Skip to main content
Log in

The Dynamical Hypothesis in Cognitive Science: A Review Essay of Mind As Motion

  • Published:
Minds and Machines Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ackley, D., Hinton, G. and Sejnowski, T. (1985), 'A learning algorithm for Boltzmann machines', Cognitive Science9, pp. 147–169.

    Google Scholar 

  • Ashby, W. R. (1952), Design for a Brain, London: Chapman and Hall.

    Google Scholar 

  • Beer, R. (2000), 'Dynamical approaches to cognitive science', Trends in Cognitive Sciences 4(3), pp. 91–99.

    Google Scholar 

  • Crutchfield, J. (1998), 'Dynamical embodiments of computation in cognitive processes', The Behaviour and Brain Sciences21, p. 635.

    Google Scholar 

  • Dennett, D. (1998), 'Revolution, no! Reform Si', Behavior and Brain Sciences21, pp. 636–637.

    Google Scholar 

  • Elman, J. (1990), 'Finding structure in time', Cognitive Science14, pp. 179–211.

    Google Scholar 

  • French, R. and Thomas, E. (1998), 'The dynamical hypothesis: One Battle Behind', The Behavior and Brain Sciences21(5), pp. 640–641.

    Google Scholar 

  • Grossberg, S. (1976), 'Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors', Bioloical Cybernetics23, pp. 121–134.

    Google Scholar 

  • Hebb, D.O. (1949), The Organization of Behavior, New York, NY: Wiley.

    Google Scholar 

  • Hopfield, J. (1982), 'Neural networks and physical systems with emergent collective computational abilities', Proceedings of the National Academy of Sciences 7, pp. 2554–2558.

    Google Scholar 

  • Hopfield, J. (1984), 'Neurons with graded response have collective computational properties like those of two-state neurons', Proceedings of the National Academy Sciences81, pp. 3088–3092.

    Google Scholar 

  • Kaplan, S., Weaver, M. and French, R. (1991), 'Active Symbols and Internal Models: Towards a Cognitive Connectionism', AI and Society4(1), pp. 51–71. Reprinted in A. Clark and R. Lutz, eds., Connectionism in Context, Springer-Verlag, 1992, pp. 91-110.

    Google Scholar 

  • Kohonen, T. (1982), 'Self-organized formation of topologically correct feature maps', Biological Cybernetics43, pp. 59–69.

    Google Scholar 

  • Lakoff, G., (1986), Women, Fire and Dangerous Things, Cambridge, MA: MIT Press.

    Google Scholar 

  • Minsky M and Papert, S. (1969), Perceptrons, Cambridge, MA: MIT Press.

    Google Scholar 

  • Newell, A. and Simon, H. (1976), 'Computer science as empirical inquiry: Symbols and search', Communications of the ACM19, pp. 113–126.

    Google Scholar 

  • Rapp P. (1993), 'Chaos in the neurosciences: cautionary tales from the frontier', Biologist40, pp. 89–94.

    Google Scholar 

  • Rosenblatt, F. (1962), Principles of Neurodynamics. Perceptron and the Theory of Brain Mechanisms, Washington, D.C.: Spartan Books.

    Google Scholar 

  • Rumelhart, D. and McClelland, J. (1986), Parallel Distributed Processing, Cambridge, MA: MIT Press.

    Google Scholar 

  • Shastri, L. and Ajjanagadde, V. (1993), From simple associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic bindings using temporal synchrony, Behavioral and Brain Science16, pp. 417–494.

    Google Scholar 

  • Sougné, J. and French, R. (1997), 'A neurobiologically inspired model of working memory based on neuronal synchrony and rythmicity', in J. Bullinaria, G. Houghton, D. Glasspool, eds., Connectionist Representations: Proceedings of the Fourth Neural Computation and Psychology Workshop, Springer-Verlag, pp. 155–167.

  • Sougné, J. (2000), 'Binding and multiple instantiation in a distributed network of spiking nodes', Connection Science (in press).

  • Takens F. (1981), 'Detecting strange attractors in turbulence', in D.A. Rand and L.-S. Young, eds., Dynamical Systems and Turbulence, Springer-Verlag, New York, pp. 366–381.

    Google Scholar 

  • Van Gelder, T. (1998), 'The dynamical hypothesis in cognitive science', The Behavior and Brain Sciences21, pp. 615–665.

    Google Scholar 

  • Varela, F., Thompson. E. and Rosch, E. (1993), The Embodied Mind, Cambridge, MA: MIT Press.

    Google Scholar 

  • Wiener, N. (1948), Cibernetics, New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, R.M., Thomas, E. The Dynamical Hypothesis in Cognitive Science: A Review Essay of Mind As Motion. Minds and Machines 11, 101–111 (2001). https://doi.org/10.1023/A:1011256824648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011256824648

Keywords

Navigation