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Abstract

This paper has a twofold scope. The first one is to clarify and put in evidence the isomorphic character of
two theories developed in quite different fields: on one side, threshold logic, on the other side, simple games. One
of the main purposes in both theories is to determine when a simple game is representable as a weighted game,
which allows a very compact and easily comprehensible representation. Deep results were found in threshold
logic in the sixties and seventies for this problem. However, game theory has taken the lead and some new results
have been obtained for the problem in the last two decades. The second and main goal of this paper is to provide
some new results on this problem and propose several open questions and conjectures for future research. The
results we obtain depend on two significant parameters of the game: the number of types of equivalent players
and the number of types of shift-minimal winning coalitions.
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1 Introduction

The study of switching functions goes back at least to Dedekind’s 1897 work [9], in which he determined the exact
number of simple games with four or fewer players. Since that time these structures have been investigated in a
variety of different contexts either theoretically [26, 29, 28, 30, 5] in the context of Boolean functions or because of
their numerous applications: neural networks [1], simple games [48, 34, 35, 51], threshold logic [13, 8, 25, 33, 44],
hypergraphs [54], coherent structures [53], learning theory [42], complexity theory [4], and secret sharing [57, 59, 3].
Several books on neural networks have studied these structures: [49, 55, 58, 52].

Logic gates, switching functions or Boolean functions can be thought of as simple games, with weighted games
playing the role of threshold functions. To the best of our knowledge the first work linking threshold logic and
simple games is due to Dubey and Shapley [11] and a compact study encompassing knowledge in both fields is due
to Taylor and Zwicker [63].

As an example for a switching function or a simple game one may consider the process of coordination of the
weekend activities of a family. Assume that the family consists of the parents Ann and Bob and their children Claire
and Dylan. A proposal is accepted if at least one of the parents and at least one of the children agrees, while each
person can either agree or disagree. The underlying decision rule can be modeled as a simple game.1 A compact
way to represent a simple game is by using weights for each player such that a proposal is accepted if and only if
the weight sum of its supporters meets or exceeds a given quota (or threshold). If such a representation exists, the
simple game is called a weighted game. In our example no weighted representation exists, since the coalitions of
the parents and of the children cannot push through a proposal, while they can if they split differently in coalitions
of size two.2 However, every simple game can be written as the intersection of some weighted games. The Lisbon
voting rules of the EU Council provide a non-weighted real–world example where quite a few weighted games are
need in such a representation, see [40] for the details.
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1The minimal winning coalitions are given by {A,C}, {A,D}, {B,C}, and {B,D}, see Section 2 for the definitions.
2Using the notation from Section 3, 〈{A,C}, {B,D} ‖ {A,B}, {C,D}〉 is a trading transform, which certifies non-weightedness.
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One of the most fundamental questions in all of the above mentioned areas is to characterize which monotonic
switching functions (simple games) are weighted threshold functions (weighted games). In threshold logic this is
known as the linear separability problem. This question has also been posed in other research fields by using
different terminologies, which are essentially equivalent. Three different treatments to solve this problem have been
considered.

The first consists in studying the consistency of a system of inequalities. Each inequality is formed by the inner
product of two vectors: a non-negative integer vector of weights which represents the unknown variables and the
vector formed by the subtraction of a true vector (winning coalition) minus a false vector (losing coalition). The
system is formed by considering all possible subtractions of true and false vectors. If the switching function is a
threshold function then each inequality must be positive and the system of inequalities is consistent. A theorem
on the existence of solutions for systems of linear inequalities was given in [7]. Linear programming is also a useful
tool as shown in [41, 16].

The second treatment, very close to the previous one, is a geometric approach based on the existence of a
separating hyperplane that separates true vectors from false vectors. This procedure is elegant but not very efficient
in practice. A use of the geometrical approach can be found in [12]. Reference [32] proposes a variant of it.

The idea behind the third approach lies in the consideration of exchanges among vectors and the possibility to
convert some true vectors into false vectors, no matter the number of vectors involved in these exchanges. The early
works of [13] and [8], reexamined for simple games in [61], are the central point of this work. The class of threshold
functions admits a structural characterization, the asummability property, that is both natural and elegant. Some
of the deepest results on this subject were obtained in the area of threshold logic during two decades from the fifties
to the seventies by Chow, Elgot, Gabelman and Winder, as reported by Hu [33], and continued by Muroga [44] and
Muroga et al. [46, 45, 47].

The interpretation of Taylor and Zwicker for the asummability condition in terms of trades among coalitions
in [61] together with the work in [62] stimulated the interest for the problem of characterizing weighted games within
simple games. In their book [63] they adapted, for simple games, the most important results of threshold logic in
relation to the linear separability problem. In particular, their property of trade-robustness is equivalent to the
property of asummability. However, trade-robustness is more transparent in the theoretical context of voting since
it gives rise to some intuitions concerning the idea of trading players among coalitions. Freixas and Molinero [17]
propose a relaxation of trade-robustness for complete simple games and called it invariant-trade robustness, which
is less costly in terms of the lenght of the corresponding certificates. In this paper we deduce some new results
using this property.

As mentioned before, each simple can can be represented as an intersection of weighted games, which allows
a compact representation once the number of required weighted games is small. In general this number, called
dimension of the simple game, can be large, see e.g. [39], where the worst case asymptotics has been determined
via a connection to coding theory. If the dimension is small, e.g. power indices can in general be more simply and
efficiently computed. Here we treat the extreme case of dimension 1, i.e., we consider the relavant issue whether a
given simple game (switching function) is weighted and propose some new characterizations.

The organization of the paper is as follows. The necessary basic terminology of simple games is reviewed in
Section 2. Section 3 recalls the main general results on the characterization of weighted games within the class of
simple games, and it identifies the analogue terminologies used in threshold logic and simple games. The problem
of the characterization of weighted games can be restricted to the class of complete games, a parametrization result
for classifying them, up to isomorphisms, which will be intensively used in the next sections, is recalled in Section
4. Sections 5, 6 and 7 provide new results on the characterization of weighted games. Cases for which 2-invariant
trade robustness is conclusive are presented in Section 5. m-invariant trade robustness is studied in Section 6, while
Section 7 gives some numerical and experimental data. Several questions and conjectures are proposed for future
research in Section 8. In Section 9 we draw a conclusion.

2 Terminology in the context of voting simple games

Simple games or binary voting systems can be viewed as models of voting systems in which a single alternative,
such as a bill or an amendment, is pitted against the status quo. A simple game G is a pair (N,W) in which
N = {1, 2, . . . , n} is the set of players or voters and W is a collection of subsets of N that satisfies: (1) N ∈ W, (2)
∅ /∈ W and (3) the monotonicity property: S ∈ W and S ⊆ T ⊆ N implies T ∈ W.
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Any set of voters is called a coalition, and the set N is called the grand coalition. Members of N are called
players or voters, and the subsets of N that are in W are called winning coalitions.

The intuition here is that a set S is a winning coalition if and only if the bill or amendment passes when the
players in S are precisely the ones who voted for it. A subset of N that is not in W is called a losing coalition.
A minimal winning coalition is a winning coalition all of whose proper subsets are losing. A maximal losing
coalition is a losing coalition all of whose proper supersets are winning. Because of monotonicity, any simple game
is completely determined by its set of minimal winning coalitions, which is denoted byWm or by its set of maximal
losing coalitions, which is denoted here LM . A voter a ∈ N is null if a does not belong to any minimal winning
coalition. A player a ∈ N has veto if a belongs to all winning coalitions.

Before proceeding, we present two real-world examples of simple games (see Taylor and Pacelli [60] for a thorough
presentation of these two examples).

Example 2.1 The United Nations Security Council. The voters in this system are the fifteen countries that make
up the Security Council, five of which are permanent members whereas the other ten are non-permanent members.
Passage requires a total of at least nine of the fifteen possible votes, subject to a veto due to a no vote from any
one of the five permanent members. This model ignores abstention. For a treatment of this example considering the
possibility of abstention we refer the reader to [23].

Example 2.2 The System to amend the Canadian Constitution. Since 1982, an amendment to the Canadian
Constitution can become law only if it is approved by at least seven out of the ten Canadian provinces, subject to the
proviso that the approving provinces have, among them, at least half of Canada’s population. It was first studied in
Kilgour [37]. An old census (in percentages) for the Canadian provinces was: 1. Ontario (34%), 2. Quebec (29%),
3. British Columbia (9%), 4. Alberta (7%), 5. Saskatchewan (5%), 6. Manitoba (5%), 7. Nova Scotia (4%), 8.
New Brunswick (3%), 9. Newfoundland (3%), 10. Prince Edward Island (1%).

For example observe that coalitions (from now on we use abridgments to denote the provinces):
X1 = {Que,BC,Alb, Sas,Man,NS,NB} and X2 = {Ont, Sas,Man,NS,NB,Newf, PEI} are minimal winning
coalitions because they both have exactly 7 provinces and their total population surpasses the 50%. Instead, coalitions:
Y1 = {Ont,Que, Sas,Man,NS,NB} and Y2 = {BC,Alb, Sas,Man,NS,NB,Newf, PEI} are both losing because
Y1 does not have 7 or more members and Y2 does not reach the 50% of the total Canada’s population.

A fundamental subclass of simple games are the classes of weighted simple games and complete simple games.
A simple game G = (N,W) is said to be weighted if there exists a “weight function” w : N → R≥0 and a “quota”
q ∈ R>0 such that a coalition S is winning precisely when the sum of the weights of the players in S meets or
exceeds the quota. Any specific example of such a weight function w : N → R and quota q are said to realize G as
a weighted game. A particular realization of a weighted simple game is denoted as [q;w1, . . . , wn].

For instance, [k;

n︷ ︸︸ ︷
1, . . . , 1] for some k = 1, . . . , n is a feasible realization for a weighted game in which all

players are symmetric; here the game is called a k–out–of–n simple game. A realization of Example 2.1 is
[39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], where 7 is the weight for a permanent member and 1 the weight for a non-
permanent member. Instead, Example 2.2 cannot be represented as a weighted game. Indeed, if the game was
weighted we would have w(X1) > w(Y1) and w(X2) > w(Y2), i.e.,

w2 + (w3 + · · ·+ w8) > (w1 + w2) + (w5 + · · ·+ w8) and w1 + (w5 + · · ·+ w10) > (w3 + · · ·+ w10).

After simplification we obtain w3 + w4 > w1 and w1 > w3 + w4, which is a contradiction. In these inequalities, w1

represents, the weight for Ontario, the most populated province; w2 represents, the weight for Quebec, the second
most populated province; and so on.

It is quite intuitive to observe that a permanent member has more influence than a non-permanent member in
the voting systems described in Example 2.1. The same occurs in Example 2.2 where any of the two big provinces
are more influential than any other of the remaining eight provinces. The “desirability relation” represents a way
to make the idea, that a particular voting system may give to one voter more influence than another, more precise.
Isbell already used it in [35].

Let G = (N,W) be a simple game, a and b be two voters. Player a is said to be at least as desirable as b as
coalitional partner if for every coalition S such that a /∈ S and b /∈ S, S∪{b} ∈ W implies S∪{a} ∈ W. If moreover,
there exists a coalition T such that a /∈ T and b /∈ T , T ∪ {a} ∈ W and T ∪ {b} /∈ W, then a is (strictly) more
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desirable than b. Finally, a and b are said to be equally desirable if a is at least as desirable as b and the converse
is also true. The notations a % b, a � b and a ∼ b respectively stand for: a is at least as desirable as b, a is strictly
more desirable than b, and a and b are equally desirable. It is straightforward to check that ∼ is an equivalence
relation, and that the desirability relation % is a partial ordering of the resulting equivalence classes.

A simple game G = (N,W) is complete (or linear) if the desirability relation is a complete preordering. Note
that every weighted game is complete, since for any realization it holds that wa ≥ wb implies a % b. But the
converse is not true as Example 2.2 shows.

In a complete simple game we may decompose N into a collection of subsets, called classes, N1 > N2 > · · · > Nt

forming a partition of N . Those classe should be the equivalence classes ordered by desirability, i.e., if a ∈ Np

and b ∈ Nq then: p = q if and only if a ∼ b and, p < q if and only if a � b. Two parameters are of fundamental
importance in our study. One of them is the number of equivalence classes, t, in a complete game, i.e., a measurement
of heterogeneity. In Example 2.1 we have N1 > N2 where N1 is formed by the five permanent members and N2 for
the non-permanent ones, while in Example 2.2 we have N1 > N2, where N1 is formed by the two big provinces and
N2 for the other eight provinces. Thus, in both examples t = 2.

To define the second fundamental parameter for our study we need another definition. Given a simple game,
a shift-minimal winning coalition S is a minimal winning coalition such that (S \ {a}) ∪ {b} is losing whenever
a � b with a ∈ S and b /∈ S. Note that a coalition of seven members in Example 2.2 containing both, Quebec and
Ontario, is a minimal winning coalition but it is not shift-minimal winning, since a replacement of a big province
in the coalition for a province not belonging to the coalition still leaves the new coalition winning. Analogously, a
shift-maximal losing coalition S is a maximal losing coalition such that (S \ {b}) ∪ {a} is winning whenever a � b
with b ∈ S and a /∈ S.

Two shift-minimal winning coalitions, S and T , are said to be equivalent coalitions if T can be obtained from S
by any sequence of one–to–one exchanges of equally desirable voters. If the game is complete we can consider the
parameter r which is the maximal number of non-equivalent shift-minimal winning coalitions.

Observe that the complete game from Example 2.1 has
(
10
4

)
= 210 minimal winning coalitions which are also

shift-minimal winning coalitions, each consisting of all five permanent members and four arbitrary non-permanent
members. However, all of them are equivalent in the previous sense. Thus, for Example 2.1 the two parameters we
lay stress on are r = 1 and t = 2.

The simple game from Example 2.2 has 112 minimal winning coalitions, 56 of them formed by one of the two
big provinces and six other provinces, which are also shift-minimal winning coalitions. The game has 56 additional
winning coalitions formed by the two big provinces and five other provinces, but these are not shift-minimal winning
coalitions. The 56 shift-minimal winning coalitions are equivalent among them in the previous sense. Thus, for
Example 2.2 the two parameters we lay stress on again are r = 1 and t = 2. The case r = 1 is considered in
Subsection 5.1.

3 Some results on the characterization of weighted games

We introduce a notion of trades among coalitions, which is natural in game theory and in economic applications,
see [63] for motivating examples. Suppose G = (N,W) is a simple game. Then a trading transform is a coalition
sequence 〈X1, . . . , Xk|Y1, . . . , Yk〉 of even length satisfying the following condition:

|{i : a ∈ Xi}| = |{i : a ∈ Yi}| for all a ∈ N.

The Xs are called the pre-trade coalitions and the Y s are called the post-trade coalitions. A k-trade for a simple
game G is a trading transform 〈X1, . . . , Xj |Y1, . . . , Yj〉 with j ≤ k. The simple game G is k-trade robust if there is
no trading transform for which all the Xs are winning in G and all the Y s are losing in G. If G is k-trade robust
for all k ∈ N, then G is said to be trade robust.

Loosely speaking, G is k-trade robust if a sequence of k or fewer (not necessarily distinct) winning coalitions
can never be rendered losing by a trade.

Theorem 3.1 (Theorem 2.4.2 in [63], see also [61]) Let G = (N,W) be a simple game. Then, G is weighted if
and only if G is trade robust.
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This result is equivalent to the one given by Elgot [13] and Chow [8] in threshold logic. Instead the notation of trade
robustness, these authors used an equivalent condition of asummability of vectors. If we are restricted to complete
simple games and only allow pre-trades of shift-minimal winning coalitions, then we may refer to the property of
invariant-trade robustness instead of trade robustness and Theorem 3.1 can be reformulated in an equivalent way.

Theorem 3.2 (Theorem 4.7 in [17]) Let G = (N,W) be a complete simple game. Then, G is weighted if and only
if G is invariant-trade robust.

As seen in Example 2.2 the trading transform 〈X1, X2|Y1, Y2〉 certifies a failure of 2-invariant-trade robustness
and therefore this complete simple game is not weighted. It is also trivial to see that the simple game described in
Example 2.1 is invariant-trade robust and therefore weighted.

Suppose G = (N,W) is a simple game. Then, G is said to be swap robust if a one–for–one exchange between
two winning coalitions can never render both losing. Thus, swap robustness differs from trade robustness in two
ways: the trades involve only two coalitions, and the exchanges are one–for–one. That is to say, swap robustness
considers m-trades of the following type: m = 2 and 〈X1, X2|X1 \ {a}, X2 ∪ {a}〉 with a ∈ X1 and a /∈ X2. It
is fairly easy to generate simple games that are not swap robust. The following theorem is a characterization of
complete simple games.

Theorem 3.3 (Proposition 3.2.6 in [63]) G is a complete simple game if and only if G is swap robust.

Clearly, non–complete games are not 2-invariant trade robust. In fact, it is always possible to find two shift-
minimal winning coalitions which convert into losing coalitions after a one–for–one exchange. Thus, the difficulty
of the problem of determining when a given simple game is weighted can be focused exclusively on the class of
complete games. To obtain significant results it is helpful to have a compact and manageable presentation of these
games.

If, in a complete game, the number of the equivalence classes is lower than the number of players, i.e., t < |N |,
we have such a presentation. Indeed, Carreras and Freixas [6] provide a classification theorem for complete simple
games, here Theorem 4.2, that allows to enumerate all these games up to isomorphism by listing the possible values
of certain invariants. An advantage of using the classification theorem is that it usually allows to work with a smaller
number of vectors than would be required with minimal winning coalitions. In the next section we introduce a
notion of trade-robustness based on these invariants.

As the basic game theoretic notions for simple games, we use in this paper, have already been introduced, we
list a list of language analogies between these notions to the fields of threshold logic or Boolean algebra in next
subsection. These analogies allow the easy translation of the results from one field to the other. In particular,
this list will be useful for scholars in threshold logic to be aware of the new results we find in this paper and the
questions and conjectures we propose to be studied.

3.1 A list of analogies in the context of threshold logic

For the sake of simplicity, clarity, and for being coherent with the historical studies we write the notions in the
language of Boolean algebra (very similar to that of neural networks or threshold logic). Tables 1 and 2 contain
the main equivalences. The list is not exhaustive. Throughout the rest of the paper we exclusively deal with simple
games and refer to these two tables for direct analogies of the results we find and the questions and conjectures we
pose.

4 Symmetries and a parametrization of complete simple games

For t < |N | types of voters we can represent coalitions in a more compact way. Let (N,W) be a simple game and
N1, . . . , Nt be a partition of the player set into t equivalence classes of voters cf. Section 2. A coalition type (or
coalition vector) is a vector s = (s1, . . . , st) ∈ (N ∪ {0})t with 0 ≤ si ≤ |Ni| for all 1 ≤ i ≤ t. We say that a
coalition S ⊆ N has type s if si = |S ∩Ni| for all 1 ≤ i ≤ t. A coalition type s is called winning if the coalitions of
that type are winning. Analogously, the notions of minimal winning, shift-minimal winning, losing, maximal losing
and shift-maximal losing are translated similarly for coalitional types. So, the simple game from Example 2.1 can
be described by the unique minimal winning coalition type (5, 4) which represents all coalitions with 5 permanent
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Table 1: Variables and vectors versus players and coalitions.

variable or node player or voter
irrelevant variable null player
essential variable vetoer

vector coalition
true vector winning coalition
false vector losing coalition

minimal true vector minimal winning coalition
maximal false vector maximal losing coalition

shift-minimal true vector shift-minimal winning coalition

Table 2: Types of functions versus types of simple games.

switching function non-monotonic (simple) game
monotonic switching function (monotonic) simple game

threshold function weighted game
k-out-of-n switching function k-out-of-n simple game

regular function complete game
k-summable not k-trade robust

k-asummable k-trade robust
k-invariant summable not k-invariant trade robust

k-invariant asummable k-invariant trade robust

members and 4 non-permanent members, and the simple game from Example 2.2 can be described by the unique
minimal winning coalition type (1, 6) which represents all coalitions with 1 big province and 6 small provinces.

The notion of a trading transform for coalitions can be transferred to coalitional types for vectors.

4.1 Coalitional types

Let G = (N,W) be a simple game and N1, . . . , Nt be a partition into t equivalence classes of players. A vectorial
trading transform for G is a sequence 〈x1, . . . , xj ; y1, . . . , yj〉 of coalition types of even length such that

j∑
i=1

xi,k =

j∑
i=1

yi,k for all 1 ≤ k ≤ t. (1)

The definition of a vectorial trading transform means that for each component 1 ≤ k ≤ t, the sum of the kth xs
components coincides with the sum of the kth ys components.

A vectorial m-trade is a vectorial trading transform with j ≤ m such that the xis are winning and after trades,
as described in 1, convert into yis.

A given m-trade can easily be converted into a vectorial m-trade. The following lemma shows that the converse
is also true, i.e., each given vectorial m-trade can be converted into an m-trade.

Lemma 4.1 For each pair of vectors a = (a1, . . . , ar) ∈ Nr
>0, b = (b1, . . . , bs) ∈ Ns

>0 with
∑r

i=1 ai =
∑s

i=1 bi and
m = max (maxi ai,maxi bi) there exist two sequences of sets A1, . . . , Ar ⊆ {1, . . . ,m} and B1, . . . , Bs ⊆ {1, . . . ,m}
with |Ai| = ai, |Bi| = bi and

|{i : j ∈ Ai}| = |{i : j ∈ Bi}|

for all j ∈ {1, . . . ,m}.

Proof: W.l.o.g. we assume a1 ≥ · · · ≥ ar and b1 ≥ · · · ≥ bs. We prove the statement by induction on σ =
∑r

i=1 ai.
For σ = 1 we have r = s = a1 = b1 = m = 1 and can choose A1 = B1 = {1}. We remark that the statement is also
true for σ = 0, i.e., where r = s = 0.
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If there exist indices i, j with ai = bj , then we can choose Ai = {1, . . . , ai}, Bj = {1, . . . , bj = ai} and apply the
induction hypothesis on (a1, . . . , ai−1, ai+1, . . . , ar) and (b1, . . . , bj−1, bj+1, . . . , bs).

In the remaining cases we assume w.l.o.g. a1 = m and b1 < m. Now let l be the maximal index with al = m.
Since

∑r
i=1 ai =

∑s
i=1 bi we have s ≥ l. So, we can consider the reduction to (a1 − 1, . . . , al − 1, al+1, . . . , ar)

and (b1 − 1, . . . , bl − 1, bl+1, . . . , bs), where we possibly have to remove some zero entries and the maximum entry
decreases to m − 1. Let A′1, . . . , A

′
r, B

′
1, . . . , B

′
s ⊆ {1, . . . ,m − 1} be suitable coalitions (allowing A′i = ∅ or B′i = ∅

for the ease of notation). Adding player m to the first l coalitions in both cases yields the desired sequences of
coalitions. �

The construction in Lemma 4.1 for each equivalence class of voters separately converts a vectorial m-trade into
an m-trade. Also for vectorial m-trades we may assume that the winning coalition types are minimal winning or
that the losing coalition types are maximal losing. Since the number of coalition types is at most as large as the
number of coalitions we can computationally benefit from considering vectorial m-trades if the number of types of
voters is less than the number of voters.

4.2 A parametrization of complete simple games

In a complete simple game G = (N,W) we have a strict ordering between two voters of different equivalence classes.
This ordering entails a hierarchy among voters. Some studies on allowable hierarchies can be found in [2, 20, 24].
As before, we denote by N1 > · · · > Nt the equivalence classes which form the unique partition of N where a � b
for all a ∈ Ni and b ∈ Nj with i < j. Let n = (n1, . . . , nt) where ni = |Ni| for all i = 1, . . . , t. Consider

Λ(n) = {s ∈ (N ∪ {0})t : n ≥ s},

where ≥ stands for the ordinary componentwise ordering, that is, a ≥ b if and only if ak ≥ bk for every k = 1, ..., t.
and also consider the weaker ordering � given by comparison of partial sums, that is,

a � b if and only if

k∑
i=1

ai ≥
k∑

i=1

bi for k = 1, .., t.

If a � b we say that a dominates b.

The couple (Λ(n),�) is a distributive lattice and possesses a maximum (respectively, minimum) element, namely
n = (n1, ..., nt) (resp. 0 = (0, ..., 0)). As abbreviations we use a � b for the cases where a � b but a 6= b and a ./ b
for the cases where neither a � b nor b � a.

The interpretation of a � b is as follows. If b is a winning coalitional vector and a � b, then also a is winning.
Similarly, if a is losing then b is losing too for all a � b.

A winning coalitional vector a such that b is losing for all a � b is called shift-minimal winning. Similarly, a
losing coalition type b such that a is winning for all a � b are called shift-maximal losing. Each complete simple
game can be uniquely described by either its set of shift-minimal winning coalition types or its set of shift-maximal
losing coalition types.

Based on this insight, Carreras and Freixas ([6] pp. 148-150) provided a classification theorem for complete
simple games that allow to enumerate all these games up to isomorphism by listing the possible values of certain
invariants. Indeed, to each complete simple game (N,W) one can associate the vector n ∈ Nt as defined above and
the list of shift-minimal winning coalitional vectors: mp = (mp,1,mp,2, . . . ,mp,t) for 1 ≤ p ≤ r.

Recall that two simple games (N,W) and (N ′,W ′) are said to be isomorphic if there exists a bijective map
f : N → N ′ such that S ∈ W if only if f(S) ∈ W ′.

Theorem 4.2 (Theorem 4.1 in [6]) (a) Given a vector n ∈ Nt and a matrixM whose rows mp = (mp,1,mp,2, . . . ,mp,t)
for 1 ≤ p ≤ r satisfy the following properties:

(i) 0 ≤ mp ≤ n for 1 ≤ p ≤ r;
(ii) mp and mq are not �–comparable if p 6= q; i.e., mp ./ mq

(iii) if t = 1, then m1,1 > 0; if t > 1, then for every k < t there exists some p such that

mp,k > 0, mp,k+1 < nk+1;
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and
(iv) M is lexicographically ordered by partial sums, if p < q either mp,1 > mq,1 or there exists some k ≥ 1 such that
mp,k > mq,k and mp,i = mq,i for h < k.

Then, there exists a complete simple game (N,W) associated to (n,M).

(Theorem 4.2 in [6]) (b) Two complete games (N,W) and (N ′,W ′) are isomorphic if and only if n = n′ and
M =M′.

The pair (n,M) is referred as the characteristic invariants of game (N,W). The authors prove that these
parameters determine the game in the sense that one is able to define a unique up to isomorphism complete simple
game which possesses these invariants. The characteristic invariants allow us to count and generate all these games
for small values of n. Other applications of the characteristic invariants are to considerably reduce the calculus of
some solutions, as values or power indices, of the game (see e.g., [21] for the nucleolus [56]) or to study whether a
game admits a representation as a weighted game by studying the consistency of a system of inequalities as we will
see below.

If matrix M has only one row, i.e. a unique shift-minimal coalitional vector, then the characteristic invariants
reduce to the couple (n,m) with

1 ≤ m1 ≤ n1
1 ≤ mk ≤ nk − 1 if 2 ≤ k ≤ t− 1,
0 ≤ mt ≤ nt − 1,

where the first subindex in matrixM is omitted. It is said, see [21], that (n,m) is a complete game with minimum.

We sketch here how to obtain the characteristic invariants (n,M) for the complete game from winning coalitions
and reciprocally.

Given a simple game (N,W), for each coalition S we consider the vector or coalitional type

s = (|S ∩N1| , ..., |S ∩Nt|),

in Λ(n) where Ni are the equivalence classes with N1 > ... > Nt. The vector n is (|N1| , ..., |Nt|). The rows of matrix
M are those s such that any S is a shift-minimal winning coalition in the lattice (Λ(n),�). Observe that each
vector of indices that �–dominates a row of M corresponds to winning coalitions.

Conversely, given (n,M) the game (N,W) can be reconstructed, up to isomorphism, as follows. The cardinality
of N is n =

∑t
i=1 ni, the elements of N are denoted by {1, 2, . . . , n}. The equivalent classes of (N,W) are N1 =

{1, . . . , n1}, N2 = {n1 + 1, . . . , n1 + n2}, and so on.

Each S ⊆ N with vector s = (|S ∩N1| , ..., |S ∩Nt|) is a winning coalition if s � m for some m being a row of
M. Hence, the set of winning coalitions is

W = {S ⊆ N : s � mp, where mp is a row ofM}.

Notice that a winning vector is a vector r such that the coalition representative R is winning. In particular, the
shift-minimal winning coalitions are those with a vector being a row of M. Precisely,

Ws = {S ⊆ N : s = mp for some p = 1, . . . r}.

Analogously, one can define the coalitional types of shift–maximal losing coalitions which can be written as rows in
a matrix Y lexicographically ordered, as requested also for M, to preserve uniqueness. These coalitional types are
the maximal vectors which are not �-comparable among them and do not dominate by � any row of M.

Some particular forms of the pair (n,M) reveal the presence of players being either vetoers or nulls. For instance,
if mp,t = 0 for all p = 1, . . . , r the game has nt null players. If mp,1 = n1 for all p = 1, . . . , r the game has n1
vetoers.

Using the well known fact that any weighted game admits normalized representations, where i ∼ j if and
only if wi = wj , we will consider from now on, w = (w1, ..., wt), the vector of weights to be assigned to the
members of each of the t equivalence classes. Using normalized representations a weighted game may be expressed
as [q;w1(n1), . . . , wt(nt)] in which repetition of weights is indicated within parentheses and q stands for the quota or
threshold. However, these parentheses will be omitted provided that n = (n1, . . . , nt) is a known vector. A complete
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simple game, (N,W), is weighted if and only if there is a vector w = (w1, ..., wt), such that w1 > ... > wt ≥ 0,
which satisfies the system of inequalities

(mp − αq) · w > 0 for all p = 1, 2, ..., r, q = 1, . . . , s

where r is the number of rows of M, s the number of rows of Y, and αq are the rows of Y.

Only for n ≥ 6 there are complete simple games which are not weighted. The following example is the smallest
possible illustration of a complete simple game with minimum, i.e., with one shift-minimal winning vector, that is
not a weighted game. It helps us to understand better this kind of games, which are extensively used in the next
section.

Example 4.3 a. (Example 2.1 revisited) The characteristic invariants for this example are: n = (5, 10) and
M = (5 4). Thus,

W = {(5, x) ∈ Λ(5, 10) : x ≥ 4}

Wm =Ws = {(5, 4)}

Note also that Y =

(
5 3
4 10

)
whose rows are the shift-maximal coalitional types. As shown, this game is

weighted. In the next section we will show that to prove this it suffices to verify k-invariant trade robustness,
where k is 2.

b. (Example 2.2 revisited) The characteristic invariants for this example are: n = (2, 8) and M = (1 6). Thus,

W = {(x, y) ∈ Λ(2, 8) : x ≥ 1 and x+ y ≥ 7}

Wm = {(2, 5), (1, 6)}

Ws = {(1, 6)}

Note also that Y =

(
2 4
0 8

)
whose rows are the shift-maximal coalitional types.

Note that Example 2.2 is not 2-invariant trade robust since the coalitional type trading transform:
< (1, 6), (1, 6)|(2, 4), (0, 8) > is a certificate for it. Hence, the game is not weighted.

4.3 Two parameters for complete simple games

Two parameters for a complete simple game are significant for our studies: r the number of rows of M or number
of shift-minimal coalitional vectors and t the number of equivalence classes of players in the game. The conditions
that M must fulfill are described in Theorem 4.2. The question we pose here is the following: Are there some
values for r and t for which 2-invariant trade robustness is conclusive? The purpose of Section 5 is to prove that
the posed question has an affirmative answer for either r = 1 (no matter the value of t) or t = 2 (no matter the
value of r), while in Section 6 we investigate the remaining cases.

Let us remark that the number of complete and weighted games as a function of |N | up to isomorphisms has been
determined for these two parameters. We use below the notations cg(n, ?, r), cg(n, t, ?), wg(n, ?, r), and wg(n, t, ?)
depending on whether we consider complete or weighted games or parameter r or parameter t. The first (trivial)
exact counting establishes the number of k–out–of–n simple games. Each of such games admits [k; 1, 1, . . . , 1︸ ︷︷ ︸

n

] as a

weighted representation where k ∈ {1, . . . , n}. As t = 1 implies r = 1 we have cg(n, 1, ?) = wg(n, 1, ?) = n.

For r = 1, we have cg(n, ?, 1) = 2n − 1 (see [22]) complete simple games with minimum with n players up to
isomorphism and the number of weighted games with minimum, wg(n, ?, 1), is given by

wg(n, ?, 1) =

 2n − 1, if n ≤ 5
n4 − 6n3 + 23n2 − 18n+ 12

12
, if n ≥ 6

cf. [15].

For t = 2 we have the nice formula cg(n, 2, ?) = F (n+ 6)− (n2 + 4n+ 8) (cf. [19]) where F (n) are the Fibonacci
numbers which constitute a well–known sequence of integer numbers defined by the following recurrence relation:
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F (0) = 0, F (1) = 1, and F (n) = F (n− 1) +F (n− 2) for all n > 1. Quite curiously the addition of trivial voters, as
null voters or vetoers, in complete games with two equivalence classes formed by non-trivial voters give new larger
Fibonacci sequences (cf. [14]). Up to now there is not a known formula for wg(n, 2, ?) although it has been proved

in [16] that wg(n, 2, ?) ≤ n5

15 + 4n4.

Concerning general enumeration for simple, complete and weighted games it should be said that in the successive
works by Muroga et al. [46, 45, 47] the number of such games was determined up to eight voters. Only the numbers
of complete and weighted games for n = 9 voters have been determined since then, cf. [18] for the number of
complete games for n = 9 and cf. [36, 38] for the number of weighted games for n = 9. An asymptotic upper bound
for weighted games is given in [10] and an asymptotic lower bound for complete games in [50].

5 Cases for which the test of 2-invariant trade robustness is conclusive

Note first that each simple game with a unique equivalence class of voters, t = 1, is anonymous (symmetric), and
thus weighted. Non-complete games are not swap robust and therefore they are obviously not weighted. Hence, we
can limit our study to complete simple games.

Prior to study them let us consider the null effect on invariant trade robustness of removing either null or veto
players in a given complete simple game. Since adding and removing null players does not change a coalition from
winning to losing or the other way round, we can state:

Lemma 5.1 Let G be a complete simple game and G′ be the game arising from G by removing its null players.
With this we have that G is m-invariant trade robust if and only if G′ is m-invariant trade robust.

And a similar result, not as immediate, concerns veto players.

Lemma 5.2 Let G be a complete simple game and G′ be the game arising from G by removing its veto players. If
G′ is a simple game, then G is m-invariant trade robust if and only if G′ is m-invariant trade robust.

Proof: If veto players are present, then each winning coalition of a simple game must contain all veto players. So, in
any m-trade every involved losing coalition must also contain all veto players. Let G = (N,W) be a simple game,
where ∅ 6= V ⊆ N is the set of veto players. If V = N the game G is the unanimity game and therefore weighted.
Otherwise we can consider G′ = (N ′,W ′), where N ′ = N\V and N ′ ⊇ S ∈ W ′ if and only if S ∪V ∈ W. If ∅ ∈ W ′,
then the players in N\V are nulls in G′ and the game is indeed weighted. Otherwise G′ is a simple game too. If
G is complete, then G′ is complete too, see e.g. [14]. Given an m-trade for G′, we can obtain an m-trade for G by
adding V to all coalitions. For the other direction removing all veto players turns an m-trade for G into an m-trade
for G′. �

5.1 The 2-invariant characterization for r = 1

Theorem 5.3 Each complete simple game G with r = 1 shift-minimal winning coalition type is either weighted or
not 2-invariant trade robust.

Proof: Due to Lemma 5.1 and Lemma 5.2 we can assume that G contains neither nulls nor vetoers, since also the
number of shift-minimal winning coalition types is preserved by the transformations used in the respective proofs.

For t ≥ 3 types of players let the invariants of G be given by n = (n1, . . . , nt) and M =
(
m1 . . . mt

)
,

where we abbreviate the unique shift-minimal winning coalitional vector by m. From the conditions of the general
parametrization theorem in [6] we conclude 1 ≤ m1 ≤ n1, 0 ≤ mt ≤ nt − 1, and 1 ≤ mi ≤ ni − 1 for all 1 < i < t.
If m1 = n1 then G contains veto players and if mt = 0 then G contains null players (cf. [14]). So, we have
1 ≤ mi ≤ ni−1 for all 1 ≤ i ≤ t in our situation. We can easily check that a = (m1−1,m2 + 1,m3 + 1,m4, . . . ,mt)
and b = (m1 + 1,m2 − 1,m3 − 1,m4, . . . ,mt) are losing. Thus, < m,m; a, b > is a 2-trade and G is not 2-invariant
trade robust.

For t = 2 types of players let the invariants of G be given by n = (n1, n2) and M =
(
m1 m2

)
, where again

we abbreviate the unique shift-minimal winning coalitional vector by m. From the conditions of the general
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parametrization theorem in [6] we conclude 1 ≤ m1 ≤ n1 and 0 ≤ m2 ≤ n2 − 1. If m1 = n1 then G contains veto
players and if mt = 0 then G contains null players. So, we have 1 ≤ mi ≤ ni − 1 for all 1 ≤ i ≤ 2 in our situation.

If 2 ≤ m2 ≤ n2 − 2, then a = (m1 − 1,m2 + 2) and b = (m1 + 1,m2 − 2) are losing. Thus, < m,m; a, b > is a
2-trade and G is not 2-invariant trade robust.

If m2 = 1 or m2 = n2 − 1, then both games are weighted.

Indeed, if m2 = 1, then Y =

(
m1 0

m1 − 1 n2

)
, and the weights (w1, w2) = (n2, 1) may be assigned to players

in each class respectively, so that a quota of m1 · w1 + w2 = m1 · n2 + 1 separates weights of winning and losing
coalition types.

If m2 = n2− 1, then Y =

(
c1 c2

m1 − 1 n2

)
where c1 = min(n1,m1 +n2− 2) and c2 = max(m1 +n2− 2−n1, 0).

Now, we have two subcases to consider:

If c1 = n1 a solution is (w1, w2) = (n1 − m1 + 2, n1 − m1 + 1) with quota q = m1 · w1 + (n2 − 1) · w2 =
m1 · (n1 −m1 + 2) + (n2 − 1) · (n1 −m1 + 1).

If c1 = m1 +n2− 2 then c2 = 0 and a solution is (w1, w2) = (n2, n2− 1) with quota q = m1 ·w1 + (n2− 1) ·w2 =
m1 · n2 + (n2 − 1)2. �

So, complete simple games with r = 1 have the property that they are either weighted or not 2-invariant trade
robust. Now we are going to see that this characterization is also true for t = 2.

5.2 The 2-invariant characterization for t = 2

Freixas and Molinero [17] prove that there is a sequence of complete simple games Gm with three types of equivalent
voters, i.e., t = 3, and three types of shift-minimal winning types, i.e., r = 3, such that Gm is m-invariant trade but
not (m+1)-invariant trade robust for each positive integer m. Moreover, they state in Conjecture 6.1 of their paper
that any complete game with t = 2 types of equally desirable voters is either weighted or not 2-invariant trade robust.
In this subsection we prove this conjecture. Prior to stating the result let us introduce some characterizations for
weightedness that will be used in the sequel. The definition of a weighted game can be rewritten to a quota-free
variant:

Lemma 5.4 Let G = (N,W) be a simple game. Then,
G is weighted ⇐⇒ there are n nonnegative integers w1, . . . , wn such that∑

i∈S
wi >

∑
i∈T

wi (2)

for all S ∈ W and all T ∈ L.

Moreover, we can use a single weight for equivalent players, i.e., a common weight wi for each voter p ∈ Ni

where Ni is an equivalence class of players according to the desirability relation. If the game is complete we have a
total order among the equivalence classes, N1 > · · · > Nt. Assume from now on t = 2 so that N1 6= ∅ and N2 6= ∅
is a partition of N . By Wv we denote the set of winning coalition types and by Lv the set of losing coalition types.
For instance, (x, y) ∈ Wv means that all coalition S ⊆ N such that |S ∩N1| = x and |S ∩N2| = y is winning. With
this, Lemma 5.4 can be rewritten to:

Lemma 5.5 Let G = (N,W) be a complete simple game with two types of voters. Then,
G is weighted ⇐⇒ there are two integers w1, w2 ≥ 0 such that

[(x, y)− (x′, y′)] · (w1, w2) > 0 (3)

for all (x, y) ∈ Wv and all (x′, y′) ∈ Lv and “·” stands here for the inner product.

For the proof of the theorem for t = 2 two special parameters of a complete simple game will play a key role so
that we give even another reformulation of Lemma 5.4:
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Lemma 5.6 Let G = (N,W) be a complete simple game with two types of voters. Then,
G is weighted ⇐⇒ there are two integers w1, w2 ≥ 0 such that

w2 > Mw1 and w1 > Pw2, (4)

where

M = max
(x,y)∈Wv, (x′,y′)∈Lv : x′≥x

x′ − x
y − y′

and

P = max
(x,y)∈Wv, (x′,y′)∈Lv : x′<x

y′ − y
x− x′

fulfill 0 ≤M < 1 and P ≥ 1.

Proof: Let (x, y) ∈ Wv and (x′, y′) ∈ Lv. If x′ ≥ x, then x+ y > x′ + y′, so that y − y′ > x′ − x ≥ 0. Thus, M is
well defined and we have 0 ≤M < 1. Also P is well defined, since we assume x′ < x in its definition. For r = 2 in
matrixM in Theorem 4.2 we conclude the existence of a shift-minimal winning type (a, b) with a > 0 and b < |N2|,
i.e., (a− 1, b+ 1) is losing. Thus, we have P ≥ (b+1)−b

a−(a−1) = 1.

It remains to remark that all inequalities of the definition of a weighted game are implied by the ones in (4). �

Corollary 5.7 Let G = (N,W) be a complete simple game with two types of voters. Using the notation from
Lemma 5.6, we have

G is weighted ⇐⇒ M P < 1. (5)

We still need an additional technical trivial lemma.

Lemma 5.8 Let s, u ∈ R≥0 and t, v ∈ R>0. If t > v and s
t ≥

u
v , then we have s−u

t−v ≥
s
t .

Let us finally prove the result of this subsection, which was previously stated as Conjecture 6.1 in [17, page
1507].

Theorem 5.9 Let G = (N,W) be a complete simple game with two types of voters. Then, G is weighted if and
only if G is 2-invariant trade robust.

Proof: The direct part is immediate since G being weighted implies G satisfies m-invariant trade robustness for all
m > 1. For the other part we start by proving that if G is a complete simple game with t = 2 types of voters and
G is 2-invariant trade robust, then it is 2-trade robust.

Let 〈(a1, b1), (a2, b2); (u1, v1), (u2, v2)〉 be a 2-trade of G such that (a1, b1) and (a2, b2) are minimal winning. If
both coalition types are shift-minimal, we have finished. In the remaining cases we construct a 2-trade with one
shift-minimal winning coalition type more than before. W.l.o.g. we assume that (a1, b1) is not shift-minimal, so
that we consider the shift to (a1 − 1, b1 + 1). If u1 ≥ 1 and v1 ≤ n2 − 1 then we can replace (u1, v1) by the losing
coalitional vector (u1− 1, v1 + 1). By symmetry the same is true for (u2, v2). Thus, for the cases, where we can not
shift one of the losing vectors, we have

(u1 = 0 ∨ v1 = n2) ∧ (u2 = 0 ∨ v2 = n2) .

(1) u1 = 0, u2 = 0:
Since u1 + u2 = a1 + a2 we have a1 = a2 = 0. Since (0, b1), (0, b2) are winning and (0, v1), (0, v2) are losing,
we have min(b1, b2) > max(v1, v2), which contradicts b1 + b2 = v1 + v2.

(2) v1 = n2, v2 = n2:
Since b1 + b2 = v1 + v2 we have b1 = b2 = n2. Since (a1, n2), (a2, n2) are winning and (u1, n2), (u2, n2) are
losing, we have min(a1, a2) > max(u1, u2), which contradicts a1 + a2 = u1 + u2.

(3) u1 = 0, v2 = n:
Since u1 + u2 = a1 + a2 we have a2 ≤ u2. Comparing the winning coalitional vector (a2, b2) with the losing
vector (u2, n2), yields b2 > n2, which is not possible.
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(4) u2 = 0, v1 = n:
Similar to case (3).

Thus, a shift of one of the losing vectors is always possible, if not both winning vectors are shift-minimal.

According to Theorem 3.1 it remains to prove that for t = 2 it is not possible for G to be 2-trade robust but
not weighted.

Let (a, b) and (a′, b′) be two winning vectors, (c, d) and (c′, d′) be two losing vectors such that

M =
c− a
b− d

and P =
d′ − b′

a′ − c′
, (6)

where we assume that the vectors are chosen in such a way that both c− a and d′ − b′ are minimized. We remark
a′ − c′ > 0, d′ − b′ > 0, b− d > 0 and c− a ≥ 0. The latter inequality can be strengthened to c− a > 0, since c− a
implies M = 0 and MP < 1, which is a contradiction to the non-weightedness of G.

Corollary 5.7 implies MP ≥ 1, so that
c− a
b− d

≥ a′ − c′

d′ − b′
. (7)

With this, we have only the following three cases:

(a) c− a ≥ a′ − c′ and b− d ≤ d′ − b′.

(b) c− a > a′ − c′ and b− d > d′ − b′.

(c) c− a < a′ − c′.

If c− a = a′ − c′ then we have b− d ≤ d′ − b′ according to Inequality (7), i.e., we are in case (a). If c− a > a′ − c′
then either case (a) or case (b) applies. The remaining cases are summarized in (c).

(a) Since c+ c′ ≥ a+a′ and d+d′ ≥ b+ b′, we can delete convenient units of some coordinates of (c, d) and (c′, d′)
to obtain two well-defined losing vectors satisfying (c′′, d′′) ≤ (c, d) and (c′′′, d′′′) ≤ (c′, d′) with c′′+c′′′ = a+a′

and d′′ + d′′′ = b+ b′. Thus, 〈(a, b), (a′, b′); (c′′, d′′), (c′′′, d′′′)〉 certifies a failure of 2-trade robustness.

(b) Consider (c′′, d′′) = (a + a′ − c′, b+ b′ − d′). Since a′ − c′ > 0 and c− a > a′ − c′ we have a < c′′ < c. Since
b− d > d′ − b′ and d′ − b′ > 0 we have d < d′′ < b. Thus, (c′′, d′′) is a well-defined coalition type. Assuming
that (c′′, d′′) is winning, we obtain

c− c′′

d′′ − d
=

>0︷ ︸︸ ︷
c− a− (

>0︷ ︸︸ ︷
a′ − c′)

b− d︸ ︷︷ ︸
>0

− (d′ − b′︸ ︷︷ ︸
>0

)

Lemma 5.8
≥ c− a

b− d
= M,

using b− d > d′− b′ and Inequality (7). Since c− c′′ < c− a we have either a contradiction to the maximality
of M or the minimality of c− a. Thus, (c′′, d′′) has to be losing and 〈(a, b), (a′, b′); (c′, d′), (c′′, d′′)〉 certifies a
failure of 2-trade robustness.

(c) With c− a < a′ − c′ Inequality (7) implies d′ − b′ > b− d. Consider (a′′, b′′) = (c+ c′ − a, d+ d′ − b). Since
c− a > 0 and c− a < a′ − c′ we have c′ < a′′ < a′. Since d′ − b′ > b− d and b− d > 0 we have b′ < b′′ < d′.
Thus, (a′′, b′′) is a well-defined coalition type. Assuming that (a′′, b′′) is losing, we obtain

b′′ − b′

a′ − a′′
=

>0︷ ︸︸ ︷
d′ − b′ − (

>0︷ ︸︸ ︷
b− d)

a′ − c′︸ ︷︷ ︸
>0

− (c− a︸ ︷︷ ︸
>0

)

Lemma 5.8
≥ d′ − b′

a′ − c′
= P

using c−a < a′−c′ and Inequality (7). Since b′′−b′ < d′−b′ we have either a contradiction to the maximality
of P or the minimality of d′ − b′. Thus, (a′′, b′′) has to be winning and 〈(a, b), (a′′, b′′); (c, d), (c′, d′)〉 certifies
a failure of 2-trade robustness.

�
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Let us have a look at Example 2.2 again. We have already observed that this game is not weighted. Nevertheless
it can be represented as the intersection [7; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ∩ [12; 6, 6, 1, 1, 1, 1, 1, 1, 1, 1], i.e., there are only
two types of provinces – the large ones, Ontario and Quebec, and the small ones, see [19]. Indeed the game is
complete and the minimal winning vectors are given by (2, 5) and (1, 6). The maximal losing vectors are given by
(2, 4), (1, 5), and (0, 8), so that we have M = 1

2 and P = 3. These values are uniquely attained by the coalition
types (1, 6), (2, 5) and (2, 4), (0, 8). Thus we are in case (c) of the proof of Theorem 5.9 and determine the winning
coalitional vector (a′′, b′′) = (1, 6). Indeed, 〈(1, 6), (1, 6)|(2, 4), (0, 8)〉 certifies a failure of 2-trade robustness. We
remark that our previous argument for non-weightedness was exactly of this form and that the coalition type (1, 6)
is shift-minimal. Let us finally conclude this subsection by recalling that Theorem 5.9 establishes that a complete
game is weighted if and only it is 2-invariant trade robust. Checking that property requires fewer computations
than 2-trade robustness, which was proved in [31] to be sufficient for testing weightedness.

6 Further invariant trade characterizations

We have seen in the previous section that complete simple games with t = 2 or r = 1 have the property that they
are either weighted or not 2-invariant trade robust.

For other combinations of r and t it is interesting to ascertain which is the maximum integer m such that
m-invariant trade robustness for the given game with parameters r and t guarantees that it is weighted. Note first
that t = 1 implies r = 1 so that the pairs (r, t) = (r, 1) for r > 1 are not feasible. The results in the previous section
allow us to conclude that for (r, t) = (1, t) with t arbitrary or for (r, t) = (r, 2) with r arbitrary such an m is given
by 2.

The existence of a sequence of complete games being m-invariant trade robust but not (m+ 1)-invariant trade
robust is proven for m ≥ 4 by using complete games with parameters (r, t) = (3, 3) in [17]. This sequence of games

is uniquely characterized by n = (2,m,m − 1) and M =

 2 0 1
1 0 m− 1
0 m m− 2

. We wonder what is happening for

the remaining cases of the parameters r and t.

Consider first the smallest case: (r, t) = (2, 3).

Lemma 6.1 For m ≥ 3 the sequence of complete simple games uniquely characterized by n = (2,m,m) and

M =

(
2 0 1
1 1 m− 1

)
is (m− 1)-invariant trade robust but not m-invariant trade robust.

Proof: For brevity we set w1 = (2, 0, 1) and w2 = (1, 1,m − 1). The maximal losing coalition types are given by
l1 = (2, 0, 0), l2 = (1, 0,m), l3 = (1, 1,m − 2), and l4 = (0,m,m). Since m · w2 = 1 · l1 + (m − 2) · l2 + 1 · l4, the
game is not m-invariant trade robust.

Now assume that there are non-negative integers a, b, c, d, e, f with a+ b = d+ e+ f > 0 and

a · w1 + b · w2 ≤ c · l1 + d · l2 + e · l3 + f · l4.

We conclude

2a+ b ≤ 2c+ d+ e, (8)

b ≤ e+m · f, and (9)

a+ (m− 1) · b ≤ (m− 1) · (d+ e+ f). (10)

Assuming f = 0, we conclude b ≤ e from Inequality (9), so that we have a ≥ c + d due to a + b = d + e + f .
Inequality (8) then yields a = c, b = e, and d = 0. By inserting this into Inequality (10), we conclude c = e = 0,
which contradicts d+ e+ f > 0. Thus, we have f ≥ 1.

Inequality (8) yields c ≥ a+ f ≥ 1. Assuming b ≤ d+ e+ f we conclude a ≥ c from a+ b = d+ e+ f , which is
a contradiction to c ≥ a+ f and f ≥ 1. Thus, we have b ≥ d+ e+ f + 1.

Inequality (10) yields
d+ f − e
m− 1

− a ≥ 1, (11)

so that d+ f ≥ m− 1. Since c ≥ 1, we have c+ d+ e+ f ≥ m, i.e., the game is m− 1-invariant trade robust. �
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We remark that the smallest complete simple game with t = 3, r = 2 being 3-invariant trade robust, but not 4-

invariant trade robust, is given by n = (2, 2, 3) andM =

(
2 1 0
1 0 3

)
, as already observed in [17]. A certificate for

a failure of 4-invariant trade robustness is given by 〈w1, w1, w2, w2; l1, l1, l1, l2〉, where w1 = (2, 1, 0), w2 = (1, 0, 3),
l1 = (2, 0, 1), and l2 = (0, 2, 3). The smallest complete simple game with t = 3, r = 2 being 4-invariant trade robust,
but not 5-invariant trade robust, is attained by Lemma 6.1 for m = 5.

Lemma 6.2 For m ≥ 3 the sequence of complete simple games uniquely characterized by n = (2,m,m) and

M =


2 1 0
2 0 2
1 0 m
0 m m− 1

 is m-invariant trade robust but not (m+ 1)-invariant trade robust.

Proof: For brevity we set w1 = (2, 1, 0), w2 = (2, 0, 2), w3 = (1, 0,m), and w4 = (0,m,m − 1). The maximal
losing coalition types are given by l1 = (2, 0, 1), l2 = (1, 0,m − 1), l3 = (1, 1,m − 3), l4 = (0,m,m − 2), and
l5 = (0,m− 1,m). Since (m− 1) · w1 + 2 · w3 = m · l1 + 1 · l5, the game is not (m+ 1)-invariant trade robust.

Now assume that there are non-negative integers a1, a2, a3, a4, b1, b2, b3, b4, and b5 with
∑4

i=1 ai =
∑5

i=1 bi > 0
and

k =

4∑
i=1

ai · wi ≤
5∑

i=1

bi · li. (12)

It suffices to consider the cases where k ≤ m. We conclude

2a1 + 2a2 + a3 ≤ 2b1 + b2 + b3, (13)

a1 + ma4 ≤ b3 + m(b4 + b5)− b5, and (14)

2a2 + ma3 + (m− 1)a4 ≤ b1 + (m− 1)(

5∑
i=2

bi)− 2b3 − b4 + b5. (15)

Let us first assume a4 = 0. Using Inequality (12) and Inequality (13) we obtain

a3 ≥ b2 + b3 + 2b4 + 2b5. (16)

Inserting this into Inequality (15) yields after rearranging

2a2 + b2 + 3b3 + (m+ 2)b4 +mb5 ≤ b1. (17)

Since k ≤ m, we have b4 = b5 = 0. (For k = m + 1 we have the solution b1 = m, b2 = b3 = b4 = 0, b5 = 1,
a1 = m− 1, a3 = 2, and a2 = a4 = 0.) With this, Inequality (14) simplifies to b3 ≥ a1 and Inequality (15) simplifies
to b1 + (m− 1)b2 + (m− 3)b3 ≥ 2a2 +ma3. Twice the first plus the second inequality gives

b1 + (m− 1)b2 + (m− 1)b3 ≥ 2a1 + 2a2 +ma3. (18)

Inserting Inequality (12) yields
−b1 + (m− 3)(b2 + b3) ≥ (m− 3)a3 + a3. (19)

Using Inequality (16) we conclude a3 = b1 = 0. Using Inequality (16) again, we conclude b2 = b3 = 0, which is a
contradiction to k = b1 + b2 + b3 + b4 + b5 > 0. Thus, we have a4 ≥ 1 in all cases.

2m− 2 times Inequality (13) plus twice Inequality (14) plus Inequality (15) minus 3m− 2 times Inequality (12)
yields

ma1 +ma2 + b2 + b3 + a4 ≤ (m− 1)b1.

Since a4 ≥ 1 and b1 ∈ Z≥0, we have b1 ≥ 1.

3m − 4 times Inequality (13) plus 4 times Inequality (14) plus twice Inequality (15) minus 6m − 4 times
Inequality (12) yields

ma3 ≥ 2a4 + 2b1 + (m− 2)b2 + (m− 2)b3.

Since a4, b1 ≥ 1 and a3 ∈ Z≥0, we have a3 ≥ 1.

m− 3
2 times Inequality (13) plus Inequality (14) plus Inequality (15) minus 2m− 2 times Inequality (12) yields

a2 +
a3
2

+ a4 ≤ −
b2
2
− 3b3

2
+ b5. (20)
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Since a3, b4 ≥ 1 and b5 ∈ Z≥0, we have b5 ≥ 2.

k = a1 + a2 + a3 + a4 ≤ m plus m times Inequality (13) plus Inequality (15) minus 2m+ 1 times Inequality (12)
yields

2a2 − (m+ 1)a4 ≤ −2b2 − 4b3 − (m+ 3)b4 − (m+ 1)b5 +m. (21)

Since b5 ≥ 2 and a4 ∈ Z≥0, we have a4 ≥ 2.

From Inequality (20) and a2, b2, b3 ≥ 0 we conclude b5 ≥ a3

2 +a4, so that b5 ≥ a4 +1 due to a3 ≥ 1 and b5 ∈ Z≥0.
From Inequality (21) and a2, b2, b3, b4 ≥ 0 we conclude (m + 1)a4 ≥ (m + 1)b5 −m. Inserting b5 ≥ a4 + 1 finally
yields the contradiction (m+ 1)a4 ≥ (m+ 1)a4 + 1. �

We remark that the proof of Lemma 6.2 looks rather technical and complicated at first sight. However, the
underlying idea is very simple. We have to show that the parametric ILP given by inequalities (12)-(15) and 9 non-
negative integer variables a1, . . . , a4, b1, . . . , b5 has a minimum value of m+1 for the target function a1+a2+a3+a4.
By relaxing the integrality conditions we obtain a corresponding linear program. Minimizing a suitable variable
yields a fractional lower bound that can be rounded up. The corresponding dual multipliers are used to conclude
the respective lower bounds directly.

Conjecture 6.3 For each r ≥ 5, i.e. at least 5 coalitional types of shift-minimal winning coalitions, there exists a
sequence (Gr

m)m≥3 of complete simple games, such that Gr
m is m-invariant trade robust but not (m + 1)-invariant

trade robust.

Lemma 6.4 Let G = (n,M) be a complete simple game with t types of voters and r shift-minimal winning coalition
types, being m-invariant trade robust, but not (m+ 1)-invariant trade robust for some m > 1. Then, there exists a
complete simple game G′ with t+1 types of voters and r shift-minimal winning coalition types, which is m-invariant
trade robust, but not (m+ 1)-invariant trade robust.

Proof: Let m̃1, . . . , m̃r denote the rows of M. If G contains nulls, i.e., if m̃i
t = 0 for all 1 ≤ i ≤ r, we set m̂i

j = m̃i
j ,

m̂i
t = 1, m̂i

t+1 = 0, n̂j = nj , n̂t = 2, and n̂t+1 = nt for all 1 ≤ j ≤ t − 1, 1 ≤ i ≤ r. Otherwise we set m̂i
j = m̃i

j ,

m̂i
t = 1, n̂j = nj , and n̂t+1 = 2 for all 1 ≤ j ≤ t, 1 ≤ i ≤ r.

With this, we choose G′ = (n̂,M′), where M′ is composed of the r rows m̂1, . . . , m̂r. We can easily check
that G′ is indeed weighted. Let l = (l1, . . . , lt+1) be a losing coalitional vector in G′. If G contains no nulls, then
(l1, . . . , lt) is a losing vector in G. Otherwise, (l1, . . . , lt−1, lt+1) is a losing coalitional vector in G. Thus, a possible
certificate for the failure of m-invariant trade robustness for G′ could be converted into a certificate for the failure
of m-invariant trade robustness for G by deleting the (t − 1)th or tth column of the corresponding vectors – a
contradiction. Similarly, we can convert a certificate for the failure of (m+ 1)-invariant trade robustness for G into
a certificate for the failure of (m + 1)-invariant trade robustness for G′ by inserting ones into the (t − 1)th or tth
column of the corresponding vectors. �

The same proof is literally valid in the case of trade robustness:

Lemma 6.5 Let G = (n,M) be a complete simple game with t types of voters and r shift-minimal winning coalition
types, being m-trade robust, but not (m + 1)-trade robust for some m > 1. Then, there exists a complete simple
game G′ with t + 1 types of voters and r shift-minimal winning coalition types, which is m-trade robust, but not
(m+ 1)-trade robust.

With these results at hand we may prove that larger classes of games according to parameters r and t never
reduce the largest failures of invariant-trade robustness. Table 3 summarizes the invariant trade robust test to be
used for a game to determine whether this is weighted. Looking at this table we conclude that 2-invariant trade
robustness is conclusive exactly for the cases determined in Section 5 (conjectured values are printed in bold face),
while for others there is no combination of r and t for which some m > 2 be enough to ensure that the game is
weighted.

In words, if one wishes to study the class of complete games with a given pair (r, t) then 2-invariant trade
robustness is a very powerful tool to check weightedness for t ≤ 2 and r = 1, but for the rest of combinations (r, t)
we need to look at trade-robustness, which is the purpose of the next section.
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Table 3: W: weighted; −: not possible; 2-I-T-R: either weighted or not 2-invariant trade robust; ∞-I-T-R: there are
games that are not m-invariant trade robust for all m; NW: not a weighted game; conjectured values in bold face.

r ↓ | t→ 1 2 3 4 . . .
1 W 2-I-T-R 2-I-T-R 2-I-T-R NW
2 - 2-I-T-R ∞-I-T-R ∞-I-T-R ∞-I-T-R
3 - 2-I-T-R ∞-I-T-R ∞-I-T-R ∞-I-T-R
4 - 2-I-T-R ∞-I-T-R ∞-I-T-R ∞-I-T-R
. . . - 2-I-T-R ∞-I-T-R ∞-I-T-R ∞-I-T-R

7 Further trade characterizations

It is well known that all simple games with up to 3 voters are weighted while there are non-weighted simple games
for n ≥ 4 voters. Restricting the class of simple games to swap robust simple games, i.e. complete simple games,
one can state that up to 5 voters each such game is weighted while for n ≥ 6 voters there are non-weighted complete
simple games. Going over to 2-invariant trade robustness does not help too much. As shown in [17], precisely 3 of
the 60 non-weighted complete simple games with n = 6 voters are 2-invariant trade robust but not 3-invariant trade
robust. For the classical trade robustness the same authors have shown that all 2-trade robust complete simple
games with up to seven voters are weighted. By an exhaustive enumeration we have shown that the same statement
is true for n = 8 voters, i.e., there are exactly 2 730 164 weighted games and the remaining 13 445 024 complete
simple games are not 2-trade robust. As shown in [27], there are complete simple games with n = 9 voters, which
are 3-trade robust but not 4-trade robust. The corresponding example, belonging to a parametric family, consists
of nine different types of players, i.e., no two players are equivalent.

If the number t of types of players is restricted we can obtain tighter weighted characterizations. For t = 1
the games are always weighted and for t = 2 weightedness is equivalent with 2-trade robustness (or 2-invariant
trade robustness for complete simple games). Based on this characterization one can computationally determine
the number of complete simple games with two types of voters which are either weighted, i.e. 2-invariant trade
robust, or not weighted, i.e. not 2-invariant trade robust. In [19] this calculation was executed for n ≤ 40 voters.
It turns out that the fraction of non 2-invariant trade robust complete simple games quickly tends to 1. An exact,
easy-to-evaluate, and exponentially growing formula for the number of complete simple games with two types of
voters is proven in [19, 41]. From the upper bound n5/15 + 4n4, see [16], for the number of weighted games with
two types of voters, we can conclude that this is generally true. We remark that it is not too hard to compute the
number of 2-invariant trade robust complete simple games with t = 2 for n ≤ 200, see [14], so that we abstain from
giving a larger table.

Table 4: Classification of complete simple games with three types of up to 15 voters. Parameters: size (n), number of
complete simple games (#CG), number of weighted simple games (#WG), number of non 2-trade robust complete
simple games (#N-2T ), number of non 3-trade, but 2-trade, robust complete simple games (#N-3T ).

n #CG #WG #N-2T #N-3T

3 0 0 0 0
4 6 6 0 0
5 50 50 0 0
6 262 256 6 0
7 1114 976 138 0
8 4278 3112 1166 0
9 15769 8710 7059 0

10 58147 22084 36063 0
11 221089 51665 169420 4
12 886411 113211 773186 14
13 3806475 234649 3571788 38
14 17681979 463872 17218019 88
15 89337562 879989 88457385 188
16 492188528 1610011 490578137 380
17 2959459154 2852050 2956606348 756

For t = 3 types of voters we have checked by an exhaustive enumeration that up to n = 10 voters each complete
simple game is either weighted or not 2-trade robust. For n = 11 voters we have the four examples given by
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n = (3, 3, 5), M1 =

(
2 2 3
1 2 5

)
, M2 =

(
1 1 2
0 1 4

)
, M3 =


3 3 0
3 0 4
2 3 2
0 3 5

, and M4 =


3 0 0
2 0 2
0 3 1
0 0 5

, which are all

2-trade robust but not 3-trade robust. This resolves an open problem from [17]. We have computationally checked
all complete simple games with three types of voters, i.e. t = 3, and up to 15 voters, i.e. |N | ≤ 15, see Table 7. It
seems that the number of games which are 2-trade robust but not 3-trade robust grows rather slowly. Indeed, up
to 15 players every 3-trade robust game is weighted.

For t = 4 types and n = 9 voters there are several complete simple games which are 2-trade robust but not

3-trade robust, e.g. the one given by n = (1, 2, 3, 3) and M =


1 0 1 0
0 2 0 1
0 1 2 0
0 1 1 2
0 0 3 2

. For t = 4 and n = 10 there are

already 120 complete simple games which are 2-trade robust but not 3-trade robust.

The next cases to look at, are t = 3 and r = 2. For both cases we have already presented examples which are
2-trade robust but not 3-trade robust.

In the next section we state a conjecture and ask for several questions related to the problem in relation with
the two parameters r and t of a complete game.

8 Open problems

Still we found no example which is 3-trade robust but not 4-trade robust.

Question 8.1 Is every 3-trade robust complete simple game with t = 3 types of voters weighted?

Question 8.2 Is every 3-trade robust complete simple game with r = 2 shift-minimal winning coalition types
weighted?

As a first step into the direction of these two questions, we have looked at the intersection of both classes, i.e.,
complete simple games with t = 3 and r = 2. The game corresponding to the previously presented matrices M1

and M2 for n = 11 voters are of this type and can be generalized:

Lemma 8.3 For each k1, k2, k3, l ∈ N the games uniquely characterized by n1 = (n1, n2, n3),

M1 =

(
n1 − (l + 1) n2 − 1 n3 − (l + 2)
n1 − 2(l + 1) n2 − 1 n3

)
, where n1 = 3 + k1 + 2l, n2 = 3 + k2, n3 = 5 + k3 + 2l, and

n2 = (n1, n2, 5 + 2l), M2 =

(
l + 1 1 l + 2

0 1 2(l + 2)

)
are 2-trade robust but not 3-trade robust.

We skip the easy but somewhat technical and lengthy proof. Having the nice parametrization at hand, we can
easily state the corresponding generating function, whose coefficients in the resulting power series serve to count
the number of those games, where the exponent denotes the number of players:

x11
(

1

(1− x)3(1− x4)
+

1

(1− x)2(1− x4)

)
=

x11(x− 2)

(1− x)3(1− x4)

We deduce that asymptotically there are n3

24 +O(n2) such games.3

Conjecture 8.4 All 3-trade robust complete simple games with t = 3 and r = 2 are weighted. Additionally, the
2-trade robust but not 3-trade robust games are exactly those from Lemma 8.3.

By an exhaustive enumeration we have checked Conjecture 8.4 up to n = 20 voters. From the previous results
it is not clear whether a small number of types or shift-minimal winning coalition types allows to restrict the check
of m-trade robustness to a finite m.

3There is no connection to the efficient computation of power indices. In general, generating functions are just a theoretical tool
from enumerative combinatorics in order to compute exact formulas for recurrence relations.
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Question 8.5 For which values of t does a sequence Gk of complete simple games with t types of voters exist such
that Gk is k-trade robust but not (k + 1)-trade robust for all k ≥ 2?

Question 8.6 For which values of r does a sequence Gk of complete simple games with r shift-minimal winning
coalition types exist such that Gk is k-trade robust but not (k + 1)-trade robust for all k ≥ 2?

Any progress concerning answers for either the conjecture or the questions posed would be of interest. In Table 5
we combine the results from Section 5 with the questions of this section. For r = 2 or t = 3 we have not found any
example being 3-trade robust but not weighted, but this should be checked formally and become conjectures for
future work (in Table 5 it appears in black).

Table 5: W: weighted; −: not possible; 2-I-T-R: either weighted or not 2-invariant trade robust; 3-T-R for small
values of n all games are either weighted or not 3-trade robust – still a conjecture; NW: not a weighted game; ?: it
is not known if some m > 2 suffices to assert that m-trade robustness implies weighted.

r ↓ | t→ 1 2 3 4 . . .
1 W 2-I-T-R 2-I-T-R 2-I-T-R NW
2 - 2-I-T-R 3-T-R 3-T-R 3-T-R
3 - 2-I-T-R 3-T-R ? ?
4 - 2-I-T-R 3-T-R ? ?
. . . - 2-I-T-R 3-T-R ? ?

9 Conclusion

This paper looks at the characterization of weighted games (threshold functions) within the class of simple games
(switching functions). We have tried to gather results and efforts that have taken place in different areas of study.
The new results presented in this paper have been exposed in the simple game terminology since some significant
advances have been held in this area in the last two decades. To study the main problem we have restricted ourselves
to the class of complete games since non-complete games are not swap-robust and therefore not weighted.

For complete games the test of trade robustness can be computationally relaxed to invariant trade robustness.
The strongest condition for invariant trade robustness, 2-invariant trade robustness, is conclusive for deciding if a
given complete game is weighted if the complete game has either a unique coalitional type of shift-minimal winning
coalitions or two types of equivalent voters. Larger values for the number of shift-minimal winning coalitions or
for the number of equivalence classes show that the tests of trade robustness and invariant trade robustness are
complementary. We have found some conspicuous examples of non-weighted games being k-trade robust (or k′-
invariant trade robust for some k′ ≥ k) but not k + 1-trade robust (or not k′ + 1-invariant trade robust). We have
incorporated a number of open questions in hopes of others taking up the challenges that we have left over.
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