chaos transition and what is the nature of
the predictions one can make with the help of scenarios?

A scenario to chaos transition is defined as a generic sequence of
bifurcations under the variation of the control parameter m. Far
from an exhaustive classification, the idea of scenario to chaos

transition is, more modestly, based on an approach leading to
a description of some non-trivial or strange attractors, which have
the additional feature that they arise as modifications of trivial
attractors (fixed points, limit cycles) as the control parameter is
changed. One is then interested in the successive bifurcations of the
system, and one may ask what happens when a certain sequence of
bifurcations has been encountered. Even if there are in principle an
infinity of further possibilities, not all of them are equally likely.

Here the mathematical sense of “likely” is again expressed in
a minimal way by the property of genericity (cf. Eckmann, 1981,
645e646). Eckmann discusses three scenarios, known at the begin-
ning of the 1980: the RuelleeTakens scenario, the Feigenbaumperiod-
doubling scenario (Feigenbaum, 1978) the intermittency scenario
(Manneville and Pomeau, 1979; Pomeau and Manneville, 1979).8

Which is the nature of the prediction that can be made with the
help of scenarios?

The statement of a scenario always takes the form “if. then.”.
More precisely: “If certain things happen to the attractor as the
parameter is varied, then certain other things are likely to happen
as the parameter is varied further”.

It should be underlined that the classification in terms of
scenarios is made on the basis of the series of bifurcations a system
undergoes under the variation of the control parameter, and not
a priori on the basis of its equations. In other words it is the history
of the changes in the structural stability of the system that allows
for predictions on the future of the system, and not the form of its
equations. The fact that the problem of knowing the behavior of
a non-linear dynamical system is not solved by the knowledge of its
governing equations is, in my opinion, essential in order to
understand the novelty offered by a dynamical systems approach. It
is implicitly one of the elements of the mentioned “change in
idealization” that David Ruelle (1988) underlined.

Eckmann also stresses that several scenarios may evolve
concurrently in different regions of phase space, depending on how
the initial state of the system is prepared. In addition, the relevant
parameter ranges may overlap, and while the basins of attraction
for different scenarios must be disjoint, they may be interlaced. An
important property, implicit in the notion of scenario to chaos
transition, is that it does not describe its domain of applicability.

“We have already stated that a scenario consists of an “if” part
and a “then” part, which should be a statement that something
is likely to happen. But there is no attempt being made to say
how the “if” part is; such statements must be found by other,
maybe more specific, theories”. (Eckmann, 1981, 646)

Thus, if the hypotheses of a scenario to chaos transition do not
apply, no prediction is being made. Furthermore, no claim is made
that this is the only way to find turbulence!

4.3. On observability and repeatability in physical and numerical
experiments

What does, following Eckmann, “likely”mean in a physical (and
experimental) context? Several elements are to be considered:

- One never knows exactly which equation is relevant for the
description of a given physical system.

- When an experiment is repeated, the equations representing
the situation may have slightly changed.

- The equation under investigation is one among several, all of
which are very close to each other. If among these equations

6 An introduction to the notion of genericity in dynamical systems theory can be
found in Yoccoz (1992). For a discussion of the polysemy of this notion, see
Chenciner (1988).

7 For an historical account of these researches, see Franceschelli (2001).

8 For a study on the genesis of the scenario of intermittency, see Franceschelli
(2001, 2007).
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there are many which satisfy the conclusion of the scenario,
then one seems allowed to say that he’s performing an actual
experiment, and that it will be probable that the conclusions of
the scenario apply (cf. Eckmann, 1981, 646).

In order to understand these considerations it is worthwhile to
stress that experimental observations are not, properly speaking,
repeatable when a system is sensitive to initial conditions. Every
experiment/observation is indeed unique: instability is the experi-
mentalmark of sensitivity to initial conditions. About this aspect, the
following quotation from a paper of Pierre Bergé, one of the leading
experimenters involved in the study of transition to turbulence,
refers to experimental observations on a Rayleigh-Bénard cell9:

“Even more confusing situations are the following experimental
results:

Two identical twin cells (small boxes) filled with the same fluid
and inserted between the same massive copper plates (then
submitted to the same Ra number with the same thermal
history) are generally exactly under the same convective regime.

Sometimes however, we have found the following situation:
One may be oscillating, the other being either turbulent or
stationary!

These confusing behaviours are just mentioned to emphasize e
for the last time e the fact that any behaviour cannot be either
predicted or understood from the only knowledge of Ra,Gx,Gy, Pr,
. etc. etc. if one does not specify the actual structure which is
sensitive to so small uncontrolled perturbations (even in a highly
careful experiment) that they remain far away fromthe attention
of the standard R.B. experimentalist!”. (Bergé, 1979, 306e307)

If in a numerical experiment it is possible to follow the diver-
gence of trajectories due to sensitivity to initial conditions, in
physical experiments the sensitivity to initial conditions is only
appreciable as instability of the actual trajectory. In physical expe-
riences, repeatability is extremely difficult to realize: it depends on
the actual convention structure, which is difficult to control.

In summary, if one wants to dress a comparison between
physical experiments and numerical experiments, one realizes that
in the second case only the divergence of trajectories due to
sensitivity to initial conditions can be numerically «observed»:
starting from two different (and close) initial conditions. In this
case repeatability is guaranteed. But what do these trajectories
represent with respect to real (physical) experiments (or to ideal
mathematical solutions)?

Sensitivity to initial conditions poses the problem of the very
relevance of numerical simulations to investigate such equations,
since any rounding errorwill deeply affect the computed trajectory!

However, as a consequence of results of dynamical systems
theory (Bowen, 1970, 1978), a “shadowing property” holds: one can
show that, for hyperbolic systems, any computed trajectory in fact
is “shadowed” by a continue trajectory of the system and it is thus
relevant, at least in a statistical sense. Works of Palis and Smale
(1970) and of other dynamical systems theorists aim at showing
the connection between the properties of shadowing and of
structural stability (for an accessible discussion, see Yoccoz, 1992,
2007). The reader can find an extensive bibliography and a tech-
nical treatment of these aspects in the framework of the analysis of
topological properties of hyperbolic sets in Katok and Hasselblatt
(1995, 566e574) and Katok and Hasselblatt (2002, 244e245).

Despite the failure of the mathematical program of a general
classification of all dynamical systems on the basis of their prop-
erties of structural stability, more pragmatic definitions and uses of
structural stability hold. The already evoked wakening of the
“structural stability dogma” (Guckenheimer and Holmes, (1983),
1996, 259) can be summarized as a transition from: “Only struc-
turally stable models are good potential models” (Andronov and
Pontryagin, (1937), 1966) to: “For a good model, only structurally
stable consequences of the model are reproducibly observable”
(Chen et al., 1994).

The function of the notion of structural stability in guaranteeing
the pertinence of the use of the qualitative approach to study
a physical problem seems quite important even if, in general, still
undervalued outside the specialized literature.

If one looks in details at the practices of researchers that worked
during the 1970’s and the 1980’s on chaos physics, it is evident that
considerations of structural stability played a heuristic role. To
summarize thesepractices, the studyof simplegenericmodelhasbeen
justified through a verification of the properties of structural stability
of the model or of the physical system. This has been done thanks to
numerical or physical experiments: if by varying some of the param-
eters of themodel or of the physical system the topological properties
of the model or of the physical systemwere conserved, the model or
the physical system could be considered as structurally stable.

Beyond questions of chaos transition, the shift we observed in
looking at the genesis of the notion of scenario e from the study of
a particular system to the study of classes of systems e has, in my
opinion, a broader interest for the analysis of complex systems,
since it is at the heart of several approaches from contemporary
statistical physics (for example: spin glasses, renormalization group
methods). In these cases as well predictability is based on proper-
ties of classes of models, regardless of the details defining
a particular model.

In the next section I propose a transition, that might seem
abrupt, to a notion that emerged in the 1940’s (Waddington, 1940)
and has developed within theoretical biology: the epigenetic
landscape, a representation by diagrams of the developmental
system of an embryo. The images defining an epigenetic landscape
can be found in Waddington (1957, 29, 36).

The pertinence of this proposition is to be found in the possi-
bility to look at these images from a dynamical systems point of
view. This assumption, I argue, can be justified from two perspec-
tives at least, a historiographical and a prospective one.

5. Developmental noise from an epigenetic landscape
perspective

On one side, looking for the genesis of this notion in Conrad Hal
Waddington’s writings, one findsWaddington’s need of developing
an appropriate mathematical apprehension of developmental

9 A RayleigheBénard convection cell is composed of two horizontal, heat-
conducting plates heated from below, between which a fluid is enclosed (walls
are of insulating material). Warmer and less dense fluid, located on the bottom of
the layer, will tend to ascend; vice versa more dense and higher located fluid will
tend to descend. But this destabilizing effect, due to the temperature difference DT
applied to the layer, is fought by the stabilizing effect of viscosity and thermal
diffusivity which both tend to diminish hydrodynamic movements. The balance
between stabilizing and destabilizing effects depends on a dimensionless number:
the Rayleigh number Ra, which is proportional to the imposed temperature
difference. Movements of fluid will appear only if the temperature difference is
important enough, when the Rayleigh number reaches a certain critical number
Rac. Below this critical value, Rac, the stable state of the fluid layer is the state of rest
(fluid velocity ¼ 0). Over this threshold, the resting stable state becomes unstable in
favor of a new equilibrium state: the convective state. For another, higher, critical
value of Rayleigh number, it is possible to observe turbulent motion, characterized
by the presence of convective rolls. Another important number in a convection
experience is the Prandtl number, Pr. This number fixes the (dimensionless) ratio of
fluid kinematic viscosity and thermal diffusivity. It is a characteristic of the
considered fluid; it depends, above all, on the fluid nature and, less, on its
temperature. Gx and Gy indicate the aspect ratio of the cell along the x and the y
direction.
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processes. And Waddington was looking in the field of non-linear
systems, of topology and of attractor analysis in phase space in
order to find the good candidates for such an apprehension. He
knew the importance of these branches of mathematics for the
development of other fields of theoretical biology, such as epide-
miology and population dynamics: Waddington quotes the work of
Lotka and Kostizin. He is furthermore explicitly influenced by
cybernetics, quoting extensively the work of Ross Ashby, deeply
informed, as cybernetics in general, from a dynamical systems
perspective. I’m not claiming here that this mathematical
perspective is the only originating matrix of Waddington’s images.
It is acknowledged that these images fit well with Waddington’s
concerns and experimental results on induction and competence e
of great interest, on this topic, the papers of Scott Gilbert (1991),
and of Jean Gayon (1998b). However I think that the convergence of
the images defining the epigenetic landscape with a way to
graphically express the conceptual results of Waddington’s work in
experimental embryology underdetermines the landscape images
themselves. In sum, beside an inspiration coming from experi-
mental results, the emergence of these images is informed e it is
what I claim e from a disposition to mathematical thinking also.

On the other side, looking retrospectively at this notion from
a more recent point of view, it is spontaneous to dress a morpho-
logical analogy between the epigenetic landscape undulated surface
and the maxima and minima characterizing a multi-stationary
energy landscape. As a matter of fact, several authors have inter-
preted Waddington’s images from a dynamical systems point of
view. Peter Saunders (1993), for example, has analytically developed
this interpretation. Jonathan Slack (2002) suggests this interpreta-
tion, too10. Of great interest for us, thefirst one to deeplyexplore this
perspective has perhaps been the mathematician René Thom who,
in the 1960’s, elaborated his catastrophe theory as a mathematical
theory of morphogenesis. As hewrote himself, he has been inspired
by embryology and in particular by Waddington’s images.

Catastrophe theory is a general theory of morphogenesis,
intended as the creation or the destruction of forms, without
regarding nor the substrate, nor the nature of the forces that
determinate it. Waddington and Thom have been involved in a long
correspondence, about a possible mathematization of the epige-
netic landscape in terms of catastrophes theory. This correspon-
dence shows some misunderstandings both on the theoretical
notions associated to the landscape and on the mathematical
notions that could describe them. The principle argument of the
disagreement is whether homeorhesis, the neologism Waddington
introduced to indicate a sort of developmental, dynamic equilib-
rium that developing embryo presents along each developmental
pathway, could be expressed, or not, in terms of the mathematical
notion of structural stability (a detailed analysis of this corre-
spondence can be found in Franceschelli, 2011). Despite these
misunderstandings, and evenmore because of the questioning they
open, I argue that the images of landscape, if interpreted in
a structural, albeit dynamical sense, can be considered as a call for
mathematization. They insert themselves in the history of the use
of dynamical systems theory to think to processes in the material
(not only physical, but also living) world.

But what is properly an epigenetic landscape? Conrad Hal
Waddington qualifies it as a mental image:

“Although the epigenetic landscape only provides a rough and
readypictureof thedevelopingembryo, andcannot be interpreted

rigorously, it has certain merits for those who, like myself, find it
comforting to have somemental picture, however vague, forwhat
they are trying to think about” (Waddington, 1957, 30).

In Waddington’s (1957) version of the epigenetic landscape
a ball, lying on the top of an undulated surface, is ready to move
along one of the paths opened in front of it. The landscape is
completed by a “hidden” part, underlying the undulated surface:
a network of pegs fixed in the ground, interconnected by guy-ropes
and strings. Some of the links (guy-ropes and strings) are con-
nected to the surface. They can thus, under a proper modification of
their tension, determine amodification of the global morphology of
the landscape.

Now, what do these images represent? Waddington states it
explicitly: The undulated surface represents the fertilized egg. The
path followed by the ball represents the developmental history of
a particular part of the egg. As far as the underlying part, the
epigenetic landscape turns out to be a composite metaphor,
offering an explicit and mysterious at a time interpretation of the
constitution of the surface itself:

“The complex system of interaction underlying the epigenetic
landscape. The pegs in the ground of the figure represent genes;
the strings leading from them the chemical tendencies which
the genes produce. The modeling of the epigenetic landscape
[.] is controlled by the pull of these numerous guy-ropes which
are ultimately anchored to the genes” (Waddington, 1957; from
the original caption, 36).
This figure points out at least two aspects of Conrad Hal Wad-

dington’s vision of embryology: the development of the embryo is
canalized along defined pathways (Waddington calls them also,
with a neologism, ‘chreods’); the undulating surface on which
pathways are defined, is molded by the underlying network of
genes interactions.

Waddington’snon reductionistpositionvis-à-vis singlegeneaction
and its description in terms of molecular mechanisms is explicitly
affirmed: “it is not necessary, in fact, to await a full understanding
of the chemistry of single genes before trying to form some theo-
retical picture of howgene-systems produce integrated patterns of
developmental change” (Waddington, 1957, 9)

Moreover, Waddington compares the genetic actions on the
whole to the geological structure molding the valleys of the land-
scape: beyond the field of embryo development, structural and
morphological thinking is inscribed in Waddington’s images.

It is spontaneous to imagine the form of the undulated surface
as an emergent effect of the complex set of relationships underlying
it. One can easily imagine that a change in the tension of a link
could modify the form of the undulated surface, thus creating
a new path. On another side, one can also imagine that some
tension modifications could be balanced by other modified
tensions, so as to leave unmodified the global tension defining the
undulating surface. This would imply that the paths offered by the
undulations of the surface to the balls routes would not change,
despite some underlying local modifications. This could be seen as
the guaranty of a certain form of robustness for the dynamics of the
balls (it has to be noticed that Waddington does not use the term
“robustness”, but he expresses this property through the use of the
terms “homeorhesis” or “buffering”, or “canalization”).

Within this framework, Waddington apprehended develop-
mental noise as irregularities, lack of complete precision in the
operating of the epigenetic mechanisms:

“It can hardly be expected that any epigenetic mechanism can
operate with complete precision. Quite apart from any distur-
bances due to the external environment of the embryo, there are

10 See also the contribution of S. Huang, this conference. This interpretation seems
however not to be present in other literature on Waddington ideas, see for example
Hall and Laubichler (2008).
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likely to be slight irregularities in the interactions between the
different parts of the germ, which, in a sense, provide an envi-
ronment for each other. This is particularly noticeable when
a developmental process is carried out not by passive tissue but
by isolated cells” (Waddington, 1957, 39)

Through the epigenetic landscape Waddington could thus, in
a sense, apprehend the effects of developmental noise recently
emphasized in research on stochastic gene expression, producing
phenotypes varying around some mean value in a constant envi-
ronment (see for example Elowitz et al., 2002; Paulsson, 2005).

“It is important to distinguish the inherent noisiness of
a developmental pathway or chreode from its canalisation.
Developmental noise will lead to the formation, in a constant
environment, of adults which vary somewhat around some
mean value [.]. If canalisation is represented as a valley in an
epigenetic landscape, the noisiness of the systemmight perhaps
be symbolised by the imperfection of the sphericalness of the
ball which runs down the valley”. (Waddington, 1957, 40)

6. Discussion

Recent evidences that stochasticity is present in the phenom-
enon of gene expression seem to challenge today the traditional
belief, associated to genetic determinism, that the expression of
genes is executed inside the cell as a computer would execute
a program e that would guarantee repeatability and stability.

If the expression “genetic program” has entered the world of
molecular biology in the 1960’s, namely thank to the work of the
Nobel prizes Monod and Jacob, the use of metaphors coming from
computer science to characterize the nature and the function of the
genes was not new at that time. Among the different origins of this
view, that has largely dominated and propelled the development of
molecular biology, particularly influential has been the argument of
the “order by order”, that lead the physicist Erwin Schrödinger to
imagine, in his masterpiece of 1944 “What is life?”, the structure of
the chromosome fibers as a code-script.11 For Schrödinger, due to
the low numbers of atoms constituting the genes, the order rep-
resented by the durability and permanence of gene activity cannot
be explained by statistic laws. Schrödinger argues that order by
disorder can in fact emerge, as it is the case in statistical mechanics,
in sets composed by a high number of components. But this is not
the case for the genes.

“How can we, from the point of view of statistical physics,
reconcile the facts that the gene structure seems to involve only
a comparatively small number of atoms (of the order of 1000
and possibly much less) and that nevertheless it displays a most
regular and lawful activity e with a durability or permanence
that borders upon the miraculous?” (Schrödinger, 1944, 46).

For Schrödinger, order in gene activity cannot be explained but
by an underlying structural order: order by order, thus. In accom-
panying this view by the use of the code-script metaphor coming
from the rising computer science of his time, Schrödinger intro-
duces in molecular biology the laplacian association between
determinism and predictability:

“In calling the structure of the chromosome fibers a code-script
we mean that the all-penetrating mind, once conceived by
Laplace, towhich every causal connection lay immediately open,
could tell from their structure whether the egg would develop,

under suitable conditions, into a black cock or into a speckled
hen, into a fly or a maize plant, a rhododendron, a beetle,
a mouse or a woman”. (Schrödinger, 1944, 21e22).

At the same time, another accessory effect of this metaphor has
been to raise a barrier between biology and physics, concerning the
association of determinism and predictability. As we saw, this
association, that in the conception known as laplacian determinism
seems to be guaranteed, is not any longer defendable at least since
the work of Poincaré and Hadamard on sensitivity to initial
conditions. Due to this property, the trajectories of certain deter-
ministic systems (deterministic in the sense that they are governed
by deterministic equations) exponentially diverge after a certain
time, and predictability on trajectories becomes impossible.

Thus how does one know if a system is deterministic? The
question “does the state of a system at a given instant t determine
its state for every following instant t’?” is a theoretic question. In
practice, if one asks: “can I effectively calculate or predict the future
state of the system on the basis of its present state?” the answer is
e in most cases e negative. Due to sensitivity to initial conditions,
determinism and unpredictability are perfectly compatible: the
dynamics of deterministic systems (deterministic in a theoretical,
in principle sense, as captured by the deterministic nature of their
equations) produces unpredictable behaviors, when they are in
their chaotic regime (see for example the dynamics of the dice in
the contribution of Michel Le Bellac, this volume). Thus, in general,
predictability cannot be taken as a way to discriminate about the
determinism or the indeterminism of a system, taken as an onto-
logical property.

In this paper I used the term “deterministic” only to qualify
mathematical models, and not the material, experimental systems
these models should represent. The problem of predictability, as
Poincaré and Duhem understood, lays in the irreducible distance
between the mathematical and the physical worlds, this latter
being submitted to measure, and thus to finite precision.

I tried and show how, in the field of chaos physics, the nature of
this limitation has been a motor of discovery of other forms of
predictability. The renouncement to a rigid association between
a model and a material system has been a necessary step in this
direction, towards an always renewed invention of a meaningful
relationship between the mathematical and the material world.
Images of epigenetic landscape seem to point towards this direc-
tion, too.
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