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A recent probabilistic model unified findings on sequential generalization (*“rule learning”)
via independently-motivated principles of generalization (Frank and Tenenbaum, 2011).
Endress critiques this work, arguing that learners do not prefer more specific hypotheses
(a central assumption of the model), that “common-sense psychology” provides an ade-
quate explanation of rule learning, and that Bayesian models imply incorrect optimality
claims but can be fit to any pattern of data. Endress’s response raises useful points about
the importance of mechanistic explanation, but the specific critiques of our work are not
supported. More broadly, I argue that Endress undervalues the importance of formal mod-
els. Although probabilistic models must meet a high standard to be used as evidence for
optimality claims, they nevertheless provide a powerful framework for describing
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1. Introduction

How do you reverse engineer an alien computer? Figur-
ing out how it works requires moving back and forth be-
tween what you can learn about its individual parts and
broader hypotheses about its function and governing prin-
ciples. The general theory of computation leads to ques-
tions about the artifact’s inputs, outputs, and methods for
storing information (Hopcroft et al., 1979). But since com-
putational systems can store their state in processes as di-
verse as symbols on a tape or weights between neurons
(McCulloch and Pitts, 1943), a high-level understanding
of the device provides only general constraints on lower-
level hypotheses. In Marr’s (1982) terms, a computational
level understanding of the system needs to be integrated
with both a model of the system’s sub-components (the
algorithmic level) and, critically, an understanding of the
individual units of the system (the implementational level).
Each of these levels of representation contributes to the
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ability to repair, duplicate, and extract general insights
from the artifact.

Reverse engineering the human mind requires the same
attention to multiple levels of abstraction. A wide range of
theorists have recognized that insights into the workings
of complex systems like perception, memory, and language
require an understanding of the general operating princi-
ples of the system (Anderson, 1990; Chomsky, 1995; Marr,
1982). Probabilistic models, which use tools from Bayesian
statistics and machine learning to describe such systems,
represent a promising framework for exploring high-level
descriptions of cognitive processes (Chater et al., 2006;
Tenenbaum et al., 2011).

Although probabilistic models have grown tremen-
dously in popularity in recent years, they have also attracted
significant criticism (Bowers and Davis, 2012; Jones and
Love, 2011). Chief among these criticisms is that these mod-
els imply a claim that the mind itself is rational or even

! I use the terms “probabilistic” and “Bayesian” synonymously. I prefer
“probabilistic,” as it better describes the key virtue of these models: that
they use probability as a single framework for integrating across widely
varying tasks, representations, and constraints.
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optimal. A claim of optimality entails that a particular cogni-
tive process provides the best possible solution relative to
some problem. The weaker claim of rationality suggests that
the process provides a logical, well-designed solution to a
problem, perhaps relative to limitations on cognitive re-
sources like memory or computation. These claims—espe-
cially the optimality claim—strike many authors as
unsupported and unfalsifiable, given that the particular
problem being solved and the assumptions of the model
solving it are rarely specified independently. Endress’s
(2013) article echoes these criticisms of optimality claims,
applying them to Frank and Tenenbaum’s (2011) models of
sequential rule learning (henceforth, “FT”") and providing
additional theoretical and empirical arguments.

2. “Rule learning” and Endress’s critique

FT used probabilistic models to describe infants’ and
adults’ ability to learn sequential regularities in auditory
stimuli, a learning ability that may be linked to language
acquisition (Marcus et al., 2007; Marcus et al., 1999;
Pefia et al., 2002). In “rule learning” paradigms (Marcus
et al.,, 1999), learners hear strings of syllables like “wo fe
fe,” instantiating simple regularities (e.g., in this case
ABB, or “last syllable repeats”). They are then tested on
their ability to generalize these regularities to novel sylla-
ble strings. Experiments across a variety of ages, modali-
ties, and rule types provide a rich body of data that can
be explored for insights about how infants and adults make
such generalizations (Endress et al., 2005; Gerken, 2006;
Johnson et al., 2009; Marcus et al., 2007; Marcus et al.,
1999).

FT created three probabilistic models that made predic-
tions about learners’ performance across a wide range of
empirical results. All three of these models were based
on the assumption that learners prefer more specific
hypotheses (the “size principle” of Tenenbaum and Grif-
fiths, 2001), but they varied in their complexity. Model 1,
the simplest, made inferences directly from the input data,
but it always learned the correct rule perfectly. Model 2
added a single free parameter that controlled noise in
memory, allowing the model to produce quantitative pre-
dictions. Model 3 learned multiple rules. Despite the
apparent diversity of results in the literature, these simple
models sufficed to describe a wide range of empirical data.
Our explicit goal in FT was to provide “a baseline for future
work that can be modified and enriched” as the data
warranted.

Endress (2013) argues that our models do not provide a
good account of existing data on rule learning, however,
contesting both the general framework we used and the
specifics of our simulations. In this response I will focus
primarily on a set of critiques that have broad interest:

1. Learners prefer more salient rules rather than more
specific hypotheses.

2. “Common-sense psychology” provides an adequate
explanation of rule learning.

3. The use of free parameters is inappropriate in cognitive
modeling.

4. The use of probabilistic models implies an optimality
claim.

In Appendix A, I briefly summarize responses to criticisms
of specific simulations.

To summarize, I argue that Endress’s criticisms 1-3 are
not valid. Moving beyond a notion of “common sense” psy-
chology to theories that make graded and quantitative pre-
dictions, we will need to use statistical tools to understand
and evaluate the flexibility and specificity of our theories.
Nevertheless, Endress’s article raises useful questions
about how computational principles can be instantiated
in human minds and I am in agreement that there should
be a high standard for claims of optimality on the basis
of probabilistic modeling (indeed, FT did not make such a
claim).

3. Do learners prefer more specific rules?

At the heart of Endress’s critique is the claim that “hu-
mans do not prefer more specific patterns.” This claim is
important because the size principle (Tenenbaum and Grif-
fiths, 2001; Xu and Tenenbaum, 2007b)—the principle that
hypotheses are weighted proportional to their specificity,
as a consequence of how those examples are sampled—
was the major explanatory assumption in FT’s models.

A large, independent body of evidence supports the use
of the size principle as a description of word learning and
categorization (Navarro et al., 2012; Tenenbaum and Grif-
fiths, 2001; Xu and Tenenbaum, 2007a, 2007b) and the
sensitivity of even young infants to the sampling processes
that result in the size principle (Denison et al., 2012;
Gweon et al., 2010; Kushnir et al., 2010; Xu and Garcia,
2008; Xu and Denison, 2009). To take just one example,
in the word learning tasks used by Xu and Tenenbaum
(2007b), adults and children saw either one or three exam-
ples of a category and were asked to make judgements that
revealed the specificity of their generalization. Presented
with one example, they showed gradient generalization,
but after seeing three examples, their judgments were con-
sistent with the most specific category that fit the data
they observed. This dataset and many others provide pow-
erful evidence for the importance of strong sampling and
the size principle, but are not discussed by Endress.

Instead, in support of the claim that humans do not pre-
fer more specific rules, Endress conducted an experiment
in which participants were familiarized with human
speech syllables in an AAB or ABB pattern. At test they were
asked to choose between pattern-incongruent human syl-
lables, or pattern-congruent strings instantiated in rhesus
monkey vocalizations, pitting consistency with the pattern
regularity (e.g., AAB vs. ABB) against consistency in the
modality of presentation (human speech vs. monkey

2 This response represents my personal views. There is substantial
variance in attitudes towards optimality claims in the probabilistic
modeling literature, and the attitudes of many researchers have evolved
with respect to this issue as more research has focused on “process level”
explanations for cognitive phenomena (Chater et al., 2011; Griffiths et al.,
2012; Sanborn et al., 2010; Vul et al., 2009).
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vocalizations). Participants largely preferred test trials
consistent with the modality of presentation.

These data show that the size principle is not the only
factor affecting category judgments, but do not provide
evidence against the size principle. Test trials in the exper-
iment gave participants the opportunity to select either a
modality match or a pattern match. The preference for
the modality match suggests that modality was the stron-
ger of the two cues in this particular case. Such a trend is
not surprising, given the unexpected and striking nature
of hearing monkey vocalizations in what participants
might guess to be a language-related task. In fact, the prob-
abilistic perspective provides a valuable tool for under-
standing how learners in Endress’s experiment integrated
the salience of a particular hypothesis and its specificity.
For example, Frank and Goodman (2012) described a mod-
el of language comprehension that gave a probabilistic
integration of these two factors. These same methods
could easily be applied here.

Endress’s data thus do not provide evidence against
specificity, and Endress does not provide an alternate ac-
count of the additional evidence for specificity. Neverthe-
less, the critique raises an interesting question about how
rule specificities are computed during brief experiments.
Endress rejects as implausible the proposal that learners
enumerate the full set of strings consistent with each rule,
but research on numerical cognition suggests that adults
and infants need not enumerate to make quick and accu-
rate judgments about the cardinality of sets (Xu and
Spelke, 2000; Whalen et al., 1999). While there are inter-
esting future research directions in understanding this
computation, the question “specificity or salience” is ill-
posed. An adequate theory of rule learning must incorpo-
rate both, and the tools of probabilistic modeling provide a
powerful method for capturing the tradeoff between them.

4. Common-sense psychology and the need for explicit
theories

The “common-sense psychology” account given by End-
ress does not provide a suitable explanation of the rule
learning phenomenon, and is not a replacement for more
explicit theories. Computational models provide a method
for making theoretical assumptions explicit, and avoiding
issues of vagueness and circularity. To illustrate this point,
I focus here on Endress’s account of Gerken’s (2006)
findings.

Gerken familiarized infants with strings that conformed
to the regularity AAx, where x represents a single syllable
like /di]. These same strings were also consistent with the
broader regularity AAB (where B represents any syllable),
but this rule was more general, being consistent with
strings that never appeared during training. At test, Gerken
found that infants differentiated new AAx examples from
new AxA examples, but failed to differentiate new AAB
examples from ABA examples when B was not an x
element.

Endress’s acount of this phenomenon is as follows:

Gerken’s ... experiments can be explained if, in addition
to being sensitive to repetitions, humans (and other

animals) track items in the edges of sequences...and
if they expect test items to conform to all regularities
they have heard. That is, infants might consider triplets
as a violation if any of the rules is violated. For example,
when familiarized with AAB triplets (where the last syl-
lable is not systematically /di/), infants should be sensi-
tive to violations of the repetition-pattern, because this
is the only regularity present in the data. In contrast,
when familiarized with AAdi triplets, both AAB and
ABB triplets are violations, since they do not conform
to the /di/ regularity. Hence, infants might “expect”
triplets to be consistent with all of the patterns they
have picked up.

This explanation feels superficially compelling, but a closer
look shows that it presupposes precisely the phenomenon
being explained.

In particular, the “common-sense” account suggests
that infants prefer strings that are consistent with the con-
junction of “all the patterns they have picked up.” But what
are “all the patterns they have picked up”? Without an
independent specification of this set, there is no explana-
tion. The passage above assumes that infants make two
generalizations from the available stimuli, one based on
the ending syllable and one based on the consistent repe-
tition. Why these rules and not another one, like “any
string that ends in /di/, [je/, /li/, or /we/” or “any string with
three or four elements”?

To posit an account in which learners discover “all
those rules consistent with a stimulus,” there must be
some story about what the possible rules are. This was ex-
actly the story that FT attempted to give, and deriving pre-
dictions from Endress’s proposal requires precisely the
same assumptions that FT's models made explicit: the nat-
ure of the hypothesis space of rules and how rules apply to
individual strings. In addition, while our models were al-
most certainly incomplete, they had a virtue that any
“common-sense” account necessarily lacks: the ability to
make quantitative predictions. If psychologists are limited
to “common-sense” theorizing, we will be unable to move
beyond crude binary hypotheses to graded predictions
about human behavior. In the words of George Box, “all
models are wrong, but some are useful” (Box and Draper,
1987).

5. Probabilistic models, optimality, and fit to data

A common criticism of probabilistic models in cognitive
science (Bowers and Davis, 2012; Jones and Love, 2011), ta-
ken up in Endress’s article, is that they are used to make
claims that particular cognitive processes are optimal,
but they can be fit to any process or dataset. The combina-
tion in turn leads to optimality claims that are unwar-
ranted but unfalsifiable. 1 will first discuss the
relationship between probabilistic models and optimality
and then the issue of model flexibility and fit.

5.1. Claims of optimality for probabilistic models

Consider a simple linear regression. A regression model
can be fit to any dataset, with whatever predictors the
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modeler chooses (albeit with better or worse performance
in predicting new data). The model’s fit can then be com-
pared both with other models within the regression frame-
work—via the addition or subtraction of predictors—or
with models of different frameworks—for example, models
that do not make an assumption of linearity. In practice
though, once the model is fit, it is the rare data analyst
who declares that they have discovered a linear process.>
Instead, the analyst asks what predictors carry most weight,
how these predictors interact with one another, what data-
points are best or worst fit by the model, and how this model
compares to others with more or fewer predictors. This kind
of exploratory model-checking and model-comparison ap-
proach is standard statistical practice (Gelman and Hill,
2006).

Probabilistic models are no different. Just as an analyst
considering a regression model typically examines
whether individual predictors should be included, model-
ers consider design decisions and their impact on overall
model fit. The impact of these design decisions can lead
to interpretable conclusions, just as we interpret the coef-
ficients of predictors in a regression model.

Optimality claims about human behavior enter the pic-
ture via two routes. The first is via a conceptual confusion.
Probabilistic models define a posterior distribution over
hypotheses, which is then typically computed via a range
of Bayesian inference methods, from exact computation
to sampling methods like Markov chain Monte Carlo
(MacKay, 2003). Probabilistic inference methods based on
Bayes’ rule come with normative guarantees: that these
inference methods will (in the limit) converge to the cor-
rect posterior distribution. These guarantees are useful
for the modeler: they mean that, if care is taken in design-
ing the inference procedure, modelers can be relatively
sure that they have correctly estimated the consequences
of their design decisions.* These guarantees imply that
Bayesian inference is “optimal” in the sense that it leads to
the correct posterior distribution. This optimality is a prop-
erty of the model, however, not of the data being modeled.

The second route to optimality is via the claim that hu-
man performance corresponds to the predictions of a mod-
el with such normative guarantees.” The standards for such
a claim are almost never met. First, such a claim requires
evidence that other modeling frameworks cannot fit the
data without making the same assumptions as the
normative model. This type of framework-level evidence is
almost impossible to provide. Second, an optimality claim
requires rarely-given qualifications about (A) whether
behavior is claimed to be optimal for individuals or at the

3 Claims of linearity can certainly be supported by linear modeling
(Shepard and Metzler, 1971), but it would be odd to suggest that this is
their primary use!

4 See Perfors et al. (2011) for further explanation of this topic and
Goldwater et al. (2009) for an example in which improper probabilistic
inference led to a problematic interpretation.

5 This claim is bound up in the tradition of rational analysis, which
codified the idea of considering cognition as adapted to its situation (for an
introduction to these ideas and their genealogy in functionalism and
ecological validity, see Anderson, 1990). This tradition raises many rich
(and problematic) issues, but a full discussion of rational analysis is beyond
the scope of this manuscript.

population level and (B) whether it is optimal in single
judgments or in the long-run average.

For these reasons and others, FT did not make a claim of
optimality.® We framed our models in terms of an alterna-
tive tradition from perception: the ideal observer tradition.
In contrast to the probabilistic modeling tradition, where
issues about optimality have had a complex history
(Anderson, 1990; Oaksford and Chater, 1994), the ideal
observer tradition has been more explicit about the use of
models with normative guarantees to model non-normative
human behavior (Geisler, 2003). Such tools have been used
both to provide evidence that early perceptual behavior
makes effective use of the available information in some
domains (e.g., in light wavelength discrimination; Geisler,
1989) and that it is clearly suboptimal in others (e.g., in
contrast sensitivity; Banks et al., 1991).

5.2. Free parameters, flexibility, and fit to data

A model is fit to data when its free parameters are set so
as to maximize some objective function. In the case of
regression, this would be the step of estimating coefficient
weights by minimizing the sum of squared prediction er-
rors. In a probabilistic model, this might involve searching
for the parameter setting that maximizes the posterior
probability of the data. While the quality of a fit can be
captured using goodness-of-fit statistics like 2, these mea-
sures do not account for the number of free parameters
that were needed to achieve this fit (Hastie et al., 2005; Pitt
and Myung, 2002; Roberts and Pashler, 2000). An individ-
ual model is overfit when its flexibility allows it to be tai-
lored to idiosyncrasies of the current dataset, resulting in
poor performance in generalizing to other datasets.

Endress criticized FT on the grounds that several of our
models had free parameters that were fit to the data. In-
deed, why fit cognitive models to the data at all? Although
there is a large body of data on rule learning, experiments
vary widely in the type of stimuli they use, the amount of
exposure they give to learners, and the age of the learners,
among other things. Unless the modeler has a complete
theory of, for example, how memory for sequentially-pre-
sented syllables (Gerken, 2006) differs from their memory
for simultaneously-presented dog photos (Saffran et al.,
2007), a free parameter is needed to distinguish the two.

To avoid overfitting in FT's models, we allowed our-
selves a very small set of free parameters: none in Model
1, only one in Model 2, and two in Model 3 (even though
this decision lumped together distinct psychological con-
structs like noise in perception and noise in memory).
These free parameters—in particular, the noise parameter
introduced in Model 2—allowed us to compare datasets
across widely varying populations, stimuli, and tasks. In
fact, from a statistical point of view, the issue with FI’s

5 Indeed, the evidence suggests that human performance in sequence
learning is far from conventional standards of optimality. To take examples
from my own work, models of word segmentation performance provide
extremely poor fit to human performance in segmentation tasks unless
they are “handicapped” by the addition of severe memory constraints
(Frank et al., 2010), and human learners appear to make suboptimal use of
contextual information in these tasks (Kurumada et al., 2013).
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Table A.1
Responses to Endress’s critiques of individual findings.

Experiment Specific critique

Response

Marcus et al. (1999)
Endress et al. (2007)

Finding depends on size principle

melodies
Frank et al. (2009)

implausible
Gerken (2006)

details of hypothesis space
Gerken (2010)
counterexample
Overfitting of the memory parameter
Overfitting of the memory parameter

Marcus et al. (2007)

Saffran et al. (2007)

Goémez (2002)

Kovacs and Mehler (2009)
bilingualism and executive control

Incorrect predictions about rising/falling
Computing rule cardinalities is psychologically
Finding depends on size principle as well as

One token may not always be a strong

Problems with use of memory parameter
Finding can be interpreted in terms of

Independent evidence for size principle (see Section 3)

Contra Endress, FT models discriminate rising/falling melodies
better than LHM melodies (see Appendix)

Rule sizes can be estimated (see Section 3)

See Sections 3 and 4
Issues in memory for types vs. tokens (see Appendix)

See Section 5.2

See Section 5.2

Issues in memory for types vs. tokens (see Appendix)
Psychological accounts are not opposed to model-based
accounts (see Sections 4 and 6)

models was not the number of free parameters (which was
small from any perspective) but instead the amount of
data. One of the goals of our work was to illustrate the
necessity of collecting quantitative data on rule learning
so that more detailed models could be constructed.

Endress questions the use of free parameters to explore
the effects of factors like modality differences or training/
test asymmetries, but this type of exploration provided
us with a method for understanding the degree to which
simple issues of exposure or stimulus familiarity could
have driven rule learning effects. For example, we distin-
guished the larger memory demands involved in maintain-
ing a representation of training items across a long
exposure period compared with an individual evaluating
test items in the moment. This type of flexibility allowed
us to investigate the role played by memory (and in one
simulation we reported results both with and without
memory noise at test). But this flexibility should not be
misconstrued: it did not allow our model to fit any pattern
of data’ and it was in no way inconsistent with an ideal ob-
server approach. On the contrary, investigating the depen-
dence of predictions on assumptions about perceptual and
memory noise is precisely the purpose of ideal observers
(Geisler, 2003).

Finally, the possibility of fitting a particular model to a
dataset should be distinguished from the possibility of con-
structing a model that provides a good fit to a dataset. End-
ress’s charge is not a claim of overfitting: It is a claim of
framework flexibility. But flexibility in a modeling frame-
work is a good thing. Linear regression and probabilistic
models are both effective and widespread tools precisely
because they can be applied to a plethora of datasets. Being
able to construct a model that fits a dataset is only a
problem if the mere act of constructing such a model then
somehow becomes evidence for an optimality claim.

To summarize: FT did not make an optimality claim.
Absent this claim, the flexibility of probabilistic models is

7 There are of course infinitely many patterns of data that our models
could not fit. To take one important example from the perspective of the
size principle: If learners in Gerken's (2006) experiments had succeeded in
distinguishing AAB examples from only AAx training but not AAB training,
there is no manipulation of our noise parameter that would have produced
this pattern of results.

an important feature that allows them to be used to ex-
plore a wide variety of cognitive domains. Nevertheless,
more data—especially from experiments that keep partici-
pant groups and paradigms constant across many rule
types—are necessary to advance the study of rule learning.

6. Conclusion

Endress’s article raises important issues about the rela-
tionship between computational-level and algorithmic-le-
vel descriptions, but his substantive critiques of our work
are not supported. More generally, Endress imputes that
the goal of probabilistic modeling is to show that babies
(or other learners) are Bayesian and hence optimal. Proba-
bilistic models on this view are opposed to basic psycho-
logical principles such as salience or memory. On the
contrary, I have argued here that probabilistic ap-
proaches—along with connectionist and other formal ap-
proaches to the cognitive modeling—are a tool for
theorizing, for moving from “common-sense” intuitions
to formal theories that make quantitative predictions from
well-understood and explicit assumptions. Ideal observer
models posed at Marr’s computational level, as ours were,
represent one tool for such theorizing, while models at the
algorithmic and implementational levels represent others.
Reverse engineering the mind will require all the tools at
our disposal.

Appendix A. Specific critiques of simulations

In this section, I briefly summarize responses to specific
critiques (Table A.1). I have referenced sections above
whenever appropriate. Since all of FT's findings depend
on the size principle and all of Endress’s critiques require
it, I have not repeated this point, but it applies to all of
the experiments listed.

Endress et al. (2007). Endress writes that FT's models
make the following prediction: Human learners should
be no better at learning a LMH (low-middle-high, or rising)
rule and discriminating consistent strings from HML (fall-
ing) strings than they are at learning LHM rules and dis-
criminating consistent strings from MHL strings.
Simulations from our Model 1 show that Endress’s deriva-
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tion of this prediction is not correct. Rising/falling contours
are consistent with the same number of rules as LHM rules
in our model, but incorrect test items (e.g., a falling string
after rising training) violate nearly all of these rules and
lead to a difference in surprisal similar to that caused by
violations of identity rules (5.44 for correct items, 15.78
for incorrect items, compare with Table 3 of FT). Thus, ris-
ing/falling contours are predicted to group with identity
rules rather than LHM-type rules. This prediction is con-
firmed by Endress’s Experiment 3.

Gerken (2010) and Gémez (2002). In his treatment of
these two findings, Endress raises an issue that FT also
noted: The memory noise parameter used in the simula-
tions was assumed to operate over unique string types
rather than individual tokens or some combination of the
two. Of course, given that more tokens of an individual
string type likely leads to it being remembered better,
the assumption to model memory over tokens alone is a
major simplification. Endress’s examples (e.g., 9999/
10,000 tokens being consistent with a rule) highlight this
simplification and points to the necessity for better models
of type/token generalization and the data to test them
(Goldwater et al., 2006).
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