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Incremental Bayesian Category Learning from Natural Language

Models of category learning have been extensively studied in cognitive science and

primarily tested on perceptual abstractions or artificial stimuli. In this paper we focus on

categories acquired from natural language stimuli, that is words (e.g., chair is a member of

the furniture category). We present a Bayesian model which, unlike previous work,

learns both categories and their features in a single process. We model category induction

as two interrelated sub-problems: (a) the acquisition of features that discriminate among

categories, and (b) the grouping of concepts into categories based on those features. Our

model learns categories incrementally using particle filters, a sequential Monte Carlo

method commonly used for approximate probabilistic inference which sequentially

integrates newly observed data and can be viewed as a plausible mechanism for human

learning. Experimental results show that our incremental learner obtains meaningful

categories which yield a closer fit to behavioral data compared to related models whilst at

the same time acquiring features which characterize the learnt categories.1

Introduction

The task of categorization, in which people cluster stimuli into categories and then

use those categories to make inferences about novel stimuli, has long been a core problem

within cognitive science. Understanding the mechanisms involved in categorization,

particularly in category acquisition, is essential, as the ability to generalize from experience

underlies a variety of common mental tasks, including perception, learning, and the use of

language. As a result, category learning has been one of the most extensively studied

aspects in human cognition, both from an empirical perspective and modeling perspective.

In a typical experiment, participants are taught the category membership of a set of

training stimuli and then asked to generalize to a set of test stimuli. Computational models

are then evaluated on their ability to predict the resulting patterns of generalization
1An earlier version of this work was published in Frermann and Lapata (2014).
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(Anderson, 1991).

Categorization is a classic example of inductive inference, i.e., extending knowledge

from known to novel instances. When learning about a new category of objects, humans

need to infer the structure of the category from examples of its members. The knowledge

acquired through this process can ultimately be used to make decisions about how to

categorize new stimuli. Categorization presents a difficult inference problem: the learner is

faced with limited data (e.g., a few exemplars), and has to evaluate several categorization

hypotheses given this data without knowing exactly which category structure is correct.

Furthermore, inference proceeds incrementally, learners encounter data and update their

beliefs over time, making new generalizations when new information becomes available

(Bornstein and Mash, 2010; Diaz and Ross, 2006). To complicate matters, categorization is

an example of a joint inference problem. For instance, experimental evidence suggests that

the development of categories and their characteristic features emerge simultaneously in

one process (Goldstone et al., 2001; Schyns and Rodet, 1997). It is also well-known that

children’s word learning improves when they form some abstract knowledge about what

kinds of semantic properties are relevant to what kinds of categories (Jones et al., 1991;

Colunga and Smith, 2005; Colunga and Sims, 2011). This abstract knowledge is argued to

emerge by generalizing over the learned words. So, words that have been learned

contribute to generalized abstract knowledge about word meanings and semantic

categories, which then guide subsequent word learning.

In this article, we present a computational model which tackles the problem of

learning categories and their characteristic features from natural language text. Our model

is presented with concepts such as {parrot, seagull, chocolate, sausage} and their local

context, and groups them into categories (bird and food in this example) based on their

contextual similarity. Although concepts like parrot and seagull might rarely co-occur

together explicitly, they do occur in similar contexts (e.g., {croak,lay-eggs}2).

2Throughout this paper we will use small cap fonts to denote categories, italics to denote their members,
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Analogously, the concepts chocolate and sausage might rarely be observed together in text,

however, they share contexts such as {eat,breakfast,healthy}. We thus approximate

category-specific features with natural language context, and show that our model learns

meaningful categories as well as descriptive features for them.3 More technically, our model

of category acquisition is based on the key idea that learners can adaptively form category

representations that capture the structure expressed in the observed data. We model

category induction as two interrelated sub-problems: (a) the acquisition of features that

discriminate among categories, and (b) the grouping of concepts into categories based on

those features. Our model learns incrementally as data is presented and updates its

internal knowledge state locally without systematically revising everything known about

the situation at hand.

We formulate our categorization model in a probabilistic Bayesian setting.

Probabilistic approaches provide a computational framework for modeling inductive

problems, by identifying ideal or optimal solutions to them and then using algorithms for

approximating these solutions. Several probabilistic category learning models have been

proposed in the literature (Anderson, 1991; Ashby and Alfonso-Reese, 1995; Griffiths et al.,

2008; Sanborn et al., 2010; Canini, 2011), essentially viewing category learning as a

problem of density estimation: determining the probability distributions associated with

different category labels. Our model learns categories using a particle filter (Doucet et al.,

2001), a sequential Monte Carlo (SMC) inference mechanism which allows to update a

probability distribution over time, while sequentially integrating newly observed data.

Monte Carlo algorithms offer a plausible proxy for modeling human learning and have been

previously used (Börschinger and Johnson, 2011, 2012; Levy et al., 2009; Sanborn et al.,

2010; Griffiths et al., 2008) to explain how humans might be performing probabilistic

and typewriter fonts for their features.
3We use the terms concepts and categories to refer to basic-level and superordinate categories, respec-

tively. Our model in turn infers superordinate categories based on the features of their basic-level category

members.
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inference, essentially reducing probabilistic computations to generating samples from a

probability distribution.

Historically, the stimuli involved in categorization studies (either lab experiments or

simulations) tend to be concrete objects with an unbounded number of features

(e.g., physical objects; Bornstein and Mash 2010) or highly abstract ones, with a small

number of manually specified features (e.g, binary strings, colored shapes; Medin and

Schaffer 1978; Kruschke 1993). Most existing models focus on adult categorization, in

which it is assumed that learners have developed categorization mechanisms and a large

number of categories have already been learnt. Those models are typically evaluated

against behavioral data elicited in laboratory experiments from adult participants who are

assumed to have acquired and are able to make use of rich prior world knowledge. A

notable exception is Anderson’s (1991) rational model of categorization (see also Griffiths

et al. 2007a) where the learner starts without any predefined categories and stimuli are

clustered into groups as they are encountered. Our model is based on the same assumption

(i.e., it learns categories directly from data), but instead uses natural language stimuli (i.e.,

words).

The idea of modeling categories using words as a stand-in for their referents has been

previously used to explore categorization-related phenomena such as semantic priming

(Cree et al., 1999) and typicality rating (Voorspoels et al., 2008), to evaluate prototype and

exemplar models (Storms et al., 2000), and to simulate early language category acquisition

(Fountain and Lapata, 2011). The idea of using naturalistic corpora as a proxy for people’s

representation of semantic concepts has received little attention. Instead, featural

representations, called feature norms, have played a central role in psychological theories of

semantic cognition and knowledge organization and many studies have been conducted to

elicit detailed knowledge of features (Smith et al., 1974; McRae et al., 2005; Vinson and

Vigliocco, 2008; Rogers and McClelland, 2004). In a typical procedure, participants are

presented with a word and asked to generate the most relevant features or attributes for its
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referent concept (e.g., McRae et al. 2005). Our approach replaces feature norms with

representations derived from words’ contexts in corpora. We assume that words whose

referents exhibit differing features are likely to occur in correspondingly different contexts

and that these differences in usage can provide a substitute for featural representations.

While this is an impoverished view of how categories are acquired — it is clear that

they are learnt through exposure to the linguistic environment and the physical world —

perceptual information relevant for extracting semantic categories is to a large extent

redundantly encoded in linguistic experience (Riordan and Jones, 2011). Besides, there are

known difficulties with feature norms such as the small number of words for which these can

be obtained, the quality of the attributes, and variability in the way people generate them

(see Zeigenfuse and Lee 2010 for details). Focusing on natural language categorization

allows us to build categorization models with theoretically unlimited scope. Moreover, the

corpus-based approach is attractive for modeling the development of linguistic categories.

If simple distributional information really does form the basis of a word’s cognitive

representation (Harris, 1954; Redington and Chater, 1997; Braine, 1987), this implies that

learners are sensitive to the structure of the linguistic environment during language

development. As experience with a word accumulates, more information about its contexts

of use is encoded, with a corresponding increase in the ability of the language learner to

use the word appropriately and make inferences about novel words of the same category.

In the remainder of this article, we review previous research on categorization placing

emphasis on natural language categories and Bayesian models. Next, we present our

categorization model and its incremental learning mechanism, and describe several

simulations assessing its performance when applied to a large corpus as well as to a smaller

corpus of child-directed speech. Experimental results show that our incremental learner

obtains meaningful categories which yield a closer fit to behavioral data compared to

related models whilst at the same time acquiring features which characterize the learnt

categories. In all cases, we evaluate the induced categories by comparing model output
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against a gold standard set of categories and exemplars created by humans.

Related Work

Theories of Categorization. Numerous theories as to how humans categorize

objects have been proposed and extensively tested. It is beyond the scope of this article to

provide a detailed overview, we highlight those relevant to our modeling approach.

Prototype theory (Rosch, 1973) represents categories through an idealized prototypical

member possessing the features which are critical to the category. Membership in the

category is determined by comparing the observed features of a possible member against

those of the prototype. For example, the characteristic features of fruit might include

contains seeds, grows above ground, and is edible.

Prototype theory has been challenged by the exemplar approach (Medin and

Schaffer, 1978). In this view, categories are defined not by a single representation but

rather by a list of previously encountered members. An exemplar model simply stores

those instances of fruit to which it has been exposed (e.g., apples, oranges, pears). A new

object is grouped into the category if it is sufficiently similar to one or more of the fruit

instances stored in memory. Practically, exemplar models and prototype models can

account for the same range of phenomena. Our Bayesian model of categorization resembles

an exemplar model: information from all exemplars encountered is stored and contributes

to the representation of their particular category.

The knowledge approach to categories takes a somewhat different standpoint

asserting that categories are formed on the basis of people’s general knowledge about the

world. This view is perhaps best illustrated by what Barsalou (1985) calls goal-derived

categories, i.e., categories that are designed based on how their members fill some

externally-determined role. For example, the category of breakfast foods, consisting of

concepts like bacon, eggs, or grits is quite clearly a category people can and do form, and

about which they can make meaningful judgments, yet there is very little similarity
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between members, making it difficult to account for using an exemplar model or a

prototype model. Our own model learns from large corpora which can be viewed as a rich

source of world knowledge. It makes use of the knowledge encoded in a a word’s context to

form abstractions that are qualitatively different from those that can be encapsulated by

either exemplars or prototypes. We show in our simulations that the kinds of categories

and features our model induces are representative of background knowledge.

Models and Modalities of Language Acquisition. In this work we formulate

a categorization model which learns from exposure to the distributional properties of the

linguistic environment. However, it is clear that when children learn language, they are not

only exposed to linguistic input but also to various types of perceptual input, including

visual context, prosody, gaze and body movement. Additionally, learning is

cross-situational — children learn words or concepts through repeated co-occurrence of

clues from different modalities in the environment (such as objects and their linguistic

labels) — which implies that learners combine information from both linguistic and

nonlinguistic context. Here, we briefly overview the ways in which various modalities have

been incorporated in computational models of language acquisition, and position our own

model in the context of this work.

A variety of models on cross-modal word learning have been proposed. Word learning

is the process of creating a “mental lexicon” from linguistic input, identifying words and

their referents, and as such is a form of categorization. These models range from combining

raw speech with visual input (Roy and Pentland, 2002), or concrete objects with words (Xu

and Tenenbaum, 2007), to eliciting cross-situational co-occurrence patterns of linguistic

input and objects in speakers’ attention (Frank et al., 2009).

Acquisition of visual categories is an important and notoriously hard problem in the

area of computer vision, where large-scale systems require thousands of training examples

with sophisticated features in order to be able to recognize classes of objects in images.

This stands in sharp contrast to humans who quickly and robustly recognize objects
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regardless of scale or perspective. Fei-Fei et al. (2003) propose a Bayesian model for

category learning from purely visual image data incorporating prior knowledge in the

model and show that information based on previously acquired categories boosts learning

of new categories.

Another line of work investigates the joint process of word learning and object

categorization showing that linguistic cues facilitate object recognition and vice versa (see

also Lupyan et al. 2007). Yu (2005) develops a joint model of lexical acquisition and object

categorization based on experimental evidence indicating that the two problems are

interrelated. The model learns from linguistic and visual data (simplified as color, shape

and texture features). Specifically, subjects were asked to narrate a picture book wearing a

head-mounted camera to capture a first-person point of view while their acoustic signals

were being recorded (using a headset microphone). Similarly, Yu and Ballard (2004)

simulate joint word and object learning in adults based on descriptions of nine objects

paired with images from a head-mounted camera.

The models introduced above require complex and controlled multimodal input data,

which inherently limits their scope. While their aim is to support fundamental

characteristics of language acquisition it is unclear whether the models generalize to other

tasks or types of data. In this work we adopt a complementary approach. While we

consider a qualitatively coarser approximation of the learning environment, in the form of

linguistic corpora, this has the advantage of being able to test our models on a much larger

scale. Below, we discuss our approach in more detail contrasting it to related work focusing

exclusively on categorization.

Natural Language Categorization. Most experimental work on category

modeling and acquisition has revolved around laboratory experiments involving either

real-world objects (e.g., children’s toys; Starkey 1981), perceptual abstractions

(e.g., photographs of animals; Quinn and Eimas 1996), or abstract, artificial stimuli

(e.g., dot patterns or geometric shapes; Posner and Keele 1968 and Bomba and Siqueland
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1983, respectively). In most cases researchers using abstract or artificial stimuli to explore

human categorization would not assert that participants possess a distinct mechanism for

distinguishing between categories of (for example) binary strings, but rather that the task

invokes a single, global mechanism for learning and applying categories. Our own approach

is no different, in that we treat word meaning as a proxy for conceptual structure (Murphy,

2002) and do not suggest that (semantic) categories of words differ significantly from the

categories involving their real-world referents. We refer to this task, of organizing words

into categories based on their semantics, as natural language categorization. While the idea

of modeling categories using words as a stand-in for their referents is of course not a new

one, explicitly viewing categorization as the task of organizing words into categories based

on meaning allows us to make use of powerful ideas from artificial intelligence and

computational linguistics. Previous work that could be described as natural language

categorization has a recurring theme: the use of feature norms to construct semantic

representations for word meaning. Feature norms are traditionally collected through

norming studies, in which participants are presented with a word and asked to generate a

number of relevant features for its referent concept (The most notable of these is probably

the multi-year project of McRae et al. (2005), which collected and analyzed features for a

set of 541 common English nouns). The results of such studies can be interesting in their

own right, as the frequency and distribution of generated features can provide considerable

insight into the nature of participants’ categories — but they can also provide material for

evaluating prototype and exemplar models.

Existing research into natural language categorization has used such featural

representations to explore a wide range of categorization-related phenomena. Heit and

Barsalou (1996) demonstrated their instantiation principle within the context of natural

language concepts, Storms et al. (2000) contrasted exemplar and prototype models using a

task-based evaluation, Cree et al. (1999) used feature-based representations to model

semantic priming, and Voorspoels et al. (2008) model typicality ratings for natural
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language concepts. In all of these models words are used as a proxy for real-world stimuli,

and feature norms as a proxy for people’s perceptual experiences of those stimuli. Our

approach is to replace feature norms with representations derived from words’ context in

corpora, i.e., to use distributional semantics to approximate people’s perceptual

representations of real-world stimuli. While this approach represents only a partial view of

how people acquire and use categories, experimental comparisons of feature-based and

corpus-based categorization models indicate that the latter represent a viable alternative to

the feature norms typically used (Fountain and Lapata, 2010).

Our work is closest to Fountain and Lapata (2011) who also develop a corpus-based

model of natural language categories drawing inspiration from semantic networks (Collins

and Loftus, 1975). In this framework, each node is a word, representing a concept (like

bird). With each node is stored a set of properties (like can fly or has wings) as well as

links to other nodes (like chicken). A node is directly linked to those nodes of which it is

either a subclass or superclass (i.e., bird would be connected to both chicken and

animal). High-level nodes representing large categories are connected (directly or

indirectly) to many instances of those categories, whereas nodes representing specific

instances are at a lower level, connected only to their superclasses. A word’s meaning is

expressed by the number and type of connections it has to other words. Semantic networks

constitute a somewhat idealized representation that abstracts away from real word usage.

The model on its own does not specify how the representations are learned and the latter

are traditionally hand-coded by modelers who have to a priori decide which relationships

are most relevant in representing meaning.

The model presented in Fountain and Lapata (2011) is distributional, i.e., it

represents the meaning of words by their patterns of co-occurrence with other words. They

also organize concepts in a semantic network that is not, however, structured hierarchically.

They consider a simpler formulation of semantic networks in which a network is composed

of a graph with edges between word nodes. Such a graph is unipartite: there is only one
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type of node, and those nodes can be interconnected freely. Edges between nodes do not

represent subsumption but similarity or relatedness and can be easily quantified in a

distributional framework (words that are similar in meaning will tend to behave similarly in

terms of their distributions across different contexts). Their model is an incremental version

of Chinese Whispers (Biemann, 2006), a randomized graph-clustering algorithm. The latter

takes as input a graph which is constructed from corpus-based co-occurrence statistics and

produces a hard clustering over the nodes in the graph. Their model treats the tasks of

inferring a semantic representation for concepts and their class membership as two separate

processes. This allows to experiment with different ways of initializing the co-occurrence

matrix (e.g., from bags of words or a dependency parsed corpus), however at the expense of

cognitive plausibility. It is unlikely that humans have two entirely separate mechanisms for

learning the meaning of words and their categories. We formulate a more expressive model

which captures word categories and their predictive features in one, unified process.

Bayesian Models. Incremental Bayesian category learning was pioneered by

Anderson (1991) who developed a non-parametric model able to induce categories from

abstract stimuli represented by binary features. According to this model, category learning

amounts to Bayesian density estimation, where the number of clusters to be used in

representing a set of objects is selected automatically. Sanborn et al. (2006) and Sanborn

et al. (2010) present a fully Bayesian adaptation of Anderson’s original model, which yields

a better fit with behavioral data. Specifically, borrowing ideas from nonparametric

Bayesian statistics, they propose two algorithms for approximate inference in this model:

Gibbs sampling (a “batch” procedure where density estimation assumes that all data are

available at the time of inference) and particle filtering (where density estimation proceeds

incrementally over time, as stimuli become available). A separate line of work examines the

processes of generalizing and generating new categories and exemplars (Jern and Kemp,

2013; Kemp et al., 2012) which are again modeled as samples from probability

distributions.
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In this work, we also present a probabilistic Bayesian model of categorization which is

conceptually similar to Sanborn et al. (2010). However, our model was developed with

(early) language acquisition in mind. They focus on adult categorization and use rather

simplistic categories representing toy-domains. It is therefore not clear whether their

approach generalizes to arbitrary stimuli and data sizes. Moreover, they are primarily

interested in how to approximate the intractable ideal solution to the partitioning problem.

Our work differs in two respects: firstly, we are interested in large scale categorization. We

investigate the question whether it is possible to learn categories from a large number of

exemplars covering a wide variety of categories, thus approaching the scale of the problem

that a child is faced with. Secondly, we are interested in learning the representations for

real-world, semantic categories of concrete, observable objects (for example, that a dog is

an animal or that a chair is furniture).

Latent Dirichlet Allocation (LDA; Blei et al. (2003)) is a popular Bayesian model for

discovering latent topics in text. LDA assumes that a document is generated from an

individual mixture over topics, and each topic is characterized by a distribution over words.

LDA learns topics from longer documents whereas we argue that a limited local context is

appropriate for category induction since a target concept’s features are best represented

through its immediately surrounding words. Fountain and Lapata (2011) further show that

LDA cannot be applied effectively to shorter contexts appropriate for category acquisition.

From a cognitive point of view, focusing on local contexts of target concepts approximates

limitations of attention and memory faced by young learners. Finally, it is unclear how to

naturally define longer contexts when the input given to the model consists of streams of

child-directed speech. Our model infers a grouping of words into semantic categories based

on the assumption that local linguistic context can provide important cues for word

meaning and by extension category membership. In this sense, it is loosely related to

Bayesian models of word sense induction (Brody and Lapata, 2009; Yao and Durme, 2011)

which also make use of short local contexts. However, the above models focus on
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performance optimization and learn in an ideal batch mode, while incorporating various

kinds of additional features such as part of speech tags or syntactic dependencies. In

contrast, we develop a cognitively plausible (early) language learning model and show that

categories can be acquired purely from linguistic context, as well as in an incremental

fashion.

From a modeling perspective, we learn categories using a particle filtering algorithm

(Doucet et al., 2001). Particle filters are a family of sequential Monte Carlo algorithms

which update the state space of a probabilistic model with newly encountered information.

Particle filters have been previously used to explain behavioral patterns in several tasks

such as associative learning (Daw and Courville, 2007), change-point detection (Brown and

Steyvers, 2009), word segmentation (Börschinger and Johnson, 2011), and sentence

processing (Levy et al., 2009). As mentioned earlier, Sanborn et al. (2006) also use particle

filters for small-scale categorization experiments with artificial stimuli. To the best of our

knowledge, we present the first particle filtering algorithm for large-scale category

acquisition from natural language text.

Bayesian Natural Language Categorization

We begin by formalizing the general problem of Bayesian categorization and then

derive our model as an instance of this formulation. In this framework, the learner is faced

with a partitioning problem, i.e., to group exemplars into categories based on their features.

In the remainder of this article, we use the term exemplars to refer to the concepts being

categorized and the term stimuli to denote observations of exemplars and their features. A

common assumption is that exemplars with sufficiently similar features will be assigned to

the same category. During this learning process, categories are not directly observed but

are instead inferred from their observable features. Once categories are established, the

learnt category-specific features can be used to predict the category of new exemplars.

More formally, given a stimulus d, a Bayesian model of categorization predicts a
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latent category zd based on the observable features xd of the stimulus, as well as the

information observed from previously encountered stimuli xd−1, and the latent category

assignment zd−1. Based on this information, we compute for stimulus d the probability of

being assigned category j:

P (zd = j|xd, zd−1,xd−1) = P (zd = j|zd−1)× P (xd|zd = j,xd−1, zd−1)∑J
j′=1 P (zd = j′|zd−1)× P (xd|zd = j′,xd−1, zd−1)

. (1)

The Bayesian formulation of this problem computes the posterior probability of the

category assignment P (zd = j) based on two factors. The first term of the numerator in

equation (1) is the prior probability of selecting category j based on the category

assignments of the previously assigned exemplars. A common choice for this prior is a

‘rich-get-richer’ scheme: categories which have been chosen frequently in the past, are more

likely to be selected again. The second term of the numerator in equation (1) is the

likelihood term, which considers xd, the observed features of stimulus d, and computes the

probability that they were generated from category j. By assigning each stimulus to

exactly one category, the learning process discovers a partition of stimuli into categories

consistent with the observable data. In order to find the optimal partitioning, it would be

necessary to iterate over all possible partitionings of the data, which is intractable for any

data set of non-trivial size. Several approximation algorithms for this problem have been

proposed, one of which, namely particle filtering, we will describe later in this section.

The model presented above is very general and as such can be applied to many

different types of exemplars and features. For example, Sanborn et al. (2010) (following

Medin and Schaffer 1978) use a small number of artificial exemplars, each with four binary

features (e.g., 1111, 0101, 1010). In another experiment, they use 12 exemplars with

continuous features, varying in brightness and saturation. Other work focusing on natural

language categorization has assumed that concepts (i.e., abstract cognitive representations

of exemplars) can be represented as sets of features obtained from norming studies. Table 1

(top) provides examples of concepts and their elicited features.
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In our work we learn the semantic representations of concepts from large-scale

linguistic corpora without relying on explicit human judgment. In this framework,

information about the meaning of words can be derived by analyzing the co-occurrences

between words and the contexts in which they occur. Many cognitive models of word

meaning (Landauer and Dumais, 1997; Griffiths et al., 2007b; Lund and Burgess, 1996)

subscribe to this distributional hypothesis which states that a word’s meaning is

predictable from its context (Harris, 1954). By extension, we further assume that a word’s

context is predictive of its category and that category features can be derived from the

linguistic context. Our model (incrementally) learns semantic categories based on the

linguistic features of their context, and can be tested on a large scale. Table 1 (bottom)

shows examples of the linguistic features we consider for different concepts.

The BayesCat Model

In this section we present our Bayesian model for large-scale semantic category

acquisition from natural language text (BayesCat for short). For now we focus on the

computational level (Marr, 1982) of the problem definition of categorization, and present a

model with which we can (in principle) learn semantic categories. In the following section

we turn to the algorithmic dimension of the problem, and introduce a cognitively plausible

inference algorithm for our model.

The input to the model is natural language text, and its final output is a set of

categories (aka clusters) as discovered from the input exemplars. We use the linguistic

context of exemplars as a proxy for their characteristic features, and assume that

exemplars with sufficiently similar features are assigned to the same category. The model is

exposed to linguistic stimuli, each consisting of a target exemplar t and a set of context

words c from a symmetric window of length n:

[c−n ... c−1 t c1 ... cn]. (2)

Each induced category will be characterized by a set of exemplars which are members of
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the category, as well as a set of category-specific features. We assume a global distribution

over categories θ, from which all stimuli are generated. Each category k has two associated

multinomial distributions over words: (1) a distribution over exemplars (i.e., target words)

φk and (2) an independently parametrized distribution over context words ψk. The

separation of exemplars from context words allows us to learn features together with

category members. We furthermore argue that, while members of the same category tend

to appear in the same contexts, they do not necessarily co-occur. For example, the

exemplars parrot and seagull are both members of the category bird, but are rarely

mentioned together, however, they frequently occur with the same features, e.g., they both

fly, croak, lay eggs, and so on.

A graphical overview of the model in form of a plate diagram is presented in

Figure 1(a). Observed variables (target exemplars and context words) are shown as shaded

nodes, white solid nodes represent the latent variables to be estimated, and fixed

hyper-parameters are shown as white dashed nodes. Plates indicate repetition of the

variables they contain with the subscript indicating the number of repetitions (e.g., the

model contains an individual distribution over exemplars φ for each category k).

The generative process of the BayesCat model is displayed in Figure 1(b) and

proceeds as follows.4 First, we draw parameters θ for a global distribution over categories

from a Dirichlet distribution with parameter α. Then, for each category k, we draw

(1) parameters φk for a category-specific exemplar distribution (from a Dirichlet

distribution with parameter β), as well as (2) parameters ψk for a category-specific context

word (or feature) distribution (from a separate Dirichlet distribution parametrized by γ).

Using these global parameters, we can generate stimuli d. First, draw a category

zd ∼Mult(θ). Then, draw a target word from the category-specific exemplar

distribution wdt ∼Mult(φzd); and finally, independently for each context position i, we

draw a context word from the category-specific feature distribution wd,ic ∼Mult(ψzd).

4We refer to the Dirichlet distribution as Dir and to the Multinomial distribution as Mult.
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The full joint distribution over data and model parameters as defined by our model

(see the independence assumptions in the plate diagram in Figure 1(a)) can be factorized

as:
P (y, z,θ, φ, ψ;α, β, γ) =

P (θ|α)×
K∏
k=1

P (φk|β)P (ψk|γ)×
D∏
d=1

P (zd|θ)P (wdt |φzd)
I∏
i=1

P (wd,ic |ψzd),
(3)

where y refers to all observed data, z refers to the hidden category labels, and k, d and i

are indices ranging over categories, stimuli, and context positions, respectively. The

parametrization of our model allows us to further simplify the joint distribution. In

particular, we can analytically integrate over all possible values of the model’s parameter

distributions θ, φ and ψ, without having to compute them explicitly. As we explain below

below this model formulation allows for efficient learning.

Incremental Category Learning

In the previous section we motivated and derived a cognitive model for inferring

semantic categories from natural text. We now turn to the problem of how these categories

are actually learnt (Marr’s (1982) algorithmic level of analysis) and introduce a cognitively

plausible learning mechanism.

A prevalent characteristic of human learning is its incrementality. Humans do not

learn in a “batch” fashion, repeatedly and systematically revisiting all information

available. Instead, they update their beliefs or knowledge state over time, drawing

inferences every time new information arrives. Category learning is no exception and

indeed experimental evidence suggests that both children and adults learn categories

incrementally (Bornstein and Mash, 2010; Diaz and Ross, 2006). Equation (3) defines a

probability distribution over all possible partitionings of the exemplars into categories.

Exact computation of this density is both computationally intractable and cognitively

implausible. It is unrealistic to assume that human learners perform optimal inference

(Sanborn et al., 2010). Memory limitations prevent them from enumerating extraordinarily
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high numbers of hypotheses. Additionally, they make mistakes during learning, and often

revisit past decisions in the light of new information.

Intuitively, the BayesCat model must approximate the target posterior density over

all possible partitionings of the exemplars through a set of samples and do so in an

incremental fashion. Each sample will correspond to one possible categorization of the

observed exemplars, and each sample will be individually and incrementally updated with

information from newly observed stimuli. As is the case in human categorization, the

computation time of the updates must stay fixed irrespectively of the number of previously

observed exemplars. We achieve this by committing to past categorization decisions made

by the learning algorithm, and thus integrate a new exemplar given the category

assignments of all previously encountered exemplars (however, we will relax the strict

incrementality assumption in the following section).

We develop a sequential Monte Carlo-based approximate inference algorithm for our

model. Monte Carlo (MC) methods approximate complex densities through a set of

random samples from those densities.5 While most such methods operate in batch mode,

requiring the availability of all input data before learning, some sequential Monte Carlo

methods have been developed, where samples from the target posterior distribution are

updated incrementally as more information becomes available over time. In the following

section we illustrate our learning algorithm schematically using the example in Figure 2a;

we refer the interested reader to Appendix B for a more technical description.

A Particle Filter for the BayesCat Model

Incremental inference algorithms are designed to update estimates of the target

distribution with new data becoming available over time. Incremental Monte Carlo

algorithms in particular propagate a set of N hypotheses, or samples (called particles)

through time and update them with new information. We introduce time into our learning
5With the number of random samples approaching infinity, the approximation is guaranteed to converge

towards the target distribution.
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process by treating the observation of each stimulus as one time point. In the example in

Figure 2a, we show the learning update at time point 4, i.e., after the model has observed

stimuli 1–4. The algorithm performs one iteration over the complete set of input stimuli.

Our algorithm is based on sequential importance sampling (SIS; Gordon et al. 1993), where

the true target distribution is approximated through a simpler importance distribution, and

the discrepancy between the distributions is counterbalanced through a weight (called

importance weight) which is assigned to each sample.

During learning, we incrementally approximate the target density, i.e., the

probability distribution over all possible categorizations of all exemplars pT (z1:T |y1:T )

through a cascade of local importance distributions pt(z1:t|y1:t). At each time t, pt is the

distribution over clusterings z1:t of observed exemplars y1:t, represented through the

current set of particles. Figure 2a displays the estimation of the posterior density through

weighted particles (indicated by the size of the circles) on the right-hand side; the current

state of the corresponding particles is shown on the left-hand side.

Following the SIS framework, we present a proposal distribution q(·) where we

assume that once an exemplar has been assigned a category, this category is fixed:

qt(z1:t|y1:t) = qt−1(z1:t−1|y1:t−1)qt(zt|zt−1, yt). (4)

Here, the first term corresponds to the distribution over clusterings of the first (t− 1)

observations, as represented by the current set of particles (i.e., the result of the previous

iteration). The second term denotes the probability distribution over categories for the

current input yt, i.e., over all different ways in which the exemplar can be integrated into

the current samples. We compute this distribution individually for each particle, sample its

category from this distribution, and update the particle state with the new information.

Figure 2a illustrates how each particle is updated individually after observing input

stimulus 5.

The remaining question is the definition of the distribution over categories for the
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new observation. We use the posterior distribution:

qt(zt|zt−1, yt) = p(zt|z1:t−1)p(yt|zt), (5)

taking into account prior information about category probability and the features of the

exemplar. We finally weigh each sample n by its importance weight wn which can be

shown to correspond to the predictive likelihood of the current stimulus yt (please refer to

Appendix B for more information).

By repeatedly sampling from local approximations to the target density, inaccuracies

will inevitably accumulate. For our model this means that many particles, or sampled

categorizations, will not be representative of the categories present in the data. Ideally,

however, a learner should focus on “good” hypotheses in order to use its capacities

effectively. The “goodness” of a sample is indicated by its importance weight. A common

approach to counteract accumulating errors, called resampling, is to replace low-weight

particles with copies of high-weight particles based on some pre-determined schedule. We

incorporate a threshold-based resampling scheme, measuring weight variance as effective

sample size (ESS):

ESS(wt) =
 1∑

n(wtn)2

 (6)

A resampling step is executed whenever the ESS falls below a set threshold. This

threshold-based resampling provides a means of modeling memory limitations based purely

on the learner’s internal state. From a modeling perspective, this provides us with a

statistically sound learning procedure, which is defined purely with respect to the current

state of “confidence” of the learner, without the need to resort to external cues or

heuristics. Technically, resampling consists of drawing N times with replacement from a

multinomial distribution over particles parametrized by the current set of particle weights.

Figure 2a shows one resampling step following the particle updates. In the resampling step,

the red particle with the highest weight is duplicated and replaces the green particle with

the lowest weight (see the different-sized circles on the right-hand side).
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Relaxing Strict Incrementality

The learning algorithm presented above approximates the target distribution over

categorizations of observed exemplars in a strictly incremental way. In other words, while

it simulates human memory restrictions and uncertainty by learning based on a limited

number of current knowledge states, it never reconsiders past categorization decisions.

However, in many linguistic tasks, learners revisit past decisions (Frazier and Rayner,

1982) and intuitively we would expect categories to change based on novel evidence,

especially in the early learning phase (Colunga and Smith, 2005; Landau et al., 1998;

Borovsky and Elman, 2006). Children clearly revise and refine their early hypotheses of the

world in light of new information.

We incorporate this intuition into our particle filter, by allowing it to reconsider past

decisions to some extent, while keeping the algorithm incremental and computation time

constant. We employ a technique called rejuvenation (Gilks and Berzuini, 2001).

Specifically, after the re-sampling step for each particle, we individually reconsider the

category assignment for a fixed number of previously encountered exemplars. Aside from

being cognitively plausible, rejuvenation also brings a theoretical advantage: it enhances

the representativeness of the sample, by “jiggling” the resampled particles and thus

introduces diversity among descendants of the same particle. Figure 2a illustrates

rejuvenation for the bottom set of particles. Each particle revisits one previous

categorization decision (e.g., the blue particle, places exemplar 1 into a previously empty

cluster). Note that the previously identical copies of the red particle contain distinct

clusterings after rejuvenation, such that the sample space is explored more effectively.

Modeling Experiments

In the following sections we present a series of simulations assessing the performance

of the model presented above on a category acquisition task. Our simulations are designed

to examine whether the model produces meaningful categories but also to investigate the
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learning process itself and its characteristics. In the first simulation we assess the quality of

the semantic categories induced by our model and compare it against an ideal batch

learner and Fountain and Lapata’s (2011) incremental graph-based model. Simulations 2

and 3 explore category acquisition in children using a corpus of child-directed speech,

whereas Simulation 4 presents a typicality rating simulation. All our simulations evaluate

the categories produced by the models against gold standard categories created by humans.

Simulation 1: Large-scale Category Acquisition

Our first goal was to examine whether any meaningful categories emerge when our

incremental model is trained on a large corpus. We compare the BayesCat model against a

related graph-based incremental learner, and a batch learning version of our own model.

All models are trained on the British National Corpus (BNC), a 100 million word collection

of samples of written and spoken British English.6 Each model’s resulting clustering is

compared against a human-produced gold standard. In the following, we describe how this

gold standard was created, discuss how model parameters were estimated and explain how

model output was evaluated.

Data. Our model was evaluated based on its clustering of words into semantic

categories and its output was compared against similar clusters elicited from human

participants. A gold standard set of categories was created by collating the resources

developed by Fountain and Lapata (2010) and Vinson and Vigliocco (2008). Both datasets

contain a classification of (concrete) nouns into (possibly multiple) semantic categories

produced by human participants. Examples from the dataset are provided in Table 2. The

former dataset is an extension of McRae et al.’s (2005) feature norms with category

information. The original feature norms were collected through a major effort spanning

multiple years and involving more than 700 participants. Norms were collected for a set of

541 target concepts consisting of living (e.g., cow) and non-living (e.g., blender) things, each
6The British National Corpus, version 3 (BNC XML Edition). 2007. Distributed by Oxford University

Computing Services on behalf of the BNC Consortium. URL: http://www.natcorp.ox.ac.uk/
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corresponding to a single English noun. Concepts were selected so as to cover a broad range

of generally familiar basic-level concepts used in previous studies on semantic memory.

Fountain and Lapata (2010) augmented McRae et al.’s (2005) concepts with category

labels (and typicality ratings). They collected this information using Amazon Mechanical

Turk, an online labor marketplace which has been used in a wide variety of elicitation

studies and has been shown to be an inexpensive, fast, and (reasonably) reliable source of

non-expert annotation for simple tasks (Snow et al., 2008). Participants were presented

with 20 randomly selected concepts from the McRae dataset, and asked to write down the

superordinate category they thought applied (rather than select one from a list). Each

concept was labeled by ten participants. Based on the set of collected labels, the concepts

were grouped into 41 categories (allowing for multi-category membership). The reliability

of the annotations was assessed through labeling correlation between random splits of the

data, and amounts to an average of 0.72 across all categories (ranging from 0.91

(Furniture) to 0.13 (Structure)). Given the elicitation procedure described above, we

assume that the feature norms represent psychologically salient categories which the

cognitive system is in principle capable of acquiring.

In order to evaluate category acquisition models on a large scale, we further merged

McRae et al.’s (2005) dataset with the concepts used in Vinson and Vigliocco (2008). The

latter dataset covers concrete basic-level objects, event-related objects, and verbs, however

in this work we only used the subset of 169 concrete objects. Category labels for these

objects are provided by the authors and largely overlap with those elicited in Fountain and

Lapata (2010). For this reason, we did not elicit additional category labels empirically.

After removing duplicates, we obtained 42 semantic categories for 555 nouns. We split this

gold standard into a development (70%; 41 categories, 492 nouns) and a test set (30%; 16

categories, 196 nouns).7 The size and nature of this evaluation dataset is in sharp contrast

to those used in previous categorization studies which consist of a small number of artificial

7The dataset is available from www.frermann.de/data.
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concepts.

The input to all models comprises the same set of linguistic stimuli, each of which

consists of one target word t, surrounded by a symmetric window of n context words

[c−n ... c−1 t c1 ... cn]. The target words are defined by the set of concepts included in our

gold standard. Some corpus statistics are given in Table 3 (column BNC). The corpus was

lemmatized and stopwords were removed. Infrequent context words (occurring less than

800 times) were also eliminated. We used a window of size n = 5 for stimuli extracted from

the BNC.

Model Comparison. We optimized the parameters of the incremental BayesCat

model on the development set. We obtained best results with the following parameters

α = 0.7, β = 0.1, γ = 0.1. Our model is parametric in the sense that the form of the model

distributions are fixed to be K-multinomial. We set the maximum number of categories

our model can learn to K = 100. However, the number of categories present in the data is

much smaller, and the model reliably converges to using a subset of the 100 categories. For

learning, we use a particle filter with N = 100 particles. We set the ESS threshold to

0.5 ∗N = 50. After each resampling step we rejuvenate 100 randomly chosen previous

categorization decisions, independently in each resampled particle.

We compare our BayesCat model against Fountain and Lapata’s (2011) incremental

model which adopts a graph-based approach to category learning. Exemplars are

represented as vertices in a graph and categories are inferred by grouping together

distributionally similar vertices. The graph is partitioned into categories using an

incremental variant of Chinese Whispers (Biemann, 2006), a non-parametric clustering

algorithm (henceforth we refer to this model as CW). Their model implements category

learning in the following steps. First, a semantic space is learnt — exemplars are

represented as high-dimensional vectors, where each component corresponds to some

co-occurring contextual element. Next, an undirected weighted graph G = (V,E, φ) is

constructed with vertices V , edges E, and edge weight function φ. Exemplars are added to
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the graph as vertices. Then, for each possible pair of vertices (vi, vj), their vector similarity

φ(vi, vj) is computed and if the weight exceeds a threshold, an undirected edge e = (vi, vj)

is added to the graph. Finally, the graph serves as input to CW which produces a hard

clustering over the graph vertices. The algorithm iteratively assigns cluster labels to

vertices by greedily choosing the most common label amongst the neighbors of the vertex

being updated. During this process, CW adaptively determines an appropriate number of

clusters to accommodate the data. Both the semantic space, and the resulting graph are

constructed incrementally, using co-occurrence counts collected from sequentially

encountered input. Following Fountain and Lapata (2011), we transform co-occurrence

counts into positive PMI values, and encode edge weights in the graph as cosine similarity

values. We trained the CW model on the same set of stimuli as the BayesCat model,

extracted from the BNC using a ±5 context window centered around the target exemplar.

Edge weights must exceed a certain threshold in order for any two vertices to be clustered

together. We tuned this threshold experimentally on the development data and obtained

best performance with t = 5. We used this value in all our simulations.

The CW model treats semantic category acquisition and semantic knowledge

representation as two different processes, even though it seems unlikely that humans have

separate mechanisms for learning the meaning of words and their categories. Moreover, in

contrast to BayesCat which learns category-specific features together with the categories,

CW does not provide a straightforward way of recovering category-specific features from

the clustered graph. We compared the learning behavior as well as the output clusters

produced by the two models.

We also compared our incremental model against a batch learner which observes all

input data from the start. Specifically, we adopted a Gibbs sampler as a batch learning

strategy for our BayesCat model. Gibbs sampling (Geman and Geman, 1984) is a Markov

chain Monte Carlo technique for approximating complex joint probability distributions.

The model parameters, are initialized at random, and the sampler performs multiple sweeps
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over the set of stimuli, until convergence. The joint probability density is approximated by

repeated re-sampling from the conditional density of individual latent labels given the

current assignment of all other latent variables. The batch model (henceforth Gibbs) differs

from the incremental BayesCat model only in its learning strategy and can thus be viewed

as an ideal learner: it has access to all the training data at any time and can revisit

previous categorization decisions systematically. We compare our incremental learner

against an ideal batch learner, in order to investigate whether different learning strategies

influence the quality of the estimated categories. Our simulations used the same model

parametrizations for Gibbs as for the incremental BayesCat model. We run the sampler for

200 iterations without burn-in or lag, and take the state at the final iteration as our sample.

Method. BayesCat produces soft cluster assignments, however, CW returns a set of

hard clusters. In order to compare the two models directly, we transform soft clusters into

hard clusters by assigning each target concept w to its most likely category z:

cat(w) = max
z

P (w|z) · P (z|w) (7)

The output clusters of an unsupervised learner do not have a natural interpretation.

Cluster evaluation in this case involves mapping the induced clusters to a gold standard

and measuring to what extent the two clusterings (induced and gold) agree (Lang and

Lapata, 2011). Purity (pu) measures the extent to which each induced category contains

concepts that share the same gold category. Let Gj denote the set of concepts belonging to

the j-th gold category and Ci the set of concepts belonging to the i-th cluster. Purity is

calculated as the member overlap between an induced category and its mapped gold

category. The scores are aggregated across all induced categories i, and normalized by the

total number of category members N :

pu = 1
N

∑
i

max
j
|Ci ∩Gj| (8)

Inversely, collocation (co) measures the extent to which all members of a gold category are

present in an induced category. For each gold category we determine the induced category
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with the highest concept overlap and then compute the number of shared concepts.

Overlap scores are aggregated over all gold categories j, and normalized by the total

number of category members N :

co = 1
N

∑
j

max
i
|Ci ∩Gj| (9)

Finally, the harmonic mean of purity and collocation can be used to report a single

measure of clustering quality. If β is greater than 1, purity is weighted more strongly in the

calculation, if β is less than 1, homogeneity is weighted more strongly:

Fβ = (1 + β) · pu · co
(β · pu) + co

(10)

In addition to purity and collocation and their harmonic mean, we report results using

a fuzzy variant of the well-known V-Measure (Utt et al., 2014; Rosenberg and Hirschberg,

2007) which is more appropriate for evaluating model output against the soft gold standard

clusters.8 V-Measure (VM) is an information-theoretic measure, designed to be analogous

to F-measure, in that it is defined as the weighted harmonic means of two values,

homogeneity (VH, the precision analogue) and completeness (VC, the recall analogue):

VH = 1− H(G|C)
H(G) (11)

VC = 1− H(C|G)
H(C) (12)

VM = 1− (1 + β) · V H · V C
(β · V H) + V C

(13)

where H(·) is the entropy function; H(C|G) denotes the conditional entropy of C given G

and quantifies the amount of additional information contained in C with respect to C. The
8Some categories such as animal and food, or fruit and food naturally share exemplars in our gold

standard.
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various entropy values involve the estimation of the joint probability of induced class C

and gold standard class G:

p̂(C,G) = µ(C ∩G)
N

(14)

The fuzzy V-Measure distributes the mass of any object which is member of more than one

cluster equally over all its clusters. Then, µ(C ∩G) is the total mass of the objects in the

data shared by C and G and N the total mass of the clustering. As a result, N will be

equal to the total number of objects to be clustered, which is trivially the case when

comparing hard clusterings (but not for soft clusterings when the mass distribution step of

the fuzzy V-measure is omitted, as in standard V-measure). Fuzzy VM thus allows us to

directly evaluate the output of our models against our soft gold standard clustering,

avoiding biases through the normalization constant, as implied in the standard V-Measure.

Results. Table 4 reports results on the performance of our incremental BayesCat

model (PF), its batch version (Gibbs), and Chinese Whispers (CW), all trained on the

BNC. We present results on the test set (16 categories, 196 nouns) and the larger

development set (41 categories, 492 nouns). We quantify model performance using purity

(pu) collocation (co), and their harmonic mean (with β set to 0.5) as well as the fuzzy

version of V-measure (VM) and its homogeneity (VH) and completeness (VC) components.

All scores are averaged over 10 runs.

Comparison of the two incremental models, namely PF and CW, shows that our

model outperforms CW under most evaluation metrics both on the test and development

set. Under the VM evaluation metric, PF consistently outperforms CW. Gibbs, the

non-incremental model version of our model, performs best overall. This is not entirely

surprising. When BayesCat learns in batch mode using a Gibbs sampler, it has access to

the entire training data at any time and is able to systematically revise previous decisions.

This puts the incremental variant at a disadvantage since the particle filter encounters the

data piecemeal and only periodically resamples previously seen stimuli. Nevertheless, as

shown in Table 4, PF’s performance is close to Gibbs using VM. Although the general
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pattern of results is the same on the development and test sets, absolute scores for all

systems are higher on the test set. This is expected, since the latter contains fewer

categories with a smaller number of exemplars and more accurate clusterings can be (on

average) achieved more easily.

Table 5 shows example categories learnt by the incremental BayesCat model. Each

induced category is characterized by a set of exemplars (top), as well as a set of features

representing different aspects of the meaning of the category (bottom). For example, train,

bus, and boat are members of the category vehicle. Induced features for this category

refer to users of vehicles (e.g., passenger, driver) and the actions they perform on them

(e.g., drive, ride, park, travel, arrive) as well as locations where vehicles are found

(e.g., road, railway, station). Another category the model discovers corresponds to

building with members such as house, cottage, skyscraper. Some of the features relating

to buildings also refer to their location (e.g., city, street, village, north), architectural style

(e.g., modern, ancient), and material (e.g., stone).

In addition to the final categories produced by the models, we are interested in their

learning behavior. Figures 3 and 4 show the learning curves for the two incremental

models, PF and CW. The learning behavior of the CW algorithm does not resemble a

steady learning curve. This can can be explained by the fact that categories are build on

the basis of co-occurrence counts of target words and context words. With an increasing

number of observations, however, these counts become less distinctive between target

concepts. Inspection of the output of the CW algorithm, reveals that it induces one very

big category, comprising almost all of the target concepts, and a few rather small, but

meaningful categories. On the contrary, the learning curves produced by the incremental

BayesCat model show steady improvement of the acquired categories over time.

Discussion. In this simulation, we performed a large scale comparison among

three models of natural language categorization. The incremental BayesCat model

performs comparably to a batch version of the same model, showing a slightly worse
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performance. This seems to indicate that the Gibbs sampler provides a better fit to the

cognitive gold standard and is to be preferred over the incremental learner. The learning

process of the Gibbs sampler is, however, not cognitively plausible. While the latter is an

ideal learner, with access to all data points at any time, and the ability to revise decisions

systematically, it does not have a significant advantage over our incremental model. The

Gibbs sampler can explore the search space more exhaustively than the incremental learner

and can draw more accurate conclusions. Incremental learning highly depends on sufficient

training data, and one would anticipate the particle filter’s performance to increase with

more observations.

Overall, the competitive performance of the particle filter is an encouraging result

underlining the efficiency of the incremental learning paradigm as a basic characteristic of

human cognitive behavior. Previous work (Fearnhead, 2004) has shown that Particle

Filters outperform Gibbs samplers in Bayesian mixture models similar to the one presented

here. Intuitively, the particle filter estimates a distribution over categorizations by means

of its N ≥ 1 incrementally constructed particles, or samples, which explore the probability

space independently and simultaneously. A Gibbs sampler produces samples from a

distribution by moving between different (high-probability) regions. This can be a very

slow process, especially with many hidden variables involved, so that in practice a point

estimate of the posterior distribution is often obtained.

We furthermore showed that the Bayesian models substantially outperform a

graph-based model of category acquisition. The categorizations learnt by CW reliably

consist of one big category, comprising the vast majority of concepts, and very few small

categories. The reported collocation and F0.5 scores for CW are therefore misleadingly

high: one large category results in a very high collocation score, while cluster purity

remains very low throughout (see Figure 3a). For the incremental BayesCat model,

however, the purity of categories improves constantly as well as well their completeness (see

Figures 3a and 3b). The fuzzy V-measure does not overestimate CW’s completeness score,
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and thus lends itself as a more suitable evaluation metric (see Figure 4).

In addition to its superior performance, we argue that BayesCat is also more

cognitively plausible compared to CW. Firstly, on account of its architecture all

information is represented in the same space as probability distributions over words and

categories. In contrast, CW represents information as a co-occurrence matrix which needs

to be transformed into a graph in order to learn categories. Secondly, the BayesCat model

naturally induces category features during the process of category learning. Since features

have been established as a good proxy for category representations in human cognition, it

is inevitable that these representations evolve and change jointly while forming categories.

CW only considers features in its first representation, the co-occurrence matrix, and there

is no natural way of recovering category-specific features from the graph after categories

have been learnt. From a cognitive point of view this separation is implausible.

Experimental studies show that category and feature learning mutually influence each

other (Goldstone et al., 2001; Schyns and Rodet, 1997): concepts are categorized based on

their features, and the perception of features is influenced by already established

categories. Like categories, features also evolve over time.

Simulation 2: Child Category Acquisition

The primary goal of the preceding experiment was to explore how effectively our

model captures large-scale category information. Of greater interest, however, is modeling

children’s performance on an acquisition task — determining whether the linguistic input

to which children are exposed enables learning of high-level semantic categories such as

those seen in simulation 1. To answer this question, we applied our incremental model to a

corpus of child-directed speech and evaluated the resulting categories against the gold

standard clusters used previously.

Data. The CHILDES corpus (MacWhinney, 2000) was used to construct training

stimuli for our model. CHILDES consists of a large number of transcripts in a multitude of
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languages, each recording a free-form interactive session between a child and one or more

adults (parents); we used the XML portion of the corpus, consisting of American and

British English transcripts.9 All child produced utterances were excluded from the final set

of stimuli. We extracted 170,000 child directed stimuli which we grouped according to the

age of the child the speech was directed at.10 The data was presented to the models in

chronological order. Details about the size of CHILDES are provided in Table 3.

The corpus was lemmatized and stopwords were removed. Some concepts in the gold

standard are very specialized and occur very infrequently or not at all in CHILDES. We

only extracted stimuli containing target exemplars occurring 50 times or more within the

corpus. Analogously, we filtered low-frequency context words with the same threshold.

Compared to the models trained on the BNC, we used a smaller context window size

of n = 2. Child-directed utterances in CHILDES are relatively short and thus a small

context window is necessary to capture linguistic features relevant to the meaning of the

target concept.

The hyper-parameters of the BayesCat model were optimized on the BNC corpus

(development set). We did not re-tune model parameters for CHILDES, and thus used the

entire gold standard for evaluation (42 categories, 312 concepts). Model performance was

assessed similarly to Simulation 1 using purity, collocation and their harmonic mean as well

as the analogous information theoretic measures of homogeneity, completeness, and

V-measure.

Results. Table 6 presents our results on the CHILDES corpus. Again, we compare

our incremental BayesCat model using a particle filter (PF), a batch version of the same

model (Gibbs), and incremental Chinese Whispers (CW). Scores are averaged over 10 runs.

The results are broadly comparable to those obtained from the BNC. Again, we observe

that Gibbs performs overall best, however, the incremental model is only slightly less

accurate while being more cognitively plausible. Our model outperforms CW under most
9http://childes.psy.cmu.edu/data-xml/.

10Stimuli were binned in intervals of six months.



LEARNING SEMANTIC CATEGORIES 34

evaluation metrics. Examples of the semantic categories induced by BayesCat are shown in

Table 7.

Figures 5 and 6 show how the clusterings evolve over time for the two incremental

models (PF and CW). Again, CW does not show a meaningful learning curve, under any

measure. The completeness of clusters increases over time, however, at the expense of

purity. This effectively means that CW tends to learn one very big cluster comprising of

the majority of exemplars. PF, on the other hand, shows clear learning curves across

metrics, with increasingly clean (Figures 5(a) and 6(a)) and complete clusters (Figures 5(b)

and 6(b)).

Discussion. In this simulation we showed that the BayesCat model can learn

meaningful categories from a corpus of child-directed speech. Compared to the previous

simulation, our model was presented with a smaller amount of stimuli, and yet was able to

recover semantic categories without any corpus specific optimization. This highlights the

robustness of our model with respect to the chosen hyper-parameters or training corpus.

Note, however, that the runtime of the incremental filter is linear in the number of input

stimuli, and thus is efficiently applicable to data sets of increasing size.

In addition to our quantitative evaluation against a gold standard, we investigated

the learning process more qualitatively by inspecting the emergence of individual categories

over time. Figure 7 shows how the categories bodyparts, food, furniture, and

weapon develop in the course of 66 months. We can see that the category bodyparts

emerges earliest and is acquired with high quality. The same is true for the category

clothes (not shown in the figure to avoid clutter). Slightly later, the categories food,

vehicles (also not shown), and furniture evolve. Categories like, weapons, however,

are not acquired from the CHILDES corpus, presumably because care takers rarely talk

about or use exemplars from this category in the presence of young children. In contrast,

the weapons category is acquired from the BNC (see Table 5), which, again, emphasizes

the ability of our model to adapt to and learn from empirical data.
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Table 7 provides qualitative examples of the categories and features learnt by

BayesCat. As can be seen, categories are coherent and easily interpretable, with relevant

features. Note that concepts and features are not clearly separated: frequent members of a

category also appear in its feature set. We do not treat concepts and their features

differently. From a cognitive point of view this is plausible: concepts of the same category

can be co-observed (e.g., one may wear a hat and coat or eat an apple and a banana) which

seems like a useful signal in category learning.

Simulation 3: Memory Constraints

In this simulation we delve deeper into our incremental inference algorithm and its

appropriateness for human, cognitive learning. While humans are generally very successful

learners, their memory and computing power is clearly constrained. Particle filters provide

us with a flexible way for investigating memory constraints. The number of particles, or

hypotheses, available to the filter during learning directly correlates with its memory usage.

We expect that, while humans do not have the means to entertain an exceeding number of

hypotheses at any time, constraining the learner to one hypothesis will have a negative

impact on the learning outcome. A second indicator of memory usage is rejuvenation, the

extent to which past categorization decisions are being re-considered in the light of new

evidence. Rejuvenation in the BayesCat model is tightly coupled with resampling,

replacing low-probability particles with high-probability ones, which is yet another an

indicator of cognitive load. Resampling (and rejuvenation) is driven by a learner-internal

state of “confidence”, where the model state is re-considered whenever the learner falls

below a confidence threshold about earlier categorization decisions in the light of new

evidence. A learner’s confidence w.r.t. to the learnt categorization should increase over

time, so that revisions of the model state occur less frequently. To summarize, in this set of

simulations, we investigate two questions: (1) How do the number of particles and the

extent of rejuvenation influence the learning process and the quality of the learnt
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categorization; and (2) how does the extent of resampling evolve over time.

Method. We compare particle filters with different numbers of particles n, where

n ∈ {1, 5, 20, 50, 100}. The number of particles is the only varying experimental variable,

and the particle filters are set up as described in the previous simulations. Resampling

takes place if the ESS falls below a pre-specified threshold; rejuvenation (of 100 stimuli)

occurs after every resampling step. For the sake of brevity, we present results on CHILDES

only, noting that a very similar picture emerges on the BNC. We compare the performance

of the particle filters using two different metrics. First, we report learning curves based on

model log-likelihood. The log-likelihood is a common model-internal metric used for

measuring convergence, even though it does not necessarily correlate with the usefulness or

interpretability of the estimated solution (Chang et al., 2009). A higher log-likelihood

indicates a better model. In order to directly measure the quality of the categorizations

induced by the particle filters, we additionally report the F0.5 measure. Moreover, we are

interested in teasing apart how the number of particles and rejuvenation influence the

learning behavior of our model. To this end, we compare particle filters with differing

numbers of particles, but with rejuvenation disabled.

Results. Figures 8a,b show the log-likelihood-based learning curve produced for

particle filters with a varying number of particles. While the shape of the curve is very

similar across particle filters, a substantial improvement from the one-particle filter to

multiple-particle filters can be observed. However, the improvement decreases with more

particles, although a slight advantage is still observable. A very similar picture emerges for

the learning curves based on category quality (Figure 8c). The categorizations inferred by

the one-particle filter are less accurate than those inferred by multiple-particle filters. This

suggests that the one-particle filter found a local maximum, from which it could not

escape. The advantage of the Gibbs sampler as an ideal learner becomes apparent with the

log-likelihood metric (see the red point Figure 8a). The BayesCat model using Gibbs

sampling achieves significantly better log-likelihood scores compared to the incremental
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model. In general, we see an initial improvement in the learning curve, but a subsequent

drop which is caused by the increasing number of input stimuli which need to be integrated

into a coherent categorization. The log-likelihood flattens out towards the end of the

learning curve. While ideally it should eventually improve, we suspect that the size of the

stimuli set used in this simulation was too small.

Figure 9 compares the learning curves for different particle filters with rejuvenation

disabled. Across filters and evaluation metrics a clear decrease in performance is observed,

which is unsurprising given that the filters now are bound to categorization decisions, and

unable to revise past decisions in the light of new experience. It is still evident, however to

a lesser extent, that the one-particle filter performs worse compared to filters with more

than one particle. Especially in the early learning phase, the ability to explore multiple

hypotheses in parallel is advantageous (see Figure 9b).

Figure 10 illustrates the resampling behavior of the particle filters. On the one hand,

we observe that filters with more particles tend to resample more frequently, i.e., the

weights of the particles tend to diverge more with an increasing number of particles. On

the other hand, across different filters resampling frequency decreases over time, hereby

confirming our intuition that a learner’s knowledge state should become increasingly

confident over time, and reconsiderations of past decisions should decrease in frequency.

Discussion. In this simulation we compared the effect of memory resources on the

learning behavior of the incremental BayesCat model by examining the effect of the

number of particles available to the particle filters, as well as the effect of rejuvenation.

Across experimental settings, we showed that the one-particle filter is outperformed

by filters which explore multiple hypotheses simultaneously. Our results thus suggest that

having access to one hypothesis at a time, during learning, is not sufficient for our category

acquisition task. However, we also observe that an increased number of particles does not

necessarily lead to increased performance. A filter with five particles is able to

substantially outperform a filter with one particle, while not being much worse than a filter
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with 100 particles. In the literature it has been argued, following the singularity principle,

that humans have a strong tendency to consider only the one most likely category in

reasoning at any time (Evans, 2007; Murphy et al., 2012), which is at odds with our

observations above. However, we point out that BayesCat is a model of child category

acquisition whereas the research investigates categorization of objects in lab experiments

with adult participants. It would be interesting investigate whether the singularity

principle holds in a learning setting similar to ours.

We further showed that our model resembles human learning in the sense that the

learner’s uncertainty decreases over time, as measured by the frequency of resampling.

Intuitively, would expect that early state representations in human learning are more

uncertain than later ones. With more observed stimuli, the learnt knowledge should

become more stable, and revisions of the knowledge state should occur less frequently. We

observe this behavior in our particle filters as well. Figure 10 demonstrates that in the

initial learning phase resampling is very frequent, but the frequency decreases over time.

Simulation 4: Typicality Rating

An important finding in the study of natural language concepts is that categories

show graded category-membership structure. For example, humans generally judge a trout

to be a better example of the category fish than eel. In the same way, an apple intuitively

seems to be a better example of the category fruit than olives. Several experimental

studies underline the pervasiveness of typicality (or “goodness of example”) in a wide

variety of cognitive tasks such as priming (Rosch, 1977), sentence verification (McCloskey

and Clucksberg, 1979), and inductive reasoning (Rips, 1975). Because of its importance,

typicality is also an evaluation criterion for models of categorization and concept

representation. Any such model should be able to give an account of the graded category

structure and correctly predict differences in the typicality of category members.

We therefore assessed our model on a typicality rating task (Voorspoels et al., 2008).
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In this task, the model is presented with exemplars of a category and must predict the

degree to which the exemplars are typical amongst members of that category.

Method. Previous work on semantic categorization has shown that exemplar

models perform consistently better compared to prototypes across a broad range of

linguistic tasks (Voorspoels et al., 2008; Fountain and Lapata, 2010; Storms et al., 2000).

This finding is also in line with studies involving artificial stimuli (e.g., Nosofsky 1992). For

the typicality rating task we therefore adopted an exemplar-based model which is broadly

similar to the generalized context model (Nosofsky, 1984, 1986). In this model, a measure

of the typicality of an exemplar is derived by summing the similarity of that exemplar to

all exemplars in the category. More formally, the typicality of exemplar w for category G is

given by:

TG(w) =
∑
v∈G

ηw,v (15)

where ηw,v is the similarity of exemplar w to exemplar v, with v also belonging to

category G. The similarity function ηw,v can vary depending on how exemplars and

categories are represented (e.g., spatially or probabilistically). Within our Bayesian

framework it is relatively straightforward to specify a probabilistic quantity that

corresponds to the strength of association between w and v (Griffiths et al., 2007b):

ηw,v = P (v|w) =
∑
k

P (v|k)P (k|w)

=
∑
k

P (v|k)P (w|k)P (k)
P (w)

(16)

Here the probability of a category given exemplar w and the probability of exemplar v

given that category are averaged across all categories k.

In this simulations, we compared BayesCat against a simple co-occurrence based

model, essentially identical to the semantic space used as input to CW. In this space each

target concept is represented as a vector with dimensions corresponding to its co-occurring

context elements. As in previous simulations, we transformed raw co-occurrence counts

into PMI values. A typicality value for each member of a category was computed
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using (15) and summing the cosine similarity of the exemplar vector −→w to the all other

vectors representing its co-members −→v :

ηw,v = cos
(−→w ,−→v ) =

−→w · −→v
|−→w ||−→v |

(17)

Our simulations used the dataset produced by Fountain and Lapata (2010) who

elicited typicality ratings11 (and category labels) for all exemplars contained in the feature

norms of McRae et al. (2005). In the evaluation, we present the models with the set of gold

members of each gold category, and compare the rankings produced by the models with the

gold typicality ranking elicited from humans. We report Spearman’s ρ correlation

co-efficients for the global ranking across all categories in this dataset. We present results

on the CHILDES corpus (41 categories, 689 concept-category pairs) and the BNC (41

categories, 1,226 concept-category pairs). Typicality ratings were produced with the

incremental variant of the BayesCat model trained with 100 particles. Our results are

averaged over 10 runs. The co-occurrence based model is deterministic, hence we only

report one run for that model.

Results. Our results are summarized in Figure 11 which illustrates model

performance (as measured by Spearman’s rho) on the BNC and CHILDES. The

incremental BayesCat model is consistently better at predicting typicality ratings compared

to the simpler co-occurrence based model. All correlation coefficients in Figure 11 are

statistically significant (p < 0.01). We should also point out that the typicality rating task

is generally difficult even for humans. Fountain and Lapata (2010) measured inter-subject

agreement in their elicitation study to 0.64. BayesCat fits the experimental data better

when trained on the BNC. This is not unexpected since the BNC is much larger than

CHILDES by a factor of almost 10. Table 8 shows some qualitative examples of concepts

which BayesCat rated as most typical/atypical for a particular category.

Discussion. In this set of simulations we compared two models in their ability to

rank exemplars with respect to typicality, against a human created gold standard. We
11Publicly available from http://homepages.inf.ed.ac.uk/s0897549/data/.
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showed that our model successfully captured the typicality of exemplars within a given

category. As can be observed in Table 8, many of the typicality ratings produced by

BayesCat correspond to human intuitions. We should also point out that this is a large

scale study over hundreds of exemplars. Previous work on the same task has only used a

few dozens (Storms et al., 2000; Voorspoels et al., 2008; Connel and Ramscar, 2001).

BayesCat outperforms a simpler vector space model which is nonetheless non-incremental.

Our model learns statistical information about observed concepts incrementally, whereas

the vector spaced model has all information available at once for constructing concept

representations. BayesCat exhibits better typicality performance, which suggests that

(a) the learnt concept representations are meaningful and (b) the incremental learning

procedure does not put the model at disadvantage. Finally, we should note that BayesCat

was not optimized or tuned for the typicality rating task in any way. Typicality follows

naturally from the model structure without any additional assumptions on the task or

learning strategy.

General Discussion

In this paper we have presented a Bayesian model of category acquisition. Our model

learns to group linguistic concepts into categories as well as their features (i.e., context

words associated with them). Category learning is performed incrementally, using a

particle filtering algorithm which is a natural choice for modeling sequential aspects of

language learning. Our simulations were designed to answer several questions with respect

to the robustness of the proposed model, the quality of its output, and adopted learning

mechanism. (1) How do the induced categories fare against gold standard categories? (2)

Are there performance differences between BayesCat and Chinese Whispers, given that the

two models adopt distinct mechanisms for representing lexical meaning and learning

semantic categories? (3) Does our learning mechanism predict human performance and is it

cognitively plausible? We now summarize our findings in the light of the above questions.



LEARNING SEMANTIC CATEGORIES 42

Firstly, we observe that our incremental model learns plausible linguistic categories

when compared against the gold standard. Secondly, these categories are qualitatively

better when evaluated against Chinese Whispers, a closely related graph-based incremental

algorithm. Thirdly, analysis of the model’s output shows that it simulates category

learning in two important ways, it consistently improves over time and can additionally

acquire category features. Overall, our model has a more cognitively plausible learning

mechanism compared to CW, and is more expressive, as it can simulate both category and

feature learning. Although CW ultimately yields some meaningful categories, it does not

acquire any knowledge pertaining to their features. This is somewhat unrealistic given that

humans are good at inferring missing features for unknown categories (Anderson, 1991). It

is also symptomatic of the nature of the algorithm which does not have an explicit learning

mechanism. Each node in the graph iteratively adopts (in random order) the strongest

class in its neighborhood (i.e., the set of nodes with which it shares an edge). We also

explored how memory resources affect the learner’s performance and showed that it is

beneficial to entertain multiple hypotheses (i.e., numbers of particles) during learning.

Furthermore, our model is able to revisit past decisions via rejuvenation. We

experimentally showed that the learner revisits past decisions more frequently in the initial

stages of learning when knowledge is being acquired and there is more uncertainty. Our

final simulation showed that our model performs well on a typicality rating task when

compared against a non-incremental semantic space.

In our simulations, the BayesCat model learnt with Gibbs sampling yielded a

categorization which is a closer fit to the cognitive gold standard compared to the particle

filter. Does this mean that the Gibbs sampler is a more plausible algorithm? From a

learning perspective, the answer is no: aside from the fact that humans acquire knowledge

incrementally, processing limitations do not permit revisiting past decisions exhaustively,

by iterating over past experiences, as is the case for the Gibbs sampler. The Gibbs sampler

and the incremental learner acquire categories from identical corpora. The Gibbs sampler,
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however, can make optimal use of the information encoded in the corpus, whereas our

incremental learner has limited access to the training data. In view of this limitation, the

incremental particle filters perform competitively throughout our simulations.

BayesCat has a cognitively plausible learning mechanism and induces meaningful

categories. However, it learns a flat set of features, even though there is evidence

suggesting that humans organize their category knowledge hierarchically (Palmeri, 1999;

Verheyen et al., 2008). Furthermore, our model acquires features individually for each

category. For example, it does not learn that animals can be described in terms of their

behavior and diet, whereas furniture or tools cannot. On a related note, the model

learns unstructured bags-of-features even though it has been shown that humans learn

features that are shared across categories (Ahn, 1998; Spalding and Ross, 2000). In the

future, we would like to devise more sophisticated models of categorization which jointly

learn categories and feature types (e.g., behavior). We would also like to relax some of our

simplifying assumptions regarding the learning environment which considers a single

modality, namely language. It is possible to augment the set of features our model is

exposed to with information from other modalities, such as the visual features of a scene,

while leaving the model structure and learning algorithm unchanged. Another potential

extension would involve augmenting the learning domain of the BayesCat model. In our

simulations, the set of target concepts was constrained to those present in our gold

standard. This was expedient for evaluation purposes, however there is no inherent

limitation in the model which restricts its application to a specific domain or number of

words. It would be interesting to see whether the features learned by a model trained on a

larger set of target words differ qualitatively from those inferred from more limited

domains.

Overall, our results highlight the advantages of the Bayesian framework for modeling

inductive problems and their learning mechanisms. Particle filters in particular suggest a

class of psychologically plausible procedures for learning under cognitive constraints
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(e.g., memory or computational limitations). Although our simulations focused exclusively

on categorization, we believe that some of the inference algorithms employed here could be

easily adapted to other cognitive tasks such as word learning, word segmentation, phonetic

learning, and lexical category acquisition. Importantly, we have shown that incremental

learning in a Bayesian setting is robust and scalable in the face of large volumes of data,

and the resulting models perform competitively compared to batch optimal learners.

Taken together our results further provide support for the important role of

distributional information in categorization. We have demonstrated that co-occurrence

information can be used to model how categories are learnt. Moreover, our typicality

simulations indicate that the responses people provide in typicality experiments are to a

certain extent reflective of the distributional properties of the linguistic environments in

which concepts are found. Although our focus in this article has been primarily on the

learning mechanisms of categorization, our simulations suggest that language itself is part

of the environment that determines conceptual behavior. Furthermore, the fact that our

models learn plausible categorizations from linguistic data alone would seem to indicate

that information relating to the perceptual experience of objects and artifacts is encoded

(albeit implicitly) in linguistic experience. In future work, it would be interesting to tease

the contributions of linguistic and perceptual experience apart. It seems likely that no

grounding is necessary for some concepts (or categories), whereas for others grounding is

essential.
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strawberry grape apple snail dog cat

has_a_taste X X X

contains_seeds X X X

is_edible X X X

can_be_a_pet X X X

is_alive X X X X X X

Fe
at
ur
e
N
or
m
s

eats X X X

strawberry grape apple snail dog cat

ripe X X X

hungry X X X X X X

lemon X X X

owner X X X

bark X

C
on

te
xt

Fe
at
ur
es

shepherd X X

Table 1

Exemplars and their features for the categories fruit and animal. Features are shown as

feature norms (top) and as context words (bottom).

‘
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building

church, garage, skyscraper, tent, shack, wall, door, basement, house, pyramid, brick,

cathedral, chapel, hut, apartment, cabin, bungalow, stone, barn

vehicle

yacht, unicycle, boat, raft, bus, train, bike, trailer, submarine, sled, truck, rocket, jet,

van, subway, tractor, skateboard, trolley, helicopter, buggy, jeep, motorcycle, ship, canoe,

ambulance, sailboat, airplane, limousine, sleigh, taxi, car, scooter, tank.

weapon

cannon, gun, machete, rifle, bayonet, harpoon, bazooka, tomahawk, whip, catapult,

sword, revolver, knife, missile, bow, crowbar, shotgun, dagger, tank
Table 2

Example categories and their concepts taken from our gold standard.
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BNC CHILDES

Stimuli 1.37M 170K

Exemplars (target word types) 555 312

Features (context word types) 6,584 2,756
Table 3

Number of stimuli, exemplars, and features retrieved from BNC and CHILDES.
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Development Set Test Set

pu co F0.5 VH VC VM pu co F0.5 VH VC VM

PF 0.59 0.31 0.50 0.47 0.42 0.44 PF 0.69 0.42 0.61 0.68 0.50 0.58

Gibbs 0.63 0.24 0.47 0.51 0.43 0.47 Gibbs 0.76 0.28 0.57 0.78 0.50 0.61

CW 0.35 0.55 0.37 0.18 0.32 0.23 CW 0.40 0.55 0.42 0.26 0.36 0.30

Table 4

Performance of particle filter model (PF), its Gibbs sampling variant (Gibbs), and Chinese

Whispers (CW) on the British National Corpus (BNC). Boldface highlights the best

performing model under each evaluation metric.
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building

house, building, wall, stone, bridge, cottage, gate, brick, inn, marble, hut, corn, pier,

cellar, basement, canary, skyscraper, beehive

house, building, build, street, town, century, village, stone, garden, city, london, live,

centre, modern, hall, family, site, design, ancient, north, tower, bridge, mill, museum

vehicle

train, bus, boat, wheel, van, truck, taxi, helicopter, garage, wagon, fence, bicycle, shed,

trailer, cabin, tractor, cart, jeep, trolley, motorcycle, subway, escalator, airplane

car, road, drive, train, park, station, driver, bus, hour, line, fire, mile, vehicle, engine,

passenger, boat, railway, travel, speed, arrive, track, traffic, route, yard, ride, steal

weapon

bomb, crown, knife, ambulance, bullet, shotgun, grenade, machete

police, court, home, hospital, die, kill, yesterday, attack, death, wife, injury, charge, officer,

murder, shoot, suffer, arrest, victim, accident, parent, damage, injure, trial

instrument

guitar, rock, piano, drum, violin, flute, clarinet, trumpet, cello, stereo, trombone, harp,

harpsichord, rocker, accordion, saxophone, tuba, baton, bagpipe, harmonica

play, music, guitar, sound, band, bass, song, piano, instrument, sing, album, string, pop,

drum, tune, violin, orchestra, dance, recording, solo, musical, performance, flute, mozart
Table 5

Examples of categories learnt from the BNC with the incremental BayesCat model.

Category concepts (upper row) are shown together with their most likely features (lower

row).
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pu co F0.5 VH VC VM

PF 0.62 0.21 0.45 0.50 0.42 0.45

Gibbs 0.74 0.19 0.47 0.59 0.46 0.51

CW 0.39 0.54 0.41 0.22 0.37 0.27
Table 6

Performance of Particle Filter-based model (PF), its Gibbs-based variant (Gibbs), and

incremental Chinese Whispers (CW) on the CHILDES corpus. Boldface highlights the best

performing model under each evaluation metric.
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clothes

hat, shirt, dress, pant, trouser, slipper, coat, suit, vest, jacket, glove, scarf, bow, tie

hat, wear, shirt, blue, daddy, color, dress, yellow, pant, slipper, coat, vest, got, scarf,

short, button, clothes, bow, change, glove, cold, lovely, pretty, party, warm, suit, pocket

body parts

head, eye, nose, mouth, leg, tongue, chin, lip, shoulder

your, my, eye, nose, head, mouth, hurt, bump, pull, bite, blow, funny, silly, kiss, careful,

tongue, chin, sore, ah, tickle, hard, touch, hole, fell, cry, matter, tire, body, shoulder

fruit

apple, cup, orange, strawberry, pear, plum, grape, banana, peach, saucer, lemon, rasp-

berry, mug

eat, apple, hungry, cup, pear, orange, strawberry, grape, banana, green, wednesday, thurs-

day, tuesday, fruit, plum, peach, monday, friday, peel, saucer, lemon, saturday, jam

vehicle

car, train, truck, bridge, ambulance, van, tractor, crane, garage, trailer, taxi

car, oh, train, truck, thomas, drive, red, police, driver, engine, track, bridge, race, happen,

people, ambulance, choo, park, road, station, mean, digger, saw, carry, trailer, van, break

Table 7

Examples of categories learnt from the CHILDES corpus with the the incremental

BayesCat model. Category concepts (upper row) are shown together with their most likely

features (lower row).
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(a) CHILDES

category most typical concepts least typical concepts

food cake, bread∗, strawberry, cheese owl∗, lobster, snail∗, deer∗

animal elephant, horse, cow∗, duck bat, pickle, chipmunk, tuna∗

clothing shirt∗, shoe, sock, dress∗ necklace∗, cap, cape, hose∗

vehicle car, train∗, truck∗, bus∗ ship, tank, motorcycle, trolley

(b) BNC

category most typical concepts least typical concepts

food cheese, bread∗, cake, potato honeydew, blueberry, eggplant, zucchini

animal dog, bear, horse, cat∗ chipmunk∗, chickadee, bluejay, groundhog

clothing dress∗, shirt∗, shoe, jacket nightgown, mitten, earmuff, pajamas

vehicle car, train∗, bus∗, ship surfboard∗, sled∗, sleigh, unicycle

Table 8

Qualitative examples of typicality judgments as predicted from the incremental BayesCat

model trained on CHILDES (top) and the BNC (bottom). The four most typical concepts,

and the four least typical concepts are displayed for selected categories. Superscript ∗

indicates whether the concept was deemed highly typical/atypical in Fountain and Lapata’s

(2010) elicitation study.
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wt

wc

zθ φ

ψ

α β

γ

i

d

k
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(a)

Draw distribution over categories θ ∼ Dir(α)

for category k do

Draw target word distribution φk ∼ Dir(β)
Draw context word distribution ψk ∼ Dir(γ)

for stimulus d do

Draw category zd ∼ Mult(θ)
Draw target word wd

t ∼ Mult(φzd)
for context position i = {1..I} do

Draw context word wd,i
c ∼ Mult(ψzd)

(b)

Figure 1 . (a) Plate diagram representation of the BayesCat model. (b) The generative

process of the BayesCat model.
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1 tree apple grow

2 sit bird tree

3 sweet apple eat

4 eat pear sweet
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tree
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grow
tree apple
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sweet
eat apple
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sweet
eat

k=1

k=2

p(context | k )

p(k)

p(target | k )

lawn

sit
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tree dog

bird

sweet

eat apple

pear

sweet

eat

k=1

k=2apple
tree

grow
k=3

sample 
weights

resampling

rejuvenation

5 sit dog lawn

Figure 2 . (a) Visualization of the particle filtering procedure in the BayesCat model using

an example of a 3-particle filter. Each particle corresponds to a clustering of the observed

stimuli up to time t (left), and the collection of weighted particles serves as the current

approximation of the posterior distribution over clusterings (right). The 5 exemplars

observed by the filter are shown in the tables. We show one update step for all particles

with exemplar 5, and one subsequent re-sampling and rejuvenation step. In the resampling

step the highest-weight (red) particle is duplicated, replacing the lowest-weight (green)

particle. In the rejuvenation step each particle revisits one previous categorization decision

in light of all available evidence (e.g., the blue particle removes the apple exemplar 1 from

the {bird, dog} cluster; (b) a zoom into the blue particle at time t=4 (left) and time t=5

after rejuvenation (right). Each particle consists of a distribution over categories, and

category-specific distributions over target types and over context types.
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(a) (b)

(c)

Figure 3 . Learning curves for PF and CW on the BNC using purity, collocation, and Fo.5.
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(a) (b)

(c)

Figure 4 . Learning curves for PF and CW on the BNC using (fuzzy) homogeneity,

completeness, and V-measure.
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(a) (b)

(c)

Figure 5 . Learning curves for PF and CW on the CHILDES corpus using purity,

collocation, and F0.5.
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(a) (b)

(c)

Figure 6 . Learning curves for PF and CW on the CHILDES corpus using (fuzzy)

homogeneity, completeness, and V-measure.
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Figure 7 . Emergence of selected categories over time for the incremental BayesCat model

on the CHILDES corpus.
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(a)

(b)

(c)

Figure 8 . Learning curve for the BayesCat model on CHILDES with varying number of

particles. Model log-likelihood curve (a), model log-likelihood curve for the early learning

phase (b), and F0.5 learning curve (c).
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(a) (b)

(c)

Figure 9 . Learning curve for the BayesCat model on CHILDES with rejuvenation disabled.

Model log-likelihood curve (a), model log-likelihood curve for the early learning phase (b),

and F0.5 learning curve (c).
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Figure 10 . Resampling behavior of the BayesCat model learnt with a varying number of

particles. Points correspond to executed resampling steps at time x.
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Figure 11 . Rank correlations (Spearman’s rho) between the gold typicality ranking and

the model produced rankings over the set of all gold standard categories.
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Appendix A

Details of the BayesCat Model

The full joint distribution over data and model parameters as defined by our model can be

factorized as:

P (y, z,θ, φ, ψ;α, β, γ) =

P (θ|α)×
K∏
k=1

P (φk|β)P (ψk|γ)×
D∏
d=1

P (zd|θ)P (wdt |φzd)
I∏
i=1

P (wd,ic |ψzd),
(18)

where y refers to all observed data, and z refers to the hidden category labels, and k, d and

i are indices ranging over categories, stimuli, and context positions, respectively. The

parametrization of our model allows us to further simplify the joint distribution. In

particular, we can analytically integrate over all possible values of the model’s parameter

distributions θ, φ and ψ, without having to compute them explicitly. This is possible

because their prior distributions, the Dirichlet distributions, are conjugate to the

multinomial distribution, and can thus be updated in a straightforward way with new

observations. Dirichlet distributions encode a “rich-get-richer” scheme: if a category has

been frequently assigned to previously encountered stimuli, it is more likely that it will be

observed again. Intuitively, this triggers learning of multinomial parameters which

distribute most of their mass over few words, i.e., inferring a targeted vocabulary for each

individual category. The Dirichlet distribution is a commonly used prior for multinomial

parameters, because of its mathematical convenience and straightforward interpretablility.

It is the conjugate prior of the multinomial distribution, which means that the posterior

distribution, resulting from their combination, has again the form of a Dirichlet

distribution. Prior parameters can then be interpreted as “pseudo counts” which, during

inference, are efficiently updated with counts of observations from the data. The simplified

posterior distribution is:

P (y, z,θ, φ, ψ;α, β, γ) ∝∏
k Γ(Nk + αk)

Γ(∑kNk + αk)
×

K∏
k=1

∏
r Γ(N k

r + βr)
Γ(∑rN k

r + βr)
×

K∏
k=1

∏
s Γ(N k

s + γs)
Γ(∑sN k

s + γs)
, (19)
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where r ranges over target exemplars, s ranges over context words (or features), and Γ(·) is

the Gamma function. Note that the model parameter distributions do not appear on the

right-hand side of equation (19). Instead, the model is represented purely through

occurrence counts of categories Nk as well as co-occurrence counts of categories with

exemplars and features, N k
r and N k

s , respectively.



LEARNING SEMANTIC CATEGORIES 76

Appendix B

The incremental Learning Algorithm

We first explain the sequential importance sampling procedure on which our learning

algorithm is based and then derive a particle filter for the BayesCat model. Figure B1

summarizes the learning algorithm.

Importance sampling (Hammersley and Morton, 1954) is a Monte Carlo technique

used to approximate a complex target distribution p(z) from which samples cannot be

obtained efficiently. Instead, a simpler proposal, or importance, distribution q(z) is

employed which is similar to the target function, but easier to sample from. The target

distribution is approximated through n = [1..N ] samples from the importance distribution.

Each sample is weighted in order to adjust for the inevitable error introduced by sampling

from an approximation:

Target Approximation Sample Weight

p(z) ∝ 1
N

N∑
n=1

w(n)(z(n)) z(n) ∼ q(·) w(n) = p(z(n))
q(z(n)) (20)

Sequential Importance sampling (SIS; Gordon et al. 1993) is an incremental version of

the importance sampling algorithm. Samples from the importance distribution, as well as

their weights are updated recursively with new information. A particle filter is a sequential

Monte Carlo algorithm which builds on sequential importance sampling in order to

incrementally approximate a target distribution (Doucet et al., 2001). In particular, a set of

weighted samples, called particles, obtained through importance sampling are propagated

through time t = [1..T ], where each sample depends on the previous samples (1 : t− 1):

pT (z1:T ) ∝ 1
N

∑N
n=1 w

(n)
T (z(n)

T ) Final target approximation at time T

z
(n)
t ∼ qt(·|z(n)

1:t−1) Sample update at time t

wt = w
(n)
t−1 ×

pt(z(n)
t )

pt−1(z(n)
t−1)qt(z(n)

t )
Weight update at time t

(21)
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The set of particles at any time is a Monte Carlo approximation of the target distribution.

1: Initialize particles by randomly partitioning first d stimuli . Initialization

2: Initialize weights w1 = 1
N

3: for stimulus t = [d+1. . . T] do

4: for particle n = [1. . . N] do

5: ztn ∼ qt−1(z1:t−1|y1:t−1)qt(zt|zt−1, yt) . Particle Update

6: Stn → (St−1
n , ztn)

7: wtn = wtn−1 ∗ P (yt|zt−1)) . Weight Update

8: w̃t ← normalize(wt)

9: if ESS(w̃t) ≤ thresh then . Resampling

10: P(i)← {Mult(w̃t)}Ni=1

11: wt = 1
N

12: for particle n ∈ P(i) do . Rejuvenation

13: for stimulus o=[1. . . O] do

14: do ∼ uniform(1 . . . t)

15: zd
o

n ∼ P (zdo

n |ztn\−do ,yt)

Figure B1 . The particle filtering procedure.

During learning of the BayesCat model, we incrementally approximate the target

density, i.e., the probability distribution over all possible categorizations of all exemplars

pT (z1:T |y1:T ) through a cascade of local posterior probability distributions pt(z1:t|y1:t). At

each time t, pt is the distribution over clusterings z1:t of observed exemplars y1:t,

represented through the current set of particles. In order to compute the exact posterior

distribution, the categorization of exemplar y1:t−1 would need to be re-computed for each

time step considering all observed evidence. Regarding our BayesCat model, this would

come with the advantage that categorizations which receive low probability in the early
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training phase, but become likely in the later training phase, can be considered. However,

the exact local posterior distribution is not incremental, because the computation time of

the re-estimation of the density over all previous category assignments is not constant in

the number of observed exemplars. It is not tractable to sample from the local target

distribution, and not cognitively plausible either since it assumes re-organization of

semantic knowledge with every new observation.

Following the importance sampling framework, we choose a proposal distribution q(·)

with which we can approximate the local target distribution more efficiently, and which has

a constant computation time with respect to the number of observed exemplars. In

particular, we assume that once an exemplar has been assigned a category, this category is

fixed:
qt(z1:t|y1:t) = q1(z1|y1)

t∏
k=2

qk(zk|z1:k−1,y1:k)

= qt−1(z1:t−1|y1:t−1)qt(zt|z1:t−1,y1:t)

= qt−1(z1:t−1|y1:t−1)qt(zt|zt−1, yt),

(22)

Importantly, this distribution depends only on the label assignments in the previous time

step zt−1 since all previous category assignments are fixed and encoded in this state. This

process corresponds to lines 5-6 in the pseudocode given in Figure B1.

Importance sampling affords flexibility in selecting the proposal

distribution qt(zt|zt−1, yt). We sample category zt for the current exemplar yt from its

posterior distribution over categories:

qt(zt|zt−1, yt) = p(zt|z1:t−1)p(yt|zt), (23)

taking into account prior information about category probability and the features of the

exemplar. The posterior distribution can be shown to be a locally-optimal choice in that it

minimizes the variance of the importance weights across samples.12 The incremental

importance weights then correspond to the predictive likelihood of the current stimulus yt:
12The proposal distribution q(x) can be selected at liberty, as long as its support includes the support of

the target distribution p(x). A common choice of the proposal density in Bayesian modeling is the prior
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wt(z1:t|y1:t) = wt−1 ×
p(z1:t|y1:t)
q(z1:t|y1:t)

∝ wt−1 × p(yt|zt−1)

= wt−1 ×
∑
zt

p(zt|zt−1)p(yt|zt, zt−1).

(24)

The weights are normalized to sum to one after each iteration (see lines 7–9 in Figure B1).

Because of our compact model formulation, purely in terms of sufficient statistics, we are

able to sample from the local posterior distributions, as well as to evaluate the predictive

likelihood, and can thus use the optimal proposal function in our particle filter.

Resampling. By repeatedly sampling from local approximations to the target

density, inaccuracies will inevitably accumulate. This phenomenon, called degeneracy, is a

common problem with particle filters, and manifests in highly varying particle weights.

Resampling is one common approach to this problem: low-weight particles are replaced

with copies of high-weight particles based on some pre-determined schedule. This way,

memory resources can be allocated on high-probability particles, individual copies of which

can be further propagated. We follow a threshold-based resampling scheme measured by

the variance across the current particle weights. A commonly used measure for weight

variance is the effective sample size (ESS):

ESS(wt) =
 1∑

n(wtn)2

 (25)

A resampling step is executed whenever the ESS falls below a set threshold.

Technically, resampling consists of drawing N times with replacement from a

multinomial distribution over particles parametrized by the current set of particle weights.

Weights are re-set to uniform after resampling (see lines 10–12 in Figure B1). The resulting

set of particles is an empirical estimate of the current approximation, in that the weights

distribution. In this case, the weight updates can be shown to be the likelihood function. Intuitively, it is

clear that updating hypotheses purely on the basis of prior category assignments, while ignoring the features

of the current exemplar, will result in noisy clusterings, and is cognitively implausible.
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are now implicitly represented in the number of instantiations of the sampled particles. We

use systematic sampling (Cochran, 1977) to obtain a new set of particles from the

multinomial distribution, which has been shown to produce samples with less variance than

simple multinomial sampling (Hol et al., 2006).

Rejuvenation. Finally, we employ rejuvenation in order to relax the

incrementality assumption of our learning algorithm Technically, rejuvenation involves,

individually for each particle, the construction of a Markov transition kernel which is

invariant with respect to the target distribution. Each particle is then independently

moved according to the kernel and, by its definition, after the move the particles are still

distributed according to the importance distribution. We instantiate our kernel as a Gibbs

sampler which resamples one variable conditioned on the current values of all other

variables. For a fixed and constant number of iterations we randomly select an exemplar

uniformly from all encountered exemplars and resample its category based on all other

current category assignments (see lines 1–16 in Figure B1).


