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Abstract

The perturbative approach to quantum field theory (QFT) has long been
viewed with suspicion by philosophers of science. This paper offers a diag-
nosis of its conceptual problems. Drawing on Norton’s ([2012]) discussion
of the notion of approximation I argue that perturbative QFT ought to be
understood as producing approximations without specifying an underlying
QFT model. This analysis leads to a reassessment of common worries about
perturbative QFT. What ends up being the key issue with the approach on
this picture is not mathematical rigour, or the threat of inconsistency, but
the need for a physical explanation of its empirical success.
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1 Three Worries about Perturbative Quantum Field Theory

On the face of it, the perturbative approach to quantum field theory (QFT) ought
to be of great interest to philosophers of physics.! Perturbation theory has long

T use the terms ‘perturbative approach to QFT’ and ‘perturbative QFT’ here to refer to the
perturbative treatment of interacting field theories that is invariable found in QFT textbooks
and forms the basis of much work in high energy physics. I am not assuming that this ‘approach’



played a special role in the QFT programme. The axiomatic and effective field
theory approaches to QFT, which have been the locus of much philosophical at-
tention in recent years, have their roots in the perturbative formalism pioneered
by Feynman, Schwinger and Tomonaga in the 1940s. Engaging with perturbative
QFT thus has the potential to shed light on these later developments.? A more
flat footed reason to pay attention to this framework is that it remains the most
important source of empirical predictions in high energy physics. The famously
accurate prediction of the anomalous magnetic moment of the electron is just one
among many perturbative results which form the backbone of particle physics
phenomenology. Consequently, when it comes to the question of what we ought
to believe about the world given the empirical success of the standard model the
perturbative apparatus that produces much of this success will surely have to be
addressed in one way or another.

Philosophers have tended to shy away from perturbation theory in their investi-
gations of QFT however.> To some extent this reticence is understandable: the
standard perturbative formalism has seemed to many, physicists and philosophers
alike, to be deeply suspect from a foundational perspective. There are, I suggest,
at least three distinct sorts of worry voiced in the philosophical literature, which
can be roughly glossed as follows (providing a more detailed diagnosis of these
concerns will be the central project of this paper):

i) The rigour problem. A common complaint raised against the perturbative
approach to QFT is that it is mathematically unrigorous. Among philoso-
phers this critique is typically coupled with the methodological stricture that
a certain standard of mathematical rigour is necessary (or at least strongly
desired) before interpretive work can get off the ground. This attitude to-
wards perturbative QFT is likely behind Halvorson’s comments about the
lack of a “mathematically intelligible description of QFT” underlying the
practice of mainstream high energy physics (Halvorson, [2006], 731). Fraser
([2009]) raises this sort of objection more explicitly in her discussion of what
she calls the “infinitely renormalized” variant of QFT, which she associ-
ated with the practice of taking momentum space cutoffs to infinity during

should be regarded as a freestanding formulation of QFT, and therefore a ‘theory’ in the sense of
mainstream philosophy of science. Indeed, this question looms large in the following discussion,
and is ultimately answered in the negative. Still, I take it that the term has a relatively clear
referent at the level of scientific practice.

2One motivation for the present work is to lay some groundwork for debate over the significance
of renormalization group methods in QFT. As I briefly discuss in section 5, the renormalization
group, and the effective field theory approach it spawned, are often said to have improved the
conceptual standing of renormalization theory. To substantiate this claim however we need to
know what was wrong with the original, purely perturbative, conception of renormalization in
the first place, which is a key concern of this paper.

3There are, of course, exceptions. Teller ([1989], [1995]) and Huggett and Weingard ([1995]) ex-
amine perturbative renormalization from a philosophical perspective. There has also been dis-
cussion of virtual particles (Weingard [1988]; Redhead [1988]) and Feynman diagrams (Meynel,
2008; Wiithrich, 2012) in the philosophical literature, which engages with QFT perturbation
theory.



perturbative renormalization (a process I will describe in the next section).
Fraser argues that this procedure is ill defined and complains that “the stan-
dard criticism levelled against unrigorous theories—that they are difficult
to analyse and interpret—certainly applies in this case” (Fraser, 2009, 543).
One putative obstacle to engaging with perturbative QFT then is that it is
on too flimsy ground mathematically for foundational issues to be properly
addressed.?

ii) The consistency problem. An even more severe charge brought against the
standard perturbative framework is that it runs foul of inconsistency. A noto-
rious result due to Haag, Hall and Wightman—henceforth Haag’s theorem—
seems to show that standard perturbative calculations rest on an inconsis-
tent set of assumptions. While Earman and Fraser ([2006], 306) want to
allay worries about the consistency of interacting QFTs in general in light
of Haag’s theorem, they claim that the result does “pose problems for some
of the techniques used in textbook physics for extracting physical predic-
tion from the theory”; it is clearly perturbative scattering calculation which
they have in mind here. Fraser even suggests that physicists may be tac-
itly employing inferential restrictions to avoid deriving contradictions when
they perform perturbative calculations (Fraser, 2009, 551). The threat of
inconsistency provides further reason to be wary of taking the perturbative
formalism seriously from a foundational and philosophical perspective.

iii) The justification problem. Even putting these concerns about the internal co-
herence of perturbative QFT aside however, a further puzzle remains: many
of the steps involved in standard perturbative calculations appear to be prob-
lematically ad hoc. Perturbative renormalization in particular is often pre-
sented in textbooks as a mathematical trick which removes divergences in
the coefficients of naive power series expansions. But why are these infinities
there in the first place, and what justifies the procedure used to remove them?
This concern is what Wallace is getting at when he says that the original
perturbative approach to renormalization made little “physical sense” (Wal-
lace 2011, 117) and similar complaints about the lack of a physical picture
underlying the renormalization procedure can be founded dotted throughout
the philosophical literature.® A final reason for trepidation about philosoph-
ically engaging with the perturbative approach to QFT then is the apparent
lack of justification for the various manipulations and assumptions that go
into setting up the formalism.

In the face of these problems one might conclude that philosophers should sim-

4Evaluating this challenge would seem to require delving into the broader issue of how mathe-
matical rigour should be characterised, and what its significance is for the philosophical inves-
tigation of physical science. I do not go down this route here, as my suggestion will be that
concerns about the mathematical rigour of perturbative QFT stem, at least in part, from a
misinterpretation of the perturbative approach.

SMcMullin ([1985], 261), for instance, cites renormalization in QFT as a paradigm case of a
modification to a theory which lacks a physical justification.



ply remain silent about QFT perturbation theory, at least until physicists and
mathematicians have developed a more coherent understanding of it. This paper
puts forward a different response. Drawing on Norton’s ([2012]) discussion of the
notion of approximation I argue that the perturbative framework should be under-
stood as a method for producing approximations without addressing the project
of constructing interacting QFT models. Adopting this view of the perturbative
approach leads to a reassessment of all three of the worries just identified. The
rigour and inconsistency problems, in particular, lose much of their bite. Pertur-
bation theory does not provide a structural characterisation of realistic QFTs, not
because of a lapse in mathematical rigour, but because this was not its aim in
the first place. Once we realise this, I suggest, the mathematical sloppiness we do
find in perturbative calculations in the physics literature becomes a less pressing
foundational concern. This analysis also helps to makes clear why Haag’s theorem
is not as disastrous for the perturbative framework as it initially seems. In brief,
the result does not undermine standard perturbative calculations because they
do not posit the existence of a model satisfying the relevant set of inconsistent
assumptions.

It does not do away with the justification problem however. What ends up being
the really salient puzzle about QFT perturbation theory is why it is so successful—
why, that is, the approximations it produces are often staggeringly good ones. I
will suggest, however, that this is a problem which philosophers can contribute to
rather than a reason to eschew discussion of perturbation theory. The plan for this
paper is as follows. Section 2 introduces the perturbative formalism. Section 3 sets
out the distinction between models and approximations I make use of in general
terms. Sections 4 and 5 make the case for understanding QFT perturbation theory
as producing approximations and discusses the ramifications of this view for the
three putative problems just outlined.

2 The Perturbative Formalism

Perturbative QFT is a huge subject in its own right. I focus here on general aspects
of the approach which are most relevant to assessing the aforementioned worries
about its foundational respectability. I first describe how perturbative expansions
of QFT observables are set up, stressing the role of the interaction picture and the
apparent challenge posed by Haag’s theorem. I then discuss the divergences which
appear when this method is applied naively and the renormalization procedure
which is used to remove them.



2.1 Expanding the S-matrix

The key object we are trying to get at in the perturbative approach to QFT, at
least in the first instance, is the S-matrix.% In scattering theory, scattering events
are represented as transitions from localised initial and final states at asymptotic
times. The S-matrix is the operator which maps incoming states |a), att — —oo
onto outgoing states |53), , at t — oo:

Sﬂa = out<6|S’a>in- (1)

The S-matrix is of paramount importance to particle physics phenomenology be-
cause S-matrix elements, associated with particular classes of in and out states,
are closely related to scattering cross sections, the quantities measured in collider
experiments.”

There are two major obstacles to getting at the S-matrices of realistic QFT's, such
as quantum electrodynamics (QED) and the standard model. On the one hand,
there is the issue of giving concrete meaning to the S-matrix. To substantiate the
above definition a precise characterisation of the in and out states, and the space in
which they live, is needed. Identifying mathematical structures which are constitu-
tive of empirically supported QFTs is a task plagued by technical and conceptual
hurdles however. Axiomatic formulations of QFT give us well motivated char-
acterisations of what a QFT system formulated on Minkowski space-time should
look like, but, so far at least, interacting models of these axioms have only been
constructed for toy theories in a reduced number of dimensions. We can explicitly
construct cutoff formulations of empirically supported QFTs, in which degrees of
freedom associated with variations on arbitrarily small length scales are explicitly
removed—by putting the theory on a lattice for instance. But the foundational
status of these cutoff models is controversial; this is the crux of the recent debate
between Doreen Fraser (Fraser, 2011) and David Wallace (Wallace, 2011).

Besides this issue however, interacting field theories inevitably raise more practical
concerns. Interaction terms lead to non-linear equations of motion, and exact
solutions to empirically successful QF T's are typically out of the question. However
they are characterised structurally then, there is going to be a difficulty with
computing the S-matrix elements of theories like QED in practice.

Faced with these problems, the perturbative strategy is to use what we already
know about free QFTs to generate expressions for the S-matrix elements of weakly
interacting theories. The construction of free QF'T models is much better under-
stood than their interacting counterparts. We know how to write down continuum
models in this case, and these theories can be exactly solved; we can determine the
system’s spectrum, get explicit Fock space representations of the field operators
and obtain the S-matrix analytically (of course, the S-matrix of a free field theory

6Other important quantities, and especially correlation functions, are also evaluated perturba-
tively once we have the expansion of the S-matrix up and running.

"See Peskin and Schroeder ([1995]) and Duncan ([2012]) for a more careful exposition of QFT
scattering theory and its role in setting up the perturbative expansion.



is trivial). The idea then is to split the Hamiltonian of an interacting theory into
a free part, Hy, and an interaction potential, V', parameterised by a ‘coupling’
g:

We then construct power series in g for the theory’s S-matrix elements whose
coefficients can be computed using the explicit representations of the fields afforded
by the exact solution of the free model associated with H,. If ¢ is sufficiently
small the hope is that the first few terms of this series yield accurate predictions
of experimentally observed scattering cross sections.

In order to get these expansions up and running though we need to invoke the
so-called interaction picture. As is familiar from quantum mechanics there are
multiple ways to implement the time evolution of a quantum system. In the
Schrodinger picture the state evolves in time while the operators remain constant;
in the Heisenberg picture the operators take on the time dependence and the states
are constant. The idea behind the interaction picture is to use this freedom to iso-
late the free representations of the fields. If Ag and 14(t) are operators and states
in the Schrodinger picture the corresponding operators and states in the interac-
tion picture are given by A;(t) = eflost Age=tHost and [¢;(t)) = eHost [hg(t)).
This means that the field operators are governed by H, while the remaining time
dependence due to the interaction potential is shifted into the states.

The time evolution operator in the interaction picture, |9 (t)) = U;(t, to) |¢1(to)),
is then used to set up perturbation series for particular S-matrix elements. U;(¢, )
can be expanded in a power series in g of the form:

Uslt, to) = _19 / dt.. / dt, TIVi(ty)..Vi(t)], (3)

n=

where T' denotes the time order product here, which arranges operators in de-
scending order with respect to their time arguments. This expansion can then be
plugged into the definition of the S-matrix:
Sge = lim hm <ﬁ\U1(tf, D). (4)
ti——ooty
Taking the in and out states to be eigenstates of Hy, on the grounds that the
system is effectively isolated before and after the scattering event, we end up with

a string of terms made up of Fock space operators acting on the free field vacuum
state—expressions that we know how to compute, at least in principle.

What we typically need to do to work out the coefficients of the series at each order
in ¢ is evaluate a set of integrals over momentum space. Feynman diagrams bring
some order to the proceedings, but the number and complexity of these integrals
grows rapidly as the series proceeds and the best we can hope to do in practice is
calculate the first few terms. As is now well known however, the integrals which
result from naively following the prescription just described typically diverge. The
next section describes the renormalization procedure that is needed to deal with
these divergences.



Before we move on to discuss renormalization however there is another issue with
the expansion technique as we have described it thus far which needs to be ad-
dressed: the apparent clash with Haag’s theorem. What Haag’s theorem shows
is that, given assumptions common to all of the main axiomatic formulations of
QFT, the interaction picture does not exist.® The root of the problem is that con-
tinuum QFT models associated with the free, and fully interacting, Hamiltonians,
H and Hj, cannot be formulated in the same Hilbert space. Quantum systems
with infinitely many degrees of freedom admit unitarily inequivalent Hilbert space
representations, and Haag’s result flows from the fact that the vacuum state of
the free and interacting theories live in unitarily inequivalent spaces. This means
that there cannot be a global unitary transformation connecting the states and
field operators of a free and interacting theory, which the interaction picture is
clearly predicated on. Given the role that the interaction picture plays in setting
up the power series expansion of the S-matrix, Haag’s theorem has seemed to some
to point to a fundamental inconsistency in the perturbative method—this is the
origin of the worries about consistency flagged in section 1.

2.2 Perturbative renormalization

To make things concrete let’s consider applying the method just described to a well
understood toy model—¢* theory (on four dimensional Minkowski space-time).
The theory is defined by the Lagrangian:

et (5)

L= A1

[(0u9)* = m?*¢”] —

N | —

where ¢ is a scalar field, m is its associated mass and A is a positive constant
parameterising a quartic interaction. In the absence of exact solutions, the hope
is that expanding the S-matrix of the theory in powers of A will at least allow us
to probe the region of the parameter space in which X is small and the interaction
is weak. Following the prescriptions set out in the previous section however we
end up having to evaluate momentum space integrals of the form,°

4 1

in order to calculate the perturbative coefficients at second order in A. This
integral diverges, leaving the expansion ill defined and predictively useless. The
same kind of divergent integrals arise when the perturbative method is applied to
realistic gauge theories such as QED.

8The original result can be found in Haag ([1956]). It is Hall and Wightman’s ([1957]) generali-
sation however which is nowadays commonly referred to as Haag’s theorem. The assumptions
needed to prove it are discussed in detail in Earman and Fraser ([2006]) and Miller ([2017]).

9Note that this is actually the form of a loop integral on four dimensional euclidean space. A
common technique in evaluating perturbative coefficients is to work in Euclidean space and
analytically continue the results back to Minkowski space-time by means of the so-called Wick
rotation—see Peskin and Schroeder ([1995], 193).
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The renormalization procedure used to obtain a sensible power series divides into
three steps. The first is to ‘regularize’ the offending integrals—that is render them
convergent. In the case of the integral above the most conceptually straightforward
way of doing this is to taking the upper limit of integration to be some finite
constant A, known as an ultraviolet perturbative cutoff'® (this is not the same
thing as constructing a cutoff QFT model however, as I will discuss in section 4).
It can then be explicitly evaluated as a function of A which goes to infinity as
A — o0o. Terms of this kind are said to be ultraviolet divergent. The perturbative
expansions of theories with massless particles, like QED photons, also contain
infrared divergent integrals that blow up as momentum variables are integrated
down to zero. In this case the integral can be regularized by taking the lower limit
of integration to be some small but non-zero constant—an infrared perturbative
cutoff.

Once the coefficients of the perturbation series can be manipulated as finite ex-
pressions the next step is to redefine the coupling in which we are expanding so
as to remove the singular dependence on the cutoff—it is to this process that the
term renormalization properly refers. In the case of ¢* theory we can do this by
reparameterising the Lagrangian as follows:

1

L= A1

[(1+62)(8,0:)* — (my + 0m)*¢7] — — (v + GNP} (7)

N —

Where ¢, = (14 §2)~/2¢ is the renormalized field, m, and A, are the renormal-
ized mass and charge, and 07, dm, d\ parameterise so-called counterterms. Note
that nothing mathematically or physically dubious is going on here. The La-
grangian has simply been rewritten in terms of different variables. The value of
the counterterm parameters make no difference to the dynamics described by the
Lagrangian. It does make a difference to the terms of the perturbation series at
each order however: both the renormalized expansion parameter and coefficients
of the series depend on the choice of counterterms. It turns out to be possible to
choose these factors in such a way that the part of the series’ coefficient at second
order which diverges as A — oo is completely removed. In fact, this can be done
at each order in perturbation theory.

Theories whose ultraviolet divergences can be systematically eliminated via a re-
definition of a finite number of parameters in the Lagrangian in the manner just
sketched are said to be renormalizable (showing that infrared divergences can
also be removed from the perturbation series is another matter which will not
be discussed in detail here). The QED and standard model Lagrangians have
this property, and consequently the ultraviolet divergences which appear in the

0Tn practice a variety of other regularization schemes are used. One method which is often
more convenient in the treatment of gauge theories like QED, and has also sometimes been
attributed special foundational significance in the philosophical literature (Bain, 2013), is
dimensional regularization. In this approach the integration measure is modified so as to
range over a fractional number of dimensions, 4 — e. For ultraviolet divergent integrals this
leads to finite results for ¢ > 0, with divergences manifesting as poles at ¢ = 0. Infrared
divergences can also be regularized in this way.



perturbation series can be completely removed at all orders. In fact, the renormal-
izability of these theories is no coincidence. Traditionally renormalizability was
seen as a necessary condition for a viable perturbative treatment of a theory and
was used as a theory selection principle during the formulation of the standard
model. There is something puzzling about demanding renormalizability a priori
in this way however. What licenses us to assume that the world is amenable to
perturbative analysis?

Even putting aside the question of renormalizability however, there seems to be
something odd about the redefinition prescription just described. How can a
change of variables transform the physical respectability and predictive power of
the expansion? It’s worth pointing out here that the fact that a redefinition of the
coupling can affect the properties of the resulting series is not surprising in itself.
In general, the quality of a power series approximation can be very sensitive to the
choice of expansion parameter. Suppose we want to expand In(1 + z) as a power
series, for instance. Expanding in x gives rise to a series which converges for |z| <
1, while making a change of variables and expanding in 2’ = z/(x + 2) produces
a series which converges for any positive value of z, and typically converges much
more rapidly. Moreover, the practice of renormalizing the coupling parameter
is often employed in the perturbative treatment of models in ordinary quantum
mechanics which have no problems with divergences. In the treatment of the
quantum anharmonic oscillator for instance, the most obvious choice of coupling
leads to a divergent series, but redefining the coupling, in essentially the same
manner just sketched for interacting QFT's, can produce a convergent series.!! The
redefinition procedure just described has a thoroughly ad hoc character however.
No physical reason has been given for removing the infinities, or for thinking that
the resulting finite expressions should provide good empirical predictions. At best,
we have a purely instrumental justification after the fact, given that renormalized
perturbation theory does in fact turn out to be empirically successful.

The final step of standard perturbative calculations is to remove the cutoffs. If
the redefinition of the coupling has done its job this limit is well-defined and we
obtain finite expressions from truncations of the series at each order. This is
sometimes presented as returning us to the realms of continuum field theory after
a detour through strange regulated theories. As I will shortly be arguing, this
way of speaking is quite misleading—removing the regulator on integrals in the
perturbation series does not amount to constructing a continuum QFT model.
While there are good practical motivations for removing the cutoff—integrals over
all of momentum space are, on the whole, much easier to deal with than cutoff
expressions—the physical justification for removing the regulator is, once again,
unclear.

Despite its ad hoc character the renormalization procedure has produced some
of the most successful predictions in the history of science. As has already been
mentioned, what happens in practice is that the series is truncated after the first

HDelamotte ([2004]) and Neumaier ([2011]) give useful discussions of renormalization in this
more general context—the In(1 + x) example is borrowed from Neumaier ([2011]).



few terms and is then fed into calculations of measurable quantities like scattering
cross sections. A final puzzling feature of renormalized perturbation series how-
ever is their large order behaviour. There is overwhelming evidence that, even
after each term in the series has been rendered finite by renormalization, the sum
of the series at all orders diverges. Dyson ([1952]) was the first to give heuristic
arguments to the effect that renormalized QFT perturbation series have zero ra-
dius of convergence and this has since been borne out by studies of the large order
behaviour of the perturbation series of realistic QFTs, as well as rigorous results
in constructive field theory (Strocchi, 2013, 35-39). Of course, the apparent con-
vergence of QED perturbation theory in the first few orders, and their excellent
agreement with experiment, assure us that the expansion is, at least, an asymp-
totic series. But the fact that it diverges prevents us from directly identifying its
sum with the S-matrix elements of the theory. This is perhaps one of the features
of QFT perturbative expansions which contribute to their reputation for a lack of
mathematical rigour.

In sum then, our survey of the perturbative approach to QFT has identified prima
facie motivations for the rigour, consistency and justification problems identified
in section 1.12 In order to assess the substance of these worries however a more
careful analysis of what is going on in the perturbative method is needed. The
next section lays the groundwork for such an analysis by introducing some ideas
drawn from the philosophical literature on scientific modelling, specifically the
distinction between approximations and models.

3 Approximations and Models

The best way to get a handle on the notions I want to make use of here is with
reference to examples.’> Take a familiar classical system: a unit mass falling in
a uniform gravitational field while acted upon by a linear air resistive force. The
equation of motion of this system can be written in terms of the velocity:

dv/dt = g — kv, (8)

12There are also other puzzling features of the perturbative formalism which have not been
discussed here. One issue is the so-called renormalization scheme dependence problem. In ad-
dition to removing the divergent part of the perturbative coefficients in the second, redefinition
phase of the renormalization procedure, we can also subtract an arbitrary fine part. And while
this does not make a difference to physical quantities it does make a difference to truncations
of the series which are compared to experiment, apparently rendering them problematically
ambiguous. I hope to examine this issue further in future work.

13Many of the examples here are drawn from Norton ([2012]). Note that Norton uses the term
idealization to refer to a physical system which is used to represent some target system. As
Norton admits, this is often what philosophers of science mean by the term model, and I will
mostly use this later term here. Strictly speaking, when I talk about models of the Wightman
axioms, I am using the term in a different (model theoretic) sense. Most of the time this
ambiguity won’t matter however, as the QFT systems of interest will be models in both senses
of the word.
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where ¢ is the gravitational acceleration and k parameterises the frictional force.
Assuming the body is initially at rest the solution of this equation is:

u(t) = g/k(1 — ). (9)

Suppose, however, that air resistance is not very important for the aspects of the
system’s behaviour we are interested in describing. Perhaps £ is small relative to
g, and we are only interested in the system’s evolution over comparatively short
time periods.

There are two paths one might take in this situation. On the one hand, we could
consider a new classical system, with a simplified equation of motion dv/dt =
g, and treat it as a representation of our original system. This model clearly
misrepresents its target in some respects; it falsely represents k as being zero
and has quite different asymptotic behaviour as t — oo, since it lacks a terminal
velocity. But it does get some of the features of the target system right—the
velocity function of the idealized model will stay within some error bound of the
target system’s velocity over some finite time period. There is another way to
proceed however. Suppose that instead of moving to a new idealised system we
take the limit & — 0 of the velocity function of the original system:

limv(t) = gt (10)

k—0
This produces a function which is, again, within some error bound of the target
system’s velocity over sufficiently short periods of time. It can therefore be viewed
as an inexact description of this property of the system. Following Norton ([2012]),
I will call the act of using a function in this way, without referring to a new physical
system, an approximation.

This distinction between representing a system with an idealized model and pro-
viding an inexact description of one of its properties directly has long been recog-
nised in the literature on scientific modelling. Its significance is less agreed upon
however. Redhead ([1980]) claims that the two approaches are always interchange-
able, in the sense that, for any function which approximates a quantity of a target
system we can construct a system to which it is an exact solution. This certainly
does seem to be the case in the above example, since the approximation obtained
by taking & — 0 is identical to the velocity function of the corresponding idealized
model. Following examples like these, philosophers of science have tended to see
models as the fundamental unit of analysis and approximations as derative upon
them.

Norton ([2012]) has recently put forward a different view of the distinction which
I want to endorse here, namely that approximation and idealization are genuinely
distinct representational strategies, and that distinguishing between them can play
an important role in resolving some puzzles in the philosophy of physics.!* Norton
presents a number of counterexamples to the idea that every approximation piggy

MNorton’s discussion of the renormalization group framework in statistical mechanics might seem
to have a more direct relevence to the present project. However, while the renormalization
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backs on a corresponding idealized model. Take, for instance, an ellipsoid with
semi-major axis of length a. The ratio of the surface area and volume of this
geometric object can be expressed as a function of a. If we take the limit a — oo
of this function it converges to 37 /4; this might be an appropriate approximation
if a is very large. If we take the semi-major axis of the ellipsoid itself to infinity
however we get an infinite cylinder whose surface area to volume ratio is 2. In
this case applying an operation to a quantity defined on a model and applying
the analogous operation to the model itself gives different results and we clearly
cannot say that the former is underwritten by the latter.

A second class of examples which speak against Redhead’s equivalence claim are
cases in which no model exists corresponding to an operation used to implement
an approximation. Norton discusses the example of a sphere of radius r. The
ratio of surface area to volume of a sphere is 3/r, which clearly has a finite limit
as r — o0o. But there is no such thing as a sphere with infinite radius.'®> While it
may be appropriate to treat the area to volume ratio of a large sphere as vanishing
then, there is no geometric object which actually has this property. We also find
cases of this sort in statistical physics. A common modelling strategy in statistical
mechanics is to take the so-called thermodynamic limit, in which a system’s volume
is taken to infinity, with quantities like the energy density held constant. Once
again, there is an ambiguity in how this practice should be understood. One
could take this limit of a particular quantity, or actually construct an infinitely
extended system by taking the boundary of a finite system to spatial infinity in
a controlled way. The latter task often turns out to be difficult to do in practice:
the existence of a limit system typically has to be established on a case by case
basis, and is known not to hold for gravitating systems.'® Again, it might be that
the N — oo limit is well-defined for particular quantities despite the fact that
there is no infinite volume system.

Apart from counterexamples of this kind, another motivation for taking approxi-
mations and models to be distinct theoretical outputs is that this often leads to
a more natural interpretation of scientific practice. The previous examples at-
test to the fact that it is typically more difficult to establish the existence of a
physical system than a single function. And, as Norton points out, we often find

group is arguably very important in making sense of perturbative renormalization, as I urge
in section 5, Norton’s claim that the study of renormalization group fixed points should be
analysed in terms of the notion of approximation, and my claim in this paper that perturbative
QFT produces approximations, are independent theses.

15 At least on the standard definition of a sphere in R3: the set of points a distance r away
from a given (center) point. Since no points in R? are an infinite distance apart, there is no
sphere with r = co. It may be possible to obtain a sensible ”infinite sphere” by working with
a different definition or modifying the background space however. In general, the question of
whether a limit system exists depends on the details of how the limit in question is treated,
which is often left ambiguous in less rigorous discussions: see Fraser ([2016]), section 4.3, for
more on this point in the QFT context.

6Ruelle ([1969]) is a classic resource for rigorous results about the existence of the thermody-
namic limit. Callender ([2011]) provides a discussion of the non-existence of the thermody-
namic limit in the case of gravitational systems.
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that physicists do not do this extra work; he argues, for instance, that in many
applications the N — oo limit is taken of particular thermodynamic functions
without addressing questions about the existence and properties of the corre-
sponding infinite system. Those who hold that approximations are underwritten
by the presence of a corresponding model will be forced to reproach physicists for
their sloppiness in such cases. But if we give up this idea, as Norton’s examples
suggest we should anyway, a more sympathetic reading becomes available. On
this view, producing a function which approximates some property of the target
system, and producing a model which resembles it in certain respects are simply
different things—the former does not rest on the latter. Consequently, there is
nothing wrong with using approximate expressions for physical quantities without
embedding them within a theoretical model.

It is the capacity of an emancipated notion of approximation to illuminate scientific
practice which I want to draw on here. In the context of the QFT programme,
the existence of QFT models is a delicate issue and consequently the construction
of approximations and models naturally come apart. This, I think, is the key to
a more fruitful understanding of perturbative QFT.

4 Perturbative Quantum Field Theory Produces
Approximations

The key claim of this paper is that perturbative QFT ought to be understood
as a method for producing approximations in the sense just elaborated, without
picking out QFT models. The truncated power series obtained by following the
prescriptions set out in section 2 can be used to approximate physical quantities
like scattering cross sections, but the various steps involved in getting to these
expressions should not be interpreted as an attempt to provide a structural char-
acterisation of an interacting QFT. The central motivation for this view is that
it makes sense of what physicists actually do, or perhaps more importantly do
not do, when they treat QFTs perturbatively. As has already been mentioned
constructing interacting QFT models is a difficult task. Looking for a solution to
this problem in the standard perturbative approach leaves us disappointed. At
each juncture in the perturbative method we find that the work needed to specify
a physical model is missing.

Consider, for instance, the regularization of the momentum space integrals con-
tributing to the perturbative coefficients. Imposing a high momentum cutoff on
such an integral is sometimes described, in both the physics and philosophy lit-
erature, as taking us to a cutoff theory. In light of the distinction drawn in the
previous section however, we can see that putting a cutoff on a single expression
and constructing a quantum system which lacks high momentum degrees of free-
dom is not the same thing. In fact, early applications of renormalized perturbation
theory made no attempt to verify the existence of such systems, or explore their
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properties. The details of how to formulate QFTs on a lattice have since been
worked out, and other ways of implementing a ‘non-perturbative’ cutoff have been
developed in the constructive field theory programme. But this came decades after
the original perturbative treatment of QED.!7

Another place where the perturbative approach is apt to disappoint those looking
for a class of mathematical structures to identify with realistic QF T's is the removal
of the regulator. I have already suggested that it is misleading to talk about taking
a continuum limit here, and we can now see why. All that is happening when an
ultraviolet cutoff is taken to infinity in a typical perturbative calculation is that a
limit is being taken of a particular truncated power series expression. That a great
deal more is needed to verify the existence of a continuum QFT model is evident
when we look at the work that goes into constructing models of the Wightman
or Haag-Kastler axioms. What mathematical physicists working on this problem
typically do is start with a cutoff QF T model, with non-perturbative cutoffs at high
and low momentum—a theory defined on a finite volume lattice for instance—and
attempt to take the continuum and infinite volume limits of this structure. The
difficulties associated with taking these limits in a controlled way outstrip, and
are in fact largely independent of, the problem of ridding perturbative expansions
of divergences.

The continuum limit, in particular, is best understood within the renormalization
group framework—see Hancox-Li ([2015a]) for a detailed discussion. The renor-
malization group gives us a way of studying the behaviour of a theory at different
length /energy scales which is, in principle at least, entirely non-perturbative. In
this case we are interested in how the couplings of a theory behave in the region
of arbitrarily high energies. The existence of a non-trivial continuum limit is typi-
cally taken to be conditional on the existence of a so-called ultraviolet fixed point.
What this means, in essence, is that as the lattice spacing is decreased towards
zero, the couplings of the theory need to converge to zero (asymptotic freedom),
or some finite value (asymptotic safety). Whether this occurs or not, however, is
entirely independent of the property of perturbative renormalizability: renormal-
izable theories like QED and ¢* theory are thought to lack an ultraviolet fixed
point, while non-renormalizable theories, such as naive quantizations of general
relativity, may have one.!® Moreover, the treatment of infrared divergences in
the perturbation series of gauge theories like quantum chromodynamics does not

I"The lack of any attempt to construct a quantum system corresponding to a regularized integral
is even more evident in the case of dimensional regularization mentioned in footnote 7. This
method works by analytically continuing the integration measure to a non-integer number of
dimensions. Again, one sometimes finds talk of quantum theories with a fractional number
of dimensions in this context. Yet (to my knowledge) no attempt has been made to actually
construct QFT models of this kind, and dimensional regularization techniques do not play
any role in extant work in the constructive field theory. Rivasseau ([2014], 7) comments
that dimensional regularization “cannot be used up to now in a constructive non-perturbative
program”.

BThere is a whole programme in the quantum gravity literature exploring the possibility
that quantizations of general relativity have an ultraviolet fixed point despite being non-
renormalizable—see Niedermaier and Reuter ([2006]) for a review.
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solve the problems associated with bringing its infrared behaviour under mathe-
matical control in the non-perturbative context. In sum then, removing the cutoffs
on momentum space integrals in the perturbative renormalization procedure has
very little to do with the project of constructing continuum QFT models.

A final blow for those searching for explicit constructions of QFT models in the
perturbative framework is the divergence of the expansion. If renormalized per-
turbation series converged we could use their sums to define S-matrix elements
and construct QFT models from there. Alas, they do not. This may not rule
out the possibility of extracting a structural characterisation of interacting QFTs
from renormalized perturbation series entirely—there are, after all, a number of
ways of defining sums for divergent series.!® But it does, at least, show that it is
a non-trivial undertaking. And again, is not a project which we find high energy
physicists working with the perturbative formalism engaging in. In most practical
calculations particle physics phenomenologists simply truncate the perturbation
series after the first few terms and do not concern themselves with the fate of
the sum to all orders. Once again, no attention is being given to the existence of
interacting QFT models.

This all makes sense if we take the intended output of the perturbative approach
to be approximations rather than physical models. On this reading the strat-
egy underlying the perturbative treatment of interacting QFT's is to dodge rather
than solve the problem of how to characterise the theory in terms of mathematical
structures. While philosophers of a realist persuasion in particular will find this
troubling—a point I will come back to shortly—there is nothing manifestly inco-
herent about it if we accept the conclusions of the previous section. I argued that
it is a mistake to think that approximations must be embedded within a model in
order to be meaningful. We should not berate particle physics phenomenologists
then for failing to tell us what an interacting QFT is. Obtaining approximate
expressions for scattering cross sections and constructing QFT models are dif-
ferent objectives; in principle the former can be pursued without addressing the
latter.

A great advantage of this reading is that it opens the way for more construc-
tive philosophical engagement with perturbative QFT. The analysis I have devel-
oped here sheds new light on the three putative problems with the perturbative
approach I distinguished in section 1 and ultimately leads to a less pessimistic
assessment of the conceptual respectability of the perturbative framework.

One of the complaints about perturbative QFT, which I called the rigour prob-
lem, was that its lack of mathematical rigour makes it impossible to engage with
from a foundational perspective. This objection is usually left relatively vague;

19Tt turns out that the perturbation series of interacting theories which have been constructed as
models of the Wightman axioms in a reduced number of space-time dimensions have a unique
Borel sum which is identical to the exact values of the corresponding S-matrix elements—see
Rivasseau ([2014]) for a discussion of these results. There are good reasons to think that this
behaviour does not generalise to the case of realistic QFTs however, for a review of this issue
see Duncan ([2012]) chapter 11. Thanks to Michael Miller for discussions about this issue.
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we rarely find philosophers pointing to specific aspects of the perturbative method
which they find problematically unrigorous. I suspect, however, that what is often
driving this sort of worry is the absence of an explicit specification of a class of
mathematical structures underlying the approach. As I discussed in the previous
section, philosophers of science have often viewed approximations as derived from,
and underwritten by, physical models. Given what has been said already about
perturbative QFT it is easy to see how a follower of this doctrine might perceive
it as hopelessly sloppy, and attribute this to an unrigorous treatment of the rel-
evant mathematics. As I mentioned in section 1, Fraser identifies an “infinitely
renormalized” variant of QFT which is associated with the process of imposing
and removing a cutoff in the perturbative renormalization procedure. According
to her this amounts to adding infinite counterterms to the Lagrangian and leads
to a mathematically ill defined system.

Rather than reading the perturbative approach as a botched attempt at construct-
ing QFT models however, I have been arguing that it is much more natural to
interpret it as never taking up this project in the first place. Understood as a
method for producing approximations, the perturbative approach is more difficult
to dismiss as mathematically unsound. This is not to say that standard perturba-
tive computations are paragons of mathematical precision. The treatment of the
convergence of momentum space integrals in the physics literature, for instance,
often falls short of the standards of rigour upheld by mathematicians. But this
is the kind of imprecision that is ubiquitous in applied mathematics—if we reject
the perturbative approach on these grounds we will also be jettisoning much of
physical science.?’ The perturbative approach has been seen as mathematically
problematic in a more radical sense, I think, because of the lack of attention paid
to the existence of QFT models. On the view I have been developing here how-
ever this has nothing to do with mathematical rigour and instead reflects the more
modest objective of the perturbative method. Whether Fraser’s “infinitely renor-
malized” QFTs make sense as constructive mathematical objects or not, they are
not deployed in any way in conventional perturbative calculations.

The apparent inconsistency problem posed by Haag’s theorem also turns out to
be less threatening than it initially appeared. The crucial point here is that
Haag’s result pertains to the properties of QFT models. Roughly speaking, it
tells us that the time evolution of models of the Wightman and Haag-Kastler
axioms cannot be carved up in the manner prescribed by the interaction picture.
Why doesn’t this undermine perturbative evaluations of scattering cross sections?
The short answer is that since the perturbative method is not in the business of
providing a structural characterisation of QFT there cannot possibly be a conflict
here. Perturbative evaluations of S-matrix elements do not posit the existence of
models satisfying the assumptions shown to be inconsistent by Haag’s theorem

20Making sense of the prevalence of unrigorous mathematics in the physical sciences is a philo-
sophical project in its own right, and there may be scope for fruitful engagement with pertur-
bative QFT in this context. My claim here is not that there is nothing more to discuss about
the applicability of mathematics here but that one source of worries about more radical lapses
of rigour in the perturbative approach is unfounded.
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because they do not pick out any physical models at all.

This fits well, I think, with Miller’s ([2017]) recent discussion of Haag’s theorem,
which helps to clarify how perturbative calculations avoid inconsistency. As Miller
points out, the methods used to regularize ultraviolet and infrared divergences
in the perturbative expansion invariably cut against the assumptions needed to
prove Haag’s theorem. Consider, in particular, the imposition of high and low
momentum cutoffs on the relevant integrals. As I argued above this is not the
same thing as constructing a cutoff model, but we now know how to write down
such systems. If we put a QFT on a finite volume lattice, for instance, the resulting
model is not touched by Haag’s theorem because it violates the assumption needed
to prove it. In fact, since the number of degrees of freedom is finite, such a system
does not admit unitarily inequivalent Hilbert space representations at all. This
means that the interaction picture exists and the steps involved with setting up the
perturbative expansion of the S-matrix can be concretely implemented. Crucially
though, when we remove the cutoffs at the end of the calculation this should be
understood as taking a limit of a particular function. Just as taking the radius to
infinity of particular quantities defined on a sphere does not commit one to the
existence of an infinite sphere, in Norton’s example, removing the cutoffs does not
rest on the assumption that the interaction picture can be implemented in the
continuum and infinite volume limit. The perturbative method simply does not
assert the set of claims shown to be inconsistent by Haag’s theorem.?!

5 The Real Problem

The rigour and inconsistency problems turn out to be red herrings on the reading
of the perturbative approach I have developed then. Worries about the inter-
nal coherence of the QFT perturbation theory have, I suggest, largely sprung
from a misunderstanding of its aims. Still, there clearly is something puzzling
about the perturbative approach, as I have characterised it. It is the justification
problem which ends up being the really fundamental conceptual issue with per-
turbative QFT. The various manipulations described in section 2 may provide a
sound method for generating well-defined functions but there remains a mystery
about why they provide such good approximations to observables measured in
collider experiments. The renormalization procedure, in particular, seems to be
flagrantly ad hoc. The process of regularizing integrals, redefining the coupling
and removing the regulator in the standard renormalization procedure all seem to
proceed in the absence of any physical argument underlying each step.

While my analysis of the perturbative approach does not solve this problem it
does help us identify the root cause. The success of the perturbative approach is

21This is not, of course, to say that Haag’s theorem has no foundational import at all. In fact, I
briefly suggest in the next section that it can be reinterpreted as contributing to the severity
of the justification problem for perturbative QFT.
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mysterious, I suggest, precisely because it dodges the question of what an interact-
ing QFT really is. Many of the seemingly peculiar features of QFT perturbation
series are actually found in many applications of perturbative methods elsewhere
in physics. As I mentioned in section 2.2, the process of redefining the expansion
parameter in the renormalization procedure is often employed in perturbative cal-
culations in classical and quantum theory even when there is no problem with
divergences. Furthermore, divergent perturbative expansions are commonplace in
many branches of physics. In most of these cases however, we typically know what
the physical systems whose properties we are trying to approximate look like. Al-
though we cannot solve the standard quantum mechanical models of the Helium
atom, for instance, we know how to write down its Hamiltonian and Hilbert space.
What sets the original perturbative treatment of QED apart from these cases is the
absence of any non-perturbative characterisation of the system of interest. While
I have argued that this does not render perturbative QFT incoherent it undercuts
the possibility of telling a physical story which could explain its success. Haag’s
theorem can be reinterpreted as contributing to the severity of this situation since
it shows that a flat footed attempt to translate perturbative scattering theory into
a non-perturbative characterisation of QFT is doomed to failure.??

This appears to be bad news for the scientific realist, who wants to say that scien-
tific predictions succeed because they are derived from theories which accurately
represent the way the world is. On the other hand, my analysis of the perturbative
approach does not fit neatly with the most popular forms of anti-realism. The con-
structive empiricist states their epistemic commitments with respect to models,
taking them to be empirically adequate rather than representationaly faithful. If I
am right then perturbative QFT cannot be read in these terms either: it does not
provide us with physical models at all, empirically adequate or not. Prima facie
then, the sort of anti-realism motivated by the discussion so far would have to be
a fairly radical form of instrumentalism, which takes the perturbative apparatus
to be an algorithm for producing empirically successful predictions. Of course,
instrumentalism has well known problems of its own.

Besides these connections with the realism debate, the ad hoc character of per-
turbative renormalization can also be viewed as a local problem within the QFT
programme, and was perceived in this way by physicists in the aftermath of its
initial success. The emergence of the axiomatic and effective field theory ap-
proaches to QFT in the second half of the 20th century can both be understood
as responding to limitations with the original perturbative formalism, the need
for an improved physical understanding of the renormalization procedure being
an important motivation for these developments. We should not move too quickly
to dismiss the perturbative approach to QFT on the basis of the justification
problem then. The analysis put forward here suggests that the perturbative for-
malism lacks the resources to answer this challenge on its own, but we now have
non-perturbative approaches to QFT on the table which may be able to fill this

2Miller ([2017], 15) advocates a similar reading of Haag’s theorem as pointing to a tension
between perturbative and non-perturbative approaches to QFT.
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explanatory lacuna.

The claim that the advent of the renormalization group has improved the concep-
tual standing of renormalization methods, made by some physicists and philoso-
phers (Lepage, 2005; Wallace, 2011) can be understood in these terms. The renor-
malization group framework arguably provides a non-perturbative justification
for many of the steps involved in renormalized perturbation theory. One issue
which has been discussed in the recent philosophical literature is how the renor-
malization group explains the prevalence of renormalizable theories in high energy
physics, and thus improves on the traditional view of renormalizability as a mys-
terious a priori principle (Butterfield and Bouatta, 2015; Hancox-Li, 2015b). But
there is also, I think, a more detailed story to tell about how the renormalization
group illuminates the perturbative renormalization procedure itself. The impo-
sition of a perturbative cutoff, originally understood as a purely pragmatic step,
is re-interpreted in this setting as a matter of throwing away information about
unknown high energy physics. The process of redefining the expansion param-
eter so as to remove divergences in the perturbative coefficients also acquires a
physical, and not merely instrumental, reading in the renormalization group con-
text. General results in the renormalization group framework tell us that the
S-matrix elements of a QFT model at low energies are very weakly dependent
on the value of the ultraviolet cutoff. The hypersensitivity to the cutoff manifest
in ultraviolet divergent integrals can thus justifiably be identified as artefacts of
the way the perturbative approximation scheme is set up. Removing them can
simply be understood as a matter of ensuring that truncations of the series have
the scaling properties of the non-perturbative quantities they are supposed to be
approximating.??

Developing this story in detail is a substantive project in its own right, and there
remains a great deal to be said about how the explanatory contribution of the
renormalization group should to be understood. Still, these inchoate remarks are
enough to show that the justification problem need not be a reason to eschew
philosophical engagement with perturbative QFT. Rather, there is much work to
be done in examining the extent to which non-perturbative approaches to QFT
can account for its success. They also suggest that scientific realism may not be
in such bad shape after all.

ZWallace ([2006], [2011]) claims that, in the wake of the success of the renormalization group,
we now have a non-perturbative structural characterisation of empirically successful QFTs,
namely cutoff formulations of these theories. If this is the case, can we view applications
of the perturbative formalism as a calculation tool within this cutoff version of QFT in the
modern context, and therefore more analogous to perturbation methods in, say, atomic physics?
Perhaps, but developing this view of perturbative QFT requires meta-scientific engagement—
it is not simply obvious from looking at contemporary practice in high energy physics. This
would be one route to addressing the justification problem.
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