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Abstract

Computer simulations are an exciting tool that playportant roles in many scientific
disciplines. This has attracted the attention ntimber of philosophers of science. The main
tenor in this literature is that computer simulagonot only constitute interesting and
powerful newscience, but that they also raise a host of netilosophical issues. The
protagonists in this debate claim no less than #hatulations call into question our
philosophical understanding of scientific ontolotgye epistemology and semantics of models
and theories, and the relation between experimentand theorising, and submit that
simulations demand a fundamentally new philosogtsc@nce in many respects. The aim of
this paper is to critically evaluate these clai@sr conclusion will be sober. We argue that
these claims are overblown and that simulationsfrian demanding a new metaphysics,
epistemology, semantics and methodology, raiseiffenwy new philosophical problems. The
philosophical problems that do come up in connectidth simulations are not specific to
simulations and most of them are variants of prokléhat have been discussed in other
contexts before.

1. Introduction

Computer simulations are an exciting tool that playportant roles in many scientific
disciplines, some of which owe their existence twréased computational powker.
Simulations increase the range of phenomena teat@stemically accessible to us in a way
comparable to scientific instruments such as meopss or telescopes. This is partly due to
the fact that most models are specifically tailotedincorporate a particular piece of
mathematics that we know how to handle. Computaulitions extend the class of tractable
mathematics and thereby broaden the range of niaglétiols that we can use. This extension

of modelling tools leads to scientific progressdaese much of the success of modern science

! Disciplines in which simulations are important lile meteorology, nuclear physics, astrophysics,

evolutionary biology, decision theory, chaos theangd parts of complexity theory.
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is due to what lan Hacking called ‘calculation’ on contemporary parlance, ‘model

building’, and computers make a huge differenceuoability to build models.

That the advent of computational techniques intcedunew tools into science, opens new
possibilities, and represents scientific progress beyond dispute. Thus we endorse
Humphreys’ conclusion that computational scienan&titutes a significant and permanent
addition to the methods of science’ (2004, 64).

This has attracted the attention of a number dbpbphers of science. The main tenor in this
literature is that computer simulations not onlynstitute interesting and powerful new
science, but that they also raise a host of ngliiosophical issues. The protagonists in this
debate claim no less than that simulations catl question our philosophical understanding
of scientific ontology, theories and models, andorsit that simulations demand a

fundamentally new philosophy of science in manyeess:

‘But physicists and engineers soon elevated thet®@arlo above the lowly status of a

mere numerical calculation scheme, it came to domstan alternative reality — in some

cases a preferred one — on which ‘experimentatonld be conducted. Proven on what at
the time was the most complex problem ever underntak the history of science — the

design of the first hydrogen bomb — the Monte Caukhered physics into a place

paradoxically dislocated from the traditional rgalkhat borrowed from both experimental

and theoretical domains, bound these borrowingsthag, and used the resulting bricolage
to create a marginalized netherland that was a¢ oiwevhere and everywhere on the usual
methodological map.’ (Galison 1996, 119-20)

...] I discuss some of the distinct epistemologicdlaracteristics that are exhibited by
simulation studies and argue that these charatitsrisre novel to the philosophy of
science.” (Winsberg 2001, 443)

‘Computer simulations have a distinct epistemolfgy In other words, the techniques that
simulationists use to attempt to justify simulat@nme unlike anything that usually passes for

epistemology in the philosophy of science literatufWinsberg 2001, 447)

[...] computer simulations are not simply number reeching techniques. They involve a
complex chain of inferences that serve to transfoheworetical structures into specific
concrete knowledge of physical systems [...] thiscpss of transformation [...] has its own
unique epistemology. It is an epistemology thaingamiliar to most philosophy of science
[...] (Winsberg 1999, 275)



[...] how we understand and appraise these new nustHoe., computer simulation
methods] is essentially different from the underdiag and evaluation of traditional
theories.” (Humphreys 2004, 54)

‘Standard accounts of how theory is applied to wueld have become inappropriate for
these new methods [i.e., computer simulation methdicause, aside from failing to
capture what is distinctive about them, they plaoastraints on the methods that are
misguided.” (Humphreys 2004, 57)

[...] computer simulation provides [...] a qualitatiyenew and different methodology for
the natural sciences, and [...] this methodology Besnewhere intermediate between
traditional theoretical science and its empiricalethods of experimentation and
observation. In many cases it involvesesv syntax which gradually replaces the old, and it
involves theoretical model experimentation in a qualitatively new and interesting way.
Scientific activity has thus reached a new milestasomewhat comparable to the
milestones that started the empirical approachil@aland the deterministic mathematical
approach to dynamics (the old syntax of Newton aaglace. Computer simulation is

consequently of considerable philosophical inter@bhrlich 1991, 507, italics original)

Four claims emerge:

Metaphysical: Simulations create some kind of parallel worldwhich experiments can be
conducted under more favourable conditions thaherreal world'.

Epistemic: Simulations demand a new epistemology.

Semantic: Simulations demand a new analysis of how modwsfies relate to concrete
phenomena.

Methodological: Simulating is asui generis activity that lies ‘in between’ theorising and

experimentation.

The aim of this paper is to critically evaluategbeslaims. Our conclusion will be sober. We
argue that these claims are overblown and that latioos, far from demanding a new
metaphysics, epistemology, semantics and methogotagse few if any new philosophical

problems. The philosophical problems that do coméconnection with simulations are not

specific to simulations and most of them are vasiar problems that have been discussed in

2 Cf. also 50-55 and 57-60, Humphreys 1991, 497 andptuays 1995, 501. A somewhat ‘milder’ form of this

view is expressed in Fox Keller 2003, 199.



other contexts before. This is not to say that fatens do not raise new problems of their
own. These specific problems are, however, modtly mathematical or psychological, not
philosophical nature. In sum, we agree that simaratintroduce something new and exciting

into science, but we doubt that this requires us to rewriteptiéosophy of science.®

This is not tantamount to suggesting that theditee on simulation is without merit; quite to
the contrary. But we see this literature as couthnily to existing debates about, among others,
scientific modelling, idealisation or external \hty, rather than as exploring completely new
and uncharted territory. The emphasis on novelty the tendency to reason that the issues
raised by simulations are completely unlike anyghthat philosophy of science has seen
before prevents philosophers from appreciating whadiscussion of simulations could
contribute to ongoing debates. A focus on the ooitly with existing debates would, we
submit, be more beneficial than a forced attemptombpartmentalising the discussion. By
contesting novelty claims we hope to pave the gidion an analysis of simulations that fits
into the panorama of problems we are familiar wahd thereby contributes to an

advancement of these debates.

Before discussing the four specific claims abontudations in detail, let us briefly consider
the term ‘simulation’. In everyday parlance, thertecan mean quite a number of different
activities or processes: we simulate a job intevy giving the candidate a mock interview,
an illness by pretending to have its symptoms, wsitlkations by using animated narrative
vignettes,etc. Computer simulations are a narrower, but stidtvand heterogeneous class,
which contains processes as varied as that offlgiplane, the movement of people in public

transport systems, strategic scenarios of waréare virtual reality scenarios of all kinds.

Those who put forward the claims of the philosophiwovelty of simulation, however, focus
on using digital computers in situations involviagalytically intractable equations (see
Winsberg 1999, 275, 278; 2001, 444; 2003, 107-8nphwreys 2004, 49But even when

narrowed down in this way, ‘simulation’ is used two very different meanings in the

literature

% Cf. Stéckler 2000.
* For a brief discussion of the term ‘simulationdaits history see Fox Keller 2003, 198-9, and Harim 1996,
83-4.



In thenarrow sense, ‘simulation’ refers to the use of a compigtesolve an equation that we
cannot solve analytically, or more generally to lexp mathematical properties of equations
where analytical methods faik.¢., Humphreys 1991, 501; 2004; 49; Winsberg 199%, 2
2001, 444).

In the broad sense, ‘simulation’ refers to the entire procegsanstructing, using, and
justifying a model that involves analytically inttable mathematicse.g., Winsberg 2001,
443; 2003, 105; Humphreys 1991, 501; 2004, 107jowong Humphreys (2004, 102-4), we

call such a model a ‘computational model'.

Since many of the claims about the philosophiagtificance of simulations are in fact about
the construction of an analytically unsolvable nmpdethis paper we adopt the latter, broad
meaning; the exception is Section 3.2 where wdlpri®me back to simulation in the narrow

sense.

There are, of course, alternative definitions afigdation’, most notably Hartmann’s 1996.
On this definition, simulations are intimately cected to dynamical modelsg., ones that
include assumptions about the time evolution ofystesn. More specifically, a simulation
amounts to solving the equations of a dynamical ehaghich accurately captures the time
evolution of the target system; if the simulatianrun on a computer it is a computer
simulation. This definition enjoys the advantagebeing able to distinguish simulation in a
specific sense from numerical methods broadly coedt {.e.,, the computer assisted
exploration of properties of mathematical objectgéneral). However, since those who put
forward the claims at issue here do not use tHigitlen (or only an altered version of it) and
our criticisms do not turn on the (in)ability tostihguish between simulation in this specific
sense and numerical methods broadly speaking, Westiak to the above, more widely

adopted meaning in what follows.

2. Metaphysics: Do Simulations (and Only Simulatiog!) Create ‘Parallel
Worlds'?

Several philosophers, historians and scientistsnckhat simulations create ‘parallel’ (or
‘virtual’ or ‘artificial’) worlds (cf. Galison 1996, from which we quoted above, Edwaffl,

Sterman 2006). The most plausible interpretatioth idea, we think, is that the simulant
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investigates proximate systems that differ morkess radically from the systems he or she is
ultimately interested in. This usually means thdenences about those latter systems, the
‘target systems’, are made in two analytically sepke (though in practice not always thus
separated) steps: first, a conclusion is estaldigdi®ut the proximate system; second, the
claim is exported from the proximate system tottrget system. Because usually proximate
and target systems differ from each other, andusecthe investigation of proximate systems
is often methodologically involved itself, scietsifocusing on the first inferential step can
plausibly be said to investigate ‘parallel worlddiey study one kind of system in order to

ultimately learn about a different kind of system.

This is a crude but in our view entirely correctlysis is how reasoning with simulations
works. What we disagree with is the further suggaghat simulations are alone or special in
this respect. Whenever proximate systems are stwdith the purpose of drawing inferences
about differing target systems of interest ‘patalNerlds’ in the above sense are created and
this kind of ‘inspection by proxy’ happens all ouée place in the sciences. Most notably,
studying mathematical models — whether or not ditaljyy solvable — or in fact any kind of
model used to draw inferences about natural orréxpatal systems involves the creation of
‘parallel worlds’ in precisely this sensef.(Robert Sugden’s view that theoretical economic
models depict ‘credible worlds’, Sugden 2000).

And the creation of ‘parallel worlds’ is not a prgative of theoretical models. The great
majority of experiments are conducted on proximgtgtems rather than the target systems
themselves and therefore create ‘parallel worldsdur sense. For example, we infer from a
small group of patients in a clinical trial to theneral population; we experiment with mice
to find out whether smoking causes cancer in humaasexamine the properties of a scale
model of an aeroplane wing in a wind tunnel torleabout the properties of the aeroplane
wing during a flight and so forth. In none of theseses is the proximate system identical to
the target system. Importantly, proximate and tasgstem differ by type, not just by token.
That is, the problem of inferring from proximatettwget system is not merely the traditional
problem of induction, which concerns the infereaoeng tokens of the same type, but rather

a different, presumably more involved problem.

Moreover, many experimental systems are artifigialeated systems that are not found in

nature. Nearly all experiments in the physical iscés create artificial environments that



allow physicists to focus on the interaction ofnaai number of factors that cannot be found
in nature in this pure form. It has also been siaad few of the objects modern physics deals
with can be found in ‘natural environments’ (Caitt 1999, Part I; Sismondo 1999).
Experiments on fruit flies, conducted in order todf out about the genetic constitution of
organisms, are specially bred strains, grown taenthe replicability of results. Laboratory
mice, too, are standardised. When experimentiny ghiemical substances, standardised, pure
forms are used, not those chemicals found in natfieen economists experiment they
frequently try to make sure that experimental stisjsuppress all motives other than greed
by giving them appropriate incentives. This tooates situations not normally found in ‘the
field’ (Guala 2005, Ch. 11).

Studying proximate systems as stand-ins for tasgstems of interest is thus a practice that
pervades all science. Simulations can rightly bd &a create ‘parallel worlds’; but so can
models and experiments of all kinds. The creatibriparallel worlds’ is therefore not a

reason to believe that simulations require a nelogbphy of science.

3. Epistemology: Do Simulations Demand a New Theoryf Knowledge?

Following our distinction between a narrow and ador sense of ‘simulation’, let us first
examine claims that have been made about the amfesuilding a simulation, which
involves the heavy use afodelling assumptions and which pertains only to the broad sense
of ‘simulation’. After that we will look at simulain in the narrow sense, the process of

solving intractable equations.

3.1 Modelling Assumptions

Winsberg ascribes three features to the allegeidiyndt epistemology of simulation: it is

downward, autonomous andmotley:

(a) Downward: ‘Simulation is about starting with theory and wimig your way down. This kind of
epistemology is, to the philosopher of scienceudoas beast. It is an epistemology that is coreern
with justifying inferences from a theory to its dipption — an inference that most philosophy oéacie

has assumed is deductive and consequently noeth efgustification.” (Winsberg 2001, 447)
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(b) Autonomous: ‘Also typical of the notion of epistemology in ifgsophy of science is that it is

founded on comparison. If you want to know if sorapresentational structure is accurate or reliable
compare it with the thing it is meant to represéhit simulation techniques are used precisely when
data on the phenomena to be represented are coospig sparse. Because of this | describe the

epistemology of simulation with term | borrow fraraffrey Ramsey: autonomous [...ib{d.)

(c) Motley: ‘Even tough all simulation modeling [...] beginstkvtheory [...] our theoretical knowledge
is just one of several ingredients that simulastsiuse to produce their results. All of these ueses
and their influences need to be considered whetifyjurg simulation results.” (Winsberg 2001, 448)
‘Given limitations on computer speed and memorgsth techniques [computer simulations] also
invariably resort to other approximations, idedimas and even ‘falsifications’ — that is, model
assumptions that directly contradict theory.’” (Wiesy 2003, 109;f. 1999, 282)

Winsberg does not say explicitty what he means épistemology’ and so it is not
immediately clear how to evaluate the claim thatudations have a distinct epistemology.
We now discuss three different interpretations hog tclaim. In personal communication
Winsberg has pointed out to us what he had in nsirtlde third interpretation and that he does
not subscribe the first two (we will discuss hisws further below). However, as the first two
seem to be at least prima facie plausible readigke claim, it seems still worth pointing
out that the first is reasonable but neither new specific to simulations, while the second

fails to be convincing.

Following the time-honoured distinction between tioatext of discovery and the context of
justification, let us first characterise two intefations. We may say that, as a matter of fact,
scientists reach certain conclusions by using caatigmal models that are (1a) usually built
starting from a piece of theory (though withoetucing them from theory), (1b) not deduced
from data (and background knowledge, say) and d@n¥tructed using a variety of different
sources and techniques including approximationsaligations and so forth. That is, the
process of discovering a result with a computational model is downward, autonomous and
motley. Alternatively, we may say that scientiste warranted in believing or trusting the
results of a simulation because the computatiormaleh(2a) has been constructed by using a
(well-established) theory, (2b) is largely indepemnity of direct tests of its assumptions
against data and (2c) involves a variety of nomtha@riven elements, including
approximations, idealisations and so forth. Thathieprocess of justifying a simulation result



appeals to the fact that the computational modeal Ib@en constructed in a downward,

autonomous and motley way.

Starting with the first reading, we think that theint is essentially correct but that these
observations are neither novel nor simulation dmecila) That scientists start the
construction process with a piece of theory buthedt deducing the model from it is
interesting® Winsberg's example is that theory does not dictettat mathematical function
one has to choose to account for the energy irssmidl of grid when doing simulations using
a grid (2001, 448). This is also something Humpsrpgints out (2004, 67, 72-76, 88-95):
computational models are not normally constructgdnlerely plugging special functions into
general equations provided by well-established rieeoBut that models cannot be derived
form theory in a mechanical way and that often elet® that do not form part of the theory
are used in the construction of a model is oneooé claims of the ‘models as mediators’
project (see Morgan and Morrison 1999b, and thayssby Boumans, Suarez and Hartmann
thereinY and has been stated by Cartwright in the earlyp448ee in particular Cartwright
1983, Ch. 6). (1b) That computational models amestacted using empirical data without
being deducible from these data is also a coreezanaf the ‘models as mediators’ project,
where it has been argued using the case of magrosto models (see Morgan and Morrison
1999a, 15ff. and the Chapter by van den Boogata).If simulations are autonomous of both
theory and data, it is clear that other kinds grédients must play a part in the derivation of
a simulation model, and it is correct that thesgradients form a diverse bunch (see also
Winsberg’'s ad hoc modelling’ in his 1999, 282). But again, approximas, simplifications,
idealisations and isolations are part and parcetariy parts of science and in no way specific
to the use of computers. For instance, we leavefamtors all the time when we try to

construct linear models and we often lump togethany factors in some ‘net effect’ in order

® By simulation ‘result’ we mean a (usually compléw)pothesis established on the basis of the siiulafor
example, ‘the average global temperature will tise0.5°C by 2030'. In other cases the result mayabe
hypothesis about the causal mechanism responsibfgfterns in the data.

® Nevertheless we should point out that many sirfariat(and mathematical models!) do not take thirtisg
point in a well-understood theory and are consgdidctottom up. Cellular automata (CA), for instarare, based
on relatively general hypotheses about the intenadtetween cells, which usually are not foundethe@ory (see
Fox Keller 2003).

" In this paper we focus on the ‘models as mediapgect because this is the most recent poimetgrence in
the models debate. Related points can also be fioutie writings of Hesse, Black, Achinstein, arbess; for a

review see Frigg and Hartmann 2006.



to obtain a simple model; so fudge factors realigna anything simulation specific (just
think of the liquid drop model of the nucleus, whiawe can handle with paper and pencil
methods).

The more interesting and more contentious readmghat the process of justifying a
simulation result appeals to the fact that the aataonal model on which the calculations
are based has been constructed in a downward,antas and motley way. However, it is
hard to see, at least without further qualificasiomow justification could derive from
construction in this way. There does not seem t@ Ipeason to believe that the result of a
simulation is credible just because it has beeainbt using a downward, autonomous and
motley process. In fact, there are models thasfyathese criteria and whose results are
nevertheless not trustworthy. Real-business cygE®Q) models in economics are a case in
point. First, real business cycle models constitutgdevelopment of the earlier equilibrium
strategy for analysing business cycles and thustait with theory\iz., equilibrium theory).
Second, for this and other reasons they are net madels of data. Third, ‘other ingredients’
such as approximations, simplifications and sohf@ity an important role. There is a well-
known trade-off between making the approximatiorthie® analytical solution as simple as
possible, in order to be easily computable, andusotg assumptions that produce artefacts in
relevant properties of the solution. Neither theaor data analysis can yield information
about how to trade off these desiderata best. AdRBC models, especially when the class
is restricted to perfectly competitive representatgent models, are not generally regarded
as trustworthy or reliable in their results (seeifstance Hartlegt al. 1997). For this reason
(2a) — (2c¢), even suitably refined, do not prowdéeria for justifying simulations.

A third and different reading of Winsberg's crienunderstands downwardness, autonomy
and motleyness not agatures that figure in a justification of a simulation wisor a
computational model, but rather emnditions of adequacy for a future, yet to be formulated,
epistemology of simulation (this seems to be coasbwith what he says in his 2001, 453).
On that reading, Winsberg points out that such@stemology has to explain the facts that
simulation results and computational models ar§ @deast in part, justified on the basis of
the principles and techniques used in the construcdbf the computational modekf(
Humphreys 2004, 76-82), (2b’) cannot be dismissedirgustified because they cannot be

compared directly with observational data and Hrget system, respectively, and (2c’) are
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justified, at least in part, on the basis of thealisationstc., that are used in the construction,

even if these contradict the theory used.

It is correct, we believe, that these charactessfprobably along with others not mentioned
here) have to be explained by an appropriate epatayy. But as the above discussion of the
context of discovery makes clear, at that leveyeferality, neither of these points is specific
to simulation and hence the need for a new epidtegpds not forced upon us only in the
face of simulations; rather it is owed to the féoett models are more complex than traditional
philosophy of science allows and that we still da have a worked out epistemology that
accounts for this. The conclusion that a differeptstemology is needed could have been
reached by studying the practice of much of sciepaet from computer applications.

This conclusion needs to be qualified in two respeeirst, although the need to rethink the
issue of justifying results obtained with the afdcomplex models clearly arises as soon as
the above mentioned features of models and modhsitieaction are recognised, the issue has
not received much attention in the relevant debaténsberg’s discussion of simulation
draws our attention to this fact and highlightst tivhat is missing from available analyses of
how models work is the recognition that there isssne about where models thus constructed
get their credentials from.

Second, although the problem of justification i$ specific to simulation when discussed at
the general level, specific issues arise when wk into the details of computational models.
Winsberg studies ‘the use of computers for modeliery complex physical phenomena for
which there already exist good, well-understoodoties of the processes underlying the
phenomena in question’ (2001, 443), and argueghtlyi we think — that at least part of the
justification of these models comes from the fdwttthey are based on such a theory.
However, this source of credibility threatens ta ¢gst, because in order to solve the
equations of the model on a computer, these equgatiadergo all kinds of transformations
which fundamentally change their mathematical dattarstics (some of these
transformations even result in so-called computatiy ill-posed problemsij.e., ones of
which we know that the solution never convergesmaiter how small a grid we choose).
How, in the face of these transformations requicechake them computationally tractable, do

8 Noteworthy exceptions include Morton (1993) anthsawriters in the philosophy of economics; for amste
Little (1995), Cartwright (2007), Boumans (1999)g8en (2000) and Reiss (2007, ch. 7).
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models preserve their theoretical credentials? whdt reasons do we have to believe that
such models, even if they work in one domain, carstaccessfully carried over to another
domain? These are important and novel questiors pdimt that we would like to emphasise

here is that, although these questions are nowklsanulation specific, they belong (and

Winsberg agrees) to the class of problems tha¢ ami€onnection with complex models and

do not representing a revolutionary departure femerything that philosophers were worried

about in the past.

3.2 Equations and Computation

Interestingly, the actual process of computinggbleition to an equation and the methods that
it involves receive only marginal attention in tpkilosophical literature on simulation. At
first glance, this seems surprising, because at ihis point that the new methods enter and
this is what scientists engaging with computatiawance spend most of their time doing.

The central question that arises is whether thepcben gives the correct solution or, more
generally, informs us correctly about the propsrtoé the solution of the equation under
study. In other words, we want to know whethergimeulation outcome is internally valid in

the model provided by the modelling assumptions.oAg1the issues that arise in this

connection are the following:

Approximation. How close to the actual solutions are the nuraésolutions? This question
is particularly pressing because the systems tleatamnot solve are typically non-linear and
often exhibit sensitive dependence on initial ctods (see Smith (1998) for an accessible
introduction to shadowing theorems, which are rah¢wn this context).

Truncation errors. The computer stores numbers only to a fixed nurabdigits. How do the
resulting errors affect the result of the simula®dCf. Humphreys, 118).

Reduction of dimensions. Scientists use reduction methods for high-dinwrei problems to
represent certain features of the solution in atbksform. One of the well-know techniques
of that kind are Poincaré surfaces of section, iwhégjuires an appropriate choice of section.
Interpretation. We have to cope with the fact that one loses gdiheand also the ability to
read off general features (bifurcatiosis.) from the solutions and hence simulation results

many ways are less revealing than analytical swistf. Humphreys, 65).
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These questions are not easily answered and adgsbabf the work in computational science
addresses these and related concerns. But thgyueslyy mathematical problems, which, as
such, have to be solved at a formal level. Nevéatise Winsberg argues that the issue of

deriving valid results is not a mere mathematicabjem:

‘Even though simulation is fundamentally about aepig analytical solution with
calculation, which at first sight appears to be eheia mathematical transformation, the
guestion of reliability of the results of simulatienodeling goes beyond simple concerns
about the reliability of the calculation, and exterio the entire simulation process and the
conclusions that scientists reach when they usgd @99, 276;cf. 2001, 444 and 2003, 110-
11).

We should distinguish two different notions of ablility here, answering two different
guestions. First, are the solutions that the comrpprtovides close enough to the actual (but
unavailable) solutions to be useful? What ‘closeugi to be useful’ means may well depend
on contextual factors. But once the standards etretlss is a purely mathematical question
and falls within the class of problems we have jusnhtioned. So, there is nothing new here
from a philosophical point of view and the questi®smdeed one of number crunching (in the
widest sense of the term — number crunching maglvevcomplex mathematics). Second, do
the computational models that are the basis ofsthmulations represent the target system
correctly? That is, are the simulation results mky valid? This is a serious question, but
one that is independent of the first problem, and that equally arises in connection with
models that do not involve intractable mathematibsteover, the point that these need to be
kept separate seems to be reinforced by the fattchmputer simulations are also used in
pure mathematics, where questions of the secortddsonot arise at afl.For instance,
computers played a crucial role in the classifaatiof finite simple groups and the
construction of the largest of them, the so-callesther-Griess Monster, and they are heavily

used in the investigation of fractal geometry.

But by distinguishing the justification of modellinassumptions and the derivation of a
simulation result from a given set of equations,cemmit exactly the sin Winsberg urges us
to steer away from. Following the practitionerghe field, Winsberg calls the former process

‘validation’, the latter ‘verification’, and arguekat the two are not separable in practice and

® Humphreys seems to agree on this point, see 110-11
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can only be separated by the philosopher of scietdbe cost of presenting a seriously
distorted picture of what happens in practice (esplg in Winsberg forthcoming, ch. 1).
Although simulationists do their best to justifyatithe results of their computations are close
to the solutions of the original equations, dudahe complexities of the calculations these
arguments are inevitably weak and inconclusiveptiner words, verification is close to
hopeless in practice. To get around this problenukitionist shift the focus of attention from
validation and verification to the question of wimat the package of the model and the
calculation techniques used provides reliable mgtion about the real-world target system.
The most important way to do this is so-called Iemarking, which consists in comparing
the relevant output of the package with known feaai®ut the target (data, qualitative
behaviour, know analytical results for special sastc.). If the two mach up, then the
package is deemed trustworthy. From this Winsbesgclaides that the sanctioning of

simulations cannot be neatly divided into verifioatand validation.

It is important not to confound the issues heras Ibne thing to ask whether the process of
validating a model relative to some target systérmigrest and the process of verifying a
simulation result relative to a set of equatiores distinct in practice, for example in that they
are performed by different agents at different mim time with completely different
methodologies. We agree with Winsberg that in slesse the two activities are not distinct.
But it is a different thing to assert that it istmssible and worthwhile to distinguish two

different questions we might ask with respect ®smulating activity.

And what is more, we think that even in practicenight be important to keep these two

issues separate and to ask, on the one hand, wleetkienulation result is faithful to the

equations from which it is derived, and, on theeothand, whether the model used is a good
(in whatever sense) representation of the targstesy at stake (interestingly, as also
Winsberg points out, most practitioners in thedidb in fact believe that these two issues
should, ideally, be kept separate). Suppose, famgike, a simulation fails to reproduce an
observed pattern in the data. It would then be godahow whether this is due to a mistake in
the calculation or due to bad modelling assumptidmecause the responses would be
different. Conversely, suppose the simulation degsoduce the pattern in the data. Then it
would also be good to know whether the calculaisoiaithful to the equations used. The final

aim is to apply the simulation to areas for whibbre are no data, and if we knew that the

model was both verified and validated we would hbeder reasons to trust the results of a
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simulation, than if we only knew that the net effetthe package matched the facts used in
benchmarking, which may well be due to it beingdhse that mistakes both in the model and

in the calculations mutually cancel out.

But Winsberg insists that even if desirable in gipte, the separation of validation and
verification is impossible to achieve in practiéhere does this leave us? Put in the abstract,
the problem we are facing here is that we reacbnalasion using different ingredients that
we cannot test independently, because we have imgrgal access only to their joint net
effect. This is of course a version of the Duhembfem. So the problem itself is not new.
What is new, and here we agree with Winsberg, a$ ithoccurs in the context of scientific
modelling. When an analytically solvable modeldaib account for the data we know that
there must be something wrong with the modelliguagptions (assuming we haven’'t made a
simple error when solving the equations). When mpagtational model fails to account for
the data, we only know that there is something greither with the modelling assumption or
with algorithm used to do the calculations, or bdthis is a problem. If things go wrong we
don’t know where to put the blame, and hence wétdarow where to start looking for a
solution. And even if things work well, we don’t d&aw why they do (it might be that the
effects of errors in the calculation and faulty ralidg assumptions cancel out), which makes
an extension of the domain of application of a cotapponal model much more problematic
than it is the case with analytically solvable medén this sense there is indeed a new
problem in connection with computational model®pgosed to analytically solvable models:
we somehow have to get how to get around the Dysretslem. This problem has no general
solution and Winsberg is probably right that stgate to get around this difficulty in the

context of simulations are different from stratagie other context.

4. Semantics: Do Simulations Demand a New Analysid How Models and

Theories Relate to Target Systems of Interest?

It has also been claimed that simulations urgeousthink the representational function of

models;i.e., the question how models relate to target systerirgerest. For instance:

‘Standard accounts of how theory is applied to wweld have become inappropriate for

these new methodd.¢., computer simulation methods] because, aside ffaiing to
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capture what is distinctive about them, they plaocestraints on the methods that are
misguided.” (Humphreys 2004, 57)

In the broadest sense of application — meaninglgithp entire process of using the model —
this is of course true: we use computational methather than paper and pencil to get the
solutions of the equations that form part of thedeloBut if this is the claim, then this is just

a restatement in ‘application jargon’ of the pahteparture, namely that there are equations

which defy analytical methods and have to be sofuederically.

However, the passage from Humphreys quoted abowansediately followed by a critical
discussion of the syntactic and the semantic viéwheories. As these are philosophical
accounts of what theories are and of how their s#iocg works, it seems clear that
Humphreys wants to make a more substantial claiendidlcuss two questions in this context:
(a) Do computational models relate to target systefrinterest in a way different from other
models? (b) Does the dynamical nature of simulatimake a difference to the semantics of

computational models?

4.1 Do computational models relate to target systesrof interest in a way different from

other models?

Let us begin with an example. Consider the so-datleuble pendulum (Srivastawh al.
1990), a pendulum in which the bob is fixed nottstring but a hinge-like ‘arm’ consisting
of two branches that are connected to each othram axis and that enclose an angldf

we block the hinge (and thereby keefixed) we have a normal pendulum whose equation is
analytically solvable (even if we take friction anaccount). If we remove this constraint and
let the angle between the two branches vary, theneguations of motion become non-
integrable and solutions have to be calculated migady. Does this change our
understanding of how the equation describing thébtibpendulum relates to the world? We
don’t think so. We still interpretr as the angle between the two brancpess the momentum
of the pendulum bob andas its position. Nothing in our empirical inter@atgon of the terms
of the equation changes in any way. The co-ordénate, of course, different functions of

time, but this is a mathematical not an interpre¢adifference.
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Furthermore, if next year an ingenious mathemati¢crdroduces a new class of functions
(that can be written down in the same way as smtkexponential functions) and shows that
one of them is a solution to the equation of otmpfasent analytically insolvable) equation
for the double-pendulum, this will constitute arpontant mathematical advance but not make

us rethink how the model relates to the world.

This said, the question of whether simulations meikiger the syntactic or the semantic view
of theories obsolete becomes a non-issue. Thermang reasons to disagree with either of
these views but the existence of computer simuiatie not one of them. If these views can
capture what is going on in, say, the normal pamdulthen they can also capture what is
going on in the double-pendulum and other non-ditaljy solvable models.

4.2 Does the dynamical nature of simulations make difference to the semantics of

computational models?

In Chapter 4 of his book Humphreys suggest thaulkstions are special in two further
respects: the role of time and the involvementisfi@lisation.

Time. Humphreys observes that simulations for the rpast concern dynamical models and
that time plays a special role in these simulatitk@8)!° An example he discusses is the
simulation of the orbit of a planet, a process iimg in ‘successive computations of the
planet’'s state (position and velocity) at discrétee intervals, using the mathematical
equations that constitute a model of the orbitalekiatics’ (108). Time, according to
Humphreys, is essential in two ways to this simaratFirst, computer simulations are carried
out in real time, even when parallel computingssdi This ‘temporal process of calculation’
(109) is what makes simulations distinctive and twsaessential to their understanding.
Second, Humphreys emphasises the importance ogfinesentation of the output, which he
regards as ‘one of the key methodological featuséssimulation’ (110). An output
representation can be stateg(, numerical tables or plots of a curve). The sal@oint now

is that the outputs of simulations of dynamicalgasses are often dynamical themselves (‘the
output is displayed dynamically via an ellipticabton’, 110). Humphreys explicitly admits

19 parenthetical references in the text of this seciire to Humphreys (2004).
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that simulations are not always dynamical but lekththat in the important and typical cases

of modern computer simulation they are (112). lsetliscuss these points in turn.

The first point, according to Humphreys, ‘entalsitt none of the representational categories
[...] — syntactic or semantic theories, models, redearogrammes, or paradigms — are able
to capture what simulations can do’ (109). Thipugzling. Simulations by themselves do not

clash either with the semantic or the syntactiewiBurthermore, on any reasonakle.( not

too narrow) understanding of models there is ndlera either — after all, computations are

based on a computational model, which is, by Humygirown admission (106), so broad a

notion that even parts of antique Greek astronoatlyuhder that heading. Finally, research

programmes and paradigms are surely flexible enoagbns to accommodate simulations in

one way or another.

But maybe Humphreys has a different point in mirttev he emphasises the importance of
time. He quotes Hartmann’s (1996, 83) characteoisadf a simulation as a dynamical

process that imitates another process. This sugjgiest the claim might be that the actual
computational steps and the time they take to leewgrd somehow represent the time that
processes in the world take to unfold. In otherdspthe claim seems to be that there is a
mimetic relation between the time needed to doctieulations and the time needed for the
target processes to develop. This interpretatiaisis supported by Humphreys’ emphasis on
the fact that the computation has to be carriedasuan actual machine and that a mere

abstract representation of the calculation doesowit (109).

But if this is the claim, then it is false. Firsis Humphreys admits, there are simulations of
static objects (108 and 110-11) and one can (aaldteadmits on 110-11) simulate purely
mathematical objects that have no temporal comgagidrer €.9., when we use Monte Carlo
simulations to evaluate integrals). Hence thestifea are not features of simulatiqres se

but only of particular kinds of simulations. Secptfte fact that it takes time to calculate the
successive states of the planet has nothing toitiothe semantics of the states. For one, all
that matters is that the computer provides stdigsdome with a time index: the planet is in
statex at timet. If at some time in the future we have a compthat can calculate all the
states in no time at all, we surely don't feel wed anything. So the time needed to execute
computation does not play any role in represerttiggprocess; what does matter is the time

index attached to the state. For another, dependmghe model and the programme,
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calculations of temporally equidistant staté®.,(we set up a computer to calculate the
planet’s state at = 1, 2, 3, ...) may take different times, dependimgtiee computational

complexity at different states. But the ‘real timg’the same — the steps are one time unit
apart. So the time needed for calculation is net shme as, and not even necessarily

proportional to, the time that elapses in the world

Let us now turn to the second claim. Is a dynanoc#put representation the new distinctive
feature (as Humphreys claims on page 112)? This doeseem to be the case. A dynamical
representation may (and often does) facilitate wnderstanding of things, but it contains
exactly the same information as, say, an ordersd Iti is true that we grasp things easier
when presented with them in a ‘dynamical’ way, this is a matter of psychology and not

semantics.

Visualisation. On pages 112-114 Humphreys seems to suggeshéhttct that the outputs of
simulations are represented visually bears spea@ajht. When using simulations, we don’t
just get a pile of numbers, we get graphs represggeometrical shapes, images resembling
those we experience in other contexts and so as.ilsurely correct, but the problem again
seems to be that visual representations are nttydar to simulations. We use photographs,
and in recent years also video sequences to representifically certain target systems even
where no simulation is involved.§., microscope footage for processes in neurobiglogy
And even in ‘traditional’ disciplines visual repeggations are common: in our mathematics
classes we were asked to draw functions, and fardiitial geometry we often use drawings
to visualise the findings. The same is true wherusgany sort of ‘iconic’ model such as ball
and stick models in chemistry, the double helix eloaf DNA and so on. Moreover, it is,
again, at best unclear whether this point has a@istemic import. It seems to be a matter of

psychology rather than epistemology that we prefaral to other forms of representation.

5. Methodology: Does Simulating Constitute aSui Generis Activity, In-

Between Theorising and Experimenting?

Simulating is claimed to be an activity in-betwekeorising and experimentation:
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...] the computational methods of numerical expemtation constitutes a new kind of
scientific method, intermediate in kind between &gl experimentation and analytic
theory [...]' (Humphreys 1993, 103)

‘The central claim of this paper is that computémigation provides (though not

exclusively) a qualitatively new and different medlology for the physical sciences, and
that this methodology lies somewhere intermediatgvben traditional theoretical physical
science and its empirical methods of experimematiod observation.” (Rohrlich 1991,

507)

‘[...] computer simulations [...] occupy an uneasy sphetween theory and experiment,
between abstract and concrete, and often betweeprdssures of pure science and the

needs of pragmatic action.’ (Sismondo 1999, #47)

By themselves phrases such as these are hard ¢ostart: what does it mean for an activity
or a methodology or a scientific practice to ‘lie between’ two others? For clarity we
examine three different ways in which the idearmbetweenness could be interpreted, one
literal and two metaphorical. Our conclusion isttiea a literal reading the claim that
simulations are in-between theory and experimennd®rrect. On the two metaphorical
readings the claim is correct, but it fails to sogghe thesis that simulations add something
new to the philosophy of science because otherctsbjef study, most notably thought
experiments and mathematical models in generdljrifdletween theory and experiment in
the same way

Taken literally, using the locution ‘falls betweeo¥ ‘lies between’ implies that there is an
object, a substance or an event that has a prop@ith is measurable on at least an ordinal
scale: topaz lies in between apatite and diamon#oh’'s hardness scale, Easter between
Christmas and Pentecost, Maida Vale between Kiltamd Paddington and the specific
weight of gold is in between that of silver andttbfplatinum. What quantifiable properties
do simulations and experiments share? Reliabiltigrmativeness, and fruitfulness are but
three that readily come to mind. For a want of spae here can only discuss reliability, but
we believe that the same conclusion is reached wdisoussing other properties. Roughly

speaking, the reliability of a procedure measuhes ftequency with which the procedure

1 Cf. also Winsberg 2003.
12 S0me of the arguments that follow, especially ¢hosncerning the role of ‘materiality’ in drawingférences,
have been made independently by Parker (this voliand Winsberg (this volume). For better or wonse,

learned about their papers only after completirig ¢hction.
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leads to successful outcomes, for instance in tedntise correctness of predictions made on
the basis of the procedure. The claim then is thatreliability of simulations must be in
between that of theoretical models and that of expnts.

The onlyargument to this effect we are aware of is due to Morga®9@), who supports this
claim by an appeal to the ‘materiality’ of the sed systemsln nuce, her argument is that
inferences are less problematic when the systediestis made of the ‘same kind of stuff’ as
the target system and that there is an inferegéiplwhere this is not the case, which results in
a lack of reliability** Her core idea seems to be that the reliabilitjnéérences is grounded
in the number of properties that are shared betwesatel and target system. Model animals,
such as laboratory mice, are made of the same asuffther mice and thus share a large
number of properties. By contrast, a mathematicadehof an economy or a physical system
necessarily abstracts from all material propertbésthe target system, which drastically

diminishes the number of shared properties.

An example of a simulation considered by Morgantams a computer-generated model of
cow bones as its core. The model is constructemdlking very thin slices of real cow bones,
taking photographic digital images of the sliced assembling the slices to re-constitute the
three-dimensional bone. In the simulation, expenit®are conducted on this computerised
image of the real bone. Morgan then likens the tgpénference from this simulation to
inferences made from model organisms such as labgranice and argues that these
inferences are more reliable than those from madiieal models: ‘[The simulation
experiment] relied on a particular hipbone to paeEa model object that maintained (I
suggest) enough material qualities necessary &blestt valid experimental results about that
one real bone’ (230). Since one could also estabiigt this particular hipbone was

representative, one could use the results to nrd&esnces about hipbones in general.

There are two problems with this example. Firsgrnie wants to use this example to muster
support for the thesis that simulations are in leetwtheories and experiments in terms of

reliability one has to believe that this exampleepresentative for the bulk of computational

3 |n all fairness one must say that Morgan only ases mathematical models in economics which mag ha
problems in their own right and for which her carstbns may well be true. However her distinctiobased on
the materiality (or absence thereof) of the moael thus applies mutatis mutandis also to mathemiatiodels
in physics. This point is reinforced by the facatttshe takes the idea that mathematical modelsteléhe

systems they relate to from R.I.G. Hughes who oofrse, introduced the idea in a physics context.
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models. Morgan is explicit about the fact thatsitnot, and this, we think, for good reasons.
Paradigm cases of simulation such as climate mashelsnodels in solid state physics are not
constructed on the basis of material componentisesie systems (let alone by slicing them up
and using computer images of these slices). Sedbns,not automatically the case that
inferences are reliable whenever model and targetnaade of the same stuff or that
inferences must be unreliable when model and tatiietr in their materiality. Laboratory
organisms are highly artificial constructs, ancmehces made on their basis cannot simply be
taken outside the lab (see for instance, Cartwrigd®9, Ch. 4; for a radical point of view
along these lines, see Latour 1988). In generab onganisms can share a great many
properties and yet inferences are unreliable bectheyy depend on those properties that are
not shared or because shared properties interdht ames that are not shared and thus
invalidate conclusions. A striking example for tfesture of models comes from a paper on
climate modelling by Norton and Suppe. They compiaierences about natural systems from
wind-tunnel experiments with those made on thesbascomputer simulations (Norton and
Suppe 2000, 70ff.). Surely a wind tunnel is morailair (in Morgan’s sense) to the natural
atmosphere it stands in for than a computer-geegrarocess. However, wind tunnels
produce many experimental artefacts that may ides#i conclusions: walls introduce
turbulence affecting airflow past models and cayisiystematic airflow variations at different
chamber locations, which can be ameliorated butehotinated by experimental design and
calibration corrections. There is simply no guagarthat a wind tunnel produces better results
than a simulation that is, say, calibrated to mesmments taken in more natural environments.
Consequently, Norton and Suppe argue (72): ‘Suitdbhe, enhanced computer modelling of
data introduces vicarious control every bit as gasgd sometimes superior to, traditional

experimental control’.

Another example is scale models, which are exaices of their target systems except for
their size. This point has been made succinctiaaly by Black, who points out that a change
of scale may upset that balance of factors sottieatmodel fails to replicate the most salient
feature of the target system: ‘Too small a modeh eiranium bomb will fail to explode, too
large a reproduction of a housefly will never géttbe ground ... Inferences from scale
model to original are intrinsically precarious amdneed of supplementary validation and
correction.’ (Black 1962, 221)
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It is also not clear that ‘being made of the same bf stuff’ automatically means that a large
number ofrelevant properties are shared. Perhaps it is structuogdgsties that enable reliable
inferences and such properties can be shared hetplegsical systems and mathematical
models. For instance, it turns out that the stighdf the ankle joint in humans only depends
on certain geometrical properties of the joint @8y and large independent of the material
features of the bones and the other componentsegbint. These geometrical features can be
captured in a simple mechanical model from whiokdmtions can be derived that are well

confirmed by clinical data (see Friggal. forthcoming).

Thus inferences based on theoretical models aea diighly reliable, especially when target
systems are experimental systems, while inferent@de on the basis of real experiments
often fail when the target system is a natural, -experimental system. In brief, the

materiality of an experimental model is immatet@the reliability of the inferences made on
the basis of the model. Simulations, thus, as d,kane not ‘in between’ theoretical models

and experiments in terms of reliability.

Of the two metaphorical readings the first sayd gimulations are hybrids of theoretical
models and physical experiments. They are ‘in behiveodels and experiments in the same
way in which mermaids are ‘in between’ fish and veonor the Minotaur is ‘in between’ a
bull and a man. Simulating, then, is in betweermtiseng and experimenting because, on the
one hand, it involves, like theorising, the deveh@nt of ideas and the non-material nature of
the system on which manipulations are performed andhe one hand, and it shares some
essential characteristics with experimenting such timkering with the system, the
involvement of tacit knowledge, the error-correntiapproach to checking the validity of

results as well as the need for data reductioraaiatysis due to the huge data output.

There are, however, large and important classesetfiods in science that are hybrids in just
this sense but have nothing to do with the usagfall computers. Space limitations prevent
us from discussing the matter more fully but letvasy briefly consider thought experiments
and mathematical models here. Both these activdtiesconducted in the mind or on paper,
that is, on non-material model systems, but bothreshmportant characteristics with

experiments. That thought experiments are expetsnelbeit a peculiar form, has been
argued variously before (see for instance Soref96R). They are often conducted to test or

develop a scientific theory; they use the methodawitrolled variation; they can be improved
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upon by tinkering with parameters; in a thoughtezkpent, errors in reasoning are controlled
by imagining a highly constrained, often artificetuation. That mathematical models, too,
can be experiments is perhaps less obvious. Butelmoalso often use the method of
controlled variation, they can be improved upontimkering with parameters and error-
correcting (in deriving a result) sometimes plagsraportant role. At least in economics, this
connection between mathematical models and expetarteas been drawn explicitle.g.,
Lucas 1982, 696; Maki 2005).

The second metaphorical reading says that simaktoe in between theoretical models and
experiments because they are mediators. If pantyaAts or needs something from party B
(and, perhaps, vice versa) but cannot or prefetsto@et in touch directly, she uses a
mediator to stand in between herself and B. Ingbisse bankers are in between creditors and

debtors and estate agents in between buyers dadssel

It is true, of course, that simulations in this wafgen mediate between more theoretical
models or theories on the one hand and experimehtgrvations or measurements on the
other. But this, again, is neither a new observatior is it specific to simulations. After all,
the mediators idea arose in the context of scientibdels, not simulation€f( the models as
mediators project), and has since been extendeeperiments (see for instance Guala
1998)*

6. Conclusion

We have argued that the philosophical problemsdais/ simulations have analogies in the
context of modelling, experimenting or thought expenting and are therefore not entirely
new and far from demanding a novel philosophy @dreze. Those who claim that simulation
is special may now answer that by slicing up thebfam in the way we did and discussing
the problems separately we missed the essentiatspbecause these arise precisely in how
these problems interact with each other. This i;teresting thesis. It might, for instance, be

the case that the availability of non-linear tratdgamodels gives rise to new kinds of

14 Sismondo (1999, 254) acknowledges this when herebs that ‘Simulations, like models, stand between

theories and material objects, pointing in botlections’.
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idealisations because so far we have most of e linearised equations when constructing a
theoretical model, and fitting such equations t@ tworld requires certain types of
idealisations. Now, it may well be that non-linesjuations are brought to the world with
different idealisations. If this was the case d@nde had an account of what the idealisations
in both cases are and of how they differ, this \wdanldeed be an exciting new thesis and it
would substantiate the claim that simulation adoismething new to philosophy of science.
However, we could not discover a claim of that sothe literature.

We spent some twenty pages arguing for this coimlusot because we take malicious joy in
spoiling the party; rather we think that it has orant consequences for where the discussion
is going in the future. Blinkered by the emphasisnovelty and the constant urge to show
that simulations are unlike anything we have segfiork, we cannot see how the problems
raised by simulations relate to exiting problemd are so forgo the possibility to have the
discussions about simulation make contributiongsh® advancement of these debates. We
suggest that we should rather benefit from synergihan getting hung up on
compartmentalising the debate. For instance, therathan spilling much ink on convincing
ourselves that simulations are unlike everythirgeelve recognise that the epistemological
problems presented to us by simulations have mumatommon with the ones that arise in
connection with models, we can take the insightsgas in both fields together and try to
make progress in constructing the sought-after apistemology. This, we think, is more
likely to lead to progress than enviously defendimg’s own playground against intrusions
from outside. We hope that future debates oven#tere of simulation will engage more, and
more constructively, with discussions surroundimg mature of models and experiments, and

we believe that this will be to everybody’s benefit
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