
 18

 
 

THE FORMAL SCIENCES DISCOVER THE 
PHILOSOPHERS’ STONE 

 
Studies in History and Philosophy of Science 
Vol. 25, No. 4, pp. 513–533, 1994 
Copyright © 1994 Elsevier Science Ltd 
 
 
 

1. Introduction 
 
IT USED to be that the classification of sciences was clear. There were natural 
sciences, and there were social sciences. Then there were mathematics and logic, 
which might or might not be described as sciences, but seemed to be plainly 
distinguished from the other sciences by their use of proof instead of experiment, 
measurement and theorising. 

This neat picture has been disturbed by the appearance in the last fifty years of a 
number of new sciences, variously called the ‘formal’ or ‘mathematical’ sciences, or 
the ‘sciences of complexity’1 or ‘sciences of the artificial.’2

The number of these sciences is large, very many people work in them, and even 
more use their results. It is a pity that philosophers have taken so little notice of them, 
since they provide exceptional opportunities for the exercise of the arts peculiar to 
philosophy. Firstly, their formal nature would seem to entitle them to the special 
consideration mathematics and logic have obtained. Being formal, they should appeal 
to the Platonist latent in most philosophers, especially those who suspect that most 
philosophical opinion about quantum mechanics, cosmology and evolution, for 
example, will probably be rendered obsolete by new scientific discoveries. 

Not only that, but the knowledge in the formal sciences, with its proofs about 
network flows, proofs of computer program correctness and the like, gives every 
appearance of having achieved the philosophers’ stone; a method of transmuting 
opinion about the base and contingent beings of this world into the necessary 
knowledge of pure reason. It will be argued that this appearance is correct. Even if it 
is not so, and there is a gap between abstraction and reality, the gap is in some sense 
smaller here than it is elsewhere. 

On the other hand, the word–oriented aspect of philosophy is also catered for. If 
one aim of studying philosophy is to be able to speak plausibly on all subjects, as 
Descartes says, then the formal sciences can be of assistance. They supply a number 
of concepts, like ‘feedback’, which permit ‘in principle’ explanatory talk about 
complex phenomena, without demanding too much attention to technical detail. It is 
just this feature of the theory of evolution that has provided a century of delight to 
philosophers, so the prospects for the formal sciences must be bright. 

The formal sciences may appeal, too, to the many who feel that philosophers of 
science have chatted on to one another sufficiently about theory change, realism, 
induction, sociology, and so on, while real science has been producing a huge and 
diverse body of knowledge to which all that is totally irrelevant. 
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2. Examples 
 

Since the article contends that the formal sciences are little known in the 
philosophical world, it is obviously impossible to assume any familiarity with them. 
There follows a minimal overview of these sciences, listing them and describing a 
typical problem or two in some of them. There is necessarily a considerable amount 
of pure description in this section. For convenience, the names of more or less 
identifiable sciences and sub–sciences are in bold type. 

While antecedents can be found for almost anything, the oldest properly 
constituted formal science is operations research (OR). Its origin is normally dated 
to the years just before and during World War II, when multi–disciplinary scientific 
teams investigated the most efficient patterns of search for U–boats, the optimal size 
of convoys, and the like.3 Typical problems now considered are task scheduling and 
bin packing. Given a number of factory tasks, subject to constants about which must 
follow which, which cannot be run simultaneously because they use the same 
machine, and so on, one seeks the way to fit them into the shortest time. Bin packing 
deals with how to fit a heap of articles of given sizes most efficiently into a number of 
bins of given capacities.4 The methods used rely essentially on search through the 
possibilities, using mathematical ideas to rule out obviously wrong cases. 

To illustrate the diversity of activities in OR, the following are the sub–headings 
in the American Mathematical Society’s classification of ‘Operations research and 
mathematical science’:5
 

Inventory, storage, reservoirs 
Transportation, logistics 
Flows in network, deterministic 
Communication networks 
Flows in networks, probabilistic 
Highway traffic 
Queues and service 
Reliability, availability, maintenance, inspection 
Production models 
Scheduling theory 
Search theory 
Management decision–making, including multiple objectives 
Marketing, advertising 
Theory of organisations, industrial and manpower planning 
Discrete location and assignment 
Continuous assignment 
Case–oriented studies. 

 
The names indicate the origin of the subject in various applied questions, but, as 

the grouping of actual applications into the last topic indicates, OR is now an abstract 
science. 

Another relatively old formal science is control theory, which aims to adapt a 
system, such as a chemical manufacturing plant, to some desired end, often by 
comparing actual and desired outputs and reducing the difference between these by 
changing the settings of the system.6 To control theory belong two ‘systems’ concepts 
which have become part of public vocabulary. The first is feedback. (Of course, 
feedback mechanisms are much older,7 but feedback as an object of abstract study 
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came to prominence only with Wiener’s work on ‘cybernetics’ in the late 1940s.8 The 
word ‘feedback’ is first recorded in English only in 1920, in an electrical engineering 
context; outside that area, it appears only from 1943.) the second concept is that of 
‘trade-off’ (‘a balance achieved between two desirable but incompatible features’ – 
Oxford English Dictionary). It is first recorded in English in 1961. 

There is a not very unified body of techniques that deal with finding and 
interpreting structure in large amounts of data, called, depending on the context, 
(descriptive) statistics, pattern recognition, signal processing or numerical 
taxonomy. The names of products are even more varied: if one purchases a ‘neural 
net to predict parolee recidivism’ or an ‘adaptive fuzzy logic classifier’, one actually 
receives an implementation of a pattern recognition algorithm. Statistics is a science 
rather more than fifty years old, but the word usually refers to probabilistic inference 
from sample to population, rather than the simple finding of patterns in data that is 
being considered here. When one finds the average or median of a set of figures, one 
is not doing anything probabilistic, but merely finding some central point in the data. 
Drawing a bar graph of the year’s profits from various sources is likewise simply 
summarising the data, allowing its structures or patterns to become evident. A typical 
technique in these sciences is cluster analysis. One lists various features for items to 
be classifies; for example, to classify the stringed instruments of various cultures, one 
could list the number of strings, the ratio of length to width, and so on. It will 
normally happen that these lists of features fall naturally into clusters: items within 
clusters share similar profiles of features, while there are few items in the large 
‘spaces’ between clusters.9 It is normally hoped that the clusters are meaningful, and 
will allow sensible classification of new items. Scene analysis, or image processing, 
performs similar tasks for data which is laid out in two or three dimensions,10 while 
signal processing and time series analysis deal with data streams in time, such as 
stock market prices and meteorological records.11

Then there are several sciences that study flows – of traffic, customers, 
information, or just flows in the abstract. Where will there be bottlenecks in traffic 
flow, and what addition of new links would relieve them? Such questions are studied 
with mathematical analysis and computer modelling in network analysis. There are 
obvious applications to telecommunications networks.12 (It is this science that most 
naturally uses the widely known technique of the flow diagram. Such diagrams are 
perhaps more often used to design the flow of control in, say, a computer program, 
but that simply illustrates the commonality of structures in many of these sciences.) 
Suppose customers arrive at a counter at random times, but at an average rate of 1 per 
minute. If the serving staff can process them at only 1 per minute, a long queue will 
form for much of the time. It is found that to keep the queue to a reasonable length 
most of the time, the capacity of service needs to be about 1½ customers per minute. 
This is a result in queueing theory, a discipline widely applied in 
telecommunications, since telephone calls also arrive at random times, but with 
predictable average rates.13 The famous work of Shannon14 in information theory 
drew attention to the problem of measuring the amount of information in a flow of 0s 
and 1s. A sub-branch is theory of data compression: most messages have many 
redundancies in them, in that commonly occurring parts (like the word ‘the’ in 
English text) can be replaced by a single symbol, plus the instruction to replace this 
symbol with ‘the’ upon decompression. This allows the message to be stored and 
transmitted more efficiently. There are applications (or at least, attempted 
applications) to the DNA ‘code’.15 The use of ‘entropy’ by Shannon in measuring 
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information relates this subject to thermodynamics. The sense in which 
thermodynamics resembles the formal sciences is discussed below. 

The concept of expected payoff of different possible strategies for various actors 
in a (competitive or co-operative) environment allows analysis of systems whose 
dynamics depend on the interactions of such decisions. This is game theory. Such 
systems include business negotiations and competition,16 animals preparing to fight,17 
and stock market trading. The American Mathematical Society’s classification has the 
following sub-headings (the details are not important, only the overall impression of 
the diversity of structure that games can have):18

 
2-person games 
n-person games, n>2 
Noncooperative games 
Cooperative games 
Games with infinitely many players 
Stochastic games 
Multistage and repeated games 
Differential games 
Pursuit and evasion games 
Decision theory for games 
Game-theoretic models 
Positional games 
Games involving graphs 
Games involving topology 
Combinatorial games 
Discrete-time games 
Games of timing 
Probabilistic games; gambling 
Hierarchical games 
Spaces of games 
Applications of game theory. 

 
Note again that ‘Applications’ is a separate section; game theory itself is an 

abstract study. Possibly to be seen as a part of game theory are some aspects of 
mathematical economics, dealing with such questions as how people’s individual 
preferences issue in expression of global preference, that is, prices.19 (The better-
known areas of mathematical economics, involving modelling of interest rates, 
unemployment, and so on, have not of course produced certain knowledge about real 
economies, for reasons much debated.) 

More recently there have emerged some overlapping sciences variously known as 
the theory of self-organising systems, the theory of cellular automata, artificial 
life, non-equilibrium thermodynamics and mathematical ecology. They all deal 
with how small-scale interactions in large systems create global patterns of 
organisation. As an example, the paradigm of cellular automata is the Game of Life. 
On an indefinitely large grid of squares, some of these cells are initially chosen as 
‘live’. The board then evolves according to these rules for updating: 

 
Death by overcrowding: if 4 or more of the 8 cells surrounding a live cell are 

live, the cell ‘dies’. 
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Death by exposure: if only one, or none, of the 8 cells surrounding a live cell is 
live, it dies. 

Survival: a live cell with exactly 2 or 3 live neighbours survives. 
Birth: a dead cell becomes live if exactly 3 of its 8 neighbours are alive. 

 
(Updates occur simultaneously at each time step.) The remarkable thing is that 

certain initial configurations lead to complicated and unexpected developing patterns, 
such as shapes that, after a certain number of ‘generations’, have produced several 
copies of themselves.20 Similar self-organising phenomena, in which complex 
systems arise out of simple local interactions, have been discovered in thermodynamic 
systems far from equilibrium.21 The study of systems of interacting predators and prey 
in mathematical ecology likewise involves the prediction and explanation of global 
phenomena from local ones. As prey increase, so do predators, though more slowly. 
Then if the prey decrease, hordes of hungry predators can nearly wipe out the prey, 
leading to the extinction of the predators too; then the prey can slowly revive. The 
discovery of chaotic patterns in the cycles of predators and prey was one of the early 
discoveries of chaos theory.22 There has been, of course, much resulting speculation 
about evolution, the origin of the universe, learning in the brain, and so on,23 some of 
which will doubtless amount to something someday. 

Most of the formal sciences use computers and mathematical modelling in one 
way or another. Indeed, the advent of the computer has been one of the main factors 
in the success of these subjects, in allowing results to be obtained in large-scale cases 
where hand computation is not feasible. But over and above the applications of 
computing in each science, there exists a theoretical computer science. (Computer 
science is here opposed to electrical engineering. Computing, in its early days, was 
dominated by electrical engineers, as it was something of an achievement to construct 
hardware that did anything at all. But with the maturing of hardware and software 
techniques, the subject has sought the respectability of theory.)  One branch is 
computational complexity theory. Typically, one wants to measure the intrinsic 
complexity of a problem, in terms of the number of simple operations (like additions 
or comparisons of single digits) needed to solve it. Since computation time is 
proportional to the number of simple operations, this will show whether it is realistic 
to solve the problem by computer. For example, the addition of two n-digit numbers 
(with the usual school algorithm) requires between n and 2n single-digit additions. 
The exact number depends on how many carries there are, as illustrated in the 
following example, where n=4, and there are three carries: 

 
1 0 3 6 
31 91 81 7 
5 0 2 3 

 
This requires 7 single-digit additions. Thus, as n grows, the amount of 

computation needed grows linearly with n, being bounded by 2n. By contrast, the 
travelling salesman problem (to find the shortest route that visits n cities once each, 
given the distances between the cities) demands an amount of computation that grows 
exponentially with n (at least, this is believed, though not proved). This problem of 
‘combinatorial explosion’ makes the travelling salesman problem infeasible for large 
n (in practice, for n larger than about 30).24

Other issues studied in theoretical computer science include formal specification 
(to describe exactly what a program is intended to do), and the effects of a modular or 
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‘structured programming’ design of programs, which is intended to make 
understanding and modifying them easier and safer. There is also the discipline of 
‘program verification’, or proof of the correctness of computer programs, of which 
more later. 

Usually included in computer science is artificial intelligence (AI). The core of 
AI has come to consist of a combination of computer science and operations research 
techniques. To play chess by computer, for example, one employs guided search 
through the space of all possible moves and counter-moves from a given position. 
Complexity theory reveals that the space of all possible moves is far too big to search, 
so one observes human players to extract ‘heuristics’, that is, programming strategies 
for deciding which of the possible moves are most worth searching next.25 AI might 
seem to contradict the assertion that there has been little philosophical interest in any 
of the formal sciences. It is true, of course, that the philosophy of mind has given 
much attention to AI, but only for its usefulness as a model of mental workings. True 
AI workers, on the contrary, tend to be embarrassed by the connection with the mind, 
and seek to re-badge their product as ‘expert systems’ or ‘adaptive information 
processing’. The reason is that the computer science view of AI is of an independent 
discipline concerned with guided search through trees of possibilities, which can only 
be harmed in the marketplace by unfulfillable claims about imitating the human mind. 

There is some theory of computer simulation applicable across all subject 
matters; it studies, for example, the losses in accuracy that arise in modelling a 
continuous situation on a digital computer.26 It is possible to change what the 
variables in a computer simulation mean, rendering the same entity a simulation of 
something else. To take an excessively simple example, if money is invested at 1% 
per month compound interest, the accumulated amount after t months, Pt, is related to 
the amount of the month before, Pt − 1, by 

 
Pt = P t −  1+(1/100) P t −  1. 

 
This equation expresses the local structure, the connection between the amounts 

in consecutive months. The bank’s computer starts out with the original principal, and 
goes through step by step using this equation to calculate the accumulated amount 
after t months. The resulting global structure is represented by the familiar rising 
exponential growth curve. But Pt could just as well mean the temperature of a rod t 
notches from the left-hand end. If it happens that the temperature at any notch is 1% 
more than the temperature of the notch to its left, then the problem has the same local 
structure, and the same equation, and the same graph, showing the temperature 
increasing exponentially from its value at the left-hand end. What is being modelled 
on the computer is, therefore, independent of whether the quantity varying is money 
or temperature, and independent of whether these quantities are varying with respect 
to time or space. 

The computer simulation of, say, the growth of a city, will exhibit phenomena 
explainable as the results of gradual accumulation of interactions among its parts, the 
details depending on the assumptions made about, for instance, the impact of siting a 
factory near a residential area on the medium-term development of the area.27

It is true that studying real phenomena by mathematical modelling involves 
measurement and observation, as well as purely formal work. This matter will be 
discussed in the last section. 

In retrospect, certain aspects of theoretical physics have a character recognisably 
like the formal sciences. Statistical mechanics, going back to Maxwell and 
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Boltzmann, looks at how macroscopic properties of gases, like pressure and 
temperature, arise as global averages of the movements of the individual particles.28 
The emphasis is not on details about the properties of the particles themselves, but on 
the transition from local to global properties. The same is true of fluid dynamics, 
especially in the very difficult study of turbulent fluids. The organisation of fluid flow 
into eddies and smoke rings is plainly not be explained by examining the individual 
atoms more closely.29 Non-linear physics treats more generally the ways in which 
complicated global structures can arise from simple local interactions.30

 
 

3. The Formal Sciences Search for a Place in the Sun 
 

It is at first sight strange that so many new sciences have appeared, without 
attracting much interest from philosophers of science. It could be argued that there is 
simply not much new in them, and, like accountancy perhaps, there is just nothing 
very philosophical about them, although many people work in them. It is more likely, 
however, that the philosophical profession has not created an internal representation 
of the formal sciences in general, because no one has clearly described their common 
core. 

It is easy to say something imprecise about this, but harder to be definite. An 
attempt was made to group some of these topics together, and claim great things for 
them, under the name ‘general systems theory’.31 But the attempt was regarded on the 
whole as too vacuous to cast light on anything, and it made little impression on either 
the scientific or the philosophical worlds. The problem was that just about anything is 
a ‘system’, so it is not clear what is the content of the assertion that something should 
be studied ‘as a system’. 

So, is it possible to say more precisely what it is that the formal sciences have in 
common, which distinguishes them from other sciences? 

First of all, one might ask whether the formal sciences can be assimilated to 
something that is already adequately understood philosophically. The two candidates 
are engineering (or technology generally) and applied mathematics. 

The question is not one of the status of engineering, or the philosophy of 
technology. While technology in general, and engineering in particular, have been 
rather neglected subjects in philosophy, it is generally agreed that what is interesting 
philosophically about them is precisely their differences from science. It is said, for 
example, that engineering is not well seen as simply applied science, for one reason or 
another.32 But the formal sciences, though they arose in most cases out of engineering 
requirements, are sciences, and can be pursued without reference to applications. This 
is no more than can be said of most sciences; geometry was originally thought of in 
connection with land surveying but then studied in the abstract, just as more recently 
network flow analysis was invented for studying the flows of liquids, telephone calls 
and factory products, but can be studied without any reference to what material it is 
that flows. 

So, are the formal sciences applied mathematics? 
There are at least some reasons for regarding the formal sciences as something 

beyond applied mathematics. They are certainly not applied mathematics in the sense 
that they are applications of already existing bodies of pure mathematics: in almost all 
cases, the mathematics had to be created, to solve the problems thrown up by the 
demands of the subject. (But, then, the same is true of some parts of traditional 
applied mathematics.) More significantly, applied mathematics does seem too narrow 
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to include all, or even most, of the formal sciences. The early researchers in OR and 
most of the other formal sciences came as often from physics, engineering and 
biology as from mathematics, and found their skills just as relevant as those of the 
mathematicians. And it is interesting that librarians have extraordinary difficulty in 
classifying the formal sciences, though classification is their profession. Many of the 
books referred to in this paper are classified under Dewey numbers 001, 003 and 004 
– that is, ‘general’. This is wrong, since the formal sciences are obviously not 
‘general’ in the sense of, say, encyclopaedias. Clearly they do have something in 
common, distinguishing them from other pursuits. The philosophical question is, what 
is it? 

On the other hand, it is obvious that the formal sciences are either applied 
mathematics, or something very closely related. (Is it possible, then, to create a new 
formal science by placing the word ‘mathematical’ in front of he name of an old 
science? The title Mathematical Ethology seems to be still free; but there are already 
books on ‘quantitative ethology’33 – one will need to be quick. Perhaps Mathematical 
Ethnology would be a better bet.) It may in fact be a historical accident that the formal 
sciences are not actually called applied mathematics and housed in departments of 
applied mathematics. In the mid-century, mathematics was going through a 
particularly pure phase, obsessed with rigour and generality,34 and was not receptive 
to new applied disciplines. Of the leading mathematicians, only von Neumann and 
Norbert Wiener took any serious notice of the new directions. By default, the formal 
sciences had to find academic homes in corners of departments of engineering, 
economics and business, psychology or whoever else would take them. 

The important point philosophically is that nothing depends on there being any 
distinction between the formal sciences and applied mathematics. It is certainly not 
being maintained here that the formal sciences have discovered a new ‘philosophers’ 
stone’ which mathematics has overlooked. It is not likely that the formal sciences 
have discovered ways of being certain about really instantiated structures which are 
essentially different to those in mathematics. The philosophical interest of the formal 
sciences is that they promise to circumvent the defences that philosophers have 
evolved against the claim that mathematics offers certainty about the real world. 
Those well-known defences are the ones summarised in Einstein’s dictum: 

 
As far as the propositions of mathematics refer to reality, they are not 
certain; and as far as they are certain, they do not refer to reality.35

 
Variations of this thought include claims that mathematics is about ‘idealisations’ 

or ‘abstractions’, or that it is purely about what follows from (uninterpreted) axioms. 
Perhaps these defences can be overcome;36 nevertheless, it may be easier to 
circumvent them by moving the battleground to sciences where the standard defences 
are not so easily deployed – or at least do not have the same initial plausibility. The 
next section works through some examples, to see how they do resist Platonist 
defences directly, without needing any tedious excursus through such questions as the 
reality or abstractness of numbers or sets. 

It would be desirable to have a unified theory that covered mathematics, pure and 
applied, as well as the formal sciences, and explained both their affinity and their 
differences. This is so far no help, philosophically, as it is not known what the 
philosophical status of applied mathematics is. Apart from some efforts in Körner’s 
book,37 few philosophers of mathematics this century have directly attacked the 
problem – though most have been willing enough to accuse Platonism of failing to 
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solve it. Interest in the philosophy of mathematics has centred on foundations (early in 
the century) and on whether certainty is attainable through proof, along with some 
allegedly sociological problems (more recently). This has left the relation of (pure) 
mathematics to the real world to be covered by the unexamined dual notions of 
‘application to’ and ‘idealisation from’. 

There is one school in the philosophy of mathematics, however, whose opinions 
are capable of extension to cover the formal sciences. The founding event for the 
school was Benacerraf’s observation, in his paper ‘What Numbers Could Not Be’,38 
that since the natural numbers could be regarded equally well as either the set 

 
∅, {∅}, {{∅}}, . . . 

 
or  

 
∅, {∅}, {∅,{∅}}, . . . 

 
(or many others), the subject-matter of arithmetic could not be any of these particular 
sets, but must be something that those sets had in common. He concluded: 
‘Arithmetic is therefore the science that elaborates the abstract structure that all 
progressions have in common merely in virtue of being progressions.’ 

Subsequently, Resnik39 and Steen40 argued that mathematics is the science of 
‘patterns’, Shapiro41 and Parsons42 that it was the science of ‘structure’. Hellman43 
chose ‘structural possibilities’. Forrest and Armstrong44 took numbers to be certain 
real relations between properties, 4 being the relation that holds between being an 
aggregate of four parrots and being a parrot; Armstrong45 argued further that sets are 
certain kinds of states of affairs. Bigelow and Pargetter46 also took numbers to be 
relations, interpreted realistically, but emphasised ordinal relations and ratios of 
quantities. Field47 argued that references in physics apparently to continuous functions 
should be constructed as contentful claims about variations of quantities like 
temperature over space-time regions. As Maddy48 remarks, though the differences 
between these views are real enough, they are small compared to the agreement. They 
agree that the objects of mathematics should not be interpreted in a Platonist sense, 
but should be reinterpreted as things available through ordinary sense perception. 

From the present point of view, it is unfortunate that these writers also agree that 
the main point of the philosophy of mathematics is to explain what numbers are, as if 
once that were done, everything else would be clear. This is not obviously true. To 
have understood numbers is no guarantee that one understands symmetry, or 
continuity, or network topology. Those things are not made out of numbers. They are 
not made out of sets, either, though one can construct models of them in set theory – 
if one knows already exactly what structure one wants to imitate. Nevertheless, it is 
not hard to extend a view of numbers as structural to the view that there are many 
other structures, of which some are symmetry, continuity and network topology. 

But thing that one should start with numbers and ‘extend’ to symmetry and 
continuity already puts structuralism and similar theories at an unfair disadvantage, as 
it requires them to explain the most unfavourable example first. Numbers and sets are 
not structuralism’s home turf. Cardinality is an almost degenerate structure, as it 
arises merely from a heap’s being divisible. In counting, the only relation between 
parts that is relevant is their mutual distinctness. It is only when richer inter-relations 
between parts are considered that symmetry, continuity and the others arise, and the 
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structuralist view of mathematics comes into its own. It is also where the formal 
sciences begin. 

A structuralist account of the formal sciences is, then, already available in 
structuralist philosophies of mathematics in general. The only thing to be added is an 
explanation of what structures exactly are studied by the particular disciplines. But 
that is a mathematical question, and the answer is found (if not always clearly 
expressed) in the axioms and definitions of each discipline. Topology studies one kind 
of structure, whose nature is captured by the definition of a topological space; 
information theory studies another. Conversely, a structuralist account of the formal 
sciences is an advantage for the philosophy of structuralism in mathematics. Since we 
recognise the similarity between the formal sciences, traditional applied mathematics, 
and pure mathematics, we should prefer a philosophy of mathematics that 
demonstrates their unity. 

 
 
3. Real Certainty: Program Verification 
 
The greatest philosophical interest in the formal sciences is surely the promise 

they hold of necessary, provable knowledge which is at the same time about the real 
world, not just some Platonic or abstract idealisation of it. 

There is just one of the formal sciences in which a debate on precisely this 
question has taken place, and done so with a degree of philosophical sophistication. It 
is worth reviewing the arguments, as they address matters that are common to all the 
formal sciences. At issue is the status of proofs of correctness of computer programs. 
The late 1960s were the years of the ‘software crisis’, when it was realised that 
creating large programs free of bugs was much harder than had been thought. It was 
agreed that in most cases the fault lay in mistakes in the logical structure of the 
programs: there were unnoticed interactions between different parts, or possible cases 
not covered. One remedy suggested was that, since a computer program is a sequence 
of logical steps like a mathematical argument, it could be proved to be correct. The 
‘program verification’ project has had a certain amount of success in making software 
error-free, mainly, it appears, by encouraging the writing of programs whose logical 
structure is clear enough to allow proofs of their correctness to be written. A lot of 
time and money is invested in this activity. But the question is, does the proof 
guarantee the correctness of the actual physical program that is fed into the computer, 
or only of an abstraction of the program? C. A. R. Hoare, a leader in the field, made 
strong claims: 

 
Computer programming is an exact science, in that all the properties of a 
program and all the consequences of executing it can, in principle, be 
found out from the text of the program itself by means of purely 
deductive reasoning.49

 
Some other authors explain the idea entertainingly: 
 

By contrast [to hardware], a computer program is built from ideal 
mathematical objects whose behaviour is defined, not modelled 
approximately, by abstract rules. When an if-statement follows a while-
statement, there is no need to study whether the if-statement will draw 
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power from the while-statement and thereby distort its output, or whether 
it could overstress the while-statement and make it fail.50

 
Recently, the philosopher James Fetzer51 argued that the program verification 

project was impossible in principle. Published not in the obscurity of a philosophical 
journal, but in the prestigious Communications of the Association for Computing 
Machinery, his attack had effect, being suspected of threatening the livelihood of 
thousands. Fetzer’s argument relies wholly on the gap between abstraction and reality: 

 
These limitations arise from the character of computers as complex 
causal systems whose behaviour, in principle, can only be known with 
the uncertainty that attends empirical knowledge as opposed to the 
certainty that attends specific kinds of mathematical demonstrations. For 
when the domain of entities that is thereby described consists of purely 
abstract entities, conclusive absolute verifications are possible; but when 
the domain of entities that is thereby described consists of non-abstract 
physical entities ... only inconclusive relative verifications are possible.52

 
It has been subsequently pointed out that to predict what an actual program does 

on an actual computer, one needs to model not only the program and the hardware, 
but also the environment, including, for example, the skills of the operator.53 And 
there can be changes in the hardware and environment between the time of the proof 
and the time of operation.54 In addition, the program runs on top of a complex 
operating system, which is known to contain bugs. Plainly, certainty is not attainable 
about any of these matters. 

But there is some mismatch between these (undoubtedly true) considerations and 
what was being claimed. Aside from a little inadvised hype, the advocates of proofs of 
correctness had admitted that such proofs could not detect, for example, typos.55 And, 
on examination, the entities Hoare had claimed to have certainty about were, while 
real, not unsurveyable systems including machines and users, but written programs.56 
That is, they are the same kind of things as published mathematical proofs. 

If a mathematician says, in support of his assertion, ‘my proof is published on 
page X of volume Y of Inventiones Mathematicae’, one does not normally say – even 
a philosopher does not normally say57 – ‘your assertion is attended with uncertainty 
because there may be typos in the proof’, or ‘perhaps the Deceitful Demon is causing 
me to misremember earlier steps as I read later ones.’ The reason is that what the 
mathematician is offering is not, in the first instance, absolute certainty in principle, 
but necessity. This is how his assertion differs from one made by a physicist. A proof 
offers a necessary connection between premises and conclusion. One may extract 
practical certainty from this, given the practical certainty of normal sense perception, 
but that is a separate step. That is, the certainty offered by mathematics does depend 
on a normal anti-scepticism about the senses, but removes, through proof, the further 
source of uncertainty found in the physical and social sciences, arising from the 
uncertainty of inductive reasoning and of theorising.  Assertions in physics, about a 
particular case, have two types of uncertainty: that arising from the measurement and 
observation needed to check that the theory applies to the case, and that of the theory 
itself. Mathematical proof has only the first. 

It is the same with programs. While there is a considerable certainty gap between 
reasoning and the effect of an actually executed computer program, there is no such 
gap in the case Hoare was considering, the unexecuted program. A proof (in, say, the 
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predicate calculus) is a sequence of steps exhibiting the logical connection between 
formulas, and checkable by humans (if it is short enough). Likewise a computer 
program is a logical sequence of instructions, the logical connections among which 
are checkable by humans (if there are not too many). 

One feature of programs that is inessential to this reply is their being textual. So, 
one line taken by Fetzer’s opponents was to say that not only could programs be 
proved correct, but so could machines. Again, it was admitted that there was a 
theoretical possibility of a perceptual mistake, but this was regarded as trivial, and it 
was suggested that the safety of, say, a (physically installed) railway signalling system 
could be assured by proofs that it would never allow two trains on the same track, no 
matter what failures occurred.58 The advertisement that said: 

 
VIPER is the first commercially available microprocessor with both a 
formal specification and a proof that the chip conforms to it 

 
was felt by the experts to be a danger to the gullible public, but not an impossibility in 
principle.59 An aggrieved purchaser began legal action on the grounds that the proof 
was not complete, but the bankruptcy of the plaintiff unfortunately prevented this 
interesting philosophical debate from being pursued in the courts.60

 
 

5. Real Certainty: The Other Formal Sciences 
 
The following features of the program verification example carry over to 

reasoning in all the formal sciences: 
 

• There are connections between the parts of the system being studied, 
which can be reasoned about in purely logical terms. 

• The complexity is, in small cases, surveyable. That is, one can have 
practical certainty by direct observation of the local structure. Any 
uncertainty is limited to the mere theoretical uncertainty one has about 
even the best sense knowledge. 

• Hence the necessity translates into practical certainty. 
• Computer checking can extend the practical certainty to much larger 

cases. 
 
Let us follow these assertions through in an example from another of the formal 

sciences. The example itself is an old one, due to Euler in the mid-eighteenth century. 
Then an isolated curiosity, it is now regarded as the first study in the topology of 
networks. The citizens of Königsberg noticed that it seemed to be impossible to walk 
across all seven bridges over the River Pregel, without walking across at least one of 
them twice (see Fig. 1). Euler proved their conjecture correct, using the simple idea 
that if one enters and leaves a land area, one uses up two of the bridges. Thus, all the 
land areas (except the two chosen for the start and finish) must have an even number 
of bridges leaving them, or there will necessarily be bridges left over, no matter what 
route is chosen.61 But in the example, all four land areas have an odd number of 
bridges leaving them, so a path going across all the bridges exactly once is 
impossible.  
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the same reason. If one succeeded in expressing Euler’s proof, or the brute force 
proof, as a sequence of steps in predicate calculus, one would not have achieved either 
more certainty, or certainty of a different kind. There would be exactly the same kind 
of necessary connection between the individual steps, resulting in certainty, modulo 
the usual understanding that one has not misperceived any of the symbols. Again, one 
can move to a model made out of sets, but that model has literally the same 
topological structure as the real system of bridges. A truth about the network structure 
applies to the bridges as directly as to the sets, not to the bridges via the sets. 

In fact, one can just as well regard a proof of symbolic logic as an exercise in 
network theory, as vice versa. In the lattice of propositions, some are linked directly 
to one another by logical relations like modus ponens and contraposition. The 
relations are purely syntactic, that is, checkable by direct inspection of the symbol 
strings. One seeks a proof, that is, a path through the lattice from premise to 
conclusion. This is why it is irrelevant that mathematical proofs and computer 
programs are logical, or textual, while bridges are stone or steel, and structured 
entities in the other formal sciences may be electronic, biochemical, mental, astral, 
legal, flesh, fish or fowl. 

If one is still inclined to think that any instantiation in physical materials must 
create a gap between abstract system and (possibly faulty) mechanism, then one must 
remember that there is the same gap in logic. The distinction the Poles used to make 
between ‘socialism’ and ‘really existing socialism’ has a counterpart in that between 
logic and actually implemented logical inference. Since formal systems are systems of 
symbol-types, not symbol-tokens,62 the act of classifying tokens into types must be 
part of any implementation. Therefore, in a brain, syntactic symbol processing of 
discrete symbols has only the reliability permitted by the optical character recognition 
capabilities of the underlying architecture. These are limited in principle, and 
unreliable in fact, as anyone checking the addition of a column of figures, or proof-
reading, knows. And this is always assuming that the brain does implement deduction 
by syntactic symbol processing; if deduction in humans is actually done with models 
or simulations, as many experiments suggest,63 then real logic is even more obviously 
on a par with the other formal sciences. 

It is with Euler’s diagram in mind that we should attempt to fit the formal 
sciences into the long war of the Empiricists and the Rationalists. In the Empiricist’s 
heaven, science is mostly observation, and the organising of observations into 
universal statements. There are no ‘necessary connections between distinct 
existences’ (not logically or mathematically necessary connections, at least, even if 
there may be ‘nomic’ necessities). D’Alembert64 describes the Rationalist’s heaven: 
most of science consists of mathematical deduction from certain extremely simple 
facts. These facts are, in the best case, symmetry principles clear a priori, and in the 
worst case easily measurable numerical relationships like Galileo’s law of free fall. 
Developments in the formal sciences suggest we are closer to the Rationalist’s heaven 
than, perhaps, we believed. The computer has much shortened our stay in the 
Rationalist’s purgatory, the frustrating state of being unable to perform the 
complicated deductions we know must be possible. 

As Aristotle says, discussing the relation of propositions in optics and astronomy 
to those in mathematics: ‘For here it is for the empirical scientists to know the fact 
and for the mathematical to know the reason why; for the latter have the 
demonstrations of the explanations.’65
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6.  Experiment in the Formal Sciences 
 
Real certainty for armchair work – surely this is too rosy a picture of the formal 

sciences? If it were right, it ought to be possible to issue real-world predictions by 
computer, without needing to do any experiments. Anyone who has worked in applied 
mathematics knows it is rarely like that. It is well known that fitting a realistic 
mathematical model to actual data is in general difficult. Sometimes, as in 
meteorology and macroeconomics, it is virtually impossible. 

To explain when experiment and fitting to data are necessary, one must return to 
the gap Fetzer insisted on between the abstract model and the real world. Everyone 
agrees that formal work can proceed with the usual necessity of mathematics, 
provided one keeps within the model. The important point is that there is wide 
variability in the certainty in deciding whether the real world has the structure 
described by the model. The model-reality gap may be wide or narrow. The word 
‘model’ directs attention to cases where fitting is difficult, by the implied suggestion 
that there may be many models, among which it is difficult to choose. The extreme 
case is stock-market prediction, where there are plenty of models, but nearly total 
uncertainty as to which if any fit the data. Any case where an underlying structure has 
to be inferred from insufficient data will be like that to a greater or lesser extent. The 
examples above were chosen near the opposite extreme, even, so it was argued, to the 
extent that there was no gap at all. What structure a system of bridges or a computer 
program has is open to perceptual inspection, with the practical certainty that attends 
unimpeded sense perception. So all the hard work is in the mathematics, and the 
results are directly applicable, again with practical certainty. Examples like the 
statistical mechanics of gases fall somewhere in between, but still closer to the formal 
end. Whether the kinetic theory of gases is true is a contingent fact, not easily 
established. But it is in fact true, and the way temperature arises from the random 
motion of gas particles is a matter of necessity. Though it is harder than in the case of 
the bridges to determine if things have the properties, there is real necessity in the 
connections of the properties. Being provable, it is a stronger necessity than nomic or 
Kripkean necessities. 

There is another kind of experiment in the formal sciences: ‘numerical 
experiment’. It also contributes to uncertainty in the formal sciences, but it should be 
distinguished from model-fitting work. It is part of the purely mathematical 
investigations, and is used when the mathematical model is hard to solve (‘solving’ 
generally means deriving global from local structure). Usually, the problem is that the 
model is too complex for the mathematical methods available, but it may also happen, 
as in chaos theory, that a quite simple model does not admit of a solution by normal 
methods. In such cases one runs the model on a computer, perhaps with various 
choices of values of parameters, and graphs the results in an effort to understand the 
structures that result. Any conjectures based on these experiments will be uncertain 
(unless a proof can be found later). That sort of uncertainty, though, is found even in 
pure mathematics. There, the Riemann Hypothesis and other conjectures that have 
resisted proof are studied by collecting numerical evidence by computer;66 there is 
enough work of this kind to justify a journal Experimental Mathematics. The 
existence of numerical experiments is therefore not an objection to the claim that the 
formal sciences can often achieved mathematical certainty about the world. Instead it 
confirms their affinity with pure mathematics. 
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Epilogue 

 
The above article was discussed in K. de Laplante, `Certainty and domain-

independence in the sciences of complexity: A critique of James Franklin’s account of 
formal science’, Studies in History and Philosophy of Science 30 (1999): 513-33, with 
reply in J. Franklin, , 
Studies in History and Philosophy of Science 30 (1999): 721-3. 

There have been some excellent popular books promoting the sciences of 
complexity, notably M. Mitchell Waldrop’s Complexity: The Emerging Science at the 
Edge of Order and Chaos (Simon and Schuster, 1992) and Per Bak’s How Nature 
Works: The Science of Self-Organized Criticality (Oxford University Press, 1997). 
Philosophy remains in its dogmatic slumber. 
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