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1 Introduction

A gas that is confined to the left half of a container starts spreading as soon as
the confining wall is removed and eventually spreads evenly over the entire available
space. The state of being spread evenly is the equilibrium state and the process of
expansion culminating in that state is the approach to equilibrium. It is one of the
aims of statistical mechanics (SM) to give an exact characterisation of equilibrium,
and to explain why and how systems approach the state of equilibrium, in terms of
the dynamical laws that govern the individual molecules of which the gas is made up.
What is it about molecules and their motions that leads them to spread out when the
wall is removed? An important answer to these questions was suggested by Boltz-
mann (1909 [1877]), and variants of this answer are currently regarded by many as
a promising option. In this chapter we introduce different versions of Boltzmannian
SM (BSM) and discuss how they conceptualise equilibrium.1

We begin by introducing the basic notions of BSM. A system in statistical mechan-
ics has the mathematical structure of a measure-preserving deterministic dynamical
system (X,µ, Tt).

2 X is the state space and it contains all possible micro-states of
the system. In the case of an isolated gas in a box made up of n particles a micro-
state is given by the positions and the momenta of every molecule in the gas. The
measure µ specifies how large certain parts of X are. We assume that the measure
is normalised: µ(X) = 1. This is for reasons of mathematical convenience and no
connection between this measure and probability is assumed at this point. The time
evolution of the system is given by the evolution function Tt : X → X where t is time
and the function satisfies the requirement Tt1+t2(x) = Tt2(Tt1(x)) for all micro-states
x ∈ X and all instants of time t1 and t2.

3 Intuitively this means that it does not
matter whether the time evolution is carried out in one go or takes place in stages:
if the process begins in micro-state x, then we end up in the same final state y ∈ X
irrespective of whether we evolve x forward in time by t1 + t2 at once or whether
we first evolve it x forward by t1 and then evolve the resulting state forward by
t2. The measure µ is assumed to be invariant under the dynamics, meaning that
µ(Tt(A)) = µ(A) for all measurable subsets A of X and all t.

1Another approach that could be labelled ‘Boltzmannian’ departs from the so-called Boltzmann
equation. For a discussion of this approach see Ardourel (2017), Brown, Myrvold and Uffink (2009),
Uffink and Valente (2015) and Valente (2014).

2In line with most of the literature on BSM we focus on deterministic systems. For a discussion
of BSM from a stochastic point of view see Werndl and Frigg (2017a).

3Time can either be continuous (t ∈ R) or discrete (t ∈ Z) (discrete time). Furthermore,
it is a technical requirement that Tt is a measurable function in (t, x). For a simple and intuitive
introduction to dynamical systems see Berkovitz et al. (2016). Detailed discussions of the framework
of BSM can be found in Frigg (2008) and Uffink (2007).
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The macro-condition of a system is specified by its macro-state. In the case of the gas
this can be done, for instance, by specifying the volume, pressure and temperature
of the gas. It is usually assumed that there are a finite number m of macrostates,
and we denote these by Mi, i = 1, ...,m. The core posit of Boltzmannian statistical
mechanics is that macro-states supervene on micro-states, meaning that a change
in the macro-state must be accompanied by a change in the micro-state (it is not
possible, for instance, to change the pressure of a gas without also changing the state
of motion of at least some of its molecules). Hence, to every given micro-state x
there corresponds exactly one macro-state. This determination relation is not one-
to-one; usually many different micro-states correspond to the same macro-state. One
can now group together all micro-states that belong to the same macro-state Mi.
The result of this grouping is the macro-region XMi

. All XMi
taken together form a

partition of X, meaning that they do not overlap and jointly cover X.
The Boltzmann entropy of a macro-stateMi is defined as SB(Mi) := k log[µ(XMi

)],
where k is the Boltzmann constant; the Boltzmann entropy of a system at time t,
SB(t), is the entropy of the macro-state of the system at t: SB(t) := SB(Mx(t)), where
x(t) is the micro-state at t and Mx(t) is the macro-state supervening on x(t).

Among the macro-states of the system two are of particular importance, namely the
equilibrium state and the macrostate at the beginning of the process, also referred
to as the ‘past state’. We introduce the special labels Meq and Mp for these states
(and choose a labelling of macro-states so that Mp = M1 and Meq = Mm). A crucial
aspect of the standard presentation of BSM is that that the equilibrium macro-region
XMeq is vastly larger than any other macro-region. In fact XMeq is so large that it
takes up most of X.4 The size of the macro-region is generally seen as the crucial
feature of equilibrium.

This raises two questions. First, why is equilibrium associated with the state that
has the largest macro-region? The connection between equilibrium and large macro-
regions is certainly not analytical: there is nothing in the concept of equilibrium tying
it to the macro-state with the largest macro-region. Second, isolated systems, when
left to themselves, end up in the equilibrium state. In our initial example the gas
spreads until it fills the container evenly. Why do systems approach equilibrium? We
discuss these problems in the next two sections.

4See, for instance, Albert (2000: 56-57), Bricmont (1995: 146); Goldstein (2001: 43, 45); Gold-
stein and Lebowitz (2004: 57), Penrose (1989: 403) and Zangh̀ı (2005: 191, 196). However, Lavis
(2005: 255-58; 2008: 685-87) points out that in some situations the equilibrium macro-region is
larger than any other macro-state without taking up most of X. We set this problem aside, but it
is discussed in Werndl and Frigg (2015b).
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2 Definitions of Equilibrium

Why is the equilibrium macro-state the state with the largest macro-region? A
prominent answer, now known as the combinatorial argument, originates in Boltz-
mann (1909 [1877]).5 The basic principle at work in Boltzmann’s argument is that
equilibrium is the macro-state that is compatible with the largest number of micro-
states. Based on this notion Boltzmann constructs XMeq as follows. Consider the
same system of n identical particles as above, but now focus on the 6-dimensional
phase space χ of one of these particles (the space has six dimensions – the three
position and three momentum coordinates of the particle). Only a finite portion χa

of χ is accessible to the particle because the motion of the particle is constrained by
the container walls and the total energy E of the gas. Now put a regular grid on
χa such that the grid lines run parallel to the position and momentum axis, thereby
dividing χa into a finite number of cells of equal size δω. This grid is also known
as a coarse-graining of χa. Now label the grid cells ωi for i = 1, ..., l. The so-called
coarse-grained micro-state of a particle is given by specifying in which cell ωj its
micro-state lies. The micro-state of the entire gas is a specification of the micro-
state of every particle in the system, which is therefore determined by n labelled
points in χa. The coarse-grained micro-state of the gas, also known as an arrange-
ment, is a specification of which state of the particle lies in which cell of the partition.

The crucial observation now is that a number of arrangements correspond to the
same macro-state because the macro-properties of the system are determined solely
by the number of particles in each cell, while it is irrelevant exactly which particle is
in which cell. For instance, whether particle number 5 and particle number 7 are in
cells ω1 and ω2 respectively, or vice versa, makes no difference to the macro-properties
of the system as a whole because these do not depend on which particle is in which
cell. Hence, all one needs in order to determine the macro-properties of the system
is a specification of how many particles there are in each cell of the coarse-graining
of χa. Such a specification is called a distribution and it can be written as a tuple
D = (n1, . . . , nl), meaning that there are n1 particles in cell ω1, etc. The nj are
referred to as occupation numbers. This allows us to ask a crucial question: how
many arrangements are compatible with a given distribution D? Some elementary
combinatorial considerations show that

G(D) :=
n!

n1! . . . nl!
(1)

arrangements are compatible with a given distribution D (where ‘!’ denotes factori-
als, i.e. k! := k(k − 1) ... 1, for any natural number k and 0! := 1). By construction

5Classical presentations of the argument can be found in Ehrenfest & Ehrenfest (2002 [1912])
and Tolman (1979 [1938]: Ch. 4). For discussions see Frigg (2008) and Uffink (2007).
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G(D) is a measure for how many micro states are compatible with a macro state: the
larger the value of G, the more arrangements are compatible with a given distribution
D.

The number G(D) matters to our original question about the size of XMeq . Since X
is just a cartesian product of 6n copies of χ, each point in X corresponds to exactly
one distribution D. Let us denote the region in X that corresponds to distribution
D as XD. One can then show that the size of that region is given by

µ(XD) = G(D) (δω)n. (2)

Hence the size of that part of X that corresponds to D is directly proportional to
G(D): the larger G(D), the larger XD. So by maximising G(D) — that is, by find-
ing the distribution that is compatible with the largest number of (coarse-grained)
micro-states — one at the same also finds the largest macro-region. Let Dmax be
that distribution. If one then adopts the above principle that equilibrium is the
macro-state that is compatible with the largest number of micro-states, then, by
definition, Dmax is the equilibrium distribution and XDmax is the equilibrium macro-
region: XDmax = XMeq . Since Dmax has the largest G of all distributions, it also
corresponds to the largest macro-region, which provides the sought-after justification
of the notion that equilibrium is the state with the largest macro-region.

It remains to find Dmax. To solve this problem, Boltzmann makes two crucial sets
of assumptions. The first concerns the energy of the particles. Boltzmann assumes
that the energy of a particle only depends on which cell ωj it is in, but not on the
states of the other particles; that is, he neglects the contribution to the energy of
the system that stems from interactions between the particles. He then also assumes
that the energy of a particle only depends on which cell it is in but not on where it
lies within the cell. Under these assumptions, the total energy of the system is given
by

∑l
j=1 njEj, where Ej is the energy of a particle in cell j. The second assumption

is that there are many particles in each individual cell: (nj � 1 for all j). Under
these assumptions one can then prove that G(D) reaches its maximum for

nj = α exp(−βEj), (3)

which is the (discrete) Maxwell-Boltzmann distribution, where α and β are constants
depending on the nature of the system. So the largest macro-region in X corresponds
to the Maxwell-Boltzmann and that is the equilibrium region.

This justificatory strategy faces both conceptual and technical challenges. The main
conceptual problem is the absence of a conceptual connection with the thermody-
namic notion of equilibrium. The following is a typical TD textbook definition of
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equilibrium: ‘A thermodynamic system is in equilibrium when none of its thermo-
dynamic properties are changing with time [...]’ (Reiss 1996: 3). The problem is
that there is no conceptual connection between this notion of equilibrium and the
idea that the equilibrium macro-state is the one that is compatible with the largest
number of micro-states. This is a problem for anyone wishing to maintain at least
some congruence between SM and thermodynamics (TD).

Even if one was willing to set aside conceptual issues, there remains the techni-
cal problem that the assumptions made for the optimisation are so strong that the
domain of application of the theory is in effect limited to dilute gases. The combi-
natorial argument assumes that the energy of a particle depends only on the cell in
which it is located. This assumption applies, strictly speaking, only to systems with
non-interacting particles, i.e. ideal gases (Frigg 2008; Uffink 2007). Ideal gases are,
perhaps, a good approximation for dilute gases, i.e. gases of low density, and so the
argument may deliver the approximately correct results for such systems. However,
the argument remains silent about systems with stronger inter-particle forces such as
liquids and solids. This is a serious limitation, and no suggestions have been made
so far as to how it could be overcome.

One might try to avoid at least the technical difficulties by reading the argument
backward, as it were: postulate that the Maxwell-Boltzmann distribution is the
equilibrium distribution (rather than deriving it from an optimisation procedure),
and then appeal to combinatorial considerations to establish that the corresponding
macro-region is large. This move is motivated by the fact that Maxwell’s (1860)
original derivation of the Maxwell-Boltzmann distribution does not appeal to opti-
misation procedures. Unfortunately, this is a blind alley. The Maxwell-Boltzmann
distribution is in fact the equilibrium distribution only for a limited class of systems,
namely for systems consisting of particles with negligible inter-particle forces. In
general, systems with non-negligible interactions will have equilibrium distributions
that are different from the Maxwell-Boltzmann distribution (Gupta 2003). A closer
look at Maxwell’s derivation shows why: non-interaction enters via the postulate that
the probability distributions in different spatial directions can be factorised, which is
true only if there is no interaction between particles (see Uffink 2007).

A different justification appeals to the time-evolution of a system and argues that
if a part of the state space is overwhelmingly large, then a state sooner or later has
to move into that part and stay there for a long time. This, so the argument con-
tinues, is the defining feature of equilibrium, and therefore the largest macro-state
is the equilibrium state. This reply is closely tied to the typicality approach that
we discuss in the next section, where we will see that the basic assumptions of that
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approach are questionable.

As we have seen in the last section, the Boltzmann entropy is proportional to the
logarithm of the measure of a macro-region and therefore the macro-state with the
largest macro-region also has the highest Boltzmann entropy. We know from TD
that, if left to itself, a system approaches equilibrium, and equilibrium is the maxi-
mum entropy state. Therefore the macro-state with the largest macro-region is the
equilibrium state.6

This line of argument faces a number of difficulties. The first is that it attributes an
entropy to systems out of equilibrium and compares entropy levels at different stages
of a process. But thermodynamics does not attribute an entropy to systems out
of equilibrium at all and therefore comparing the entropies of different macro-states
(most of which will be non-equilibrium states) makes little sense from a thermody-
namic point of view. But even if this problem could be resolved (through a suitable
generalisation of thermodynamics, for instance) there would remain a question why
the fact that the thermodynamic entropy reaches a maximum in equilibrium would
imply that this also holds for the Boltzmann entropy. To justify this inference, the
assumption would need to be made that the thermodynamic entropy reduces to the
Boltzmann entropy. However, it is far from clear whether that is the case. A con-
nection between the TD entropy and the Boltzmann entropy has been established
only for ideal gases where the so-called Sackur-Tatrode formula can be derived from
BSM, which shows that both entropies have the same functional dependence on ther-
modynamic state variables. Yet for systems with interactions no such results are
known (cf. Frigg and Werndl 2011b). Furthermore, there are well-known differences
between the TD and the Boltzmann entropy. For example, the TD entropy is exten-
sive but the Boltzmann entropy is not (Ainsworth 2012), and an extensive concept
cannot reduce to a non-extensive concept (at least not without further qualifications).

A different route is taken in the long-run-fraction-of-time-account recently proposed
by Werndl and Frigg (2015a, 2015b). This approach defines equilibrium in terms of
how long a system spends in a certain state (rather than in terms of the size of its
macro-region) and then proves a theorem establishing that the state is large in the
requisite sense. Let LFM(x) be the long-run fraction of time that a system starting
in micro-state x spends in macro-region XM . If, for instance, LFM(x) = 0.43, then
the system starting in initial condition x spends 43% of the time in macro-state M in
the in the long run. Equilibrium, then, is the macro-state in which the system spend

6This strategy has been mentioned to us in conversation but is hard to track down in print.
Albert’s (2000) considerations concerning entropy seem to gesture in the direction of this third
strategy.
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most of its time for nearly all initial conditions. Formally, if a macro-state M satisfies
the following condition, then it is the system’s equilibrium state: LFM(x) ≥ α for
a real number α ∈ (0.5, 1] and for all x ∈ Y where Y is a subset of X such that
µ(Y ) ≥ 1 − ε for a very small real number ε ≥ 0. An obvious question concerns
the value of α. Often the assumption seems to be that α is close to one. This is a
reasonable but not the only possible choice, and nothing hangs on the value of α.
The introduction of ε accounts for the possibility that we should not expect every
initial condition to approach equilibrium (Callender 2001).

This definition is couched entirely in terms of time and remains completely silent
about the size of XM . This raises the question: is XM large in the way BSM would
have it? The answer to this question is given by the Dominance Theorem: If M is
an equilibrium, then µ(XM) ≥ α(1 − ε) (Werndl and Frigg 2015b). The theorem
is completely general in that no dynamical assumptions are made (in particular it
is not assumed that the system is ergodic) and hence the theorem also applies to
strongly interacting systems such as solids and liquids. It is important to note that
the theorem makes the conditional claim that if there is an equilibrium, then XM is
large. As with all conditionals, the crucial and often vexing question is whether, and
under what conditions, the antecedent holds.

3 The Approach to Equilibrium

Why do isolated systems, when left to themselves, approach equilibrium? To ap-
preciate the thrust of this question we have to recall an important property of the
phenomenology of the approach to equilibrium: irreversibility. We see gases spread,
yet we never observe the reverse process of a uniformly distributed gas suddenly con-
centrating in the left half of the container. So it seems that the question ought to
be: why do systems approach equilibrium irreversibly? The standard line is that this
irreversible approach to equilibrium is a consequence of the second law of thermo-
dynamics, which, roughly, states that entropy cannot decrease in isolated systems.
However, as Brown and Uffink (2001) rightly point out, that systems prepared in a
non-equilibrium state do approach equilibrium is not a consequence of the second law
(or any other law of standard thermodynamics) and has to be added as an indepen-
dent principle, which they call the ‘minus first law’. This suggests that the task for
non-equilibrium SM is to derive the minus first and the second law of thermodynam-
ics from BSM.

This is setting the bar too high. SM systems show Poincaré recurrence. That is,
the system’s micro-state will eventually return arbitrarily close to the original initial
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condition.7 But a system with Poincaré recurrence cannot possibly exhibit strict
irreversible behaviour. Contributors to the discussion have acknowledged this fact
(more or less explicitly) and there is an (at least tacit) agreement that what should
be derived from SM is an approximate version of the second law. Different version of
BSM differ in how how they explicate the approximation.

Boltzmann (1909 [1877]) conceptualised the problem as one of showing that the sys-
tem is overwhelmingly likely to be in equilibrium whenever one observes the system.
To this end Boltzmann defined macrostates in terms of distributions (he assumed
that to every distribution D there corresponds a macro-state) and introduced the
postulate that the probability of a macro-state is proportional to G(D). Since, as
we have seen above, G(D) is largest for the equilibrium state, it follows immediately
that equilibrium is the most likely state and he argued that ‘the system of bodies
always evolves from a more unlikely to a more likely state’ (Boltzmann 1909 [1877]:
166; our translation). This view faces a number of problems (Frigg 2010a). There
is the question of how to justify the postulate that the probability of a macro-state
is proportional to G(D), and, more seriously, it is unclear where the tendency to
move towards more probable states comes from. The probabilities of macro-states
are unconditional probabilities, and as such they do not imply anything about the
succession of macro-states, let alone that ones of low probability are followed by ones
of higher probability.

A related approach (also originating in the work of Boltzmann) appeals to the notion
of ergodicity. Intuitively, a system is ergodic if the fraction of time an arbitrary so-
lution stays in A equals the measure of A in the long run. More formally, let LFA(x)
be the long run fraction of time a system starting in initial condition x will spend
in a set A ⊂ X (that is, for time t → ∞). A system is ergodic iff LFA(x) = µ(A)
for all subsets A ⊂ X and for almost all initial conditions x (that is, except perhaps
for some initial conditions that taken together form a set of measure zero). If, for
instance, a certain set has measure 1/3 and if the system is ergodic, then we know
that in the long run it will spend 1/3 of the time in that set.

Since ergodicity concerns any set A ⊂ X, it a fortiori also concerns macro-regions,
and hence an ergodic system will spend a fraction of time in every macro-state that is
proportional to the size of the corresponding macro-region. Since equilibrium is the
state with the largest macro-region, an ergodic system will spend most of the time in
equilibrium for almost all initial conditions (which implies, of course, that if system
is set in motion in a non-equilibrium micro-condition, it will soon enough move into

7That this may take a very long time to happen is besides the point as far as a justification of
the second law is concerned.
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the equilibrium macro-region). This is the justification of the ergodic programme of
the minus first and the second laws of thermodynamics. It is an approximate justifi-
cation in two ways. First, systems are said to spend most of the time in equilibrium
but they are not said to never move out of equilibrium. In fact they can (and they
will), and so ergodicity does not imply strict irreversibility. Second, ergodicity does
not rule out that there are ‘bad’ initial conditions, i.e. initial conditions that lie on
trajectories that do not satisfy LFA(x) = µ(A); ergodicity just requires that there
are ‘few’ bad initial conditions in the sense that all bad conditions taken together
form a set of measure zero.

The ergodic programme faces two main challenges. The first, known as the measure
zero problem, points out that the set of allowed ‘bad’ states can actually rather large
since measure zero sets can be rather big. As an example consider the set of the
rational numbers. This set has measure zero in the real numbers, but there are great
many rational numbers. This fact can be made visible by using alternative ways to
assess the size of set, for instance Baire categories (Sklar 1993: 182-88). The second
objection, the irrelevancy challenge, is that ergodicity is irrelevant because many real
systems are not ergodic (Earman and Rédei 1996). The force of this argument can be
mitigated by introducing the notion of epsilon-ergodicity (Vranas 1998). Intuitively,
a dynamical system is epsilon-ergodic iff it is ergodic on the vast majority of X,
namely on a set of measure ≥ 1− ε, where ε is very small real number or zero. The
class of systems that are epsilon-ergodic is larger than the class of systems that is
ergodic and it is plausible that it comprises many realistic systems such as gases and
some liquids (Frigg and Werndl 2011a). However, there will be SM systems that are
not epsilon-ergodic and it remains unclear how the ergodic programme deals with
them.

An alternative approach is developed by Albert (2000), who proposes to explain ir-
reversible behaviour in terms of transition probabilities: rather than assigning prob-
abilities to macro-states, we should look at how likely a system is to transition into
a right macro-state given that it is in certain macro-state now. To this end Albert
introduces the statistical postulate: given that the system is in macro-state M at
time t, the probability of finding the micro-state of the system in a set C ⊂ XM

at time t is µ(C)/µ(XM). One can separate the states in XM into ‘good’ and ‘bad’
ones, with good ones being those lying on trajectories that move into macro-states of
higher entropy (than M) once they leave XM and bad ones being those lying on tra-
jectories that move into lower entropy (than M) states. Thermodynamic behaviour
is then justified if one can show that for all macro-states (other than the equilib-
rium macro-state) it is the case that the system is overwhelmingly more likely to
move toward a higher (Boltzmann) entropy macro-state than to a lower (Boltzmann)
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entropy macro-state. However, the statistical postulate also allows to calculate the
probability that a system has moved into the current macro-state from a higher or
a lower entropy macro-state. It turns out to be the case that whenever the system
is overwhelmingly likely to evolve towards a macro-state of higher entropy in the
future, it is also overwhelmingly likely to have evolved into the current macro-state
from a past macro-state which also has higher entropy. So the formalism returns
wrong transition probabilities.

Albert discusses this problem at length and suggests fixing it by first taking the sys-
tem under investigation to be the entire universe and then adopting the so-called
Past Hypothesis, the postulate that ‘the world came into being in whatever partic-
ular low-entropy highly condensed big-bang sort of macrocondition it is that the
normal inferential procedures of cosmology will eventually present to us.’ (Albert
2000: 96). The problem with the wrong transition probabilities is then solved by
conditioning on the past state: given that the system is in macro-state M at time
t, the probability of finding the system’s micro-state in set C ⊂ XM at time t is
µ(C ∩ Tt(XMp))/µ(XM ∩ Tt(XMp)). Albert than argues at length that if this rule is
used to calculate probabilities, then a high entropy future as well as a low entropy
past are overwhelmingly likely.

There are number of concerns about this explanation. A crucial aspect of Albert’s
explanation of the second law is to apply SM to the universe as a whole. Earman
argued that this project is doomed to failure because in the setting of standard cos-
mological models the past hypothesis is ‘not even false’ (Earman 2006: 400).8 The
Boltzmann entropy is a global quantity characterising the macro-state of an entire
system, in Albert’s case the entire universe.

As Winsberg (2004) point out, just because the overall entropy of the universe in-
creases, it need not be the case that the entropy in a small subsystem also increases
and hence Albert’s approach cannot explain the behaviour of small systems like gases
in laboratories. Albert’s argument relies on assigning probabilities to sets of mi-
crostates based on a certain algorithm, and there are questions about the justification
of that algorithm (see Davey 2008 and Frigg 2010a). Furthermore, Albert’s justifi-
cation that a high entropy future and low entropy past are overwhelmingly likely
appeals to a dynamical assumption, which he calls the ‘scattering condition’, and
there is a question whether this condition holds true in SM systems.9

8For a further discussion of the past hypothesis see Wallace (forthcoming), and for a discussion
of its explanatory relevance see see Callender (2004) and Price (2004)

9For further discussions see chapter 7.3 on The Entropy Asymmetry and Frigg (2008, Sec. 3.2.5)
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An alternative account explains the approach to equilibrium in terms of typicality.
Consider an element e of a set Σ. Typicality is a relational property of e, which e
posses with respect to Σ, a property P and a measure ν, often referred to as the ‘typ-
icality measure’. Intuitively, e is typical if most members of Σ have property P and e
is one of them. More precisely, let Π ⊂ Σ be the set of all elements that have property
P . Then the element e is typical iff e ∈ Π and ν(Π)/ν(Σ) ≥ 1− ε, where ε is a finite
but very small positive real number. The element of interest in SM is a micro-state x
and the typicality measure is the Lebesgue measure µ. The typicality account comes
in different versions that disagree about the choice of the set Σ and the selection of
property P (for a discussion of these different accounts see Frigg (2009) and (2010b)).

The first account explains the approach to equilibrium in terms of equilibrium micro-
states being typical. As we have seen above, the equilibrium macro-region is by
far the largest macro-region. This implies that equilibrium micro-states are typical
with respect to X because ‘reaching the equilibrium distribution in the course of the
temporal evolution of a system is inevitable due to the fact that the overwhelming
majority of microstates in the phase space have this distribution’ (Zangh̀ı 2005: 196;
our translation). However, as Uffink (2007: 979-80) points out, in general there is
no reason to assume that points in an atypical set have to evolve into a typical set;
typical states are not attractors of atypical states. The second account combines a
typicality claim about equilibrium micro-states with a further typicality claim about
the dynamics of the system. Goldstein champions such an account when he submits
that for ‘a non-equilibrium phase point [x] of energy E, the Hamiltonian dynamics
governing the motion [x(t)] would have to be ridiculously special to avoid reasonably
quickly carrying [x(t)] into [XMeq ] and keeping it there for an extremely long time
— unless, of course, [x] itself were ridiculously special.’ (Goldstein 2001: 43-44).
Unfortunately, Goldstein offers no account of what it means for a dynamical law not
to be ‘ridiculously special’ and so the account remains underspecified (see Frigg and
Werndl 2012 for proposed completion of the account in terms of epsilon-ergodicity.)
The third account, due to Lebowitz (1993a, 1993b), considers the internal structure
of macro-regions (in much the same way as the transition probability approach we
have seen above) and argues that micro-states lying on entropy-increasing trajecto-
ries are typical. This line of argument faces the same challenge as Albert’s and it
remains an unproven assertion that the internal structure of the macro-regions is as
the account asserts (see Frigg 2010b for a discussion of this issue).

The problem of the approach to equilibrium takes a different form in the long-run-
fraction-of-time-account (Werndl and Frigg 2015a, 2015b). In that account it is part
and parcel of the notion of an equilibrium state that the system approaches that
state and stays there most of the time; if a state does not have that feature, then it
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is not an equilibrium state. The crucial question then is: under what conditions does
an equilibrium exist? Werndl and Frigg (2017b) point out that for an equilibrium
to exist three factors need to co operate: the choice of macro-variables, the dynam-
ics of the system, and the choice of the effective state space. They then prove a
theorem providing general necessary and sufficient conditions for the existence of an
equilibrium state. Intuitively, the theorem says that there is an equilibrium just in
case the effective state space of the system is split up into invariant regions on which
the motion is ergodic and the equilibrium macro-state takes up most of each region.
This suggests a change in the way in which we think about equilibrium: rather than
launching a search for one crucial factor (such as ergodicity or typicality), the focus
should be on finding triplets of macro-variables, dynamical conditions, and effective
state spaces that satisfy the conditions of the theorem. An example of such triplet
is the dynamics of the Kac ring on the full state space with a homogeneity macro-
variable (Werndl and Frigg 2015b). With this theorem the theoretical question when
and under what conditions an equilibrium exists is solved. But the identification and
classification of these triplets for concrete problems remains an open question.

4 Conclusion

We have reviewed a number of Boltzmannian definitions of equilibrium along with ex-
planations of the approach to equilibrium. We want to conclude by drawing attention
to two further issues. The first is the relation of BSM to Gibbsian SM (see chap-
ter 7.2 on Equilibrium in Gibbsian Statistical Mechanics). There are two competing
theoretical approaches in SM, one associated with Boltzmann and the other with
Gibbs, which offer different conceptualisations of equilibrium. This would not be a
problem if the two formalisms were equivalent (for instance, in a similar way in which
the Schrödinger and the Heisenberg picture in quantum mechanics are equivalent).
Unfortunately they are not, and there is no obvious way to translate results from
one framework into the other. But having two incompatible notions of equilibrium
at work in SM is unsatisfactory and a sustained reflection on how the Boltzmannian
and the Gibbsian approach relate to each other is necessary. Steps towards a better
understanding of the relationship between these two approaches are made in Lavis
(2005) and Werndl and Frigg (2017c), but the problem is one that deserves more
attention that it has received so far.

The second issue is the interpretation of probability. As we have seen, explanations
of the approach to equilibrium all rely in one way or another on probabilities, and
there is question of how these should be interpreted. A number of suggestions have
been made including Humean Best Systems (Frigg and Hoefer 2015, Loewer 2001),
typicality measures (Werndl 2013), frequencies (discussed but not endorsed in van
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Lith 2001) and propensities (discussed but not endorsed in Clark 2001). Another
approach attempts to ground the probabilities of SM in quantum mechanics, and
so they are interpreted in whatever way quantum probabilities are interpreted. See
chapter 7.4 on Quantum Foundations for a discussion of these approaches. There is
no consensus on this issue, and finding a coherent interpretation of SM probabilities
remains a challenge.
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