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Counting Functions

FRED JOHNSON

Abstract Counting functions are shown to be closed under composition.

The proof by Pelletier and Martin [1] of Post's Functional Completeness The-
orem contains a very complex argument that shows in effect that counting func-
tions are closed under composition. The purpose of this note is to give a simple
proof of this result.

A function/" is an n-ary truth function iff the domain of / " consists of the
set of ^-tuples of truth values (/ and/) and/" assigns torfto each member of
the domain. Let Rn be an /2-tuple of truth values. Onj, for 1 < i < n, is an oper-
ator iff, for every Rn9OniRn is an w-tuple of truth values that differs from Rn

in and only in the /th place. A function/" is counting iff/" is an n-ary truth
function and for every operator Oni either fn(Rn) = fn(OnjRn) for every Rn or
f"(Rn) ±fn(OnjRn) for every Rn[(Suppose/2 = {«#>,/>,«*/>,O,«/O, />,
«ff>,O).f2 is counting since f2(R2) = f2(O2ΛR2) for every R2 and/2(Λ2) Φ
f2(O2>2R2) for every R2.)

Theorem 1 If function / " is counting and < Ortj h,..., OΆy im )isa sequence of
operators then either fn(Rn) =fn(Onth . . . On^Rn) for every Rn orfn(Rn) Φ
fn(OnJι... OnJmRn) for every Rn.

Proof: Assume the antecedent. We use induction on the length m of the sequence
of operators. Basis step: m = l. Immediate. Induction step: m > 1. By the induc-
tion hypothesis either fn(Rn) =fn(Onj2... OnJm+1Rn) for every Rn or fn(Rn) Φ
fn{Onj2... OnJm+ιRn) for every Rn. So either fn(OnJlRn) =fn(OnJιOnj2...
On,im+1Rn) for every Rn or fn(OnJιRn) Φfn{OnMOnj2... OnJm+ιRn) for every
Rn. Since either f»(Rn) =f"(OnJιRn) for every Rn or fn(Rn) Φfn(OnΛRn)
for every RΛ9 either f"(Rn) =fn(OnJi... OnJm+λRn) for every Rn or fn(Rn) Φ
Γ(OnJι... OnJm+ιRn) for every Rn.

Theorem 2 If functions gm

9hΐ,...h^ are counting andfn = gm(Λ",... h^)
then / " is counting.
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Proof: Assume the antecedent. Then fn is an Λ-ary truth function. Suppose
On i is an operator. Let y € X iff h£(Rn) Φ h£(On ,#„) for every Rn. If X is
empty then gm(h?(Rn),.. .hn

m (Rn)) = gm(h?(On'tiRn)9.. .hn

m{OnJRn)) for
every Rn. So fn(Rn) =fn(OnJRn) for every Rn. Sofn is counting. If JTis non-
empty thenJ^= [ku. ..kr) (for r < m). Then g m (O m ,^ . . . Om,*r(Λf (Rn),...
Λm(Λ#i)) = gm(h?(OntiRn)9...h

n

m(OntiRn)) for every i?Λ. By Theorem 1,
gmW(Rn),... A£(ΛΛ)) = g w ( O w , ^ . . . Om,krW(Rn),... A£(ΛΠ))) for every
Rn or gw(Af (Λ r t),... h»(Rn)) Φ gm(Om>kί... Om9kr(h?(Rn), h»(Rn))) for
every i?Λ. So fn(Rn) =f"(OnJRn) for every i?Λ or fn(Rn) Φfn(OnJRn) for ev-
ery Rn. So/" is counting.

Acknowledgment I am grateful to an anonymous referee for refinements of the ar-
gument.

REFERENCE

[1] Pelletier, F. and N. Martin, "Post's Functional Completeness Theorem,"
Notre Dame Journal of Formal Logic, vol. 31 (1990), pp. 462-475.

Department of Philosophy
Colorado State University
Fort Collins, Colorado




