Counting Functions

FRED JOHNSON

Abstract Counting functions are shown to be closed under composition.

The proof by Pelletier and Martin [1] of Post's Functional Completeness Theorem contains a very complex argument that shows in effect that counting functions are closed under composition. The purpose of this note is to give a simple proof of this result.

A function f^n is an *n-ary truth function* iff the domain of f^n consists of the set of *n*-tuples of truth values (t and f) and f^n assigns t or f to each member of the domain. Let R_n be an *n*-tuple of truth values. $O_{n,i}$, for $1 \le i \le n$, is an *operator* iff, for every R_n , $O_{n,i}R_n$ is an *n*-tuple of truth values that differs from R_n in and only in the ith place. A function f^n is counting iff f^n is an *n*-ary truth function and for every operator $O_{n,i}$ either $f^n(R_n) = f^n(O_{n,i}R_n)$ for every R_n or $f^n(R_n) \ne f^n(O_{n,i}R_n)$ for every R_n . (Suppose $f^2 = \{\langle\langle tt \rangle, f \rangle, \langle\langle tf \rangle, t \rangle, \langle\langle ft \rangle, f \rangle, \langle\langle ff \rangle, t \rangle\}$. f^2 is counting since $f^2(R_2) = f^2(O_{2,1}R_2)$ for every R_2 and $f^2(R_2) \ne f^2(O_{2,2}R_2)$ for every R_2 .)

Theorem 1 If function f^n is counting and $\langle O_{n,i_1}, \ldots, O_{n,i_m} \rangle$ is a sequence of operators then either $f^n(R_n) = f^n(O_{n,i_1} \ldots O_{n,i_m} R_n)$ for every R_n or $f^n(R_n) \neq f^n(O_{n,i_1} \ldots O_{n,i_m} R_n)$ for every R_n .

Proof: Assume the antecedent. We use induction on the length m of the sequence of operators. Basis step: m=1. Immediate. Induction step: m>1. By the induction hypothesis either $f^n(R_n)=f^n(O_{n,i_2}\ldots O_{n,i_{m+1}}R_n)$ for every R_n or $f^n(R_n)\neq f^n(O_{n,i_2}\ldots O_{n,i_{m+1}}R_n)$ for every R_n . So either $f^n(O_{n,i_1}R_n)=f^n(O_{n,i_1}O_{n,i_2}\ldots O_{n,i_{m+1}}R_n)$ for every R_n or $f^n(O_{n,i_1}R_n)\neq f^n(O_{n,i_1}O_{n,i_2}\ldots O_{n,i_{m+1}}R_n)$ for every R_n . Since either $f^n(R_n)=f^n(O_{n,i_1}R_n)$ for every R_n or $f^n(R_n)\neq f^n(O_{n,i_1}\ldots O_{n,i_{m+1}}R_n)$ for every R_n or $f^n(R_n)\neq f^n(O_{n,i_1}\ldots O_{n,i_{m+1}}R_n)$ for every R_n or $f^n(R_n)\neq f^n(O_{n,i_1}\ldots O_{n,i_{m+1}}R_n)$ for every R_n .

Theorem 2 If functions $g^m, h_1^n, \ldots h_m^n$ are counting and $f^n = g^m(h_1^n, \ldots h_m^n)$ then f^n is counting.

Received December 11, 1991; revised April 7, 1992

Proof: Assume the antecedent. Then f^n is an n-ary truth function. Suppose $O_{n,i}$ is an operator. Let $y \in X$ iff $h_y^n(R_n) \neq h_y^n(O_{n,i}R_n)$ for every R_n . If X is empty then $g^m(h_1^n(R_n), \ldots h_m^n(R_n)) = g^m(h_1^n(O_{n,i}R_n), \ldots h_m^n(O_{n,i}R_n))$ for every R_n . So $f^n(R_n) = f^n(O_{n,i}R_n)$ for every R_n . So f^n is counting. If X is nonempty then $X = \{k_1, \ldots k_r\}$ (for $r \leq m$). Then $g^m(O_{m,k_1}, \ldots O_{m,k_r}, h_1^n(R_n), \ldots h_m^n(R_n)) = g^m(h_1^n(O_{n,i}R_n), \ldots h_m^n(O_{n,i}R_n))$ for every R_n . By Theorem 1, $g^m(h_1^n(R_n), \ldots h_m^n(R_n)) = g^m(O_{m,k_1}, \ldots O_{m,k_r}, (h_1^n(R_n), \ldots h_m^n(R_n)))$ for every R_n or $g^m(h_1^n(R_n), \ldots h_m^n(R_n)) \neq g^m(O_{m,k_1}, \ldots O_{m,k_r}, (h_1^n(R_n), \ldots h_m^n(R_n)))$ for every R_n . So $f^n(R_n) = f^n(O_{n,i}R_n)$ for every R_n or $f^n(R_n) \neq f^n(O_{n,i}R_n)$ for every R_n . So f^n is counting.

Acknowledgment I am grateful to an anonymous referee for refinements of the argument.

REFERENCE

[1] Pelletier, F. and N. Martin, "Post's Functional Completeness Theorem," *Notre Dame Journal of Formal Logic*, vol. 31 (1990), pp. 462-475.

Department of Philosophy Colorado State University Fort Collins, Colorado