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Abstract

We give a general method for constructing lattices L whose equational theories are inherently
non%nitely based. This means that the equational class (that is, the variety) generated by L is
locally %nite and that L belongs to no locally %nite %nitely axiomatizable equational class. We
also provide an example of a lattice which fails to be inherently non%nitely based but whose
equational theory is not %nitely axiomatizable. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A variety is a class of algebras which can be axiomatized by a set of equations (that
is, by a set of universal sentences whose quanti%er-free parts are equations between
terms). According to a classical result of Garrett Birkho= [5] the varieties are exactly
those classes of algebras which are closed with respect to the formation of homomor-
phic images, subalgebras, and arbitrary direct products. The variety generated by the
algebra A is the smallest variety to which A belongs. An algebra A is �nitely based if
and only if there is a %nite set � of equations, each true in A, such that each equation
true in A is a logical consequence of � (that is, � axiomatizes the variety generated
by A). A is said to be inherently non�nitely based provided A belongs to some lo-
cally %nite variety, but A belongs to no %nitely based locally %nite variety. Plainly,
inherently non%nitely based algebras are not %nitely based. Recall that an algebra
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Fig. 1. The lattice Lf ?F M!.

is locally �nite provided each of its %nitely generated subalgebras is %nite, and a va-
riety is locally �nite if all the algebras in the variety are locally %nite. But observe
that there are locally %nite algebras which belong to no locally %nite variety—it is
even an easy matter to construct such a locally %nite lattice. Inherently non%nitely
based algebras, introduced independently by MurskiIJ [31] and Perkins [37], have been
widely exploited, particularly in the construction of %nite algebras which are not %nitely
based.

In this paper we o=er a general method for constructing inherently non%nitely based
lattices. Such lattices must, of course, be in%nite, since McKenzie [26] has proven that
every %nite lattice is %nitely based. An inherently non%nitely based lattice constructed
by our method is illustrated in Fig. 1 below.

Our %rst examples of inherently non%nitely based lattices were inspired by the lattices
used in Nation [32] to refute the %nite height conjecture, while the general method we
use is obtained from that found in Baker et al. [2] modi%ed by a variant of the doubling
construction of Alan Day [10].

Lattices without %nite equational bases were constructed by Kirby Baker [1] and [4],
Ralph Freese [11], Christian Herrmann [18], Ralph McKenzie [26], and Rudolf Wille
[43]. The lattices produced by the methods of this paper have the stronger inherent
non%nite basis property.

Finite axiomatizability has proven to be a subtle problem for varieties, even for
varieties generated by a %nite algebra. Using a diMcult result of Emil Post [39], in
1951 Roger Lyndon [23] demonstrated that all 2-element algebras are %nitely based.
On the other hand, in 1954 he made the surprising discovery in [24] of an algebra with
seven elements that is not %nitely based. This led Alfred Tarski to pose the following
problem:

Tarski’s �nite basis problem: Does there exist a recursive algorithm which when pre-
sented with an e6ective description of a 7nite algebra will determine if the algebra
is 7nitely based?

In groundbreaking work, Ralph McKenzie [29] has shown that no such algorithm
exists. (See also [41] for a second route to McKenzie’s result.)
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Despite this negative result much has been discovered concerning which %nite
algebras are %nitely based. Among the %nitely based algebras one %nds
• All %nite groups [34];
• All %nite rings [22, 21];
• All %nite lattices with operators [26];
• All commutative semigroups [36];
• All %nite algebras with only %nitely many basic operations which belong to

congruence distributive varieties [3];
• All %nite algebras with only %nitely many basic operations which belong to

congruence modular varieties with %nite residual bounds [28];
• All %nite algebras with only %nitely many basic operations which belong to congru-

ence meet semidistributive varieties with %nite residual bounds [42]
The list of non%nitely based algebras must seem more pathological, but it includes:
• The natural numbers endowed with addition, multiplication, exponentiation, and

1 [25];
• The natural numbers endowed with addition, multiplication, and exponentiation [16];
• Certain in%nite groups [35];
• Certain in%nite lattices as noted above;
• Certain %nite nonassociative rings [38];
• Certain %nite groups with an element distinguished by a new constant [6];
• The semigroup consisting of the following six matrices:

(
1 0
0 0

)
;
(

0 1
0 0

)
;
(

0 0
1 0

)
;
(

0 0
0 1

)
;
(

1 0
0 1

)
;
(

0 0
0 0

)
;

where the operation is matrix multiplication [36].
In [40], Mark Sapir gave an algorithmic characterization of the inherently non%nitely
based %nite semigroups, allowing us to considerably expand the last item above. In
addition, Isaev [19] has constructed %nite nonassociative rings which are inherently
non%nitely based.

Our methods for constructing inherently non%nitely based lattices, as will become
apparent, invariably produce nonmodular lattices. So our techniques do not directly
address the following open problem.

Problem 1. Is there an inherently non7nitely based modular lattice?

It is unknown whether there are inherently non%nitely based groups. As noted by
Kharlampovich and Sapir in [20] it seems unlikely that such groups exist. They point
out that by a celebrated result of Zel’manov [44] there are no inherently non%nitely
based groups of prime exponent. Perhaps a solution to the following problem is acces-
sible.

Problem 2. Is there an inherently non7nitely based group?
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The monograph by McKenzie et al. [27] provides notation and background informa-
tion for the general theory of algebras and varieties. The books of GrPatzer [15] and
Burris and Sankappanavar [7] are also valuable references. More information on lat-
tices can be found in the books of Crawley and Dilworth [8], Davey and Priestley [9]
GrPatzer [14], Freese et al. [12], and the forthcoming text of Nation [33].

The authors are grateful to the referee for pointing to parts of our proofs that required
greater explanation.

2. Extending Day’s doubling construction

Let L be a lattice, let F be a convex subset of L, and let G be a lattice with
greatest element 1 and least element 0. We use L?F G to denote the disjoint union
(L− F)∪ (F ×G). Order L?F G by x 6 y if one of the following holds:
(1) x; y∈L− F and x 6 y holds in L,
(2) x; y∈F ×G and x 6 y holds in F×G,
(3) x∈L− F; y = 〈u; g〉 ∈F ×G, and x 6 u holds in L, or
(4) x = 〈v; g〉 ∈F ×G; y∈L− F , and v6 y holds in L.
There is a natural map � from L?F G back onto L given by

�(x) =

{
x if x ∈ L− F;

v if x = 〈v; g〉 ∈ F × G:

According to the theorem below, under this order L?F G is a lattice. We denote it by
L?F G, or by L?G when no ambiguity arises. We say that L?F G is the in&ation
of L at F by G.

Theorem 3. Let F be a convex subset of a lattice L and let G be a lattice with
a greatest element and a least element. Then L?F G is a lattice and � :L?F G→L
is an epimorphism.

The condition that F should be convex is needed to establish that the ordering
de%ned above is transitive. The least and greatest elements of G are needed to de%ne
the join and meet operations. (If x; y∈L − F and x∨y = z ∈F , then x∨y = 〈z; 0〉 in
L?F G, and dually.) The proof of Theorem 3 di=ers in no important way from the
proof of the corresponding result concerning Day’s original doubling construction. See,
for example, the proof of Theorem 1:1 in [12]. For a development of Day’s doubling
construction using the techniques of concept lattices see the work of Geyer [13].

Let L be a lattice. A subset F of L is called a full lattice fence in L if and only
if there are two disjoint in%nite antichains : : : ; t−1; t0; t1; : : : and : : : ; b−1; b0; b1; : : : of L
such that
(1) bk ∨ bk+1 = tk for all k ∈Z,
(2) tk ∧ tk+1 = bk+1 for all k ∈Z, and
(3) x∈F if and only if bk 6 x 6 tj, for some k; j∈Z.
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Fig. 2. The lattice Lf .

Fig. 3. The lattices M! and B.

For a; b∈L, we say that W is a weak lattice fence between a and b, whenever W is
a %nite set, say of cardinality n, whose elements can be listed as w0; : : : ; wn−1 so that
(1) {wi : i¡n and i is even} and {wi : i¡n and i is odd} are disjoint antichains,
(2) a=w0 and wn−1 = b, and
(3) The condition displayed below or its dual holds:

wi+1 =

{
wi ∧ wi+2 if i is even;

wi ∨ wi+2 if i is odd
for all i ¡ n− 2:

We take {a} to be a weak lattice fence for all a∈L.
The notion of a full lattice fence di=ers in some signi%cant ways from the notion

of a fence commonly used in the literature of ordered sets. Every full lattice fence
in L is convex in L. Moreover, in full lattice fences a given bottom element may lie
below many top elements (and dually). Also, joins and meets are subject to certain
restrictions in full lattice fences that need not be met in order-theoretic fences. Even
weak lattice fences are more like order-theoretic fences still permit comparabilities and
restrict joins and meets in ways that make them di=erent from order-theoretic fences.

The lattice Lf illustrated in Fig. 2 is the least complex lattice with a full lattice
fence F . This lattice was shown to be non%nitely based in [26]. In Section 5 below
we will show that this lattice fails to be inherently non%nitely based by proving that it
belongs to a certain %nitely based locally %nite variety of lattices. The lattice displayed
in Fig. 1 is just Lf ?F M!, where M! is the lattice obtained by adjoining a greatest
and a least element to a countably in%nite antichain. M! is displayed in Fig. 3.
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3. A method for constructing inherently non�nitely based lattices

An element of a lattice that is neither the greatest element nor the least element of
the lattice is said to be a proper element.

Theorem 4. Let L be a locally 7nite lattice; let F be a full lattice fence of proper
elements in L; and let � be an automorphism of L such that
(1) � partitions the set of proper elements into only 7nitely many �-orbits; each

in7nite;
(2) � preserves F (i.e.; �(f)∈F for all f∈F); and
(3) there is a natural number d such that no proper element of L is comparable to

more than d others.
Let G be a lattice with a greatest element and a least element such that G belongs
to a locally 7nite variety; and suppose that G has an automorphism with an in7nite
orbit. Then L?F G is inherently non7nitely based.

Proof. As observed in [30], a locally %nite variety V of %nite type is inherently non-
%nitely based if and only if for in%nitely many natural numbers N , there is a nonlocally
%nite algebra each of whose N -generated subalgebras belongs to V. Thus under the
hypotheses of our theorem, we must prove that L?F G generates a locally %nite va-
riety V for which we can construct the required nonlocally %nite lattices, which we
will denote by (L?F G)N .

Our proof is based on a geometrical intuition that can be seen by examining the
lattice Lf ?M! displayed in Fig. 1. We view this lattice as laid out Sat across the
plane. To construct (Lf ?M!)N our plan is to wrap this Sat lattice onto a cylinder
with a large enough (as determined from N ) circumference in such a way that the
middle rows of the M!’s become one in%nite zigzag spiral. This in%nite spiral turns
out to be generated by a %nite set, so (Lf ?M!)N will not be locally %nite. On the
other hand, any N elements of (Lf ?M!)N lie on some relatively thin vertical section
of our cylinder, which is isomorphic to the corresponding part of Lf ?M!. So the
subalgebras of (Lf ?M!)N generated by N elements will belong to the variety V

generated by Lf ?M!. In the course of establishing all this, the fact that V is locally
%nite will drop out. The hypotheses of Theorem 4 are suMcient to guarantee that this
argument applies to L?F G.

Let N be any natural number larger than 1.

Claim 5. The �-orbit of any element is an antichain. Thus L is a lattice of 7nite
height.

Proof of Claim 5. Suppose a is a proper element and that �(a) is comparable with a.
It does no harm to suppose that a6 �(a). Since the orbit of a is in%nite, we must have
a¡�(a)¡�(�(a))¡· · ·. This is an in%nite ascending chain a= a0¡a1¡a2¡a3¡· · · of
proper elements. This makes a comparable to in%nitely many elements, which cannot
happen. Therefore, a and �(a) are incomparable, whenever a is a proper element.
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More generally, we see that the orbit of a is an antichain. Therefore, the set of proper
elements is the union of %nitely many pairwise disjoint antichains. Hence L is a lattice
of %nite height.

Let m denote the number of �-orbits of proper elements of L. Make an arbitrary
selection a0; a1; : : : ; am−1 of representatives, one from each orbit. Fix the following
arrangement of the set of proper elements:

: : : ; a−m; a−m+1; : : : ; a−1; a0; a1; : : : ; am−1; am; : : : ; a2m−1; : : :

where aqm+r = �q(ar) for all integers q and all r ∈{0; 1; : : : ; m− 1}. Thus, the �-orbits
of proper elements correspond to the congruence classes of indices modulo m. The
words “consecutive”, “interval”, “distance”, etc. applied to proper elements are to be
understood by reference to these indices. Observe that the notions just mentioned (con-
secutive, interval, and distance) are invariant under �.

We say that two proper elements a and b are operationally related provided ei-
ther a∨ b is proper or a∧ b is proper. Suppose that a and b are operationally related
proper elements, and that a∨ b is proper. According to the absorption law of lattices,
a= a∧ (a∨ b). It follows that a is operationally related to a∨ b. Likewise, b is opera-
tionally related to a∨ b. Dually, in the case that a∧ b is proper, we %nd that a and b
are both operationally related to a∧ b.

Let a; b be any pair of elements of L. Pick a nonnegative integer i¡m and k ∈Z
so that �k(ai) = a. Since distance is invariant under �, we see that the distance from
a to b is the same as the distance from ai to b′ = �−k(b). Now suppose that a and
b are operationally related. Then there are at most d2 choices for b′ and at most
m choices for i. This means that there are at most md2 di=erent numbers that can
be distances between operationally related elements. Let M be the maximum possible
distance between any two operationally related proper elements.

Consider an interval of M consecutive proper elements. Up to automorphisms of L
(actually, up to powers of �), there are only %nitely many such intervals. Since L is
locally %nite, each of these intervals generates a %nite sublattice. Among all these %nite
sublattices, let w be the greatest distance an element can be to the left or right of its
generating interval.

Claim 6. Let X be a set of proper elements all lying to the left of the proper ele-
ment e. Any proper element in the sublattice generated by X can be no further to
the right of e than the distance w.

Proof of Claim 6. Without loss of generality, we suppose that X is the set of all
elements to the left of e. Suppose that c is to the right of e and that c belongs to the
sublattice generated by X . Let t(x0; x1; : : :) be a shortest term such that t(a0; a1; : : :) = c
for some a0; a1; : : : ∈X . We contend that each ai must lie no further to the left of e than
the distance M . Otherwise, suppose ai lies further to the left. Now there is a term s so
that one of the following terms is a subterm of t(x0; x1; : : :): xi ∨ s; xi ∧ s; s∨ xi; s∧ xi.
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Let us agree that xi ∨ s is such a subterm. Let b= ai ∨ s(a0; a1; : : :). It follows from
the minimality of t that ai is operationally related to b, and hence the distance from
ai to b is at most M . But then b must lie to the left of e, and so b∈X . Now let
t′(y; x0; x1; : : :) be obtained from t(x0; x1; : : :) by replacing xi ∨ s by the new variable y.
But then t′(y; x0; x1; : : :) is shorter than t(x0; x1; : : :) and nevertheless t′(b; a0; a1; : : :) = c,
a contradiction. It follows that c is generated by the interval of length M immediately
to the left of e. So c must lie within the distance w of e.

Now notice that �2 partitions the set of proper elements into 2m orbits. Indeed, by
selecting k suMciently large, �k will partition the set of proper elements into a number
of orbits exceeding any given bound.

Denote by & a power of � so that & partitions the proper elements into more than
N (M + 2w) &-orbits. Notice that our selection of & depends on the parameter N
although we have not made this dependence explicit in the notation.

A sublattice S of L is said to be &-decomposable provided there is a sublattice S0

of L such that S =
⋃

k∈Z &k(S0) and no element of S0 is operationally related to any
element of &k(S0) for any k ∈Z with k �= 0.

Claim 7. The union of any N or fewer &-orbits generates a &-decomposable sublattice
of L.

Proof of Claim 7. Let Y be the union of no more than N &-orbits. Examining the
indices of the elements of Y we see there is some element of Y followed on the right
by a gap of length at least M + 2w + 1 before the next element of Y is encountered.
Indeed, Y is the union of pieces, each of the same cardinality (no more than N ), each
contiguous relative to Y , each a &-translate of the piece to its left, and each separated
from the piece to its left by a gap of length at least M + 2w + 1. Let Y0 be one of
these pieces and let S0 be the sublattice generated by Y0 ∪{0; 1}. By the choice of w,
we know that S0 extends to the left of Y0 by at most w, and to the right by at most
w as well. The corresponding observations hold for all the translates of S0 by powers
of &. Thus these translates are separated from each other by gaps of length at least
M + 1. It follows that no element of one such translate can be operationally related
to any element of any other translate. From this it follows that the union of all these
translates is a sublattice of L. So it is the sublattice generated by Y , as desired.

Since the fence F is %xed throughout the proof of our Theorem, we simplify the
notation by letting L?G stand for L?F G.

Now let ) be an automorphism of G with an in%nite orbit. Let * :L?G→L?G be
the map de%ned via

*(x) =

{
&(x) if x ∈ L− F;

〈&(x′); )(g)〉 if x = 〈x′; g〉 ∈ F × G:

* is an automorphism of L?G, as can be easily checked.
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By a partial algebra we mean a structure 〈A;Q; P; : : :〉 such that A is a nonempty
set and Q; P; : : : are %nitary partial operations on A (that is, the domains of Q; P; : : : are
subsets of various %nite direct powers of A while the ranges of Q; P; : : : are included
in A). By a partial lattice P we mean a partial algebra 〈P;∧;∨〉 for which there is an
order 6 on P such that if a ∧ b exists then it is the greatest lower bound of a and
b with respect to 6, and dually, if a∨ b exists, then it is the least upper bound of a
and b

For any lattice M, we denote by M[ the partial lattice obtained by removing the
greatest and the least elements of M, if they are present. Also, for any partial lattice
P we form the algebra P] as follows. The universe of P] is obtained by adjoining two
new elements 0 and 1 to P. The operations are de%ned below.

u ∨P]
v =




u ∨P v if this join is de%ned in P;
v if u = 0;
u if v = 0;
1 otherwise:

u ∧P]
v =




u ∧P v if this meet is de%ned in P;
v if u = 1;
u if v = 1;
0 otherwise:

An equivalence relation ’ on P is called a congruence of P provided that

(1) a∨ b’ a′ ∨ b′ if a’ a′, b’ b′, and both a∨ b and a′ ∨ b′ are de%ned, and
(2) a∧ b’ a′ ∧ b′ if a’ a′, b’ b′, and both a∧ b and a′ ∧ b′ are de%ned.

This is precisely the condition needed in order to be able to carry out the construction
of the quotient P=’.

Let 2 be the equivalence relation of (L?G)[ induced by the *-orbits. So x 2 y if
and only if x and y belong to the same *-orbit. We will use 3 to denote the quotient
map induced by 2.

Claim 8. 2 is a congruence of (L ?G)[.

Proof of Claim 8. We show that joins behave correctly for 2; meets can be handled
dually.

Let B and C be two *-orbits with b; b′ ∈B and c; c′ ∈C. Suppose that both b∨ c
and b′ ∨ c′ are de%ned. (This implies B �=C by the choice of &.) We must show that
these joins belong to the same *-orbit. Recall that � is a homomorphism mapping
L ? G onto L. Let S be the sublattice of L generated by the union of the &-orbit of
�(b) and the &-orbit of �(c). Since we have taken N¿2, we know from Claim 7 that
S is &-decomposable into operationally unrelated &-translates of a sublattice S0. Since
�(b); �(c), and �(b∨ c) are operationally related, they must belong to a single translate
of S0. For the same reason �(b′); �(c′), and �(b′ ∨ c′) must belong to a single translate
of S0. Hence there is an integer k so that &k(�(b)) = �(b′) and &k(�(c)) = �(c′). It
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follows that *k(b) = b′ and *k(c) = c′. Hence b∨ c and b′ ∨ c′ belong to the same
*-orbit.

Let (L?G)N denote ((L?G)[=2)]. Roughly speaking, this algebra is obtained by
removing the 0 and 1 of L ? G, wrapping the resulting partial lattice onto a cylinder
using a helical covering via *, and then adding a new greatest and least element to
the result. It will be a consequence of the reasoning below that this resulting algebra
is indeed a lattice itself, provided N¿3.

Claim 9. (L ?G)N is not locally 7nite.

Proof of Claim 9. Recall that : : : ; t−1; t0; t1; : : : is the listing of the top elements of our
full lattice fence F and that bi = ti ∧ ti+1 for i∈Z provides a listing of the bottom
elements of F . Note that these listings may have little to do with our %xed arrange-
ment of the proper elements of L. By Claim 5, we know that L has %nite height.
So among the elements of F only %nitely many heights are represented. Those ele-
ments of F with the greatest height must be top elements of F . It does no harm to
assume that t0 is such an element. Since � preserves F , it follows that &(t0) is again
an element of greatest height in F . Hence it is a top element. We assume without
loss of generality that &(t0) = t‘ where 1¡‘. Let s(x; y0; z1; : : : ; y‘−1; z‘) be the term
((: : : ((x∧y0)∨ z1)∧ : : :)∧y‘−1)∨ z‘. Then for any g∈G, in L ?G we have

s(〈t0; g〉; 〈b0; 1〉; 〈t1; 0〉; : : : ; 〈b‘−1; 1〉; 〈t‘; 0〉) = 〈t‘; g〉 = 〈&(t0); g〉:
Recall that 3 denotes the quotient map induced by 2. Thus 3(&(a); g) = 3(a; )−1(g))
for all a∈F and g∈G. Let q(x) be the following unary polynomial of (L ?G)N :

s(x; 3(b0; 1); 3(t1; 0); : : : ; 3(b‘−1; 1); 3(t‘; 0)):

So in (L ? G)N we have q(3(t0; g)) = 3(&(t0); g) = 3(t0; )−1(g)) for all g∈G. Also
note that 3(t0; g) �= 3(t0; )−1(g)). Now pick g∈G belonging to an in%nite )-orbit. Then
for all natural numbers k, we have that 3(t0; )−k(g)) belongs to the sublattice generated
by the set consisting of 3(t0; g) and the 2‘ elements that play the role of constants in
q(x). Consequently, (L ?G)N is not locally %nite.

We extend the map 3 to 3] :L?G→ (L?G)N by setting 3](1) = 1 and 3](0) = 0.
This map may not be a homomorphism.

Claim 10. Each N -generated subalgebra of (L?G)N is the isomorphic image under
3] of a sublattice of L ?G.

Proof of Claim 10. Pick N elements of (L?G)N . It does no harm to suppose they
are all proper. Thus, we have selected N *-orbits of L?G. Each of these project, via
�, onto a &-orbit of L. Let S be the sublattice of L generated by the union of these
N &-orbits. By Claim 7 there is a sublattice S0 of L so that S is the union of the
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&-translates of S0 and the proper parts of all these &-translates are pairwise disjoint,
with elements of one translate operationally unrelated to elements of any other translate.

Let T = {〈a; g〉 : a∈ S0 ∩F and g∈G}∪ (S0 ∩ (L − F)). Evidently T is a sublattice
of L?G. It is also clear from the choice of S0 that 3] is one-to-one on T . To see that
3] restricted to T is a homomorphism, we only have to consider proper elements of
T which join to 1 (and, dually those that meet to 0). So suppose x and y are proper
elements of T and that x∨y = 1. Assume, for the sake of a contradiction, that x′ ∨ y′

is proper, that x′ and y′ are proper elements, that x and x′ belong to the same *-orbit,
and that y and y′ belong to the same *-orbit. It follows that �(x) and �(x′) belong
to the same &-orbit and that �(y) and �(y′) belong to the same &-orbit. Since �(x′)
and �(y′) are operationally related, they must belong to the same &-translate of S0. So
x′ and y′ belong to the same *-translate of T . This means that there is an integer k
so that *k(x) = x′ and *k(y) =y′. It follows that x′ ∨y′ = *k(x∨y) is not proper, the
contradiction we desired. Meets of proper elements of T can be handled similarly.

Therefore 3] embeds T into (L?G)N . The N elements we originally selected belong
to 3](T ).

Since L ? G is a lattice, we see that every N -generated subalgebra of (L ? G)N
is a lattice. Since lattices are de%ned by equations involving only three variables, we
conclude that (L ?G)N is a lattice whenever N¿3.

Claim 11. The N -generated sublattices of L have no more that Np elements; where
p is the number of &-orbits (which also depends on N ).

Proof of Claim 11. Our N elements are contained in the union of no more than N
&-orbits. The sublattice S generated by this union is &-decomposable by Claim 7.
Thus, there is a sublattice S0 of cardinality no larger than p so that S is the union of
the &-translates of S0 and the di=erent translates are operationally unrelated as before.
Our original N elements belong to at most N of these translates. The union of these
translates of S0 is a sublattice of cardinality at most Np.

It is well known that an algebra belongs to some locally %nite variety if and only if
for arbitrarily large natural numbers N , there is a %nite upper bound on the cardinality
of its N -generated subalgebras. Thus Claim 11 implies that L belongs to a locally %nite
variety.

Claim 12. L?G belongs to a locally 7nite variety.

Proof of Claim 12. We will prove that Np(gN + 2) is an upper bound on the cardi-
nalities of the N -generated sublattices of L ? G, where gN is an upper bound on the
cardinalities of the N -generated sublattices of G and p is the number of &-orbits.

So select some N elements of L?G. Let Q be the set of all elements of L of the form
�(x) where x is one of our N selected elements. Let R be the sublattice of L generated
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by Q. So |R|6Np by Claim 11. Let S be the set of all g∈G such that 〈a; g〉 is one of
our N selected elements for some a. Let T be the sublattice of G generated by S with
the 0 and 1 of G adjoined. So |T |6gN + 2. Now R∩ (L− F)∪{〈a; g〉: a∈R∩F and
g∈T} is the universe of a sublattice of L?G. Plainly, this sublattice has cardinality
no larger than Np(gN + 2) and it contains the N elements we selected.

We have now completed all phases of the proof that L?F G is inherently non%nitely
based.

Plainly, our Theorem 4 is very closely related to Theorem 1:1 in [2]. The same can
be said for the proof of our theorem and the proof in [2]. The main di=erence is that
we draw the conclusion that L?F G is inherently non%nitely based, not that L itself
is inherently non%nitely based. L?F G need not be in the variety generated by L,
whereas the corresponding algebra in the proof of Theorem 1:1 in [2] is in the original
variety.

The lattice L in Theorem 4 was required to have a full lattice fence and an au-
tomorphism satisfying certain conditions. Actually, the automorphism can be used to
build a full lattice fence with the required properties.

Theorem 13. Let L be a lattice and let � be an automorphism of L such that
(1) the �-orbit of any proper element of L is in7nite;
(2) L has 7nite height; and
(3) there is a proper element a such that a and �(a) are incomparable; and either

a∨ �(a) is proper or a∧ �(a) is proper.
Then L has a proper full lattice fence preserved by �.

Proof. Without loss of generality, we will suppose that a∧ �(a) is proper. Let b0 =
a∧ �(a). For each k ∈Z, let bk = �k(b0). So �k(a)∧ �k+1(a) = bk . Let tk = bk ∨ bk+1

for each k ∈Z. Now observe that bk+1 = �k+1(a)∧ �k+2(a)¿tk ∧ tk+1¿bk+1. Hence,
bk+1 = tk ∧ tk+1 for all k ∈Z. To see that : : : ; b−1; b0; b1; : : : is an in%nite antichain,
observe that it is in%nite since it is the orbit of the proper element b0. It must be an
antichain, since otherwise it would contain an in%nite chain (violating the %nite height
of L). Likewise, each tk is proper since bk+1 = tk ∧ tk+1, and thus : : : ; t−1; t0; t1; : : : is an
in%nite antichain. Let F = {x: bk6x6tj for some k; j∈Z}. F is the desired fence.

4. Examples of inherently non�nitely based lattices

With the help of Theorem 4 it is easy to construct inherently non%nitely based
lattices. The lattices M! and B in Fig. 3 are two of the least complicated lattices that
can play the role of G.

They both have greatest and least elements with the remaining proper elements
constituting a single in%nite orbit under some obvious automorphism. Both generate
locally %nite varieties.
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Fig. 4. The lattice J.

Fig. 5. The lattice J ? B.

Other lattices can play the role of L. The lattice J displayed in Fig. 4, with the
fence elements indicated by •, has the required properties. The lattice J?B, displayed
in Fig. 5, is an inherently non%nitely based lattice. The lattice (J ? B)2, displayed in
Fig. 6, is the lattice Nation used in [32] to refute the %nite height conjecture. In this
%gure points with the same labels should be identi%ed. The whole %gure suggests an
in%nitely tall cylinder with dually isomorphic %nite caps at the top and bottom. There
are 14 copies of the chain of integers arranged around the middle and wrapped with a
single zigzag helix.

We can also let the lattice Lf of Fig. 2 play the role of G, since it has all the
requisite properties. Thus Lf ?Lf is an inherently non%nitely based lattice.

5. Lf fails to be inherently non�nitely based

By Theorem 14 just below, the lattice Lf belongs to every variety of lattices that
can be shown to be inherently non%nitely based by Theorem 4. Ralph McKenzie in
[26] proved that Lf is not %nitely based. Were we able to prove that Lf was inherently
non%nitely based, we would have a result stronger than Theorem 4. The main work of
this section is to prove that Lf fails to be inherently non%nitely based.
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Fig. 6. The lattice (J ? B)2.

Theorem 14. Let L be a locally 7nite lattice; let F be a full lattice fence of proper
elements in L; and let � be an automorphism of L such that
(1) � partitions the collection of proper elements of L into only 7nitely may �-orbits;

each in7nite;
(2) � preserves F (i.e. �(f)∈F for all f∈F); and
(3) there is a 7nite uniform bound d such that every proper element of L is compa-

rable with no more than d elements of L.
Let G be a lattice with a least and a greatest element. Then Lf belongs to the variety
generated by L?F G.

Proof. According to Theorem 3, L is a homomorphic image of L?F G. To complete
the proof, we will argue that Lf is isomorphic to a subalgebra of L.

With the help of (3), an easy induction on n shows that there is a %nite f(n) such
that for any proper element a, there are no more than f(n) elements b with a weak
lattice fence from a to b of cardinality no more than n.

Now let a be an element of F of greatest height. So a is top element of F . It follows
that �k(a) is a top element of F for every natural number k. For each positive integer
k pick a weak lattice fence Gk from a to �k(a) of least possible cardinality. By the
previous paragraph, {Gk : k ∈Z+} contains weak lattice fences of arbitrarily large %nite
cardinality.

Call a weak lattice fence W good provided the join of any two distinct nonadjacent
bottom elements of W is 1 and the meet of any two distinct nonadjacent top elements
of W is 0.

Claim 15. Gk is a good weak lattice fence; for every positive integer k.

Proof of Claim 15. To the contrary, suppose bi and bj are bottom elements of Gk with
j− i¿1 such that bi ∨ bj = c is a proper element. Let b′i = ti−1 ∧ c and b′j = c∧ tj, where



R. Freese et al. / Annals of Pure and Applied Logic 115 (2002) 175–193 189

Fig. 7. M3 + 1 and 1 + M3.

ti−1 and tj are the appropriate top elements of Gk . We obtain a new fence G′
k from

a to �k(a) by replacing the part of Gk extending from bi to bj by b′i ; c; b
′
j . G′

k has
smaller cardinality than Gk , contradicting the choice of Gk . This argument has obvious
modi%cations in case {a; �k(a)} and {bi; bj} are not disjoint.

Pick a representative from each �-orbit of proper elements. Let T be the collection
consisting of the empty set and all good weak lattice fences in L of odd cardinality,
whose middle element is one of the selected representatives. T is made into a %nitely
branching in%nite tree by declaring that the empty set is the root, the selected represen-
tatives its immediate successors, and that the good weak lattice fence W is a successor
of W ′, where W ′ results from W by deleting both its left and right endpoints. The
fact that T is in%nite follows since the Gk ’s get arbitrarily long. By pruning o= ends
if necessary we arrive at arbitrarily long good weak lattice fences of odd length. By
applying the correct power of � we can translate this good weak lattice fence of odd
length onto one whose middle element is one of the selected representatives.

By KPonig’s In%nity Lemma, T has an in%nite branch. The union of this branch
could be called a two-way in%nite good weak lattice fence. Adjoining 1 and 0, we
obtain a copy of Lf.

To establish that Lf fails to be inherently non%nitely based, we provide a %nitely
based locally %nite variety V to which Lf belongs. Let K be the class of all lattices
L of height at most 3 such that neither M3 + 1 nor 1+M3 are sublattices of L. These
two lattices are displayed in Fig. 7. Note that Lf ∈K. Let V be the variety generated
by K. We will prove that V is a %nitely based locally %nite variety.

Theorem 16. V is locally 7nite.

Proof. To prove that V is locally %nite, it suMces to %nd a function b(n) on the
natural numbers such that every n-generated sublattice of L has no more than b(n)
elements for every L∈K. We argue that b(n) = 2n+2 will serve. In passing, we note
that this choice of b(n) is sharp in the sense that this bound is achieved for all n¿3
by a suitable choice of L∈K and a suitable selection of n elements in L.
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So let L∈K and let X be a %nite set of proper elements of L. Let

Y0 = {x ∨ x′ : x; x′ ∈ X; x and x′ are incomparable; and x ∨ x′ �= 1};
Y1 = {x ∧ x′ : x; x′ ∈ X; x and x′ are incomparable; and x ∧ x′ �= 0};
Y = Y0 ∪ Y1; and

S = X ∪ Y ∪ {0; 1}:

Claim 17. S is closed under ∨ and ∧.

Proof of Claim 17. Let a; b∈ S with a and b incomparable proper elements. It suMces
to prove that a∨ b∈ S. In case a∨ b= 1 we are already %nished. So consider the case
that a∨ b is proper. Since L has height at most 3, we see that a and b both cover
0, and that a∨ b covers both a and b. In the event that a; b∈X , then a∨ b∈Y and
we are done. So, without loss of generality, we suppose that a∈Y . Since a covers 0,
it follows that there are x; x′ ∈X , which are incomparable, so that a= x∧ x′. Hence,
x; x′, and a∨ b all cover a. But L has no sublattice isomorphic to M3 + 1, so we have
a∨ b∈{x; x′}⊆X ⊆ S, as desired.

At this point a O(n2) bounding function is apparent. This is enough to establish the
theorem. To obtain the tighter bound we impose the structure of a labeled graph on X .
Given any two incomparable elements x; x′ ∈X at most one of x∨ x′ and x∧ x′ can be
proper, since L has height at most 3. Draw an edge between x and x′ provided either
the join or the meet is proper and label that edge with whichever of the join or meet
is proper. The resulting graph has vertex set X with edges labeled by the set Y . Call
this graph X. Notice that every element of Y occurs as the label of some edge of X.
Thus the number of edges in our graph is an upper bound on the cardinality of Y .

Claim 18. Every vertex in X has degree at most 2.

Proof of Claim 18. Suppose not. Pick four distinct elements y; x0; x1; x2 ∈X so that
y is adjacent to each of x0, x1, and x2. We may suppose that y∧ x0 is proper.
From height considerations it follows that 1 covers y. This entails that y∧ x1 and
y∧ x2 must also be proper. Thus, y covers each of y∧ x0; y∧ x1, and y∧ x2. Since
L has no sublattice isomorphic to M3 + 1, it follows that y∧ x0; y∧ x1, and y∧ x2

cannot be distinct. Suppose y∧ x0 =y∧ x1. But then each of the three distinct elements
y; x0, and x1 covers y∧ x0. This forces an isomorphic copy of 1 + M3 inside L,
a contradiction.

In any graph where 2 is an upper bound on the degree of any vertex, the number
of edges cannot exceed the number of vertices. Hence |Y |6|X |. Consequently,
|S|62|X |+2 and so the sublattice generated by X can have at most 2|X |+2 elements,
as desired.
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Fig. 8.

The next theorem essentially describes the varieties covering V within the variety
generated by lattices of height at most 3 as the varieties generated by the lattices in
Fig. 8 and their duals.

Theorem 19. If L is a subdirectly irreducible lattice of height at most 3; then L∈K

if and only if none of the lattices K1; K2; K3; K4; or M3;3 nor their duals is a
sublattice of L.

Proof. Clearly, each of the lattices listed in the theorem contains M3 + 1 or 1 + M3

as a sublattice, and hence is not in K.
Conversely, assume that L is a subdirectly irreducible lattice of height 3 which is

not in K. Without loss of generality, we suppose that L has a sublattice isomorphic to
1+M3. Because L has height no larger than 3, this means that there is an element d of L
which covers 0 such that at least 3 proper elements of L cover d. Let A= {s : s∈L and
d¡s¡1}. Let |A|= <. We know that <¿3 and that A∪{d; 1} comprises a sublattice
isomorphic to M<.

Case I: d has no complement in L.
Since 1 + M< is not subdirectly irreducible, L must have elements besides those in

A∪{1; d; 0}. Each such additional element must lie below exactly one element of A,
for otherwise it would be a complement of d. Let g be such an additional element.
It is easy to see that A∪{1; d; g; 0} comprises a sublattice, which, however, is not
subdirectly irreducible. So let h be yet another element of L. In the event that g and h
lie beneath the same element of A, a copy of M3;3 is induced. In the event that g and
h lie beneath distinct elements of A, a copy of K1 is induced. This %nishes Case I.
Case II: d has a complement in L.
Let e be a complement of d. Let B = {s : s∈L and 0¡s¡e}. If there are at least

three elements of A which meet with e to 0, then a copy of K2 is induced. If perchance
exactly two elements of A meet with e to 0, then a copy of K3 is induced. If only
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one element of A meets with e to 0, then a copy of K4 is induced. We are reduced
to the situation that the meet of e with any element of A is proper. Since L has
height 3, consideration of the cover relations reveals that A∪B∪{1; e; d; 0} comprises
a sublattice isomorphic to M< × 2. Hence, this sublattice is not subdirectly irreducible.
There must be additional elements in L. If some additional element is comparable to
one of the elements in A∪B∪{e; d}, then it must be either below some element of
A or above some element of B. In either case, a copy of M3;3 is induced. We are
left with the case that each additional element is incomparable with every element of
A∪B∪{e; d}. Let g be such an element. Let a; b, and c be three distinct elements
of A. Observe that {1; g; a; b; c; d; 0} comprises a sublattice. Consider, for example,
g∧ a. Being comparable with a, it must not be an additional element. Since g is also
comparable to g∧ a, it must be that g∧ a= 0. The sublattice at hand is a copy of K2.
This completes Case II and the proof of the theorem.

Theorem 20. V is 7nitely based.

Proof. Christian Herrmann [17] has proven that the variety of lattices generated by
the class of all lattices of height at most 3 is %nitely based. Let � be a %nite base for
this variety. Now the class K is evidently closed under the formation of homomorphic
images, sublattices, and ultraproducts. Thus, in view of JVonsson’s Lemma, every subdi-
rectly irreducible lattice in V actually belongs to K. Therefore, the lattices displayed
in Fig. 8 and their duals are subdirectly irreducible lattices of height 3 that fail to
belong to V. For each of these nine lattices pick an equation true in V which fails in
the lattice. Let > denote the set of these nine equations. Then �∪> is a %nite set of
equations true in V. To see that it is a base for V, we only need to argue that every
subdirectly irreducible model of �∪> actually belongs to K. So suppose that L is a
subdirectly irreducible model of �∪>. Since L |=�, by JVonsson’s Lemma L as height
at most 3. Since L |=>, none of the lattices displayed in Fig. 8 nor their duals can be
sublattices of L. So it follows from Theorem 19 that L∈K, as desired.

Corollary 21. Lf fails to be inherently non7nitely based.
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