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Abstract. In this paper we introduce some fusion properties of forcing
notions which guarantee that an iteration with supports of size ≤ κ not
only does not collapse κ+ but also preserves the strength of κ (after a
suitable preparatory forcing). This provides a general theory covering
the known cases of tree iterations which preserve large cardinals (cf.
[4, 5, 6, 8, 10, 12]).

1. Introduction

An important technique in large cardinal set theory is that of extending

an elementary embedding j : M → N of inner models to an elementary

embedding j∗ : M [G] → N [G∗] of generic extensions of them. For exam-

ple, this is the historically first method to get a measurable cardinal κ with

2κ > κ+. For obtaining such a model (via a reverse Easton iteration of forc-

ings adding α++ many Cohen subsets to every inaccessible cardinal α ≤ κ)

assuming a certain degree of strength of κ, a preliminary version of the

generic G∗ must be constructed (possibly in a further generic extension of

M [G]) and then modified to provide the required G∗. As a complementary

technique to the above-mentioned proof of Woodin, Friedman and Thomp-

son suggested in [9] to use perfect trees, using fusion as a substitute for

distributivity. This allowed them to provide, among other results, a new

and easier proof of Woodin’s theorem. Combining a result of Kanamori

[15] about the application of iterated perfect tree forcing at κ (denoted by

Sacks(κ) in the sequel) to Aronszajn trees on κ++ and the possibility of

extending elementary embeddings, Dobrinen and Friedman [4] determined

the exact consistency strength of the tree property at the double successor

of a measurable. In addition, this way of getting the tree property is robust
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enough: after a suitable collapse of the measurable to ωω the tree prop-

erty holds at ωω+2, see [5]. Tree forcings could also be applied to questions

involving the number of normal measures, see [8]. The use of the gener-

alized Sacks forcing is also illustrated in [6, 7, 13]. In particular, in [13] a

generalized Sacks forcing is used in the context of extender-based Prikry

forcing. Yet another example of the use of fusion for extending elementary

embeddings is given in [10], where a suitably defined uncountable version

of the Miller forcing was applied to the cofinality of the symmetric group.

These results suggest that one should look for some general properties of

a poset which would guarantee that iterations with supports of size ≤ κ do

not collapse κ+ and preserve the strength of κmodulo a suitable preparatory

forcing. As was indicated in the papers mentioned above, such iterations

might be of importance for the theory of cardinal characteristics at uncount-

able cardinals, for questions involving the number of normal measures, for

the tree property, etc.

In Section 2 we isolate the properties of Miller(κ) needed for the preser-

vation of κ+ and lifting elementary embeddings in [10] and introduce the

notion of good κ-fusion fulfilling the requirements from the previous para-

graph. This notion seems to cover all known examples of large cardinal

preservation with tree forcings. In addition, it essentially includes all κ+-

closed posets, see Example 2.2.

If we forget about the preservation of the strength, the remaining part

of this problem (i.e., the preservation of κ+ by iterations with supports of

size ≤ κ ) has attracted the attention of Eisworth, Roslanowski, Shelah,

and maybe others. As a result many properties guaranteeing this have been

found. The idea behind most of them is to generalize properness to the

uncountable setting, see [3, 17, 18, 19, 20].

In Section 3 we show that a suitable modification of some properties

introduced in [17] will actually guarantee the preservation of the strength

by κ-support iterations. This modification does not seem to cover variants

of the Sacks forcing considered in [8], although it covers the “standard”

Sacks poset Sacks(κ). On the other hand, this allows us to treat singular-

splitting-Sacks forcing introduced in [8] (see also [12, 2.1]) and not covered

by good κ-fusion. In addition, here we can have a normal filter on κ as a

parameter which gives additional elbow room for applications to cardinal

characteristics at κ, see Section 4.

In Section 5 we suggest a possible way to unify the main results of

Sections 3 and 2 as well as state some open questions.
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2. Generalizing the poset Miller(κ): good fusion

The purpose of this section is to introduce a property P of a poset which

guarantees that: a) An iteration with supports of size κ of posets with the

property P does not collapse κ+; b) If κ is strong in V then it remains so in

forcing extensions by posets described in the previous item; and c) Miller(κ)

and various kinds of Sacks(κ) have the property P . An example of such a

property P is given in Definition 2.1, and Theorems 2.9, 2.15, 2.22 are the

main results of this section.

Throughout the section κ is assumed to be strongly inaccessible.

Definition 2.1. 1. By a complete κ-tree we mean a nonempty subtree of

κ<κ which is closed under unions of its nodes (provided that this union is

in κ<κ) and has no maximal branches of length < κ. For a subtree T of

κ<κ and s ∈ T ∩ κα we denote by succT (s) the set of immediate successors

of s, i.e. {s′(α) : s′ ∈ T ∩ κα+1, s′ � α = s}. If s ∈ T then (T )s is, by the

definition, the tree {s′ ∈ T : s′ is comparable with s}.
For a tree T ⊂ κ<κ we denote by S(T ) the set of all splitting nodes of

T , i.e., the set {s ∈ T : |succT (s)| > 1}. A complete κ-tree T will be called

perfect, if the set S(T ) is nonempty, has no maximal elements, and is closed

under unions of increasing sequences of its elements of length less than κ.

2. A forcing P has good κ-fusion iff there exist a map T from P to the set

of all perfect κ-trees, a restriction function R assigning to each pair (p, s)

such that p ∈ P and s ∈ S(T (p)) an element R(p, s) ∈ P, often denoted by

(p)s,
1 and h ∈ κκ satisfying the following properties:

(1) (Basics). For p ∈ P let S(p) denote S(T (p)). Then

– (p)s ≤ p for all s ∈ S(p);

– If q ≤ p then T (q) ⊂ T (p) (and hence S(q) ⊂ S(p)) and (q)s ≤
(p)s for s ∈ S(q);

– If t ⊃ s in S(p) then (p)t ≤ (p)s and (p)s 6= (p)t for any distinct

s, t ∈ S(p);

– If s ∈ S(p), then s ∈ S((p)s) and ((p)s)s = (p)s;

– If s0, s1 are incomparable elements of S(p) for some p ∈ P, then
(p)s0 and (p)s1 are incompatible;

– P is κ-closed and if 〈pξ : ξ < α〉 is a decreasing sequence for

some α < κ, then there exists a lower bound p of this sequence

such that S(p) =
⋂
ξ<α S(pξ). For every decreasing sequence

1In most of our proofs we use the notation (p)s and the function R is often passed
over in silence.
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〈pξ : ξ < α〉 of elements of P we shall fix such a lower bound

and denote it by
∧
ξ<α pξ.

If s ∈ T (p), then (p)s is, by definition, equal to (p)s1 , where s1 is the

minimal extension of s to an element of S(p).

(2) (Fusion). For every condition p ∈ P we set Sα(p) = S(p)∩α≤α, and

for every s ∈ S(p) we use the following notation: degp(s) = o.t .
(
{t :

t & s, t ∈ S(p)}
)
, S∗

α(p) = {s ∈ Sα(p) : degp(s) = α}. The notation

q ≤α p means that q ≤ p and Sα(q) = Sα(p).

With the above notation we are in a position to formulate the

property of P we are interested in: If s ∈ S∗
α(p), ŝ ξ ∈ T (p), and

r ≤ (p)sˆξ, then there exists q ≤α p such that ŝ ξ ∈ T (q) and

(q)sˆξ ≤ r. 2

(3) (Closure). Any sequence 〈pi : i < κ〉 which satisfies i < j → pj ≤i pi

and pi =
∧
j<i pj for limit i has a lower bound p with the property

p ≤i pi for each i < κ.

(4) (The Lifting Condition). For each condition p there is a club C(p)

consisting of limit ordinals α such that whenever s ∈ S∗
α(p), then

ŝ h(α) ∈ T (p). 2

Example 2.2. 1. Let p ⊂ κ<κ. For s ∈ p we denote by C(p, s) (or simply

by C(s) if p is clear from the context) the set {α ∈ κ : ŝ α ∈ p}.
Following [10] we denote by Miller(κ) the following forcing. A condition

is a subset p of κ<κ such that

(i) s ∈ p, t ⊂ s −→ t ∈ p.

(ii) Each s ∈ p is increasing and has a proper extension in p.

(iii) For every α < κ limit, s ∈ κα, if s � β ∈ p for arbitrary large β < α,

then s ∈ p.

(iv) For every s ∈ p there is t ∈ p with s ⊂ t which splits in p (i.e., C(p, t)

has more than one element). Moreover, if t0, t1 split in p and t0 ⊂ t1, then

C(p, t1) ⊂ C(p, t0).

(v) If s ∈ p splits in p, then the set C(p, s) is club.

(vi) If α is a limit ordinal, s ∈ κα, and s � β splits in p for arbitrary

large β < α, then s splits in p and C(p, s) is the intersection of C(p, s � β)
for all β such that s � β splits in p.

Miller(κ) is ordered by declaring p to be stronger than q (and write

p ≤ q) iff p ⊂ q.

2Such a condition q will be called a strengthening of p preserving the αth level, with r
above ŝ ξ. For our proofs we shall need this property only for ξ = h(α).
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A direct verification shows that Miller(κ) has good κ-fusion witnessed

by the function hMiller : α 7→ α for all α < κ.

2. Let us fix a sequence ~A = 〈Aα : α < κ〉 such that Aα ∈ [κ]<κ for all α.

Let T be the set of all functions t which satisfy the following conditions.

(i) There exists α such that the domain of t equals α.

(ii) For all β ∈ dom(t), t(β) ∈ Aβ.

Following [10] we denote by Sacks( ~A) the forcing whose conditions are

subsets T of T such that:

(iii) s ∈ T , t ⊂ s→ t ∈ T .

(iv) Each t has a proper extension in T .

(v) If t ∈ T and the set of such β that t � β ∈ T is unbounded in dom(t),

then t ∈ T .

(vi) There exists a club C(T ) such that the set succT (t) of immediate

successors of an element t ∈ T with domain α coincides with {t̂ a : a ∈ Aα}
provided α ∈ C(T ), and |succT (t)| = 1 otherwise.

Extension is defined by S ≤ T iff S is a subset of T .

A direct verification shows that Sacks( ~A) has good κ-fusion witnessed

by any function h ∈
∏

α<κAα.

For certain sequences ~A the poset Sacks( ~A) has been considered in, e.g.,

[4, 8, 15].

3. More generally, suppose that P consists of perfect κ-trees ordered by

inclusion and has the following properties:

(i) For every s ∈ κ<κ there exists a κ-complete filter Fs containing no

singletons3 and such that if p ∈ P and s ∈ S(p), then succp(s) ∈ Fs;

(ii) If s ∈ S(p), ŝ ξ ∈ p, and r ≤ (p)sˆξ, then there exists q ≤ p such

that ŝ ξ ∈ T (q), (q)sˆξ ≤ r, and all elements of S(p) which are incompatible

with ŝ ξ belong to S(q);

P is closed under intersections of decreasing sequences of its elements of

length < κ;

(iii) For any sequence 〈pi : i < κ〉 which satisfies i < j → S(pj) ∩ i≤i =
S(pi)∩i≤i and pi =

⋂
j<i pj for limit i, the intersection

⋂
j<κ pj is an element

of P (observe that this intersection is a perfect κ-tree fulfilling the first item);

(iv) There exists h ∈ κκ such that for each condition p there is a club

C(p) consisting of limit ordinals α such that whenever s ∈ S(p) ∩ αα is a

union of an increasing sequence of elements of S(p) of length α, we have

ŝ h(α) ∈ p.

3Fs does not have to be free, i.e., we do not require that ∩Fs = ∅.
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Then a direct verification shows that P has good κ-fusion.

4. Next, we shall give more examples of posets with good κ-fusion which

will allow us to apply Theorems 2.9 and 2.15 in cases when some of the

iterands are κ+-closed, although κ+-closed posets do not in general enjoy

good κ-fusion. Let P be a poset and 
P“Q˜ has good κ-fusion witnessed by

S˜, R˜ , and h ∈ κκ∩V ”. We say that p ∈ P determines µ, where µ is a P-name

for an element of Q˜ , if p decides the value of T˜(µ) and for every increasing

finite sequence 〈s0, . . . , sn〉 of elements of κ<κ there exists A〈s0,...,sn〉 ∈ V ,

A〈s0,...,sn〉 ⊂ κ<κ, such that

p 
 S˜((. . . ((µ)s0)s1 . . .)sn) = A〈s0,...,sn〉

provided that p forces that (. . . ((µ)s0)s1 . . .)sn is well-defined. Now sup-

pose that P is κ+-closed. Then every condition in P ∗ Q can obviously be

strengthened to a condition 〈p, µ〉 such that p determines µ, and the (dense)

set of such tuples 〈p, µ〉 will be denoted by O.

We claim that O has good κ-fusion. Indeed, for every 〈p, µ〉 ∈ O let us

denote by S〈p, µ〉 the set S˜(µ) ∈ V , as determined by p, and for every s ∈
S〈p, µ〉 let R(〈p, µ〉, s) = 〈p, µ〉s be the condition4 〈p, (µ)s〉. From the above

it follows that 〈p, (µ)s〉 ∈ O. It suffices to show that S,R, and h witness

for the good κ-fusion of O. This is rather routine and we shall check only

Definition 2.1(2). Suppose that 〈p, µ〉 ∈ O, s ∈ S∗
α〈p, µ〉, ŝ ξ ∈ T 〈p, µ〉 (here

T 〈p, µ〉 denotes the subtree of κ<κ whose splitting nodes are exactly the

elements of S〈p, µ〉), and 〈p(s), µ(s)〉 ≤ 〈p, µ〉sˆξ. Since 
P“Q˜ has good κ-

fusion”, p(s) forces that there exists ν such that ν ∈ Q˜ , ν ≤α µ, ŝ ξ ∈ T (ν),

and (ν)sˆξ ≤ µ(s). Therefore there exists p1 ≤ p(s) and a P-name ν such

that

p1 
 (ν ∈ Q˜) ∧ (ν ≤α µ) ∧ ŝ ξ ∈ T (ν) ∧ (ν)sˆξ ≤ µ(s).

Now let p2 ≤ p1 be such that p2 determines ν. Then 〈p2, ν〉 ∈ O, 〈p2, ν〉 ≤α

〈p, µ〉, ŝ ξ ∈ T 〈p2, ν〉, and 〈p2, ν〉sˆξ ≤ 〈p(s), µ(s)〉.
A similar but easier argument shows that a product of a κ+-closed poset

and a poset with good κ-fusion also has good κ-fusion.

It follows from the above that there is no upper bound on the size of

posets with good κ-fusion, and hence this notion encompasses not only

posets consisting of subtrees of κ<κ. 2

4Here we identify conditions 〈p, µ〉 and 〈p, ν〉 in P∗Q such that p 
 µ = ν. As a result
we have (〈p, µ〉s)s = 〈p, ((µ)s)s〉 = 〈p, (µ)s〉 = 〈p, µ〉s for all 〈p, µ〉 ∈ O.
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Below we collect some straightforward properties of posets with good

κ-fusion. We shall often use them without mention. The proof of Theo-

rem 2.15 will resemble that of the main result of [10], and the claims below

will allow us to generalize the argument from the Miller case to posets with

good κ-fusion by simply making sense out of the steps of the proof from

[10] in our context.

Claim 2.3. Suppose that a poset P has good κ-fusion witnessed by S, R,

and h. Let p ∈ P and s ∈ T (p). Then the statements below hold.

(i) If t ∈ S((p)s), then t extends s;

(ii) If q ≤α p, then S
∗
α(q) = S∗

α(p);

(iii) If p ∈ P, D is open dense on P and α < κ, then there is q ≤α p

such that (q)sˆξ belongs to D for all s ∈ S∗
α(p) and ξ < κ such that

ŝ ξ ∈ T (q);

(iv) For every decreasing sequence 〈pξ : ξ < β〉 of elements of P of length

β < κ, s ∈
⋂
ξ<β S(pξ), and stationary set A ⊂ κ there exists α ∈ A

and t ∈
⋂
ξ<β S

∗
α(pξ) such that s ⊂ t; and

(v) If s =
⋃
ξ<β sξ with sξ ∈ S∗

µξ
(p), sξ & sη for all ξ < η < β, then

s ∈ S∗
µ(p), where µ = supξ<β µξ.

Proof. Items (ii), (iii), and (v) follow directly from corresponding items of

Definition 2.1. For instance, (iii) is a consequence of Definition 2.1(2,3).

(i). Suppose, contrary to our claim, that s 6⊂ t. Notice that t ∈ S(p)

because (p)s ≤ p. Then two cases are possible.

a) t & s. In this case Definition 2.1 yields ((p)s)t ≤ (p)s = ((p)s)s and

((p)s)s < ((p)s)t (because t & s) simultaneously, a contradiction.

b) The elements t and s of κ<κ are incomparable. Then (p)s and (p)t

are incompatible. On the other hand, ((p)s)t ≤ (p)s and ((p)s)t ≤ (p)t, a

contradiction.

(iv). Let p =
∧
ξ<β pξ. By induction on η < κ construct a strictly

increasing sequence 〈sη : η < κ〉 of elements of S(p) such that sη =
⋃
ξ<η sξ

for all limit η. Let C be the club consisting of limit ordinals η such that

sη ∈ ηη and η = degp(sη). Fix α ∈ C ∩A. It follows from the above that α

and t = sα are as required. �

The minimal element of S(p), where p is a condition in a poset P with

good κ-fusion, will be denoted by stem(p).

Claim 2.4. If G is a P-generic filter, then xG :=
⋃
p∈G stem(p) ∈ κκ.

Therefore xG � α ∈ T (p) and (p)xG�α ∈ G for every p ∈ G and α < κ.
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Proof. By Claim 2.3(i) for every α < κ the set of those conditions p ∈ P
such that stem(p) ∈ κβ for some β > α is dense in P. So it suffices to

prove that for every p0, p1 ∈ G the sequences stem(p0) and stem(p1) are

compatible. Since G is a filter, there exists p2 ∈ G such that p2 ≤ p0, p1,

and hence S(p2) ⊂ S(p0) ∩ S(p1). Therefore stem(p2) ⊃ stem(p0) and

stem(p2) ⊃ stem(p1), which proves the first statement of our claim.

Now let us fix p, q ∈ G and α < κ. Let r ≤ p, q be such an element of G

that stem(r) has length at least α. Then xG � α ⊂ stem(r) ∈ S(r) ⊂ S(p)∩
S(q), consequently (r)stem(r) ≤ (p)stem(r), (q)stem(r), and finally (r)stem(r) ≤
(p)xG�α, (q)xG�α. It follows from the above that (p)xG�α is compatible with

every element of G and hence belongs to G. �

Since the set {p ∈ P : stem(p) 6⊂ x} is dense in P for every x ∈ κκ ∩ V ,

the sequence xG defined in Claim 2.4 is not in V .

Throughout this section κ is an inaccessible cardinal and Q̄ = 〈Pξ,Q˜ ζ :ξ ≤ γ, ζ < γ〉 stands for a κ-support iteration such that 
Pξ
“Q˜ ξ has good

κ-fusion witnessed by S˜ξ, R˜ ξ, ȟξ” for all ξ < γ (i.e., hξ ∈ κκ ∩ V ). We shall

write S(q) instead of S˜ξ(q) provided that it is clear from the context that q

is a name for a condition in Q˜ ξ.
Definition 2.5. Suppose that α ∈ κ, F ∈ [γ]<κ, and q, p ∈ Pγ. q ≤F,α p

means that q ≤ p and q � ξ 
 q(ξ) ≤α p(ξ) for all ξ ∈ F .

If α < κ and 〈pξ : ξ < α〉 is a decreasing sequence of elements of Pγ, then
the condition p :=

∧
ξ<α pξ is defined

5 as follows: p � i 
i p(i) =
∧
ξ<α pξ(i).

A sequence 〈(pα, Fα) : α ∈ κ〉 is a generalized fusion sequence (for Q̄),

iff

(i) |Fα| < κ for all α ∈ κ.

(ii) Fα ⊃ Fβ for all β ≤ α < κ.

(iii) pα+1 ≤Fα,α pα for all α.

(iv) If δ is limit, then Fδ =
⋃
β<α Fβ and pδ =

∧
α<δ pα.

(v)
⋃
{Fα : α ∈ κ} =

⋃
{supp(pα) : α < κ}. 2

The easy but technical proof of the following lemma is left to the reader.

Lemma 2.6. Let 〈(pα, Fα) : α ∈ κ〉 be a generalized fusion sequence for Q̄.

Then there exists q ∈ Pγ such that q ≤Fα,α pα for all α ∈ κ.

In what follows for every generalized fusion sequence 〈(pα, Fα) : α ∈ κ〉
for Q̄ we shall fix such q as in Lemma 2.6 and denote it by

∧
α<κ pα.

5If α ≥ κ then
∧

ξ<α pξ is not always defined.
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Definition 2.7. Suppose that p ∈ Pγ, F ⊂ supp(p) with |F | < κ, and

σ : F → κ<κ. Then p|σ is a function with the same domain as p such that

(p|σ)(ξ) equals (p(ξ))∅ if ξ ∈ supp(p) \ F and (p(ξ))σ(ξ) otherwise. 2

It is clear that p|σ ∈ Pγ if and only if for every ξ ∈ F we have (p|σ) �
ξ 
ξ σ(ξ) ∈ T (p(ξ)). If p|σ ∈ Pγ, then we say that σ lies on p.

Observation 2.8. Let Q̄ be as above.

(i) If σ : F → κ<κ lies on p, then σ lies on q for every q ≤ p|σ;
(ii) If σ lies on p, π lies on q, dom(π) ⊃ dom(σ), σ(ξ) ⊂ π(ξ) for all ξ ∈

dom(σ), and p|σ ≤ q|π, then π lies on p and p|σ = p|π = (p|σ)|π.

Proof. The first item can be easily proved by induction on ξ < γ using

Claim 2.3(i).

Let us prove the second item. Since p|σ ≤ q|π, the first item implies

that π lies on p|σ. Let us show by induction on ξ < γ that π � ξ lies on

p � ξ and (p|σ) � ξ = (p|π) � ξ. For ξ = 1 this is obvious. Suppose that

this is true for all ξ < η. If η is limit, then the statement above is also true

for η. So it suffices to consider the case η = ξ + 1. If ξ 6∈ dom(π) then

there is nothing to prove. So suppose that ξ ∈ dom(π). Since p|σ ≤ q|π,
we have (p|σ) � ξ 
ξ (p|σ)(ξ) ≤ (q(ξ))π(ξ), and consequently (p|σ) � ξ 
ξ

stem((p|σ)(ξ)) ⊃ π(ξ). Therefore by Definition 2.1(1), Claim 2.3(i), and

Definition 2.7 we have that

(p|σ) � ξ 
ξ ((p|σ)(ξ))π(ξ) = (p(ξ))π(ξ) = (p|π)(ξ) ∧

∧ ((p|σ)(ξ))π(ξ) = ((p|σ)(ξ))∅ = (p|σ)(ξ)

which means that (p|σ) � ξ+1 = (p|π) � ξ+1 and thus completes our induc-

tive proof of the fact that p|σ = p|π. Finally, p|σ ≥ (p|σ)|π ≥ (p|π)|π = p|π,
which together with p|σ = p|π implies p|σ = p|π = (p|σ)|π. �

Theorem 2.9. The forcing Pγ defined just before Definition 2.5 preserves

cardinals ≤ κ+.

Suppose that 2κ = κ+ in V , γ = κ++, and 
Pξ
|Q˜ ξ| ≤ κ+ for all ξ < γ.

Then Pγ has the κ++-chain condition.

Similar results were discussed in [4, 10, 15] for the Sacks and Miller

forcings. Nevertheless, we give complete proofs here. Our exposition closely

follows [10].

The first part of Theorem 2.9 follows from the lemma below.

Lemma 2.10. (1) Assume that p ∈ Pγ and p 
 z˜ ∈ V . Then for every

F ∈ [γ]<κ and α0 ∈ κ there exists q ≤F,α0 p and x ∈ V with |x| ≤ κ

such that q 
 z˜ ∈ x.
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(2) Assume that p ∈ Pγ and p 
 “z˜ ∈ V and |z˜| ≤ κ”. Then for every

F ∈ [γ]<κ and α0 ∈ κ there exists q ≤F,α0 p and x ∈ V with |x| ≤ κ

such that q 
 z˜ ⊂ x.

Proof. It is well-known how to obtain the second item from the first one,

see, e.g., [15, Theorem 2.3].

In order to prove the first item we shall inductively construct a general-

ized fusion sequence 〈(pα, Fα) : α ∈ κ〉 with (pβ, Fβ) = (p, F ) for all β ≤ α0,

and x ∈ V of size |x| ≤ κ such that q =
∧
α∈κ pα and x are as required. The

routine description of how to construct the Fα’s is omitted. The limit step

of the construction is obvious, so we concentrate on the successor case.

Let us enumerate as {σα,i : i ∈ ηα} all ground model functions σ : Fα →
κα+1 which lie on some r ≤ pα so that r = r|σ, r � ξ 
 σ(ξ) � α ∈ S∗

α(pα(ξ))

for all ξ ∈ Fα, and σ(ξ)(α) = hξ(α) for all ξ ∈ Fα. (Here ηα < κ is a

cardinal.) We shall construct a sequence 〈pα,i : i ∈ ηα〉 as follows. Set

pα,−1 = pα and suppose that we have already constructed a decreasing

sequence 〈pα,j : j < i〉 such that pα,j ≤Fα,α pα,k for all k ≤ j < i. If i is

limit, we set pα,i =
∧
j<i pα,j. Suppose that i = j +1. If there is no r ≤ pα,j

such that r = r|σα,j and r � ξ 
 σα,j(ξ) � α ∈ S∗
α(pα(ξ)) for all ξ ∈ Fα,

we set pα,i = pα,j and xα,j = ∅. And if there is such r, let rα,j ≤ r and

xα,j ∈ V be such that rα,j 
 z˜ = xα,j. Now, using the Maximal Principle

we define pα,j+1 to be the amalgamation of pα,j and rα,j as in the proof of

[15, Theorem 2.2]. More precisely,

(a) supp(pα,j+1) = supp(rα,j).

(b) If ξ ∈ Fα, then pα,j+1(ξ) is such that

rα,j � ξ forces pα,j+1(ξ) to be the strengthening of pα,j(ξ)

preserving the αth level, with rα,j(ξ) above σα,j(ξ),

and for any condition c ≤ pα,j+1 � ξ incompatible with rα,j � ξ,

c 
ξ pα,j+1(ξ) = pα,j(ξ).

(c) If ξ 6∈ Fα, then pα,j+1(ξ) is such that

rα,j � ξ 
 pα,j+1(ξ) = rα,j(ξ),

and for any condition c ≤ pα,j+1 � ξ incompatible with rα,j � ξ,

c 
ξ pα,j+1(ξ) = pα,j(ξ).

Now we let pα+1 =
∧
i∈ηα pα,i. It follows that pα+1 ≤Fα,α pα. This completes

our construction of 〈(pα, Fα) : α ∈ κ〉. Set x = {xα,i : α ∈ κ, i ∈ ηα}.
We continue the proof of Lemma 2.10 with the following two auxiliary

statements.
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Claim 2.11. Suppose that r ≤ q, where q is a condition constructed above.

Then there exists a sequence 〈rα : α ∈ κ〉 of elements of Pγ with r0 = r, a

sequence 〈σα : Fα → κ<κ|α ∈ κ〉, and sequences 〈µα,ξ : α ∈ κ, ξ ∈ Fα〉 of

ordinals less than κ such that

(i) If β < α, then rα ≤ rβ.

(ii) If ξ ∈ Fα, then dom(σα(ξ)) = µα,ξ + 1 and σα(µα,ξ) = hξ(µα,ξ).

(iii) If β < α, then σβ(ξ) ( σα(ξ) for all ξ ∈ Fβ.

(iv) For every ξ ∈ Fα+1 we have

rα+1 � ξ 
“µα+1,ξ ∈
⋂
β≤αC(rβ(ξ)), rα+1(ξ) = (rα+1(ξ))σα+1(ξ),

and σα+1(ξ) � µα+1,ξ ∈
[⋂

β≤α S
∗
µα+1,ξ

(rβ(ξ))
]
∩ S∗

µα+1,ξ
(q(ξ))”.

(v) If δ is limit, then

– µδ,ξ = supα<δ µα,ξ for all ξ ∈ Fδ;

– σδ(ξ) � µδ,ξ =
⋃
α<δ σα(ξ) for all ξ ∈ Fδ

(we assume that σα(ξ) = ∅ for all ξ 6∈ Fα);

– rδ � ξ 
“σδ(ξ) ∈ T (rδ(ξ)) and

σδ(ξ) � µδ,ξ ∈
[⋂

β<δ S
∗
µδ,ξ

(rβ(ξ))
]
∩ S(rδ(ξ)) ∩ S∗

µδ,ξ
(q(ξ))” for

all ξ ∈ Fδ.

Proof. The construction proceeds by induction. For limit δ we simply

set σδ(ξ) and µδ,ξ to be as required in (ii, v) and rδ =
∧
α<δ rα. Thus

σδ(ξ) � µδ,ξ ∈ [
⋂
β<δ S

∗
µδ,ξ

(rβ(ξ))] ∩ S∗
µδ,ξ

(q(ξ)) by Claim 2.3(v). Since 
Pξ

S(rδ(ξ)) =
⋂
α<δ S(rα(ξ)), it follows from the above that rδ � ξ 
 σδ(ξ) �

µδ,ξ ∈ S(rδ(ξ)). It remains to show that rδ � ξ 
 σδ(ξ) ∈ T (rδ(ξ)).

From the conditions (i)-(v) and the inductive assumption for every α <

β < δ we have that rδ � ξ 
 µβ,ξ ∈ C(rα(ξ)), and hence rδ � ξ 
 µδ,ξ ∈
C(rα(ξ)). Therefore rδ � ξ 
 σδ(ξ) ∈ T (rα(ξ)) by the definition of C(rα(ξ))

and σδ(ξ)(µδ,ξ) = hξ(µδ,ξ). Let us fix any Pξ-generic filterH containing rδ � ξ
and in V [H] find an increasing sequence 〈sα : α < δ〉 of elements of κ<κ

such that σδ(ξ) ≤ sα ∈ S(rα(ξ)) for all α < δ. Then s =
⋃
ζ<δ sζ ∈ S(rα(ξ))

for every α < δ, and hence s ∈ S(rδ(ξ)) =
⋂
α<δ S(rα(ξ)), and finally

σδ(ξ) ∈ T (rδ(ξ)) because σδ(ξ) ≤ s. Since H was chosen arbitrary, we

conclude that rδ � ξ 
 σδ(ξ) ∈ T (rδ(ξ)) which completes the limit case of

our proof.

At successor step α + 1 consider the increasing enumeration 〈ξi : i < η〉
of Fα+1 and find a decreasing sequence 〈ui : i < η〉 of elements of Pγ as

follows: Set ui =
∧
j<i uj for limit i. Now given ui, using Claim 2.3(iv) and

Definition 2.1(4) find v ≤ ui � ξi and π ∈ κµ+1 for some µ ∈ κ such that the
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following conditions are satisfied provided that ξi ∈ Fα+1:

π ⊃ σα(ξi), π(µ) = hξi(µ), and

v 
ξi “µ ∈
⋂
β≤α

C(rβ(ξi)) ∧ π � µ ∈
[ ⋂
β≤α

S∗
µ(rβ(ξi))

]
∩ S∗

µ(q(ξi))”.

Then we set

ui+1 = v̂(rα(ξi))π ̂ rα � (γ \ (ξi + 1)),

σα+1(ξi) = π. (µα+1,ξi automatically becomes equal to µ.) With ui’s thus

defined, we set rα+1 =
∧
i<η ui. This completes the inductive construction,

hence the proof of the claim. �

The following claim is obvious.

Claim 2.12. There exists a club C ⊂ κ such that µα,ξ = α for every α ∈ C

and ξ ∈ Fα. Consequently, rα � ξ 
 σα(ξ) � α ∈ S∗
α(q(ξ)) for every such

α ∈ C and ξ ∈ Fα.

We are in a position now to finish the proof of Lemma 2.10. Let C

be such as in Claim 2.12 and α ∈ C. Then σα = σα,i for some i < η by

Claim 2.3(iii) (see the construction of pα+1 at the beginning of the proof of

Lemma 2.10). Since rα+1 ≤ q ≤ pα,i, Claim 2.11(iv) implies that for every

ξ ∈ Fα+1 ⊃ Fα we have rα+1 � ξ 
 rα+1(ξ) = (rα+1(ξ))σα(ξ). (Indeed, by

Claim 2.3(i) and equality rα+1(ξ) = (rα+1(ξ))σα+1(ξ), for every t ∈ S(rα+1(ξ))

we have t ⊃ σα+1(ξ), and hence rα+1(ξ) = (rα+1(ξ))σα+1(ξ) = (rα+1(ξ))σα(ξ).)

Therefore the construction of pα,i+1 is nontrivial. Since rα+1 ≤ q ≤ pα,i+1,

rα+1 = rα+1|σα ≤ pα,i+1|σα,i ≤ rα,i, and hence rα+1 
 z˜ = xα,i. Therefore

for every r ≤ q there exists r′ ≤ r such that r′ 
 z˜ ∈ x, which finishes our

proof. �

Let χ be a regular cardinal much bigger than κ. Following [3] we define

an elementary submodel N of H(χ) to be relevant, if |N | = κ, N<κ ⊂
N , and N can be written as a union

⋃
α<κNα, where 〈Nα : α < κ〉 is a

continuous ∈-increasing chain of elementary submodels of H(χ) such that

〈Nβ : β ≤ α〉 ∈ Nα+1 and |Nα| < κ for all α < κ.

A poset P is κ-proper, if for every relevant model N containing {P, . . .}
and p ∈ P∩N there exists q ≤ p which is (N,P)-generic, i.e. for every dense

subset D of P which is an element of N , the intersection D∩N is pre-dense

below q. In contrast to the properness, the κ-properness is not preserved

by κ-support iterations, see [22, App. 3.6(2)]. However, it is easy to check

that if P is κ-proper and 
P“Q˜ is κ-proper”, then P ∗Q˜ is κ-proper as well.

Lemma 2.13. The forcing Pγ defined just before Definition 2.5 is κ-proper.
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Proof. Let N ⊃ {Pγ, . . .} and p ∈ Pγ ∩ N . Let 〈D′
α : α < κ〉 be the

enumeration of all open dense subsets of Pγ which are elements of N and

set Dα =
⋂
β≤αD

′
β. Now, repeating the proof of Lemma 2.10 with the

additional requirement6 rα,j ∈ Dα and in such a way that the pα’s are

all in N we arrive at some q ≤ p. We claim that q is (N,Pγ)-generic.
Indeed, given any r ≤ q and β < κ, there exists a decreasing sequence

〈rα : α < κ〉 of elements of Pγ below r (namely the sequence given by

Claim 2.11) such that there are α ≥ β and i with the property rα+1 ≤ rα,i

(see the paragraph after Claim 2.12). Since rα,i ∈ Dα by the construction

of q, we have rα+1 ∈ Dα ⊂ D′
β, which completes our proof. �

The second part of Theorem 2.9 is a direct consequence of Lemma 2.13

and the following theorem.

Theorem 2.14. [3, Proposition 3.1.]. Assume λ<λ = λ, 2λ = λ+ in V , and

let 〈Ri,S˜i : i < λ++〉 be a λ-support iteration such that Ri is λ-proper and


Ri
|S˜i| ≤ λ+ for all i. Then Rλ++ has the λ++-c.c.

Assume GCH in V and let κ be an inaccessible limit of inaccessible

cardinals in V . We define in V a preparatory forcing Rκ as follows. Let R0

be the trivial forcing. For i < κ let S˜i be an Ri-name for the sum of all

< ρi-closed posets whose underlying set is a subset of H(ρ++
i )V

Ri , where ρi

is the ith inaccessible cardinal below κ. In other words, let Si be an Ri-name

for the poset {〈S, s〉 : S is a < ρi-directed closed posets whose underlying set

is a subset of H(ρ++
i )V

Ri and s ∈ S}∪{1}, ordered with 1 above everything

else and 〈S, s〉 ≤ 〈S′, s′〉 when S = S′ and s ≤ s′. Let Rκ be the iteration

〈Rξ,S˜ξ : ξ ≤ κ〉 with Easton support. The poset Rκ is a subset of H(κ) and

it is well-known [1, Corollary 2.4] that Rκ has κ-c.c.

Theorem 2.15. Suppose GCH holds and j : V →M is an ultrapower em-

bedding via a (κ, κ++)-extender in V such that H(κ++) of V is contained in

M . Also let Rκ be the “preparatory” forcing defined above and in V Rκ let

Q̄ = 〈Pξ,Q˜ ξ : ξ < γ〉 be an iteration of forcings with good κ-fusion as above,

where γ ≤ κ++. Then j can be extended in V Rκ∗Pγ to an elementary embed-

ding j∗∗ : V Rκ∗Pγ →M j(Rκ∗Pγ) so that the H(κ++) of V Rκ∗Pγ is contained in

M j(Rκ∗Pγ). In particular, κ remains measurable in V Rκ∗Pγ .

Proof. The poset j(Rκ) is an iteration 〈R̄ξ, S̄˜ξ : ξ < j(κ)〉 of length j(κ) in
M with Easton support. It is clear that R̄ξ = Rξ and S̄˜ξ = S˜ξ for all ξ ≤ κ.

6Notice that we could take rα,j to be any strengthening of a certain condition r in
that proof.
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In addition, S˜κ is an Rκ-name for the sum of all < κ = ρκ-closed posets

whose underlying set is a subset of H(κ++)V
Rκ
.

Let G be an Rκ-generic filter over V . Since Rκ has κ-c.c. and M and V

have the same H(κ++), so do M [G] and V [G] (see the proof of Claim 2.16

below for a slightly more involved argument), and hence (an isomorphic

copy of) Pγ is among the summands in S̄˜κ. Let g be a Pγ-generic over V [G].

Then the set {〈Pγ, p〉 : p ∈ g} ∪ {1GS̄˜κ
} ∈ V [G] is a S̄˜Gκ -generic over M [G],

and we shall identify it with g.

The following claim is analogous to [4, Lemma 4.4] and to [10, Claim 5.2].

Its proof is given for the sake of completeness.

Claim 2.16. M [G ∗ g] and V [G ∗ g] have the same H(κ++). Moreover,

M [G∗g] (resp. M [G]) is closed under κ sequences in V [G∗g] (resp. V [G]).

Proof. To show that H(κ++) of M [G ∗ g] and V [G ∗ g] coincide it is enough
to prove that these models have the same subsets of κ+. Let us fix X ∈
P(κ+) ∩ V [G ∗ g] with a Rκ ∗ Pγ-name X˜ and for every α ∈ κ+ fix an

antichain Aα ∈ V in Rκ ∗ Pγ such that each element of Aα forces α ∈ X˜
and Aα is maximal with this property. By Theorem 2.9 each Aα has size at

most κ+. Combining this with the fact that Rκ ∗Pγ ⊂ H(κ++) we conclude

that the whole sequence 〈Aα : α < κ+〉 belongs to H(κ++) and hence is an

element of M . Thus X = X˜ G∗g = {α ∈ κ+ : G ∗ g ∩ Aα 6= ∅} ∈ M [G ∗ g],
which completes the proof of the first part of the claim.

Regarding the second part of the claim, we shall prove only the G∗g case.
The other case is analogous. Let us fix X ⊂M [G ∗ g] with a Rκ ∗ Pγ-name

X˜ such that V [G∗ g] � |X| ≤ κ. Since Rκ ∗Pγ is κ-proper as an iteration of

two κ-proper posets, there exists Y ∈ V such that Y has size ≤ κ in V and

X ⊂ Y . For every y ∈ Y let Dy be the set of those conditions in Rγ ∗ Pγ
which determine whether y ∈ X˜ or not. Then Dy is an open dense subset

of Rκ ∗Pγ. Given a condition u in Rκ ∗Pγ, the κ-properness of Rκ ∗Pγ yields
a condition w ≤ u such that for every y ∈ Y there exists Ay ∈ [Dy]

κ which

is predense below w. Therefore G ∗ g contains such a condition w. By the

choice of j we have that Mκ ⊂M , and hence 〈Ay : y ∈ Y 〉 ∈M , and hence

X = {y ∈ Y : some of the (equivalently, all) elements of Ay ∩ G ∗ g forces

y ∈ X˜ } belongs to M [G ∗ g]. �

Claim 2.16 allows us to find a j(Rκ) � (κ, j(κ))-generic filter H ∈ V [G∗g]
over M [G ∗ g], see the proof of [4, Th. 4.1] for more details. Thus j[G] =

G ⊂ G ∗ g ∗H, and hence j lifts to an embedding j∗ : V [G] →M [G ∗ g ∗H]

definable in V [G ∗ g], see [2, Prop. 9.1]. Let M∗ denote M [G ∗ g ∗H].
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Next, we shall extend j∗ to an elementary embedding j∗∗ : V [G ∗ g] →
M∗[ĝ] for some j∗(Pγ)-generic filter ĝ. By [2, Prop. 9.1] it is enough to find

a j∗(Pγ)-generic ĝ ∈ V [G ∗ g] over M∗ for which j∗[g] ⊂ ĝ. For this we shall

need auxiliary Definition 2.17 and Claims 2.18 and 2.19, which we present

in full generality below.

Definition 2.17. Let ρ be a strongly inaccessible cardinal and Ū = 〈Tξ,U˜ξ :
ξ < ν〉 be a ρ-support iteration such that U˜ξ is forced to have good ρ-fusion

witnessed by S˜ξ, R˜ ξ, and hξ. Let q ∈ Tν , i ∈ ρ, and F ∈ [ν]<ρ. We say that

a function σ : F → ρi+1 lies (F, i)-potentially on q, if σ(ξ)(i) = hξ(i) for all

ξ ∈ F and σ lies on some r ≤ q such that r � ξ 
 σ(ξ) � i ∈ S∗
i (q(ξ)) for all

ξ ∈ F .

Claim 2.18. Let ρ, Ū, q, i be such as in Definition 2.17 and q∗ ∈ Tν be

stronger than q. If σ : T → ρi+1 lies (T, i)-potentially on q∗, then σ � F lies

(F, i)-potentially on q for every F ⊂ T .

Proof. Let r ∈ Tν be a condition witnessing that σ lies (T, i)-potentially on

q∗ and such that r|σ = r. We claim that r also witnesses that σ � F lies

(F, i)-potentially on q. For this we have to show that r � ξ 
 σ(ξ) � i ∈
S∗
i (q(ξ)) for all ξ ∈ F . It follows from the hypotheses that r � ξ 
 σ(ξ) �
i ∈ S∗

i (q
∗(ξ)) for all ξ ∈ T ⊃ F and r � ξ 
 q∗(ξ) ≤ q(ξ). Let us fix some

ξ ∈ F . By Definition 2.1 we know that r � ξ 
 “σ(ξ) � i ∈ Si(q
∗(ξ)) and

degq∗(ξ)(σ(ξ) � i) = i”. Since r � ξ 
 S(q∗(ξ)) ⊂ S(q(ξ)), we have that

r � ξ 
 “σ(ξ) � i ∈ S(q(ξ)) and degq(ξ)(σ(ξ) � i) ≥ i”. Since σ(ξ) � i ∈ ii, we

conclude that r � ξ 
 degq(ξ)(σ(ξ) � i) ≤ i, and hence r � ξ 
 degq(ξ)(σ(ξ) �
i) = i. This means that r � ξ 
 σ(ξ) � i ∈ S∗

i (q(ξ)) and thus completes our

proof. �

Claim 2.19. Suppose that ρ and Ū are such as in Definition 2.17, 〈Iα : α <

ρ〉 is an increasing sequence of elements of [ν]<ρ, p ∈ Tν, and 〈Dα : α < ρ〉
is a sequence of open dense subsets of Tν. Then there exists a generalized

fusion sequence 〈(pα, Fα) : α ∈ ρ〉 for Tν such that Iα ⊂ Fα for all α < ρ,

p0 = p, and if σ : Fα → ρα+1 lies (Fα, α)-potentially on pα+1 for some limit

α, then σ lies on pα+1 and pα+1|σ ∈ Dα.

Proof. The proof is contained in that of Lemma 2.10. Indeed, take rα,j ∈ Dα

in the construction of a fusion sequence from the proof of Lemma 2.10

(the part before Claim 2.11) instead of demanding that rα,j decides z˜ as a

ground model object. The resulting fusion sequence is easily seen to be as

required. �
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Under assumptions made in Definition 2.17, the set of all those general-

ized fusion sequences 〈(uα, Tα) : α ∈ ρ〉 such that

for every limit α ∈ ρ and σ : Tα → ρα+1 which lies (Tα, α)-

potentially on uα+1, σ lies on uα+1,

will be denoted by D(Tν). Claim 2.19 implies that we can construct a

generalized fusion sequence in D(Tν) with arbitrary u0 and with the Tα’s

growing as quickly as we wish.

Let us come back to our main task, namely to the construction of a

j∗(Pγ)-generic filter ĝ ∈ V [G ∗ g] over M∗ for which j∗[g] ⊂ ĝ. Using

Claim 2.4, for every ξ < γ we denote by x(ξ) ∈ κκ ∩ V [G ∗ g � (ξ + 1)] the

(unique!) branch through all trees of the form T (q), where q ∈ g(ξ), and

set aξ = j∗(hξ)(κ). For every Ī ∈ M∗ such that Ī ⊂ j[γ] and |Ī| = κ we

define σĪ : Ī → κκ+1 by letting σĪ(j(ξ)) = x(ξ)̂ aξ for all j(ξ) ∈ Ī.

Claim 2.20. Suppose that Ī ∈M∗ such that Ī ⊂ j[γ] and |Ī| = κ. If q ∈ g,

then σĪ lies (Ī , κ)-potentially on q̄ := j∗(q).

Proof. Let us write Ī in the form Ī =
⋃
α<κ j[Iα] such that Iα ⊂ Iβ for all

α < β, Iδ =
⋃
α<δ Iα for limit δ, and |Iα| < κ for all α < κ. By the definition

of x(ξ) and Claim 2.4 we can construct a decreasing sequence 〈rα : α < κ〉
of elements of g below q and a sequence 〈πα : α < κ〉 such that

(i) πα : Iα → κ<κ and x(ξ) ⊃ πβ(ξ) ' πα(ξ) for all ξ ∈ Iα and β > α;

(ii) rα = rα|πα and rβ � ξ 
 πβ(ξ) ∈ S(rα(ξ)) for all β > α and ξ ∈ Iα.

Then, letting π̄α = j∗(πα) : j
∗[Iα] → κ<κ and r̄α = j∗(rα), the elemen-

tarity of j∗ yields

(iii) σĪ(j(ξ)) ⊃ π̄β(j(ξ)) ' π̄α(j(ξ)) for all ξ ∈ Iα and β > α;

(iv) r̄α = r̄α|π̄α and r̄β � j(ξ) 
 π̄β(j(ξ)) ∈ S(r̄α(j(ξ))) for all β > α

and ξ ∈ Iα.

Set r̄κ =
∧
α<κ r̄α and π̄κ : Ī → κκ, π̄κ : j(ξ) 7→ x(ξ). It follows

from the above that π̄κ =
⋃
α<κ π̄α and hence π̄κ lies on r̄κ. Let us fix

α < κ and ξ ∈ Iα. Condition (iv) implies that r̄κ � j(ξ) forces that x(ξ) =⋃
α<β<κ π̄β(j(ξ)) ∈ S(r̄α(j(ξ))), and hence it forces that x(ξ) ∈ S∗

κ(r̄α(j(ξ)))

and κ ∈ C(r̄α(j(ξ))). Applying Claim 2.18 we conclude that r̄κ � j(ξ) 

x(ξ) ∈ S∗

κ(q̄(j(ξ))). Also, r̄κ � j(ξ) 
 σĪ(j(ξ)) = x(ξ)̂ aξ ∈ T (r̄α(j(ξ))),

which yields r̄κ � j(ξ) 
 σĪ(j(ξ)) ∈ T (r̄κ(j(ξ))) (remember that α < κ was

chosen arbitrary). Thus r̄κ witnesses σĪ lying (Ī , κ)-potentially on q̄. �

Let us denote by ĝ the upwards closure of the set

g̃ := {ūκ+1|σT̄κ : 〈(uα, Tα) : α ∈ κ〉 ∈ D(Pγ) and
∧
α<κ

uα ∈ g} ⊂ j∗(Pγ),
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where 〈(ūᾱ, T̄ᾱ) : ᾱ ∈ j(κ)〉 = j∗(〈(uα, Tα) : α ∈ κ〉). We shall prove that ĝ

is a j∗(Pγ)-generic filter over M∗ and j∗[g] ⊂ ĝ.

Given any 〈(uα, Tα) : α ∈ κ〉 ∈ D(Pγ) such that
∧
α<κ uα ∈ g, let

us notice that σT̄κ lies (T̄κ, κ)-potentially on
∧
ᾱ<j(κ) ūᾱ = j∗(

∧
α<κ uα) by

Claim 2.20, and hence σT̄κ also lies (T̄κ, κ)-potentially on ūκ+1 ≥
∧
ᾱ<j(κ) ūᾱ

by Claim 2.18. Therefore σT̄κ lies on ūκ+1 by the definition of D(Pγ), which
shows that the definition of g̃ above makes sense.

Claim 2.21. ĝ is a filter containing j∗[g].

Proof. Let us fix p ∈ g and any two elements 〈(uα, Tα) : α ∈ κ〉 and

〈(u′α, T ′
α) : α ∈ κ〉 of D(Pγ) such that

∧
α<κ uα,

∧
α<κ u

′
α ∈ g, and find

q ∈ g below all of the conditions {
∧
α<κ uα,

∧
α<κ u

′
α, p}. By Claim 2.19

the set W of all those conditions w such that w =
∧
α<κwα for some

〈(wα, Lα) : α ∈ κ〉 ∈ D(Pγ) with Tα, T ′
α ⊂ Lα for all α < κ and w0 ≤ q, is

dense below q. Therefore there exists w ∈ g ∩W . Thus g̃ 3 w̄κ+1|σL̄κ
≤

ūκ+1|σT̄κ , ū′κ+1|σT̄ ′
κ
, which implies that ĝ is a filter. In addition, w0 ≤ q, and

hence w̄κ+1|σL̄κ
≤ j∗(w0) ≤ j∗(q) ≤ j∗(p), consequently j∗(p) ∈ ĝ, which

yields j∗[g] ⊂ ĝ. �

In light of Claim 2.21 we are left with the task to show that g̃ meets

all open dense subsets of j∗(Pγ) which are elements of M∗. Let us fix such

an open dense D̄ ⊂ j∗(Pγ) and write D̄ as j∗(f)(ā), where f has domain

H(κ)V , f ∈ V [G], and ā ∈ H(κ++)V . There is no loss of generality to

assume that f(a) is open dense in Pγ for all a ∈ H(κ)V . Let us enumerate

H(κ)V as 〈ak : k ∈ κ〉 and set D′
k =

⋂
k′≤k f(ak′) and ~D′ = 〈D′

k : k ∈ κ〉.
As a result we have that for every a ∈ H(κ)V there exists k < κ such that
~D′(k) ⊂ f(a). The elementarity of j∗ yields k̄ < j∗(κ) such that j∗( ~D′)(k̄) ⊂
j∗(f)(ā) = D̄. The extender nature of j allows to find a strictly increasing

sequence ~β = 〈βk : k < κ〉 of ordinals below κ such that j∗(~β)(κ) > k̄, see

the beginning of the proof [9, Lemma 4] for details. Set Dk = D′
βk

and
~D = 〈Dk : k < κ〉. Then ~D has the property j∗( ~D)(κ) ⊂ j∗( ~D′)(k̄) ⊂ D̄.

Given any u ∈ Pγ, using Claim 2.19 we can construct a fusion sequence

〈(uk, Tk) : k ∈ κ〉 with u0 = u satisfying the following condition:

If σ : Tk → κk+1 lies (Tk, uk)-potentially on uk+1, then σ lies on uk+1 and

uk+1|σ ∈ Dk. In particular, 〈(uk, Tk) : k ∈ κ〉 ∈ D(Pγ).
Let 〈T̄k̄ : k̄ ∈ j(κ)〉 and 〈ūk̄ : k̄ ∈ j(κ)〉 be the results of applying j∗

to 〈Tk : k ∈ κ〉 and 〈uk : k ∈ κ〉 respectively, v =
∧
k<κ uk, and v̄ =

j∗(v) =
∧
k̄<j(κ) ūk̄. By elementarity of j∗, for every σ̄ : T̄κ → j(κ)κ+1 lying

(Tκ, κ)-potentially on ūκ+1, σ̄ lies on ūκ+1 and ūκ+1|σ̄ ∈ j∗( ~D)(κ) ⊂ D̄.
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Since u was chosen arbitrarily, we can assume that v ∈ g. Claim 2.20

implies that σT̄κ lies (T̄κ, κ)-potentially on j∗(v), and hence it lies (T̄κ, κ)-

potentially on ūκ+1 by Claim 2.18. It follows from the above that σT̄κ lies

on ūκ+1 and g̃ 3 ūκ+1|σT̄κ ∈ j∗( ~D)(κ) ⊂ D̄, which finishes our proof of

Theorem 2.15. �

If we use preparation relative to a fast function (see [11]) instead of the

poset Rκ, we can prove the following theorem by almost literal repetition

of the proof of Theorem 2.15.

Theorem 2.22. Suppose GCH holds, θ is a regular cardinal, and j : V →
M is an ultrapower embedding via a (κ, θ)-extender in V such that H(θ) of

V is contained in M . Then there exists a κ-c.c. poset R of size κ such that

in V R, for every iteration Q̄ = 〈Pξ,Q˜ ξ : ξ < γ〉 with supports of size ≤ κ

of forcings with good κ-fusion, where γ ≤ θ and 
R∗Pξ
|Q˜ ξ| < max{κ++, θ},

j can be extended in V R∗Pγ to an elementary embedding j∗∗ : V R∗Pγ →
M j(R∗Pγ) so that the H(θ) of V R∗Pγ is contained in M j(R∗Pγ). In particular,

κ remains θ-strong in V R∗Pγ .

Although the iterations considered in Theorem 2.22 have θ-c.c., they

could collapse all cardinals between κ+ and θ.

Corollary 2.23. Suppose GCH holds and λ is a strong cardinal. Then there

exists a λ-c.c. poset R of size λ such that λ remains strong in V R∗Pγ for

every iteration Q̄ = 〈Pξ,Q˜ ξ : ξ < γ〉 with supports of size ≤ κ of forcings

with good κ-fusion.

3. Reasonably bounded forcing notions and extending

elementary embeddings

Here we introduce a strengthening of the reasonable B-boundedness

property from [17] suitable for extending elementary embeddings. Through-

out the section λ stands for a strongly inaccessible cardinal and µ̄ denotes

a nondecreasing sequence 〈µα : α < λ〉 of regular cardinals ≤ λ such that

|
∏

ξ<α f(ξ)| < µα for every f : α → µα. For example, the sequences

〈|2α|+ : α < λ〉 and 〈λ : α < λ〉 are as above. Whenever there is no need to

consider a particular Q-generic filter for some poset Q, the forcing extension

of V by Q will be denoted by V Q. Let U be a family of unbounded subsets

of λ which is closed under diagonal intersections. For a poset Q we denote

by UQ the closure of U under diagonal intersections in V Q. It is easy to

check that if Q is < λ-strategically closed then UQ consists of unbounded
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subsets of λ, see, e.g., [20]. We shall also denote by Dλ the collection of all

clubs of λ.

Definition 3.1. Let Q be a forcing notion.

For a condition p ∈ Q we define a game

GBe
U ,µ̄(p,Q) between two players,

Generic and Antigeneric, as follows. A play of

GBe
U ,µ̄(p,Q) lasts λ steps and

results in a sequence 〈
Iα, 〈pαt , qαt : t ∈ Iα〉 : α < λ

〉
constructed by the players. The αth round is played as follows:

(1) First, Generic chooses a non-empty set Iα of cardinality < µα and a

collection 〈pαt : t ∈ Iα〉 of pairwise incompatible elements of Q such

that

(a) for any J ⊂ α, t ∈ Iα, and (tξ)ξ∈J ∈
∏

ξ∈J Iξ, if there exists a

lower bound for the set {qξtξ : ξ ∈ J} ∪ {pαt }, then pαt is such a

lower bound (i.e., for any β < α and t′ ∈ Iβ either the conditions

qβt′ , q
α
t are incompatible or else qβt′ ≥ qαt );

(b) if α < λ is limit, then for any cofinal subset J of α and a

sequence (tξ)ξ∈J ∈
∏

ξ∈J Iξ, the set {t ∈ Iα : ∀ ξ ∈ J (pαt ≤ qξtξ)}
has size at most |α|.

(2) Antigeneric answers by picking a collection 〈qαt : t ∈ Iα〉 such that

qαt ≤ pαt for all t ∈ Iα.

Generic wins this play
〈
Iα, 〈pαt , qαt : t ∈ Iα〉 : α < λ

〉
if there exists p∗ ≤ p

such that

p∗ 
 {α < λ : ∃ t ∈ Iα (q
α
t ∈ ΓQ)} ∈ UQ,

where ΓQ is the canonical name for the Q-generic filter.

We say that Q is reasonably Be-bounding over U , µ̄ if Q is < λ strategi-

cally closed and Generic has a winning strategy in

GBe
U ,µ̄(p,Q) for all p ∈ Q.

If U = {λ}, then forcing notions which are reasonably Be-bounding over

U , µ̄ will be called reasonably Ae-bounding over µ̄.

2

Remark 3.2. If we remove items (a), (b) (or just item (b)) from Defini-

tion 3.1(1), we get the definition of the game

GrcB
U ,µ̄ (p,Q) and of reasonably

B-bounding over U , µ̄ forcing notions introduced in [17]. If U = {λ}, then
forcing notions which are reasonably B-bounding over U , µ̄ are called in [17]

reasonably A-bounding over µ̄.

The subscript “e” in the notation

GBe
U ,µ̄ comes from extending elementary

embeddings. 2
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Example 3.3. 1. We shall illustrate the reasonably Ae-boundedness over

µ̄ by proving that the poset Sacks(λ) has this property for µα = λ, see [15,

Def. 1.1] for the definition of Sacks(λ).

For a condition p ∈ Sacks(λ) and α < λ let us denote by Split(p) the set

of all splitting nodes of p and by Splitα(p) the set {s ∈ Split(p) : o.t .({t :
t & s, t ∈ Split(p)}) ≤ α}. The notation q ≤α p means that q ≤ p and

Splitα(q) = Splitα(p)
7.

Let us fix p0 ∈ Sacks(λ) and suppose that we have already reached αth

round of the play

GBe

{λ},µ̄(p0, Sacks(λ)). Suppose also that the players have

constructed a sequence 〈pξ, qξ : ξ < α〉 of conditions in Sacks(λ) such that

(i) pξ+1 ≤ξ+1 qξ ≤ξ pξ for all ξ + 1 < α;

(ii) Iξ = {ŝ 0, ŝ 1 : s ∈ Splitξ(pξ)};
(iii) pξt = (pξ)t for all t ∈ Iξ;

(iv) qξt = (qξ)t for all t ∈ Iξ; and

(v) pξ =
⋂
ζ<ξ qζ for all 0 < ξ < α.

As required in (v) we set pα =
⋂
ξ<α qξ (thus pα is simply equal to qβ

provided that α = β+1). Now, Generic is instructed to play Iα = {ŝ 0, ŝ 1 :

s ∈ Splitα(pα)} and pαt = (pα)t for all t ∈ Iα. Suppose that Antigeneric

replies with a sequence 〈qαt : t ∈ Iα〉 such that qαt ≤ pαt for all t ∈ Iα.

Then we set qα =
⋃
t∈Iα q

α
t . This completes the description of a strategy for

Generic, and we are left with the task to show that it is winning.

Let us fix a play
〈
Iξ, 〈pξt , q

ξ
t : t ∈ Iξ〉 : ξ < λ

〉
in the game

GBe

{λ},µ̄(p0, Sacks(λ))

and let 〈pξ, qξ : ξ < λ〉 be the sequence of conditions in Sacks(λ) constructed

aside from this play such that the conditions (i)-(v) are satisfied. It is easy

to check that items (a), (b) of Definition 3.1(1) are satisfied. In fact, for any

limit α < λ, cofinal subset J of α, and sequence (tξ)ξ∈J ∈
∏

ξ∈J Iξ, the set

{t ∈ Iα : ∀ ξ ∈ J (pαt ≤ qξtξ)} has size 2. Set p∗ =
⋂
ξ<λ pξ =

⋂
ξ<λ qξ and

notice that p∗ ≤ξ qξ ≤ξ pξ for all ξ < λ, and hence

{(qξ)sˆi : s ∈ Splitξ(qξ), i ∈ 2} = {qξt : t ∈ Iξ}

is predense below p∗ for all ξ < λ. Thus

p∗ 
 {α < λ : ∃ t ∈ Iα (q
α
t ∈ ΓQ)} = λ,

which finishes our proof.

In the same way we can prove that singular-splitting-Sacks forcing is

reasonably Ae-bounding, see [12, 2.1] for its definition.

2. It seems that not all natural variants of Sacks forcing are reasonably

Ae-bounding. For example, if ~A = 〈Aξ : ξ < λ〉 is a sequence of sets of

7Notation q ≤α p has a different meaning in [15].



FUSION AND LARGE CARDINAL PRESERVATION 21

cardinality less than λ and the sequence 〈|Aξ| : ξ < λ〉 grows fast enough,
then the proof presented above does not show that the poset Sacks( ~A) (see

Example 2.2)8 is reasonably Ae-bounding, the main obstacle being condition

1(b) of Definition 3.1. However, these posets have good λ-fusion introduced

in Section 2. 2

Definition 3.4. ([17, Definition 2.2].)

Let γ be an ordinal, 0 ∈ w ⊂ γ. A standard (w, 1)γ-tree is a pair T = (T, rk)

such that

• rk : T → w ∪ {γ};
• If t ∈ T and rk(t) = ε, then t is a sequence 〈t(ζ) : ζ ∈ w ∩ ε〉;
• (T,�) is a tree with root ∅, where � is the end-extension relation,

such that every chain in T has a �-upper bound in T ; and

• If t ∈ T , then there is t′ ∈ T such that t� t′ and rk(t′) = γ.

Let Q̄ = 〈Pi,Q˜ i : i < γ〉 be a λ-support iteration, i.e., an iteration with

supports of size at most λ. A standard tree of conditions in Q̄ is a system

p̄ = 〈pt : t ∈ T 〉 such that

• (T, rk) is a standard (w, 1)γ-tree for some w ⊂ γ;

• pt ∈ Prk(t) for all t ∈ T ; and

• If s, t ∈ T , s� t, then ps = pt � rk(s).
A standard tree of conditions in Q̄ will be called regular, if pt and pt′ are

incompatible for all t 6= t′ such that rk(t) = rk(t′).

The next definition is abstracted from the proof of the main result of

[10].

Definition 3.5. Let Q̄ = 〈Pξ,Q˜ ξ : ξ < γ〉 be a λ-support iteration. We

say that the poset Pγ = lim(Q̄) is Be(Q̄)-bounding over U , µ̄, if it is < λ-

strategically closed and for every p ∈ Pγ and sequence D̄ = 〈Dα : α < λ〉 of
open dense subsets of Pγ there are sequences T̄ and q̄ such that

(1) T̄ = 〈Tα : α < λ〉, where each Tα = (Tα, rkα) is a standard (wα, 1)
γ-

tree of size < µα;

(2) q̄ = 〈q̄α : α < λ〉, where q̄α = 〈qαt : t ∈ Tα〉 is a regular standard tree

of conditions;

(3) |wα| ≤ |α| for all α;
(4) {qαt : rkα(t) = γ} ⊂ Dα;

(5) For any J ⊂ α and sequence (tξ)ξ∈J ∈
∏

ξ∈J Tξ, if rkξ(tξ) = γ for all

ξ ∈ J , t ∈ Tα, rkα(t) = γ, and there exists a lower bound for the

8Similar variations on Sacks(κ) were considered in [8].
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set {qξtξ : ξ ∈ J} ∪ {qαt }, then qαt is such a lower bound (i.e., for any

ξ < α, t′ ∈ Tξ, and t ∈ Tα such that rkξ(t
′) = rkα(t) = γ, either the

conditions qξt′ , q
α
t are incompatible or else qξt′ ≥ qαt );

(6) For any limit α < λ, cofinal subset J of α, and a sequence t̄ =

(tξ)ξ∈J ∈
∏

ξ∈J Tξ such that rkξ(tξ) = γ for all ξ ∈ J , the set Tα(t̄)
consisting of those t ∈ Tα which can be extended to t′ ∈ Tα with

rkα(t
′) = γ and qαt′ ≤ qξtξ for all ξ ∈ J , has the following property:

for every two consecutive elements ξ < η of wα and t ∈ Tα(t̄) with

rkα(t) = ξ, the set {t′ ∈ Tα(t̄) : rkα(t′) = η and t � t′} has size at

most |α|;
(7) There exists a condition r ∈ Pγ such that p ≥ r and

r 
Pγ {α < λ : ∃ t ∈ Tα (rkα(t) = γ ∧ qαt ∈ ΓQ)} ∈ UQ. 2

The following theorem is analogous to [17, Th. 3.1].

Theorem 3.6. Assume that

(1) λ is a strongly inaccessible cardinal;

(2) Q̄ = 〈Pξ,Q˜ ξ : ξ < γ〉 is a λ-support iteration such that


Pξ
Q˜ ξ is reasonably Be-bounding over U , µ̄.

Then Pγ = lim(Q̄) is Be(Q̄)-bounding over U , µ̄.

Proof. The proof will be done by “adding an ε” to that of [17, Th. 3.1].

In order to avoid unnecessary repetitions we keep our notations as close to

those of [17] as possible and indicate what kind of changes are to be made

in the proof of [17, Th. 3.1] in order to get our theorem. We shall also refer

to equations from [17].

Let us fix p ∈ Pγ and a sequence D̄ of open dense subsets of Pγ. Like

in [17, Th. 3.1], Generic constructs a winning strategy st in the game

Grcb
U ,µ̄(p,Pγ) with the auxiliary objects mentioned in (⊗)δ so that st˜ ξ is

a Pξ-name for a winning strategy of Generic in

GBe
U ,µ̄(rδ(ξ),Q˜ ξ), see (∗)3.

(Note that that a strategy for Generic in

GBe
U ,µ̄(−,−) is also a strategy for

Generic in

GrcB
U ,µ̄ (−,−).) While constructing its winning strategy in the game

Grcb
U ,µ̄(p,Pγ), Generic is allowed to choose any condition pδζ stronger than all

rζi , s
ζ
i for i < ζ, see line 6 on page 212 in [17]. We shall additionally re-

quire that pδζ ∈ Dδ, and for any J ⊂ δ and a sequence (tξ)ξ∈J ∈
∏

ξ∈J Tξ, if

rkξ(tξ) = γ for all ξ ∈ J , there exists a lower bound for the set {qξ∗,tξ : ξ ∈ J},
and every element of the latter set is compatible with pδζ , then p

δ
ζ is actually

a lower bound of {qξ∗,tξ : ξ ∈ J}. This can be easily achieved using the < λ

strategical completeness of Pγ. Now let r, wα’s, and T δ’s be the same as in
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the proof of [17, Th. 3.1] and set q̄α = q̄α∗ . We claim that T̄ = 〈T̄ δ : δ < λ〉
and q̄ = 〈q̄δ : δ < λ〉 fulfill the conditions in Definition 3.5. Conditions

(1)-(3) and (5) are satisfied by the construction. Since

qδ∗,tζ = sζζδ ≤ sζζ ≤ rζζ = qδζ ≤ pδζ ∈ Dδ

for all δ < λ and ζ < ζδ (see [17, pp. 211-212]), we conclude that the

condition (4) of Definition 3.5 is satisfied as well. Condition (7) is just the

last but one formula on page 215 of [17]. Thus we are left with the task to

prove (6).

Let us fix a limit δ < λ, a cofinal subset J of δ, and a sequence t̄

such as in Definition 3.5(6), and let ξ < η be two consecutive elements

of wδ. If Tδ(t̄) is empty then there is nothing to prove. So assume that

Tδ(t̄) 6= ∅ and fix some t ∈ Tδ(t̄) with rk(t) = ξ. By the definition of Tδ(t̄)
we conclude that qδt ≤ qβtβ � ξ for all β ∈ J . Suppose that t′ ∈ Tδ(t̄) is

such that t � t′ and rkδ(t
′) = η. Again, qδt′ ≤ qβtβ � η for all β ∈ J . It

follows that qδt 
Pξ
qδt′(ξ) ≤ qβ1tβ1 (ξ) ≤ qβ2tβ2 (ξ) for all β1 > β2 ∈ J . Let

α < δ be the minimal ordinal such that ξ ∈ wα+1. By (∗)9 we have that

qδt 
Pξ
“〈ε˜β,ξ, p̄˜β,ξ, q̄˜β,ξ : α < β ≤ δ〉 is an initial segment of a delayed play

of

GBe
U ,µ̄(rα(ξ),Q˜ ξ) in which Generic uses st˜ ξ”. Condition (∗)10 yields that

qδt 
Pξ
“qβtβ(ξ) is a member of the sequence q̄˜β,ξ for all β ∈ J ∩ (α, δ) and

qδt′(ξ) is a member of the sequence q̄˜δ,ξ”. By Definition 3.1(1a) we have that

qδt 
Pξ
|{ε < ε˜δ,ξ : q̄˜δ,ξ(ε) ≤Q˜ξ

qβtβ(ξ) for all β ∈ J ∩ (α, δ)}| ≤ |δ|. Notice

that qδt 
Pξ
ε˜δ,ξ = εtδ,ξ and therefore

|{t′′ ∈ Tδ(t̄) : t� t′′ ∧ rkδ(t
′′) = η}| ≤

≤ |{ε < εtδ,ξ : q
δ
t 
Pξ

q̄˜δ,ξ(ε) ≤ qβtβ(ξ) for all β ∈ J ∩ (α, δ)}|.

Let H be a Pξ-generic filter containing qδt . From the above it follows that

{ε < εtδ,ξ : q
δ
t 
Pξ

q̄˜δ,ξ(ε) ≤ qβtβ(ξ) for all β ∈ J ∩ (α, δ)} ⊂

⊂ {ε < εtδ,ξ : (q̄˜δ,ξ(ε))H ≤ (qβtβ(ξ))
H (in Q˜Hξ ) for all β ∈ J ∩ (α, δ)},

and the latter set has size at most |δ| in V [H]. However, Pξ is < λ-

distributive, and hence we have

|{ε < εtδ,ξ : q
δ
t 
Pξ

q̄˜δ,ξ(ε) ≤ qβtβ(ξ) for all β ∈ J ∩ (α, δ)}| ≤ |δ|

in V , which implies

|{t′′ ∈ Tδ(t̄) : t� t′′ ∧ rkδ(t
′′) = η}| ≤ |δ|

and thus completes our proof. �
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We collect below some basic facts about the relationship between U and

UQ. A poset Q is called λλ-bounding, if for every x ∈ λλ ∩ V Q there exists

y ∈ λλ ∩ V such that x(α) < y(α) for all α < λ.

Observation 3.7. Let Q be a < λ-distributive poset. Then

(1) DQ
λ is the collection of all clubs in V Q, i.e., it equals Dλ interpreted

in V Q;

(2) If Q is λλ-bounding and C1 is a club in V Q, then there exists a club

C ∈ V such that C ⊂ C1; and

(3) If U is a base for a normal filter on λ, and for every set X ∈ V Q such

that X ⊂ V and |X| ≤ λ in V Q there exists Y ∈ V such that |Y | ≤ λ

in V and X ⊂ Y , then for every sequence 〈Uξ : ξ < λ〉 ∈ Uλ ∩ V Q

there exists W ∈ U and a club C ∈ V Q such that ∆ξ<λUξ ⊃ W ∩C.

Proof. 1. The first item is straightforward.

2. Let us fix a club C1 ∈ V Q and let 〈cα : α < λ〉 be the increasing

enumeration of C1. Observe that the set of the limit points of ∆α<λ(λ \
(cα+1)) equals to the set {α : α is limit and cα = α} and hence is a subset

of C1. Since Q is λλ-bounding, there exists a function x ∈ λλ ∩V such that

x(α) > cα for all α. Then

C := Lim
(
∆α<λ(λ \ (x(α) + 1))

)
⊂ Lim

(
∆α<λ(λ \ (cα + 1))

)
⊂ C1

and C ∈ V .

3. Let W ∈ [U ]λ ∩ V be such that {Uξ : ξ < λ} ⊂ W and 〈Wη : η < λ〉
be an enumeration of W . Set

C =
{
α : {Wη : η < α} ∩ {Uξ : ξ < λ} = {Uξ : ξ < α}

}
,

W = ∆η<λWη, and notice that C is a club in V Q. We claim that ∆ξ<λUξ ⊃
W ∩ C. Indeed, if α ∈ W ∩ C, then α ∈

⋂
η<αWη ⊂

⋂
ξ<α Uξ because

{Uξ : ξ < α} ⊂ {Wη : η < α}, and hence α ∈ ∆ξ<λUξ. �

Following [14, Definition 21.6] we say that a poset P is < κ-directed

closed, if for every subset A of P of size < κ, if every finite subset of A has

a lower bound in A (such subsets A are called directed), then A has a lower

bound in P. A subset A of P is centered, if any finite subset of A has a lower

bound in P. If A is a centered subset of P and every finite subset of A has

the greatest lower bound, that by closing A under these bounds we get a

directed subfamily of P.
We shall say that all finite subsets of a poset P have greatest lower

bounds if so do all finite subsets of P which are bounded from below. Using

this convention, for posets in which all finite subsets have greatest lower
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bounds, being < κ-directed closed is equivalent to the existence of a lower

bound for every centered subset of size < κ.

Let A,B be subsets of a poset P. We say that A is predense below B if

every lower bound of B is compatible with some element of A.

The following theorem is the main result of this section.

Theorem 3.8. Suppose GCH holds and j : V →M is a (λ, λ++)-extender

ultrapower9 such that H(λ++)V = H(λ++)M . Let U be a normal filter on

λ contained in the measure derived from j. Let also Rλ be the poset de-

fined before Theorem 2.15 and in V Rλ let Q̄ = 〈Pξ,Q˜ ξ : ξ < λ++〉 be a

λ-support iteration such that 
R∗Pξ
“Q˜ ξ is a < λ-directed closed reasonably

Be-bounding over U , µ̄ poset and of size ≤ λ+ all of whose finite subsets

have a greatest lower bound” for all ξ < λ++. Then j can be extended to

an elementary embedding j∗∗ : V Rλ∗Pλ++ → M j(Rλ∗Pλ++ ) so that H(λ++)

of V Rλ∗Pλ++ and H(λ++) of M j(Rλ∗Pλ++ ) coincide, where Pλ++ is the direct

limit of the sequence 〈Pα : α < λ++〉. In particular, λ remains measurable

in V Rλ∗Pλ++ .

Proof. In the same way as at the beginning of the proof of Theorem 2.15

let us fix a Rλ-generic filter G over V , a Pλ++-generic filter g over V [G],

and identify g with an S̄˜Gλ -generic filter over M [G]. Next, let us find a

j(Rλ) � (λ, j(λ))-generic filter H ∈ V [G∗g] overM [G∗g], and using j[G] =

G ⊂ G∗g ∗H let us lift j to an embedding j∗ : V [G] →M∗ :=M [G∗g ∗H]

definable in V [G ∗ g].
Next, we shall extend j∗ to an elementary embedding j∗∗ : V [G ∗ g] →

M∗[h] for some j∗(Pλ++)-generic filter h. By [2, Prop. 9.1] it is enough to

find a j∗(Pλ++)-generic h ∈ V [G ∗ g] over M∗ for which j∗[g] ⊂ h. Applying

Theorem 3.6 we conclude that Pλ++ = lim(Q̄) is Be(Q̄)-bounding over U , µ̄,
and hence it fulfills the premises of Observation 3.7(3). For every p ∈ Pλ++

and sequence D̄ = 〈Dα : α < λ〉 of open dense subsets of Pλ++ choose

T̄ p,D̄ = 〈T p,D̄
α : α < λ〉, q̄p,D̄ = 〈q̄α,p,D̄ : α < λ〉, where q̄α,p,D̄ = 〈qα,p,D̄t : t ∈

T p,D̄
α 〉, and r = r(p, D̄) ≤ p as in Definition 3.5.

Let us fix some p ∈ Pλ++ and D̄ such that r(p, D̄) ∈ g. Set Cp,D̄ = {α <
λ : g∩{qα,p,D̄t : t ∈ T p,D̄

α , rkα(t) = λ++} 6= ∅} ∈ V [G∗g]. Observation 3.7(3)

implies that Cp,D̄ contains an intersection of an element of U and a club.

More precisely, strengthening r(p, D̄), if necessary, we may assume that

there exists a Pλ++-name σp,D̄ ∈ V [G] and Up,D̄ ∈ U such that r(p, D̄) 

“σp,D̄ is a club and σp,D̄ ∩ Ǔp,D̄ ⊂ C˜ p,D̄”. In V [G ∗ g], let 〈βp,D̄ζ : ζ < λ〉 be

9I.e., M = {j(f)(a) : f ∈ V, f : H(λ) → V, and a ∈ H(λ++)}.
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the increasing enumeration of σg
p,D̄

. Let us also fix a decreasing sequence

〈xα,p,D̄〉 of elements of g such that xα,p,D̄ decides the first α elements of σp,D̄.

Item (2) of Definition 3.5 yields |g ∩ {qα,p,D̄t : t ∈ T p,D̄
α , rkα(t) = λ++}| = 1

for all α ∈ Cp,D̄, and we denote the corresponding element of T p,D̄
α by tp,D̄α .

Let 〈qα,p,D̄∗ : α < λ〉 be a decreasing sequence of elements of g such that

qα,p,D̄∗ ≤ xα,p,D̄ for all α < λ and qα,p,D̄∗ ≤ qα,p,D̄
tp,D̄α

for all α ∈ Cp,D̄. From now

on we shall omit p and D̄ in the indices if they are clear from the context.

For example, we shall write qα∗ , q
α
tα , x

α, and U instead of qα,p,D̄∗ , qα,p,D̄
tp,D̄α

, xα,p,D̄,

and Up,D̄, respectively.

Set T̃ = j∗(T̄ )(λ) and q̃ = j∗(q̄)(λ) = 〈q̃t : t ∈ T̃ 〉. By elementarity of

j∗, T̃ is a regular standard (wλ, 1)
j(λ++)-tree for some wλ ⊂ j(λ++) of size

|wλ| ≤ λ. Let us also denote by ˜̃T the collection of those t ∈ T̃ which can

be extended to a t′ ∈ T̃ such that rkλ(t
′) = j(λ++) and q̃t′ ≤ j∗(qαtα) for all

α ∈ C. By elementarity of j∗ and item (6) of Definition 3.5 we have that ˜̃T
has the following property: for every two consecutive elements ξ < η of wλ

and t ∈ ˜̃T with rkλ(t) = ξ, the set {t′ ∈ ˜̃T : rkλ(t
′) = η and t� t′} has size

at most λ. Let us denote by ↓ (p, D̄) the set of all lower bounds in j∗(Pλ++)

of the collection {j∗(r)} ∪ {j∗(qα∗ ) : α < λ} ⊂ j∗[g]. Observe that j∗(Pλ++)

is < j(λ)-directed closed in M∗, and hence ↓ (p, D̄) is non-empty.

Claim 3.9. {q̃t : t ∈ ˜̃T , rkλ(t) = j(λ++)} is predense below ↓ (p, D̄).

Proof. Let us fix r̃ ∈↓ (p, D̄). Since r̃ ≤ j∗(r), r̃ 
j(Rλ)∗j(Pλ++ ) “the set Π of

those ζ < j(λ) such that Γj∗(Pλ++ )∩{j∗(q̄)ζt : t ∈ j∗(T̄ )ζ , rkζ(t) = j(λ++)} 6=
∅ contains the intersection of j∗(U) and of a club j∗(σ)”. Since r̃ ≤ j∗(xα)

for all α < λ, we conclude that r̃ 
j(Rλ)∗j(Pλ++ ) “βζ is the ζth element of

j∗(σ) for all ζ < λ”. Thus r̃ forces that j∗(σ) is unbounded below λ, and

hence it forces λ ∈ j∗(σ). Recall that U is a subset of the measure derived

from j∗, and hence λ ∈ j∗(U), and consequently r̃ forces λ ∈ Π. From the

above it follows that the set

{j∗(q̄)λt : t ∈ j∗(T̄ )λ, rkλ(t) = j(λ++)} = {q̃t : t ∈ T̃ , rkλ(t) = j(λ++)}

is predense below r̃. The regularity of T̃ , the fact that r̃ is below j∗(qαtα)

for all α < λ, and Definition 3.5(5) imply that all elements of {q̃t : t ∈ T̃ \
˜̃T , rk(t) = j(λ++)} are incompatible with r̃, and hence {q̃t : t ∈ ˜̃T , rk(t) =
j(λ++)} is predense below r̃. �

Now we start working with different pairs (p, D̄), and hence it is useful for

understanding the rest of the proof to keep in mind our previous convention
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regarding the simplification of notations: T̃ = T̃ p,D̄, ˜̃T = ˜̃T p,D̄, rkλ = rkp,D̄λ ,

and wλ = wp,D̄λ .

Let us write the set of all pairs 〈p, D̄〉 such that p ∈ Pλ++ , D̄ is a

λ-sequence of open dense subsets of Pλ++ , and r(p, D̄) ∈ g in the form

{〈pi, D̄i〉 : i < ν} for some cardinal ν. In the rest of the proof we shall simply

use i instead of the tuple 〈pi, D̄i〉 in notations of the objects corresponding

to this tuple defined above. For example, we shall write r(i) and qα,i
tiα

instead

of r(pi, D̄i) and qα,p
i,D̄i

tp
i,D̄i

α

, respectively.

Now, for every ξ < λ+ we shall construct a sequence 〈tξ,i : i < ν〉 such

that

(i) tξ,i ∈ ˜̃T i and rkiλ(t
ξ,i) equals the ξth element of wiλ ∪ {j(λ++)} if ξ

does not exceed the order type of wiλ ∪{j(λ++)}, and equals j(λ++)

otherwise;

(ii) tξ,i � tη,i for all ξ < η; and

(iii) The set {q̃i
tξ,i

: ξ < λ+, i < ν} ∪ {j∗(r(i)) : i < ν} ∪ {j∗(qα,i∗ ) : α ∈
λ, i < ν} is centered.

Suppose that for some 0 < ξ < λ+ and all ζ < ξ we have already constructed

tζ,i’s so that the items (i)-(ii) above are satisfied and the set

{q̃itζ,i : ζ < ξ, i < ν} ∪ {j∗(r(i)) : i < ν} ∪ {j∗(qα,i∗ ) : α ∈ λ, i < ν}

is centered.

If ξ is limit then we define tξ,i to be the smallest upper bound for the

sequence 〈tζ,i : ζ < ξ〉 for all i < ν. Items (i)-(ii) are clearly satisfied for all

ζ ≤ ξ. Thus we are left with the task to check that the set

O = {q̃itζ,i : ζ ≤ ξ, i < ν} ∪ {j∗(r(i)) : i < ν} ∪ {j∗(qα,i∗ ) : α ∈ λ, i < ν}

is centered. Suppose to the contrary that O fails to be centered and let

i < ν be the minimal ordinal such that there exists a finite subset E of O

with max{k : q̃k
tξ,k

∈ E} = i which has no lower bound. Enlarging E and

then eliminating those of its elements which have a lower bound in E, we

may assume that

E = {q̃ktξ,k : k ∈ F ∩ i} ∪ {q̃itξ,i} ∪ {j∗(r(i)) : i ∈ F} ∪ {j∗(qα,i∗ ) : i ∈ F}

for some α < λ and F such that i ∈ F ∈ [ν]<ω. The minimality of i implies

that

(E \ {q̃itξ,i}) ∪ {q̃itζ,i} ∪ {j∗(qβ,i∗ ) : β ∈ L}
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has a lower bound for every ζ < ξ and L ∈ [λ]<ω. The existence of exact

lower bounds and < j(λ)-directed closeness of j∗(Pλ++) implies that the set

(E \ {q̃itξ,i}) ∪ {riξ} ∪ {j∗(qβ,i∗ ) : β ∈ λ}

has a lower bound, say r, where riξ = q̃i
tξ,i

� supζ<ξ rk
i
λ(t

ζ,i). (Notice that

q̃i
tζ,i

∈ j∗(Pλ++) � rkiλ(t
ζ,i), but it is not necessary that rkiλ(t

ξ,i) equals

supζ<ξ rk
i
λ(t

ζ,i), and hence there is no reason to think that riξ = q̃i
tξ,i

.)

Claim 3.9 yields that the set
{
q̃it : t ∈ ˜̃T i, tξ,i � t, and rkiλ(t) equals

j(λ++)} is predense below the set {riξ, j∗(r(i))}∪ {j∗(qα,i∗ ) : α ∈ λ}. There-
fore the one-element set {q̃i

tξ,i
} =

{
q̃it : t ∈

˜̃T i, tξ,i � t, and rkiλ(t) equals ξth

element of wiλ∪{j(λ++)}
}
is predense below the set {riξ, j∗(r(i))}∪{j∗(qα,i∗ ) :

α ∈ λ}, which means that q̃i
tξ,i

is weaker than any lower bound of the set

{riξ, j∗(r(i))} ∪ {j∗(qα,i∗ ) : α ∈ λ}. In particular q̃i
tξ,i

≥ r, which means that

r is a lower bound for E, a contradiction.

Let us now consider the case ξ = ζ + 1. We shall construct tξ,i by

induction on i < ν. Suppose that tξ,i
′
have been already constructed for

all i′ < i such that (i) holds for all i′ < i and the following conditions are

satisfied:

(iv) tζ,i
′
� tξ,i

′
for all i′ < i; and

(v) The set {q̃i′
tξ,i′

: i′ < i} ∪ {q̃k
tζ,k

: i ≤ k < ν} ∪ {j∗(r(k)) : k <

ν} ∪ {j∗(qα,k∗ ) : α ∈ λ, k < ν} is centered.

If ζ ≥ o.t .(wiλ ∪ {j(λ++)}), then we set tξ,i = tζ,i. So assume that ζ <

o.t .(wiλ ∪ {j(λ++)}). To construct tξ,i observe that Claim 3.9 implies that

the set A =
{
q̃it : t ∈

˜̃T i, tζ,i � t, and rkiλ(t) equals to the ξth element of

wiλ∪{j(λ++)}
}
is predense below the set Bζ,i := {q̃i

tζ,i
, j∗(r(i))}∪{j∗(qα,i∗ ) :

α ∈ λ}. Suppose that there is no q̃it ∈ A such that the set

{q̃i′
tξ,i′

: i′ < i} ∪ {q̃it} ∪ {q̃ktζ,k : i < k < ν} ∪ {j∗(r(k)) : k < ν} ∪

∪{j∗(qα,k∗ ) : α ∈ λ, k < ν}

is centered. This means that for every q̃it ∈ A there are I ′t ∈ [i]<ω, Kt ∈
[ν \ (i+1)]<ω, K∗

t ∈ [ν]<ω, and St ∈ [λ× ν]<ω such that the union of the set

Xt := {q̃i′
tξ,i

′ : i′ ∈ I ′t} ∪ {q̃ktζ,k : k ∈ Kt} ∪ {j∗(r(k)) : k ∈ K∗
t } ∪

∪{j∗(qα,k∗ ) : (α, k) ∈ St}

with {q̃it} has no lower bound. SetX =
⋃
q̃it∈A

Xt∪Bζ,i. By Definition 3.5(6)

we have that |A| ≤ λ, and hence |X| ≤ λ. Combined with (v) and the

directed < j(λ)-directed closeness of j(Pλ++) this implies that there exists

a lower bound q̃ of X. In particular, q̃ ≤ q̃i
tζ,i

, and hence there exists q̃it ∈ A
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compatible with q̃. But then the set

{q̃i′
tξ,i

′ : i′ ∈ I ′t} ∪ {q̃it} ∪ {q̃ktζ,k : k ∈ Kt} ∪ {j∗(r(k)) : k ∈ K∗
t } ∪

∪{j∗(qα,k∗ ) : (α, k) ∈ St}

has a lower bound, a contradiction. From the above it follows that there

exists q̃it ∈ A such that the set

{q̃i′
tξ,i′

: i′ < i} ∪ {q̃it} ∪ {q̃ktζ,k : i < k < ν} ∪ {j∗(r(k)) : k < ν} ∪

∪{j∗(qα,k∗ ) : α ∈ λ, k < ν}

is centered, and we denote the corresponding t by tξ,i. This finishes our

construction of tξ,i’s satisfying conditions (i)-(iii).

For every i < ν we denote by q̃i the condition q̃i
t
o.t.(wi

λ
∪{j(λ++)}), i ∈ j∗(Pλ++).

From the above it follows that

rkiλ(t
o.t .(wi

λ∪{j(λ
++)}), i) = j(λ++) and tξ,i = to.t .(w

i
λ∪{j(λ

++)}), i

for all ξ > o.t .(wiλ ∪ {j(λ++)}). Condition (iii) implies that the set {q̃i :
i < ν} ∪ {j∗(r(i)) : i < ν} is centered.

Next, let us show that for every open dense subset D̃ of j∗(Pλ++) which

is an element of M∗ there exists i < ν such that q̃i
tξ,i

∈ D̃. In the same way

as in the proof of Theorem 2.15 we can find a sequence D̄′ = 〈Dα : α < λ〉
of open dense subsets of Pλ++ such that j∗(D̄′)(λ) ⊂ D̃. Notice that the set

{r(p, D̄′) : p ∈ Pλ++} is dense in Pλ++ , and hence there exists p ∈ Pλ++ such

that r(p, D̄′) ∈ g. Let i < ν be such that 〈p, D̄′〉 = 〈pi, D̄i〉. Then

q̃i = q̃i
t
o.t.(wi

λ
∪{j(λ++)}), i ∈ j∗(D̄i)(λ) ⊂ D̃

by Definition 3.5(4) and item (i).

Thus the set h := {q̃ ∈ j∗(Pλ++) : ∃i < ν (q̃i ≤ q̃)} ∈ V [G ∗ g] is an

upwards closed centered subset of j∗(Pλ++) meeting each open dense subset

of j∗(Pλ++) which are elements of M∗. Therefore h is j∗(Pλ++)-generic over

M∗, see, e.g., [16, Ch.VII, Lemma 7.4]. In addition, j∗(r(i)) is compatible

with every element of h for every i < ν, and hence {j∗(r(i)) : i < ν} ⊂ h.

Let us note that for every sequence D̄ = 〈Dα : α < λ〉 of open dense

subsets of Pλ++ the set O := {r(p, D̄) : p ∈ Pλ++} is dense in Pλ++ and

g ∩O ⊂ {r(i) : i < ν}. Therefore j∗[g ∩O] ⊂ h, and hence j∗[g] ⊂ h, which

finishes our proof. �

If we use preparation relative to a fast function (see [11]) instead of the

poset Rλ, we can prove the following theorem by almost literal repetition

of the proof of Theorem 3.8.
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Theorem 3.10. Suppose GCH holds, θ is a regular cardinal, and j : V →
M is an ultrapower embedding via a (λ, θ)-extender in V such that H(θ) of

V is contained in M . Then there exists a λ-c.c. poset R of size λ such that

for every normal filter U on λ contained in the measure derived from j, and

for every λ-support iteration Q̄ = 〈Pξ,Q˜ ξ : ξ < γ〉 ∈ V R such that

(a) γ ≤ θ, and

(b) 
R∗Pξ
“Q˜ ξ is a < λ-directed closed reasonably Be-bounding over U , µ̄

poset of size < max{λ++, θ} all of whose finite subsets have a greatest

lower bound” for all ξ < γ,

the embedding j can be extended to an elementary embedding j∗∗ : V R∗Pγ →
M j(R∗Pγ) so that H(θ) of V R∗Pγ and H(θ) ofM j(R∗Pγ) coincide. In particular,

λ remains measurable in V R∗Pγ .

Corollary 3.11. Suppose GCH holds and λ is a strong cardinal. Then there

exists a λ-c.c. poset R of size λ such that for every λ-support iteration Q̄ =

〈Pξ,Q˜ ξ : ξ < γ〉 ∈ V R, if 
R∗Pξ
“Q˜ ξ is a < λ directed closed reasonably Be-

bounding over U , µ̄ all of whose finite subsets have a greatest lower bound”

for all ξ < γ, then λ remains strong in V R∗Pγ .

4. Applications

To the best knowledge of the authors, all of the known results stating

that a certain degree of strongness is preserved by iterations of tree forcings

follow from one of the Theorems 2.15, 2.22, 3.8, or 3.10.

Another application of Theorem 3.8 uses the following poset from [20].

Definition 4.1. 1. A set E ⊂ [λ]λ will be called a normal collection, if

• E is closed under diagonal intersections of sequences of length λ of

its elements;

• If E ′ ∈ [E]<λ, then
⋂
E ′ ∈ E;

• If A ∈ E and |B| < λ, then A \B ∈ E.

2. Let Ē = 〈Eν : ν ∈ λ<λ〉 be a system of < λ-complete non-principal

filters on λ and let E ⊂ [λ]λ be a normal collection. We define a forcing

notion QĒ
E as follows.

A condition p in QĒ
E is a complete λ-tree p ⊂ λ<λ (see Definition 2.1)

such that

• for every ν ∈ λ<λ, either |succp(ν)| = 1 or succp(ν) ∈ Eν ;

• for every ν̄ ∈ [p] the set {ξ < λ : succp(ν̄ � ξ) ∈ Eν̄�ξ} is in E, where

[p] is the set of all maximal branches through p. 2
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For a binary relation R on λ and x, y ∈ λλ we denote by [x R y] the

set {ξ < λ : x(ξ)Ry(ξ)}. Using this notation, for a family U ⊂ [λ]λ the

notation x ≤U y means that [x ≤ y] ∈ U . Let µ̄ be such as in section 3.

The following lemma is analogous to [20, Prop. 1.12].

Lemma 4.2. Suppose that U is a normal filter on λ, S ∈ U , Ē, E are such

as in Definition 4.1, and λ \ S ∈ E. Then

(1) QĒ
E is reasonably Be-bounding over U , µ̄;

(2) If E = Dλ � (λ \ S) := {(λ \ S) ∩ C : C ∈ Dλ}, then QĒ
E adds a

function ` ∈ λλ such that x ≤Ẽ ` for all x ∈ λλ ∩ V , where Ẽ is the

closure of E in V QĒ
E under diagonal intersections of sequences of its

elements of length λ.10

Proof. 1. Let p ∈ QĒ
E. We are going to describe a strategy st for Generic

in

GBe
U ,µ̄(p,QĒ

E). In the course of the play, Generic constructs an auxiliary

sequence 〈Tξ : ξ < λ〉 so that if 〈Iξ, 〈pξt , q
ξ
t : t ∈ Iξ〉 : ξ < λ〉 is the sequence

constructed by two players in the course of the play, then the following

conditions are satisfied:

(i) Tξ ∈ QĒ
E and if ξ < ζ < λ then p = T0 ⊃ Tξ ⊃ Tζ and Tζ ∩ λξ =

Tξ ∩ λξ;
(ii) If ξ < λ is limit, then Tξ =

⋂
ζ<ξ Tζ ;

(iii) If ξ ∈ S, then

– Iξ = Tξ ∩ ξξ and pξt = (Tξ)t for t ∈ Iξ,

– Tξ+1 =
⋃
{qξt : t ∈ Iξ} ∪

⋃
{(Tξ)ν : ν ∈ (Tξ ∩ λξ) \ ξξ};

(iv) If ξ 6∈ S, then Iξ = ∅ and Tξ+1 = Tξ.

Conditions (i)-(iv) fully describe the strategy st. To show that it is a

winning strategy of Generic consider a play 〈Iξ, 〈pξt , q
ξ
t : t ∈ Iξ〉 : ξ < λ〉

in which Generic uses st. Let G be a QĒ
E-generic containing p∗ =

⋂
ξ<λ Tξ

and xG ∈ λλ be the union of all the stems of elements of G. (The fact that

p∗ ∈ QĒ
E can be proved in the same way as in [20, Prop. 1.12(2)].) Then

CG := {ξ ∈ λ : xG � ξ ∈ ξξ} ∈ V [G] is a club. Let us fix ξ ∈ CG ∩ S. It

follows that xG � ξ ∈ Tξ, and hence (Tξ+1)xG�ξ = qξxG�ξ ∈ G. Therefore

{ξ : ∃t ∈ Iξ (q
ξ
t ∈ G)} = {ξ : ∃t ∈ Iξ (xG ∈ [qξt ])} ⊃ S ∩ CG ∈ UQĒ

E ,

which means that p∗ 
 {ξ : ∃t ∈ Iξ (q
ξ
t ∈ ΓQĒ

E
)} ∈ UQĒ

E .

The verification of Definition 3.1(1) is straightforward.

2. Let G and xG be such as before and x ∈ λλ ∩ V . We claim that

x ≤
E

QĒ
E
xG. Let Dx be the subset of QĒ

E consisting of those p such that for

10In other words, Ẽ = EQĒ
E .
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every splitting node t ∈ p∩λξ and every extension s of t we have s(ξ) > x(ξ).

It is clear thatDx is a dense subset ofQĒ
E, and hence there exists px ∈ G∩Dx,

which yields xG ∈ [px]. Set A = {ξ ∈ λ : |succpx(xG � ξ)| > 1} ∈ V [G].

Since E = Dλ � (λ \ S), we have that A ⊂ (λ \ S) and A contains all its

limit points which are elements of λ \ S. Indeed, let β ∈ λ \ S be a limit

point of A, f ∈ [px] ∩ V be such that f � β = xG � β, and C ∈ Dλ ∩ V be

such that Af := {ξ ∈ λ : |succpx(f � ξ)| > 1} = (λ \ S) ∩ C. Since β is a

limit point of A, β ∈ λ \ S, and A ∩ β = Af ∩ β = ((λ \ S) ∩ C) ∩ β, we
conclude that β ∈ C, and hence β ∈ Af , which means that f � β splits in

px. But f � β = xG � β, hence xG � β splits in px, and consequently β ∈ A.

It follows from the above that A can be written in the form C1 ∩ (λ \ S)
for some club C1 ∈ V [G] and hence A ∈ EQĒ

E . It suffices to observe that

xG(ξ) > x(ξ) for all ξ ∈ A by the definition of Dx. �

A standard argument shows that if Q̄ = 〈Pξ,Q˜ ξ : ξ < γ〉 is a λ-support
iteration such that Pγ is Be(Q̄)-bounding over some U , µ̄, then Pγ is λ-proper
(see the paragraph before Theorem 2.14 for the definition of λ-properness).

Given a filter F on λ, we denote by dF the smallest size of a subset of

λλ which is dominating with respect to ≤F .

The following corollary is analogous to [20, Cor. 4.5] and [17, Cor. 5.1].

Corollary 4.3. Suppose GCH holds and j : V →M is an (λ, λ++)-extender

ultrapower such that H(λ++)V = H(λ++)M . Let U be the measure derived

from j. Then there exists a λ++-c.c. λ-proper poset P of size λ++ such that

(1) j can be extended to an elementary embedding j∗ : V P →M j(P);

(2) If W ∈ V P is a normal filter on λ such that U ⊂ W, then dW = λ+;

(3) If W ∈ V P is a normal filter on λ such that U 6⊂ W, then dW = λ++.

Proof. Let us write the collection of all elements of U with stationary com-

plement in the form {Ui : i < λ+} and fix a map ψ : λ++ → λ+ such

that ψ−1(i) is unbounded in λ++ for all i ∈ λ+. Let also R be such as in

Theorem 3.10. In V R consider a λ-support iteration Q̄ = 〈Pξ,Q˜ ξ : ξ < λ++〉
such that Q˜ ξ is a Pξ-name for the poset QĒξ

Eξ defined as follows: For ν ∈ λ<λ

the filter Eξ
ν is generated by Dλ, and E

ξ is the family Dλ � (λ \Uψ(ξ)) (both
defined in V R∗Pξ). We claim that P = R ∗ Pλ++ is as required.

First of all, Pλ++ is Be(Q̄)-bounding over U , µ̄ by Lemma 4.2 and Theo-

rem 3.6. Therefore j can be lifted to the forcing extension by P by Theo-

rem 3.8. In addition, it is a direct consequence of the Be(Q̄)-boundedness

over U , µ̄ that V ∩λλ is dominating in V P ∩λλ with respect to the preorder
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≤UP (recall that R has λ-c.c.), and hence λ+ ≤ dW ≤ dUP = λ+ for every

normal filter W ∈ V P extending U .
Now suppose that W ∈ V P is a normal filter on λ which does not extend

U . Then there exists i < λ+ such that λ\Ui ∈ W , and hence by Lemma 4.2

for every ξ ∈ ψ−1(i) the poset Qξ adds an element of λλ which dominates all

elements of λλ ∩V R∗Pξ with respect to ≤W (notice that Dλ � (λ \Ui) ⊂ W).

This proves item (3). �

Remark 4.4. We use the notation of Corollary 4.3 here. The first item

implies that there exists a normal measure W ∈ V P on λ such that U ⊂ W ,

and hence dW = λ+ by item (2). However, we do not know whether in V P

there exists a normal measure on λ which does not contain U . 2.

Corollary 4.5. Suppose GCH holds and λ is a measurable cardinal. Let U
be a normal measure on λ. Then there exists a λ-proper poset P of size λ+

such that

(1) jU can be extended to an elementary embedding j∗ : V P →M j(P);

(2) If W ∈ V P is a normal measure on λ such that U 6⊂ W, then λλ∩V is

bounded in λλ∩V P with respect to ≤W . In particular, if U 6= U1 ∈ V

is a normal measure on λ, then jU1 cannot be lifted to an elementary

embedding from V P to some M ′ ⊃M .

Proof. Let us write the collection of all elements of U with stationary com-

plement in the form {Ui : i < λ+}. Let also R be such as in Theorem 3.10.

In V R consider a λ-support iteration Q̄ = 〈Pi,Q˜ i : i < λ+〉 such that Q˜ i is
a Pi-name for the poset QĒi

Ei defined as follows: For ν ∈ λ<λ the filter Ei
ν is

generated by Dλ, and E
i is the family Dλ � (λ \Ui) (both defined in V R∗Pi).

We claim that P = R ∗ Pλ+ is as required.

First of all, Pλ+ is Be(Q̄)-bounding over U , µ̄ by Lemma 4.2 and Theo-

rem 3.6, and |P| = |Pλ+ | = λ+. Therefore jU can be lifted to the forcing

extension by P by Theorem 3.10 (in this case θ = λ+).

Now suppose that W ∈ V P is a normal filter on λ which does not extend

U . Then there exists i < λ+ such that λ\Ui ∈ W , and hence by Lemma 4.2

the posetQi adds an element of λλ which dominates all elements of λλ∩V R∗Pi

with respect to ≤W (notice that Dλ � (λ \ Ui) ⊂ W).

Let U1 6= U be a normal measure on λ. Suppose, contrary to our claim,

that jU1 can be extended to an elementary embedding j′ : V P → M ′ ⊃ M

and denote by W the measure on λ derived from j′. It follows from the

above that there exists a function x ∈ λλ ∩ V P such that y ≤W x for all

y ∈ λλ ∩ V . Therefore j′(x)(λ) > j′(y)(λ) = jU1(y)(λ) for all y ∈ λλ ∩ V ,
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and hence j′(x)(λ) ≥ jU1(λ). On the other hand, letting λ̄ be the constant

sequence of length λ all of whose entries are λ, we have jU1(λ) = j′(λ) =

j′(λ̄)(λ) > j′(x)(λ), which leads to a contradiction. �

5. Concluding remarks and open questions

Let κ be an inaccessible cardinal, A be a stationary subset of κ containing

all successor ordinals, and D be any normal filter on κ containing A and all

clubs in κ. We refer the reader to [20, § 6] for the definition of reasonably

merry over (A,D) forcing notions.

Proposition 5.1. If Q has a good κ-fusion, then Q is reasonably merry

over (A,D).

Proof. Let us fix p ∈ Q and suppose that we have reached stage α of the

game

Gmaster
A,D (p,Q). Suppose also that we have already constructed aside a

decreasing fusion sequence 〈pξ : ξ < α〉 ∈ Qα. Let p′α =
∧
ξ<α pξ. If α is

limit, then Generic plays

Iα = {sˆh(α) : s ∈ S∗
α(p

′
α)} ∩ T (p′α)

and the collection {pα,t = (p′α)t : t ∈ Iα}, where S∗, T , and h are as in

Definition 2.1. Suppose that {qα,t : t ∈ Iα} is the reply of the second player.

Then using Claim 2.3(iii) we can find a condition pα such that pα ≤α p
′
α

and (pα)t ≤ qα,t for all t ∈ Iα ∩ T (pα).
If α is a successor, then Generic chooses Iα = ∅.
This finishes our definition of a strategy of Generic in the game

Gmaster
A,D (p,Q)

which we shall denote by Υ. Now we shall show that Υ is winning. Let us

fix a play 〈Iα, 〈pα,s, qα,s : s ∈ Iα〉 : α < κ〉 in which Generic uses Υ, and let

〈pα : α < κ〉 be the fusion sequence of elements of Q constructed by him

aside of the game

Gmaster
A,D (p,Q) as described above. Set q =

∧
α<κ pα.

Now we shall describe a winning strategy st for COM in the game

Gservant
A,D (q̄, q,Q). Informally speaking, the strategy st instructs COM to

mimic the proof of Claim 2.11 for all α ∈ A (in this case γ = 1 which

simplifies the matter). This way for every α ∈ A the player COM con-

structs a condition rα ∈ Q, σα ∈ κ<κ, and µα ∈ κ. More precisely, at stage

α + 1 ∈ A of the game

Gservant
A,D (q̄, q,Q) the player COM in the same way as

in the proof of Claim 2.11 constructs a condition rα+1 ∈ Q, σα+1 ∈ κ<κ,

and µα+1 ∈ κ such that

(i) If β ≤ α, then rα+1 ≤ rβ and σβ ( σα+1.

(ii) dom(σα+1) = µα+1 + 1 and σα+1(µα+1) = h(µα+1).
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(iii) µα+1 ∈
⋂
β≤αC(rβ), rα+1 = (rα+1)σα+1 , and

σα+1 � µα+1 ∈
[⋂

β≤α S
∗
µα+1

(rβ)
]
∩ S∗

µα+1
(q),

and sets Aα+1 = C(q) \ µα+1.

If α ∈ A is limit, then the player COM sets r′δ =
∧
ξ<α rξ, µα = supξ<α µξ

and σα = (
⋃
ξ<α σξ)ˆh(µα). In the same way as in the proof of Claim 2.11

we can show that σα ∈ T (r′α) and

σα � µα ∈
[ ⋂
ξ<α

S∗
µα(rξ)

]
∩ S(r′α) ∩ S∗

µα(q).

This allows COM to choose rα = (r′α)σα and Aα = C(q) \ µα.
Now suppose that α is a limit ordinal in A and

α ∈
⋂
ξ<α

Aβ =
⋂

β∈α∩A

(C(q) \ µβ) ∩
⋂

β∈α\A

Aβ.

Then µβ+1 < α for all β < α, and hence µα = supβ<α µβ+1 = α. Therefore

σα � α ∈ S∗
α(q) = S∗

α(pα) and α ∈ C(q), and consequently

σα = (σα � α)ˆh(α) ∈ T (q) ⊂ T (pα) ⊂ T (p′α).

It follows form the above that σα ∈ Iα and

rα = (r′α)σα ≤ (q)σα ≤ (pα)σα ≤ qα,σα ,

which completes our proof. �

Although Proposition 5.1 combined with [20, Theorem 6.4] imply Theo-

rem 2.9, we have presented a complete proof of Theorem 2.9 because some

of its parts are used in the proof of Theorem 2.15, see, e.g., Claim 2.19.

Let U be a normal filter on κ. By [20, Observation 6.6] every reasonably

B-bounding over U forcing notion is reasonably merry over (S,U) for any
S ∈ U . In light of Proposition 5.1 and Theorems 3.8 and 2.15 it is natural

to ask the following

Question 5.2. Is there an analogue of Theorem 3.8 for (a suitably defined

subclass of) posets which are reasonably merry over (S,U)?

In case of a positive answer one could probably get a common general-

ization of Theorems 3.8 and 2.15.

We also do not know whether Theorem 3.8 is true for all reasonably B-

bounding over U forcing notions provided that U is a subset of the normal

measure derived from the embedding j. Even the following is open.

Question 5.3. Suppose that κ is a strong cardinal and Q is < κ-directed

closed reasonably A-bounding poset of size |Q| ≤ κ+. Does κ remain mea-

surable in V K∗Q for some preparatory forcing K?
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