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Higher-order metaphysics uses the formal languages of higher-order logic to
formulate metaphysical views and arguments. This chapter provides an in-
troduction to the field and an overview of this volume. The chapter is divided
into five sections, which correspond to the five parts of the volume. Section 1
motivates the use of higher-order languages in metaphysics with a number of
examples, before discussing the interpretation of such languages and their re-
lationship to natural languages. Section 2 is concerned with questions which
arise from the logical resources of higher-order languages alone, either about
what kind of higher-order language to use, or about matters which can be
expressed in purely logical terms. Section 3 considers applications of higher-
order languages to particular topics of metaphysics. Section 4 discusses the
history of the subject. Section 5 addresses the controversy concerning alter-
native first-order approaches. Along the way, we situate the other contribu-
tions to this volume within these debates. We focus especially on sections 1
and 2; these sections introduce the core ideas of higher-order metaphysics
which provide a basis for engaging with current work in higher-order meta-
physics, such as the other chapters of this volume.

1 Motivation and Meaning

As elsewhere in philosophy, logical formalisms are useful in metaphysics.
They provide precise and systematic tools with which to formulate and eval-
uate theses, theories, and arguments. In some cases, this may be done just
in propositional logic, using only truth-functional connectives, with propo-
sitional letters standing for particular claims. Often, first-order predicate
logic is used, with predicate symbols for particular relations of metaphysical
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interest, such as the parthood relation of mereology, as well as quantifiers
ranging over individuals that can be said to stand in those relations. Part I
of this volume, to which this chapter belongs, motivates and introduces the
expansion of these formal tools of metaphysics to include higher-order logics.
We begin (section 1.1) with some motivating examples. We then turn (sec-
tion 1.2) to the interpretation of these further resources and their relationship
to ordinary talk, such as talk about properties and propositions.

1.1 Motivation

Not every interesting argument in metaphysics can be captured in a natural
way in the standard frameworks of propositional and predicate logic. The
most obvious cases may arise from modal notions, which are ubiquitous in
metaphysics. To formalize talk about metaphysical necessity, for example,
these languages are typically expanded by a non-truth-functional operator
⇤, with a formula of the form ⇤� used to formalize the claim that it is
metaphysically necessary that �. In such a modal expansion, various specific
modal arguments can be formulated, and the formal tools of modal logic can
be used to evaluate which general modal principles underwrite a given argu-
ment. Such modal principles then become questions of modal metaphysics
themselves. An example is the following principle, according to which what
is possible is necessarily possible:

(5) ⌃p ! ⇤⌃p

For an example of the metaphysical controversy surrounding this principle,
(Salmon, 1981) presents a putative counterexample to it.

Propositional and predicate logics can also be expanded by other connec-
tives capturing notions used in metaphysics. Prominent examples include the
counterfactual conditional, temporal operators, and operators for relations of
metaphysical ground. Many interesting metaphysical questions can be for-
malized using these resources. But even with non-truth-functional operators,
there are limitations to propositional and first-order logics.

Example 1. One important limitation has to do with existential generality.
The question whether a principle like (5) is correct for metaphysical necessity
is implicitly universal, since p may be taken to stand for any claim. But
it is sometimes important to generalize existentially as well as universally.
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For example, consider the notion of (strict partial) ground of (Fine, 2012).
This can be formalized using a binary sentential connective �, with p � q
expressing that p grounds q. It is natural to ask, as Gideon Rosen (2010)
does, whether every truth is grounded in some truth. There is no obvious
way of formalizing this unless propositional letters like p can be treated as
variables and bound by universal and existential quantifiers. If we can do so,
then the thesis that every truth is grounded in some truth can be formalized
as:

(1a) 8p(p ! 9q(q ^ (q � p)))

Similarly, a natural question concerning necessity is whether there is a truth
which strictly implies every truth, thereby encoding every detail of actuality.
Kit Fine (1970) and David Kaplan (1970) formalize this as follows, using
quantifiers binding propositional variables:

(1b) 9p(p ^ 8q(q ! ⇤(p ! q)))

A corresponding principle in the setting of temporal logic is discussed by
Arthur Prior (1967, p. 79). The necessitation of (1b) is important for the view
that possible worlds are propositions, since it helps to ensure that each world
corresponds to some proposition. See (Fritz, forthcoming a) for detailed
development of this view.

Example 2. The need for explicit quantification extends to other types of
expressions. In first-order predicate logic, uninterpreted predicate constants
can be used to formulate general principles which hold for all properties. But
there is no way to capture analogous claims of existential generality, nor to
embed claims of universal generality. Another limitation is that every predi-
cate takes only singular terms as arguments; in particular, every occurrence
of an identity predicate must be flanked by singular terms.

To illustrate these limitations, consider the idea of singular propositions,
i.e. of propositions that are singularly about a specific individual. An attractive—
although controversial—principle is that in general, the proposition that Fc
is about c. The most natural way of formalizing this claim employs a binary
expression A for aboutness which can take both the sentence Fc and the
singular term c as arguments, as in:

(2a) A(Fc, c)
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Note that because Fc is a sentence and c is a singular term, the aboutness
expression A is neither a binary sentential operator nor an ordinary binary
relational predicate.

In (2a), universal generality can again be achieved implicitly, by letting
F stand for any property and c for any individual. The truth of (2a) on
this implicitly universal interpretation requires that, for every individual and
property, the proposition attributing the property to the individual is about
the individual.

Other natural principles to consider in this context require explicit ex-
istential quantification. Consider the stronger claim that a proposition is
about an individual just in case the proposition attributes some property to
the individual. To see how this might be formalized, begin with the claim
that p attributes F to c. The most natural formalization of that claim em-
ploys an identity predicate taking sentences as arguments: p = Fc. To say
that p attributes some property to c, we then replace the predicate F with
a variable Y bound by an existential quantifier: 9Y (p = Y c). The target
thesis concerning what it takes for a proposition to be about an individual
can then be formalized as:

(2b) 8p8x(A(p, x) $ 9Y (p = Y x))

A metaphysician might naturally intend (2b) as more than a mere material or
even necessary equivalence between p being about x, and p attributing some
property to x. On this reading, (2b) is intended to identify a proposition
being about an individual with the proposition attributing some property
to the individual. To make this metaphysical analysis of aboutness explicit,
we can replace the material biconditional in (2b) with our identity predicate
that takes sentences as arguments:

(2c) 8p8x(A(p, x) = 9Y (p = Y x))

Example 3. Apparent counterexamples to the simple theory of aboutness
(2b) motivate the introduction of further resources. For example, the propo-
sition that Rab is about a because it attributes the relation R to a and b, but
it doesn’t seem to attribute any monadic property to a. Similarly, the propo-
sition that Fa _ Gb is about a because it disjoins two propositions Fa and
Gb, one of which is about a; it also doesn’t seem to attribute any monadic
property to a.
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One natural response to these apparent counterexamples is to retain the
simple theory of aboutness and deny that the propositions in question at-
tribute no monadic property to a. Since we don’t want to deny that the
proposition that Rab attributes relation R to a and b, proponents of this
view will reject the implicit assumption that each proposition has a unique
decomposition into properties and attributions thereof to individuals. For
example, the proposition that Rab may both attribute relation R to a and
b, and also attribute to a the monadic property of bearing R to b. Similarly,
the proposition that Fa_Gb may both disjoin the propositions that Fa and
that Gb, and also attribute to a the monadic property of being F or Gb.

To formalize these ideas, we need a way to take sentences such as Rab and
form new expressions for properties from them. We can do so by introducing
a new variable-binder �, with the resulting �-terms being predicates whose
argument positions correspond to the variables bound by �. For example,
�x.Rxb is a predicate with one argument position corresponding to x; this
formalizes talk of the property of bearing R to b. Similarly, �x.Fx _ Gb is
a predicate with one argument position corresponding to x; this formalizes
talk of the property of being an x such that Fx or Gb.

We can now use our identity predicate which takes sentences as arguments
to say explicitly that Rab and Fa _ Gb have the decompositions mentioned
above:

(3a) Rab = (�x.Rxb)a

(3b) Fa _Gb = (�x.Fx _Gb)a

By existential generalization into predicate position from (3a) and (3b), we
can infer that each of the propositions that Rab and that Fa_Gb attributes
some monadic property to a:

(3c) 9Y (Rab = Y a)

(3d) 9Y ((Fa _Gb) = Y a)

Given (3c) and (3d), the simple theory of aboutness (2b) entails that Rab
and Fa _Gb are both about a, as desired:

(3e) A(Rab, a)

(3f) A(Fa _Gb, a)
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In this way, predicate abstraction using � allows us to precisely formulate
metaphysical views that respond to the apparent counterexamples to the
simple theory of aboutness (2b). To do so, it is essential that �-terms can be
used to instantiate quantifiers binding variables in predicate position.

Example 4. The need for explicit quantification extends also to sentential
connectives. Consider Saul Kripke’s (1980 [1972], p. 99) suggestion that
metaphysical necessity is necessity in the highest degree. This requires there
to be a highest degree of necessity, which is not a trivial matter. For example,
Justin Clarke-Doane (2019) and Agust́ın Rayo (2020; this volume, ch. 17)
both argue that the possibilities are indefinitely extensible. So, how can
we formalize the disputed Kripkean claim that there is a highest degree of
necessity?

First, we need to be able to distinguish necessities from other notions,
such as negation. Given that necessities are expressed by unary sentential
operators (e.g. the ⇤ of metaphysical necessity), expressing this distinction
requires a unary constant N taking such operators as arguments. We can
now formalize the true claim that metaphysical necessity is a necessity as
N⇤, and the false claim that negation is a form of necessity as N¬.

Next, we need to be able to say that one necessity is of at least as high
degree as another. For this, we need a binary connective v taking unary
sentential operators as arguments. The claim that metaphysical necessity is
of at least as high degree as some other necessity (expressed by ⇤0) is then
formalized as:

(4a) ⇤ v ⇤0

Finally, we need to be able to generalize over necessities. For this, we
need to be able to replace unary sentential operators with variables m and n
that can be bound by quantifiers, including an existential quantifier. Given
this apparatus, the Kripkean claim that there is a highest degree of necessity
can be formalized as:

(4b) 9m(Nm ^ 8n(Nn ! m v n))

We can now say what it is to be a necessity of highest degree, and also
that there is such a necessity. It would be nice to be more informative still, to
say what necessity occupies this role. Ideally, we would explicitly define the
necessity in question. One natural suggestion motivates a further extension

6



of predicate abstraction, allowing � to bind non-singular-term variables. It
also involves occurrence of �-terms as arguments to suitable predicates.

Suppose we have a theory of propositions according to which there is a
unique weakest proposition >, i.e. a unique proposition which is entailed by
every proposition. For example, standard possible worlds theories of propo-
sitions have this feature: according to them, propositions true in the same
possible worlds are identical; > is then the proposition true in all possible
worlds. Assuming there is such a weakest proposition >, one natural idea is
that only > is necessary in the highest degree. This suggests the hypothesis,
explored by Andrew Bacon (2018), that necessity in the highest degree is
being >. To formalize this hypothesis, we need to let � bind variables that
occupy the position of sentences so that we can formalize the property of
being > as (�p.p = >). We can now formalize the claim that this defined
operator is a highest degree of necessity thus:

(4e) N(�p.p = >) ^ 8n(Nn ! (�p.p = >) v n)

Whereas �-terms occurred as predicates in the previous example, this prin-
ciple uses �-terms as arguments to the predicates N and v.

1.2 Meaning

These examples show how metaphysical theorizing naturally employs tools
beyond the resources of standard propositional and predicate logic: First,
predicate-like expressions—including symbols for identity—that take as ar-
guments expressions that are not singular terms, such as sentences and sen-
tential operators. Second, variables that can replace not merely singular
terms but also sentences, predicates, and sentential operators. Third, quan-
tifiers that can bind these variables to enable embedding of quantified claims
inside the scope of other operators. Fourth, a device of predicate abstrac-
tion that can bind variables—including non-singular-term variables—to form
complex predicates. Fifth, the ability for the resulting complex predicates to
instantiate quantifiers and occur as arguments to other predicates.

Variables that can replace expressions other than singular terms are higher-
order variables. Quantification and abstraction on higher-order variables are
higher-order quantification and abstraction. Predicate-like expressions that
take as arguments expressions that are not singular terms are higher-order
predicates. A higher-order language is any language that provides any of
these higher-order resources. Our opening examples motivate the use of
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higher-order languages within metaphysics. This is the research program of
higher-order metaphysics.

What do higher-order quantifiers and �-terms mean? In the following, we
focus primarily on quantification rather than abstraction, both to simplify
exposition and because quantification has been the primary focus of most
published discussion of these questions. However, we intend our remarks to
apply to abstraction too.

Above, higher-order quantifiers were introduced as natural ways of for-
malizing talk of propositions, properties, relations, modalities, and similar
entities. (To simplify exposition, we henceforth count relations, modalities,
and all other similar entities as properties.) A natural first hypothesis is
therefore that the intended interpretation of higher-order quantifiers is de-
termined by the meaning of natural language talk of properties and propo-
sitions. However, as Bacon notes in chapter 2, on closer inspection there
appear to be some important di↵erences between natural language talk of
properties and propositions, and the corresponding higher-order statements.
First, talk about properties gives rise to questions that don’t themselves have
higher-order counterparts. Examples include questions about the locations
and abstractness of properties, as emphasized by (Jones, 2018). Secondly,
claims about properties can have di↵erent truth-values from the correspond-
ing higher-order statements. One (but not the only) kind of example comes
from the paradoxes. There is plausibly no property instantiated by all and
only the properties which do not instantiate themselves; see section 5. As
a result, some meaningful conditions in the language of properties do not
determine a coextensive property, such as ‘property which does not instan-
tiate itself’. By contrast, higher-order logics often consistently include an
unrestricted principle of comprehension, according to which the following
existential claim is true for every formula � in which y but not X may be
free:

9X8y(Xy $ �)

Intuitively, this is a higher-order formalization of the claim that � determines
a coextensive property. A witness for it is given by �y.�.

There are two natural concerns one might have about dissociating higher-
order quantifiers from talk of properties, propositions and so on. Firstly, if the
meaning of higher-order quantifiers comes apart from natural language talk
of properties, propositions and so on, one might be concerned that higher-
order metaphysics changes the subject (Liggins, 2021, Hofweber, 2022). One
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might say: pre-existing metaphysical questions are about properties, propo-
sitions and so on; the analogous higher-order questions—when there are such
questions, at least—are about a di↵erent, higher-order subject matter. One
may thus conclude that the higher-order questions are simply irrelevant to
the original questions. Relatedly, there is a mismatch in our initial examples
(section 1.1) between our motivating informal talk about properties, propo-
sitions and so on, and our higher-order formalizations thereof. However, a
change of subject matter sometimes yields an improvement in subject mat-
ter. The questions and resources that animate past theorizing need not be
those that animate future theorizing. One aspect of an improved under-
standing is often a better grasp of what questions to ask, and consequent re-
placement of old questions with new. We find this eminently plausible in the
present case. Indeed, in chapter 2, Bacon motivates higher-order metaphysics
by arguing that talk of properties and propositions introduces metaphysical
“noise” not associated with the corresponding higher-order questions, with
the higher-order questions being “closer to the metaphysical action” than the
corresponding questions about properties.

Secondly, if the meaning of higher-order quantifiers is not given in terms of
translations into natural language talk of properties, propositions and so on,
then what does determine their intended interpretation? One might consider
ways of translating higher-order quantification into natural language without
invoking talk of properties and propositions. For example, the second-order
existential quantification 9X(Xa) might be translated as the claim that a is
somehow. Proposals along these lines can be found in (Prior, 1971, chapter 3)
and (Rayo and Yablo, 2001); see also (Sainsbury, 2018, ch. 2). Moreover,
Jeremy Goodman argues in chapter 3 that higher-order abstraction can be
at least partially understood in terms of our pre-existing practice of defini-
tion. Nevertheless, the resources available for idiomatic English higher-order
quantification and abstraction are limited. They do not appear to include
the full variety of higher-order quantifiers and �-terms present in the for-
mal languages most commonly deployed in higher-order metaphysics. (We
introduce those languages in more detail shortly, in section 2.1.)

As a consequence, an influential view within higher-order metaphysics
denies that translatability into any other language is necessary for the mean-
ingfulness of higher-order quantification and abstraction. Following Timothy
Williamson (2003, 2013), higher-order quantifiers are taken to have intended
interpretations that make formulas containing them meaningful in the same
way in which English sentences are meaningful (assuming interpretations for
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the rest of the formula’s vocabulary). This primitivist view about higher-
order quantifiers regards them as new theoretical vocabulary expressing new
sui generis kinds of quantification. Like other theoretical notions, the best
way to understand them is not by translating them into some antecedently
understood idiom, but by immersion into the practice of using them. This
does not mean that nothing can be said about their metasemantics; we return
to this point in section 3 in connection with chapter 9 by Harvey Lederman.
A primitivist view of higher-order quantification is developed by both Bacon
in chapter 2 and Goodman in chapter 3; see also (Fritz, forthcoming a), as
well as (Clarke-Doane and McCarthy, forthcoming) for a skeptical perspec-
tive.

According to primitivism about higher-order quantification, higher-order
languages provide a novel tool for theorizing about reality. The meaning-
fulness of these languages is independent of whether their claims can be
re-expressed in natural or first-order languages. We want to mention three
points in support of this view.

Firstly, our motivating examples show how naturally higher-order languages
arise within metaphysics. Yet various limitative results seem to show
that the intended interpretations operative in these metaphysical ap-
plications cannot be understood in first-order terms. Bacon argues for
this in chapter 2; see also (Williamson, 2003).

Secondly, primitivists about higher-order quantifiers treat them in the same
way as others treat novel theoretical notions like ground, essence, on-
tological dependence, naturalness, structure, truth-making, exact ver-
ification, metaphysical necessity, tropes, and universals. We see no
obvious reason to regard expansion of our metaphysical toolkit with
primitive higher-order resources as any more dubious than these other
expansions.

Thirdly, Goodman argues in chapter 3 that the meaningfulness of even first-
order languages does not depend on them being translatable into En-
glish. Rather, constructions like ‘for some x’ are better understood
as expanding English to enable pronunciation of independently un-
derstood formulas of first-order languages. The key conceptual leap
to primitively meaningful formal languages has arguably already been
made when metaphysicians theorize using first-order languages.
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An alternative formalization of talk of properties and propositions em-
ploys first-order logic. This approach is independently natural. The English
constructions ‘every property’ and ‘some proposition’ are plausibly under-
stood as restrictions of ‘everything’ and ‘something’ to properties and propo-
sitions respectively. The unrestricted English ‘something’ and ‘everything’
are naturally formalized by the unrestricted first-order quantifiers 9x and 8x
(although see Sainsbury, 2018, ch. 2 for a dissenting view). So the restricted
quantifiers ‘every property’ and ‘some proposition’ are naturally formalized
as explicitly restricted first-order quantifiers 8x(Fx ! . . . ) and 9x(Gx^. . . ),
where F and G formalize ‘is a property’ and ‘is a proposition’ respectively.

We return to such alternative first-order approaches in section 5. For now,
it su�ces to note that they can be combined with primitivism about higher-
order quantification. This opens up theoretical space for an attractive form of
nominalism. According to this view, there are no properties or propositions.
Yet there are true higher-order counterparts of many claims about proper-
ties and propositions. For example, although Peter does not instantiate any
properties, it is true that 9Y (Y Peter). And although Nick does not believe
any false proposition, it is true that 9p(¬p^ Nick believes that p). These
higher-order generalizations can be used for much of the metaphysical work
that has traditionally motivated metaphysicians to postulate properties and
propositions. One important question for this proposal is whether there is
any important metaphysical work for properties and propositions that both
cannot be done—or cannot be done as well—using higher-order quantifica-
tion, and yet really ought to be done; see (Liggins, 2021) for discussion.

Useful as they may be, higher-order languages are not without their limi-
tations. In particular, they are less straightforward to speak, read, and write
than natural languages. They are not designed for natural philosophical
conversation. It is therefore convenient to have a way of pronouncing higher-
order formulas in English. To this end, Goodman emphasizes in chapter 3
that we can introduce a new practice of using informal talk of properties
and propositions to pronounce higher-order formulas. For example, we can
pronounce the formula

(2b) 8p8x(A(p, x) $ 9Y (p = Y x))

from Example 2 thus: a proposition p is about an individual x if and only
if, for some property y, p is the proposition that x instantiates y. This
licenses a convenient and familiar way of speaking by providing it with a
new higher-order intended interpretation. We can pronounce 9Y (Y Peter)
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as ‘Peter instantiates some property’ and thereby speak truthfully, while
remaining compatible with the nominalist view that there are no properties
(understood in first-order terms as individuals) and so without introducing
the metaphysical noise that Bacon discusses. Talk about properties and
relations in the remainder of this chapter (and much of this volume) should
be understood in this nominalistically acceptable way.

Before moving on, we should say a word about model theories for higher-
order languages. Like other formal languages, higher-order languages are of-
ten provided with a model theory formulated in a (first-order) set-theoretic
metalanguage. Such a model theory is often called a “semantics”. However,
a model theory is merely a piece of set theory and so does not alone endow
any expression with meaning. Any attempted use of a model theory in a
metasemantic capacity needs supplementing with an account of how purely
set-theoretic constructions determine the intended interpretation of the rel-
evant formal language. Model theory therefore often plays a much more
mundane role in higher-order metaphysics: it provides an instrument for es-
tablishing facts about underivability: To show that a given formula can be
derived in some axiom system, it su�ces to exhibit a derivation of the for-
mula in the system. Showing that the formula cannot be so derived is more
di�cult. Using suitable models, this can be done by showing that on the
relevant class of models, the axioms are valid and the rules preserve validity,
and by constructing a model which fails to validate the relevant formula.

2 Pure Higher-Order Metaphysics

Part II of this volume concerns pure higher-order metaphysics. We under-
stand this as concerning questions which arise from the logical resources of
higher-order languages alone. These questions can be roughly divided into
two kinds. Firstly, questions about what kind of higher-order language to use
within metaphysics. Secondly, questions that can be expressed using higher-
order languages without employing non-logical constants; most prominently,
questions about identity and existence. We begin this section by introducing
the most prominent kinds of higher-order languages employed in higher-order
metaphysics (sections 2.1–2.4). We then turn to the kinds of questions that
can be asked in those languages without employing non-logical constants
(section 2.5).
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2.1 Type Theories

As already emphasized, a paradigmatic feature of the higher-order languages
best suited to metaphysics is the ability to bind (using quantifiers and �) vari-
ables which take the place of expressions other than singular terms. Starting
from the languages of propositional and first-order predicate logic, there are
two quick routes to such languages. The first starts from the language of
propositional logic and adds quantifiers binding propositional variables, i.e.
variables taking the position of sentences. Such quantifiers have been promi-
nently discussed in the context of modal logic; see (Fine, 1970) and (Fritz,
forthcoming b). The second starts from first-order predicate logic and adds
variables in the position of predicates and quantifiers binding them. This
is the language of second-order logic, which plays a prominent role in the
philosophy of mathematics; see (Shapiro, 1991). These two quick routes to
higher-order languages can be unified as follows. Propositional logic can be
seen as a fragment of first-order predicate logic by understanding proposi-
tional letters as nullary predicates, i.e. predicates with zero argument posi-
tions. Similarly, propositional quantifiers can be understood as the special
case of second-order quantifiers binding nullary variables, i.e. variables that
can replace predicates with zero argument positions.

Propositional quantifiers su�ce to regiment examples 1a and 1b from sec-
tion 1.1. The other examples require resources which go beyond the language
of second-order logic. They require predicates which take other predicates as
arguments and quantifiers binding variables in the position of these higher-
order predicates. We also saw the need in examples 3 and 4 for � abstraction.

Although our examples are specific, they illustrate a general way in which
higher-order resources may be introduced: for any kind of expressions, admit
(i) variables of that kind which can be bound by quantifiers and �, and (ii)
predicates which take expressions of that kind as arguments. This leads to a
recursive specification of kinds of expressions, otherwise known as syntactic
categories or types. Consequently, the resulting higher-order languages are
often called type theories. Although there is a rich variety of type theories,
most of those currently employed in higher-order metaphysics belong to one
of two groups: relational type theories and functional type theories. We now
introduce them in turn.

When discussing type theories, all expressions are often called terms. We
adopt this practice below, using ‘term’ and ‘expression’ interchangeably. We
also use ‘singular term’ to refer to first-order variables as well as constants.
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2.2 Relational Type Theories

Relational type theories typically specify the types using one basic type and
the following recursive clauses:

e is a type, the type of singular terms.

If ⌧1, . . . , ⌧n are types, then h⌧1, . . . , ⌧ni is a type, the type of relational
expressions taking as arguments n expressions of types ⌧1, . . . , ⌧n re-
spectively.

The second clause admits the case of n = 0, according to which there is a type
hi of nullary relation terms, which are identified with formulas. Alternatively,
the nullary case may be excluded and a second basic type t for formulas used
instead, as Goodman does in chapter 3.

A particular language in such a type theory is based on two things.
Firstly, a choice of constants and variables of each type. Secondly, a specifi-
cation of what counts as an expression of each type using the following two
recursive clauses:

(R1) Any constant or variable of a type is a term of that type.

(R2) If A is a term of a type h⌧1, . . . , ⌧ni and b1, . . . , bn are terms of types
⌧1, . . . , ⌧n, respectively, then Ab1 . . . bn is a term of type hi.

These formation rules can be illustrated using example 2a. c is a singular
term constant, hence of type e. F is a unary predicate constant taking a
singular term as argument, hence of type hei. From R2, it follows that Fc is
a term of type hi, i.e. a formula. Now, the aboutness predicate A takes two
arguments, a formula (type hi) and a singular term (type e). So A should be
treated as a constant of type hhi, ei. From R2 again, A can be applied to Fc
and c (in that order) to form a formula (type hi) AFcc. To aid readability,
parentheses and commas may be added to produce example 2a as a stylistic
variant: A(Fc, c).

No logical connectives have yet been introduced. There are two ways of
doing so. The first adds a new formation rule for each logical connective, as
in standard presentations of first-order logic. To illustrate, conjunction may
be introduced using the following rule:

If � and  are terms of type hi, then � ^  is a term of type hi.
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Similarly, we can introduce existential quantifiers binding variables of any
type, and an identity connective taking any terms of the same type as argu-
ments:

If x is a variable and � is a term of type hi, then 9x� is a term of type
hi.

If a and b are terms of the same type, then a = b is a term of type hi.

So, for variables p of type hi, Y of type hei, and x of type e respectively:
Y x is a formula, so p = Y x is a formula, whence 9Y (p = Y x) is a formula
too. With universal quantifiers and the other Boolean connectives introduced
analogously, and with A our non-logical aboutness constant of type hhi, ei,
example 2b becomes a (stylistic variant of a) well-formed formula:

(2b) 8p8x(A(p, x) $ 9Y (p = Y x))

Note that on this approach, the logical connectives are not assigned types,
and the formation rules governing them are not instances of the clause R2
that governs formation of formulas from typed expressions.

The alternative way of introducing logical connectives treats them as con-
stants of specific types. In the case of Boolean connectives, this is straightfor-
ward. For example, conjunction ^ takes two formulas as arguments to form
a formula, and so may be assigned type hhi, hii. By R2, this makes ^� a
formula for any formulas � and  . The more common infix notation � ^  
may then be considered a stylistic variant of ^� . Identity can be treated
similarly, by including a constant =⌧ of type h⌧, ⌧i for each type ⌧ .

In order to assign types to quantifiers, the variable-binder � for forming
complex predicates is commonly used. So let’s turn now to � before returning
to the quantifiers.

Following our motivating examples, if x is a variable of type e, �x.A(p, x)
should be a complex predicate of type hei we can use to formalize the property
of being an individual which p is about. In the examples so far, � has always
bound one variable to form a unary predicate. A more general treatment
permits formation of complex polyadic predicates by binding a sequence of
di↵erent variables potentially of di↵erent types:

(R3) Where n > 0, if x1, . . . , xn are pairwise distinct variables of types
⌧1, . . . , ⌧n respectively, and � is a term of type hi, then �x1 . . . xn.�
is a term of type h⌧1, . . . , ⌧ni.
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This allows us to formalize relations by binding more than one variable at
once. For example, let variables p, Y , and x have types hi, hei, and e respec-
tively. Then �pY.9x(p = Y x) is a predicate of type hhi, heii. It formalizes
the following relation between propositions p and properties Y : p attributes
Y to some individual.

Back to the quantifiers. We can use � to recast a quantifier binding a
variable of a type ⌧ as a constant of type hh⌧ii. The trick is to use � rather
than the quantifier to bind the variable, which delivers a complex predicate
of type h⌧i (since the variable has type ⌧). This complex predicate then
serves as argument to the quantifier, understood now as a predicate constant
of type hh⌧ii.

To illustrate, consider the claim 9xA(p, x) that p is about some individ-
ual. Since x here has type e, (R3) implies that �x.A(p, x) has type hei.
So a predicate 9e of type hheii can be applied to it to produce a formula
9e�x.A(p, x). Think of 9e as expressing the higher-order property of being
a property of individuals which is instantiated by some individual. We can
then read 9e�x.A(p, x) as attributing this property to the property of being
an individual which p is about, which amounts to saying that there is an
individual which p is about.

The usual treatment of quantifiers as variable-binders can now be consid-
ered an abbreviating notation, with 9x standing for 9⌧�x, where ⌧ is the type
of x (not the type of 9⌧ , which is hh⌧ii). Note that if quantifiers are treated
as typed constants in this way, a separate quantifier is needed for each type
of quantifiable variable: a quantifier constant of type hh⌧ii corresponds to
a quantifier binding variables of type ⌧ . Similarly, the above treatment of
identity as typed requires, for each type ⌧ , a di↵erent identity predicate =⌧

of type h⌧, ⌧i. In this way, the quantifiers too can be assigned types. The
construction of a relationally typed language is then exhausted by a choice of
constants and variables for each type alongside rules (R1), (R2), and (R3).

2.3 Functional Type Theories

Relational type theories provide a natural way of generalizing the language
of first-order predicate logic with singular terms and relational constants:
singular terms are retained as terms of type e and relational constants are
retained as constants having types of the form he, . . . , ei. One distinctive
feature of relational type theory is that any application of a typed expression
to suitable arguments produces a formula. As a result, the function symbols
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included in some formulations of first-order predicate logic have no natu-
ral equivalent in relational type theory, because they combine with singular
terms to form singular terms not formulas. Functional type theory provides
an alternative approach which generalizes the notion of a function symbol.
In this setting, the function symbols of first-order logic and typed expressions
of relational type theory can all be represented as function terms.

A typical formulation of functional type theory specifies the types of ex-
pressions by the following recursive clauses:

e is a type, the type of singular terms.

t is a type, the type of formulas.

If � and ⌧ are types, then � ! ⌧ is a type, the type of function terms
taking one term of type � as argument to form a complex term of type
⌧ .

Note that unlike the case of relational theory, a second primitive type t is
required as the type of formulas, instead of the relational type hi.

As with relational type theory, logical connectives can either be intro-
duced via primitive formation rules, or treated as constants of specific types.
In the latter case, a particular language can again be based on a choice of con-
stants and variables of each type alongside three recursive clauses specifying
what counts as a term of each type. Here are the recursive clauses:

(F1) Any constant or variable of a type is a term of that type.

(F2) If a is a term of type � ! ⌧ and b is a term of type �, then ab is a term
of type ⌧ .

(F3) If x is a variable of type � and a is a term of type ⌧ , then �x.a is a
term of type � ! ⌧ .

Unary logical connectives, including quantifiers, can then be treated as in the
relational case. For example, the unary predicate of individuals F featured
in example 2 may be construed as a constant of type e ! t. Taking c as a
constant of type e, it follows from (F2) that Fc is a formula (type t). By (F3),
�x.Fx is then of type e ! t. Taking the first-order existential quantifier 9e

as a constant of type (e ! t) ! t, (F2) gives us the quantificational formula
(type t) 9e�x.Fx. The more familiar notation 9xFx can again be understood
as a stylistic variant.
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Binary connectives like ^ provide a challenge, as do polyadic expressions
more generally. The problem is that functionally typed terms of the present
system take only one term as argument, whereas polyadic expressions take
more than one argument.

One solution is to modify the above specification of types and formation
rules to accommodate polyadic functional types. For example, we might
adopt clauses like these:

Where n > 0, if �1, . . . , �n, ⌧ are types, then �1, . . . , �n ! ⌧ is a type,
the type of function terms taking n terms of types �1, . . . , �n respec-
tively as arguments to form a term of type ⌧ .

(F2*) If a is a term of type �1, . . . , �n ! ⌧ , and b1, . . . , bn are terms of types
�1, . . . , �n respectively, then ab1 . . . bn is a term of type ⌧ .

Binary sentential connectives like ^ can now be assigned type t, t ! t; so
by (F2*), they take two formulas as arguments to form a formula. More
generally, each n-ary relational type can be represented by a functional type
of terms taking n arguments of appropriate types to form a formula.

However, there is often no need to complicate things by introducing
polyadic functional types, because each such type can be represented by
a unary functional type, using a technique known as Schönfinkeling or Cur-
rying. The idea is as follows. Consider, for example, the polyadic type
t, t ! t of binary sentential connectives like ^. The characteristic syntactic
feature of this type is that its terms combine with two formulas to form a
formula. There is a sense in which terms of the higher-order functional type
t ! (t ! t) also have this feature. Taking ^ to have this type, we can
combine it first with one formula a to yield a term ^a of functional type
t ! t, which can then be combined with a second formula b to yield a for-
mula ^ab (with a ^ b again treated as a stylistic variant). Both the binary
functional type t, t ! t and the binary relational type ht, ti can in this way be
represented using the unary higher-order functional type t ! (t ! t). The
technique generalizes, so that each relational type and polyadic functional
type can be represented by a unary functional type.

To illustrate this idea further, recall example (2a):

(2a) A(Fc, c)

This can be formalized in unary functional type theory as follows. We saw
above that Fc can be understood as a term of type t by taking F and e to
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be constants of types e ! t and e respectively, and applying (F1) and (F2).
Taking A as a constant of type t ! (e ! t), it can by (F2) be applied to Fc
to form a term AFc of type e ! t. This can by (F2) again then be applied
to c to form a term AFcc of type t. For readability, brackets and commas
can be added to obtain 2a as a stylistic variant.

We’ve indicated how relational types can be represented as functional
types. It’s also worth noting that some functional types don’t naturally
represent any relational type. For example, the type e ! e, corresponding to
functions from singular terms to singular terms, has no natural counterpart
within relational type theory. This is in e↵ect the type of unary function
symbols in first-order logic, such as the symbol for the successor function in
arithmetical theories. Another example comes from the type (e ! t) ! e
corresponding to functions from unary predicates to singular terms. This
type is naturally used to formalize definite descriptions, using a symbol for
the function which maps any property had by a unique object to that object.

It is sometimes convenient to focus only on functional types that repre-
sent relational types in the manner indicated above. When one’s primary
goal is to theorize only about properties and propositions, for example, the
other functional types may not play a central role. For this purpose, a more
restricted system of functional types is sometimes used, with complex types
generated only by the following recursive clause:

If � and ⌧ are types and ⌧ is not e, then � ! ⌧ is a type.

Each functional type generated from e and t by this clause represents some
relational type in the manner indicated above. In chapter 4, Bacon and Cian
Dorr work primarily with this restricted functional type system.

2.4 Type-Theoretic Diversity

The type-theoretic variants sketched here illustrate the rich diversity of type-
theoretic languages which can be found in the literature. Let us briefly
mention four other important cases not covered so far.

First, the combinatory logic of (Curry et al., 1958). In this setting, the
types of terms are not fixed at the start but assigned in a given context,
and all variable binding is dispensed with. These variants of higher-order
languages have been influential in computer science, though they have as yet
played less of a role in philosophy. See (Bacon, forthcoming a), as well as
(Mitchell, 1996) and (Hindley and Seldin, 2008).
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Second, cumulative type theory. In the type theories described above,
terms of each type combine with terms of exactly one other type. Cumula-
tive type theories relax this constraint. These systems have been primarily
discussed in the setting of monadic relational type theory: the version of rela-
tional type theory whose only types are e, hei, hheii, and so on. Consider the
natural ordering < on these types: e < hei < hheii < . . .. According to rule
(R2) for forming formulas, Ab is a formula only if the type of b immediately
precedes the type of A in this ordering. Cumulative type theory relaxes this
constraint so that b may have any type preceding the type of A, not just the
immediately preceding type:

(R2*) If A is a term of a type �, b is a term of type ⌧ , and ⌧ < �, then Ab is
a term of type hi.

This significantly expands the class of formulas, allowing properties to be ap-
plied to a wider range of arguments. Cumulative type theory thus embodies a
permissive conception of the structure of reality, on which properties combine
with a wider range of arguments to yield propositions than under any of the
other type theories so far discussed. Although this has not yet been widely
employed within metaphysics, (Williamson, 2013, section 5.7) makes some
use of the idea. For further discussion, see (Degen and Johanssen, 2000),
(Florio and Jones, 2021), and (Button and Trueman, 2022); (Krämer, 2017)
discusses a generalization of the idea to full relational type theory.

Third, plural logic. Whereas the higher-order languages discussed so far
expand first-order logic with new types of predicates, plural logic adds to
the singular individual terms of first-order logic new plural individual terms.
One simple implementation adds just a single new type of plural constants
(e.g. aa) and variables (e.g. xx) that can be bound by quantifiers. One may
also add predicates taking these plural terms as arguments, including a plural
membership predicate � formalizing ‘is one of’. This allows English plural
claims like ‘Beth spilled all the cheerios’ to be formalized as formulas like:

9xx(8y(Cy ! y � xx) ^ S(b, xx))

This apparatus has played a prominent role in contemporary metaphysics,
especially concerning material objects, mereology, and sets; see (van Inwa-
gen, 1990), (Lewis, 1991), and section 3. We hypothesize that it also played
a causal role in alleviating scepticism about higher-order languages. Firstly,
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George Boolos (1984) and others explored ways of using plural logic to in-
terpret second-order logic. Secondly, plural logic provides a form of higher-
order quantification that many were happy to regard as primitively intel-
ligible. Those factors helped to create a hospitable environment for other
forms of primitive higher-order quantification in the late twentieth and early
twenty-first centuries. For further discussion of plural logic, see for example
(Linnebo, 2022), (Oliver and Smiley, 2013), and (Florio and Linnebo, 2021).

Various extensions of this basic plural language are possible. One can add
a new “super-plural” type for pluralizing plural terms, analogously to how
ordinary plural terms pluralize singular terms. Further types for pluralizing
those super-plural types can also be added, and so on. One can then add
predicate types with argument positions reserved for terms of these new
super-plural types. Finally, and least familiarly, one can introduce types for
pluralizing (and super-pluralizing etc.) types other than just e, as in (Fritz
et al., 2021) and (Fritz, 2022, forthcoming a). (See also (Fine, 1977) for a
closely related type theory involving types for ‘relations-in-extension’.) These
types allow us to talk of pluralities (and super-pluralities etc.) of properties
and propositions.

Finally, the apparatus of constructive type theory, which Laura Crosilla
discusses in chapter 6. This complex and elegant formal theory has become
popular in the foundations of mathematics and computer science. More
recently, it has been applied in natural language semantics (Chatzikyriadis
and Luo, 2020). It has, however, not yet received significant attention within
formal metaphysics, although see (Klev, 2022) and (Wilhelm, unpublished).
Crosilla’s contribution provides an important early step in this direction,
emphasizing two central di↵erences between constructive type theory and the
type theories discussed above. Firstly, constructive type theory allows new
ways of forming types to be incorporated. As well as types corresponding to
functions from entities of one type to another, other operations on types can
also be used to form new types. The theory is open-ended in that it readily
permits the inclusion of new ways of forming types. Secondly, constructive
type theory allows for dependent types, where the type of value returned by
a function depends on what argument is supplied to the function. These
two features allow for construction of new formulas within constructive type
theory, without counterparts in the other type theories considered in this
volume. Metaphysicians have barely even begun to consider what theoretical
and expressive gains this might yield. As well as introducing constructive
type theory as a framework for theorizing about properties and propositions,
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Crosilla discusses whether the apparatus can be used to make sense of one
central tool of formal metaphysics, namely unrestricted quantification over
absolutely everything whatsoever.

In some cases, there are mappings between di↵erent type-theoretic lan-
guages which allow one to associate each term of one language with a corre-
sponding term of the other language. We have seen some examples already,
in the use of functional types to represent relational types, and unary func-
tional types to represent polyadic functional types. Often, these mappings
can be proven to preserve important logical properties, such as derivabil-
ity in suitable deductive systems. For a discussion of such mappings and
results concerning the languages sketched above, see (Dorr, 2016, pp. 86–
94). However, no matter what formal properties are established about these
mappings, it is important to remember that it remains a substantial claim
that they preserve intended meaning. That is, assuming that the relevant
formulas have an intended interpretation, it remains a substantial claim that
any formula has the same intended interpretation as the one to which it is
mapped. The diversity of type-theoretic languages thus generates a cluster
of important foundational questions for higher-order metaphysics. Which, if
any, of these languages should be used in metaphysics? Can they be used
interchangeably, using mappings like those sketched above? Or should one
such language be preferred to the others, perhaps due to the range of claims
it allows (or prevents) us to make sense of, or because its syntactic structure
more closely matches the deep structure of reality?

2.5 Logical Questions

As well as questions about which higher-order language to use, pure higher-
order metaphysics also concerns questions that can be asked without us-
ing non-logical constants; we call them logical questions. The true answers
to logical questions are naturally called logical truths. One central part of
higher-order metaphysics seeks to identify logical truths, in order to answer
logical questions.

What exactly is the import of “logical” here? Logic is sometimes con-
ceived as neutral between substantial metaphysical disputes. No logical truth
would then take a stand on any metaphysically substantial matter. This
conception of logic plays little role in higher-order metaphysics as currently
practiced; it is explicitly rejected in (Williamson, 2013). It is often hard to
draw an intuitive line between “purely logical” and “genuinely metaphysical”
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principles. It is also unclear what benefits such a division might bring. For
example, it does not obviously help attain knowledge of the relevant claims.
In order for deductive arguments to yield knowledge, it is important that the
premises are known (and so true), and the rules of inference employed are
known to preserve truth. It does not obviously matter whether, in addition,
any of the premises are (known to be) logically true or the rules (known to)
preserve truth in virtue of logic, or some similar status.

We do better to understand the logical vocabulary as a certain relatively
small collection of expressions that are particularly amenable to formal in-
vestigation, and which are usefully applicable under an especially wide range
of assumptions. Standard examples of logical vocabulary all have these fea-
tures, such as quantification, negation, conjunction, disjunction, and identity.
Likewise for the apparatus of �-abstraction. Other examples are sometimes
but not always treated as logical, most obviously metaphysical necessity.
Higher-order metaphysics requires no deep or absolute distinction here. We
can instead be pragmatic in what vocabulary we count as logical, and hence
what questions we count as logical, depending on what best serves our the-
oretical purpose at the time.

On this view, the logical truths are privileged only by the fact that they
can be expressed in languages whose only constants are logical in the sense
just outlined. Logical truths are paradigmatically somewhat general and
abstract, but not necessarily so. Moreover, logical truths may well be meta-
physically controversial: many substantive metaphysical questions can be
expressed using higher-order languages without non-logical constants. As
Goodman observes in chapter 3, the same is true of first-order languages, al-
though the substantive questions that can be asked in those languages—e.g.
9x9y(x 6= y)?—are rather boring. For first-order languages, things get more
interesting if we count the ⇤ of metaphysical necessity as logical. We can
then ask, following Williamson (2013), whether it is contingent what there
is: ⇤8x⇤9y(x = y)? Higher-order languages allow us to ask a yet richer
supply of interesting and metaphysically substantial logical questions, even
without the ⇤ of metaphysical necessity.

One cluster of questions concern identity among properties and propo-
sitions, as emphasized by Cian Dorr (2016). In the terminology used by
Goodman in chapter 3, grain science investigates general principles about
identity among propositions, properties and so on. Higher-order languages
provide a natural setting in which to conduct grain science, which indeed
forms one central part of pure higher-order metaphysics.
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Identity is often taken to be equivalent to a demanding form of indis-
tinguishability. This form of indistinguishability is naturally formalized in
a relationally typed higher-order language. In the case of individuals, it is
formalized by the following �-term where x and y have type e:

�xy.8Z(Zx $ Zy)

Intuitively, for individuals x and y to stand in this relation is for them to
have exactly the same properties, including identity-properties like �x.x = a.
(This informal gloss presupposes classical logic; (Jones, 2020) discusses alter-
native formulations in a non-classical setting. See also (Fritz, forthcoming)
for variant formulations in modal settings which admit contingency in what
there is at all types.)

Higher-order counterparts of this relation of indistinguishability are read-
ily defined by allowing x and y to have a type ⌧ other than e, and modifying
the type of Z accordingly (to h⌧i). The resulting relations are sometimes
called Leibniz equivalence. The �-terms expressing relations of Leibniz equiv-
alence can be defined without non-logical constants. Questions about Leibniz
equivalence may therefore count as logical questions. Many such questions
have clear metaphysical interest. And as Goodman observes in chapter 3,
this interest is independent of any particular connection between Leibniz
equivalence and identity. Leibniz equivalence is metaphysically interesting in
its own right. For further discussion of the relationship between identity and
Leibniz equivalence, see (Bacon and Russell, 2019), (Dorr, 2016), and (Caie
et al., 2020).

Here’s an illustrative example of a metaphysically substantial logical ques-
tion about identity and Leibniz equivalence. Consider the view that proposi-
tions are structured in a way analogous to the structure of the sentences that
express them. On this kind of view, predications express the same propo-
sitions only if their predicates express the same property. This underwrites
the following claim in relational type theory, where p has type hi and X and
Y have type hhii:

8X8Y 8p(Xp = Y p ! X = Y )

As it turns out, this formula is inconsistent in classical logic, if (a) the higher-
order quantifiers satisfy principles analogous to those governing first-order
quantifiers in classical predicate logic, (b) identity is materially equivalent to
Leibniz equivalence, and (c) �-terms satisfy a natural principle of extensional
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�-conversion or the higher-order quantifiers satisfy an unrestricted compre-
hension principle. The details of this important argument are provided by
Øystein Linnebo in chapter 5, which also locates the argument within a
class of similar results. The discovery of this inconsistency traces back to
Bertrand Russell (1903) and John Myhill (1958), and so it is often known as
the Russell-Myhill argument. The argument has received significant recent
interest in higher-order metaphysics, following (Hodes, 2015), (Uzquiano,
2015), (Dorr, 2016), and (Goodman, 2017).

In response to the Russell-Myhill argument, one might question the prin-
ciples governing the quantifiers, identity, and �-terms; see Linnebo’s chap-
ter 5 and Christopher Menzel’s chapter 13, as well as (Yu, 2017) and (Kment,
2022). One might also question whether the inconsistent sentence captures
the idea of propositions being structured (Hofweber, 2022). One may even
question the higher-order language itself, as Bacon (forthcoming b) does us-
ing a language which blocks the Russell-Myhill argument by restricting the
term formation rules; this provides another example of a variant type theo-
retic language. One might also accept the conclusion of the argument, taking
it to show that propositions are not structured. Settling the matter will re-
quire a detailed comparison of these options.

Questions about propositional structure are not the only metaphysically
interesting questions of grain science. In chapter 4, Bacon and Dorr provide
a wealth of other examples. They examine a systematic theory of identity
for all types, which they call Classicism. One key idea driving their theory
is that whenever one can prove material equivalence in classical higher-order
logic, there is a corresponding identity between properties and propositions.
For example, one can classically prove this equivalence:

8xFx $ ¬9x¬Fx

So Classicism yields this identity between propositions:

8xFx = ¬9x¬Fx

And also this identity between properties:

8 = �Y.¬9x¬Y x

Bacon and Dorr provide several di↵erent axiomatizations of Classicism, as
well as a model theory for it. They also investigate the (sometimes surprising)
relationships between Classicism and many other substantial metaphysical
questions, for example:
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Are necessarily equivalent propositions identical?

Is it contingent what there is?

Are identity and necessity non-contingent?

Do certain world-propositions play the theoretical role of possible worlds?

Are fundamental entities freely recombinable?

A second cluster of metaphysically interesting logical questions concern
existence. The two clusters are connected, since existence is often identified
with being identical to something (as we e↵ectively did in examples 2 and
3 of section 1.1). The distinction between identity questions and existence
questions is thus not wholly precise or exclusive. Yet we find it conceptually
helpful nonetheless.

Central principles to consider here are so-called comprehension principles.
A comprehension principle for properties is a schematic principle which says,
for certain formulas, that there is a property corresponding to the formula.
Here is an example, already mentioned in section 1.2, where � is any formula
in which y but not X may be free:

9X8y(Xy $ �)

Intuitively, this principle says that there is a property X with a certain
extension: exactly the entities y that satisfy the defining formula � possess
X. Such a principle can be weakened by restricting the formulas � which
can be used to form an instance. It can also be strengthened by replacing
the material biconditional $ with an identity predicate =, or by inserting
the ⇤ of metaphysical necessity after the initial quantifier.

Similar principles can also be formulated for propositions and polyadic
relations. For example, where � is any formula in which p is not free:

9p(p = �)

Intuitively, we might gloss this as saying that � expresses a proposition.
Other variations are also possible. For example, say that a property is rigid
if it could not possibly apply to di↵erent entities than it in fact does. Then
we might wish to require that every property is coextensive with some rigid
property:
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8X9Y (rigid(Y ) ^ 8z(Xz $ Y z))

Such a comprehension principle is discussed by Bacon and Dorr in chapter 4;
see also (Gallin, 1975).

In chapter 5, Linnebo discusses existence principles such as these com-
prehension principles, focussing on their role in the Russell-Myhill argument.
Historically, there has been significant discussion of whether comprehension
principles should be restricted to avoid certain forms of circularity. Linnebo
discusses a historically popular implementation of this idea, known as pred-
icativity, which prohibits the defining formula on the right from quantifying
over domains which include the defined entity on the left. He both responds
to the most pressing arguments against predicative restrictions on compre-
hension, before arguing that such restrictions are superfluous nonetheless,
in that a predicative version of the Russell-Myhill argument still renders a
structured conception of propositions inconsistent. Linnebo instead proposes
two di↵erent ways of restricting comprehension to block the Russell-Myhill
argument. Both ways are motivated by a hierarchical conception of reality,
on which higher levels are grounded by lower levels. (For more on ground,
see Scha↵er 2009, Rosen 2010, Fine 2012.) Interestingly, which restriction
is required depends on the kind of higher-order entity governed by the com-
prehension principle. The existence of a plurality is fully grounded in the
existence of its members; this motivates one way of restricting comprehen-
sion. By contrast, the existence of a property is not typically grounded in the
existence of its instances; but on Linnebo’s view its existence is grounded in
some level of the hierarchy, which motivates a di↵erent restriction on compre-
hension. This makes the appropriate restriction on comprehension sensitive
to the di↵erent natures of the higher-order entities concerned.

3 Applied Higher-Order Metaphysics

One way for higher-order languages to earn their keep in metaphysics is to
prove fruitful in applications to traditional metaphysical topics. Formal-
ization in these debates typically requires languages containing non-logical
constants. Such applied higher-order metaphysics is the topic of part III of
this volume. We have already mentioned some examples (section 1.1). An-
other instructive example arises in the context of mereology, the metaphysical
theory of parthood.
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Mereology begins with the observation that some material objects are
parts of others, e.g. your elbow is part of your arm, which in turn is part of
your body. Theorizing about parthood is often formalized using a first-order
language which includes a two-place predicate  regimenting ‘is part of’.
Various other mereological notions can be defined using parthood, such as
overlap: x and y overlap if they have a part in common. Formally:

x � y := 9z(z  x ^ z  y)

Using parthood and overlap, we can define a very general notion of fusion:
for y to be a fusion of the things x satisfying a condition �(x) (a formula in
which x but neither y nor y0 may occur freely) is for every x that satisfies
�(x) to be part of y, and every part y0 of y to overlap some x satisfying �(x).
This can be regimented as follows:

Fu(y,�(x)) := 8x(�(x) ! x  y) ^ 8y0(y0  y ! 9x(�(x) ^ y0 � x))

The question now arises of what it takes for the things satisfying a condi-
tion �(x) to have a fusion. One natural idea is that there are no restrictions
on the existence of fusions: whatever things we might care to specify have a
fusion. Someone who endorses such unrestricted fusion would endorse every
instance of the following schematic principle:

(U1) 9y Fu(y,�(x))

Here, �(x) may either be assumed to contain no free variables apart from x,
or the instances of the schema may be assumed to be implicitly prefixed by
a string of universal quantifiers binding the variables free in �(x) other than
x.

However, there are limits on the extent to which U1 captures the idea of
unrestricted fusion. First, the strength of U1 depends on the language under
consideration: the existence of a fusion is asserted only for things which can
be delineated with a formula of the relevant language. Second, as in some of
our initial examples (section 1.1) , U1 is essentially schematic, and so cannot
be properly negated.

Staying within first-order logic, one might attempt to overcome these
limitations by formulating unrestricted fusion using a theory of collections,
such as set theory. The resulting principle says that every set has a fusion.
Using 2 for the set-theoretic relation of membership, this can be formalized
as follows:
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(U2) 8z9y Fu(y, x 2 z)

What exactly follows from this principle depends on what set-theoretic prin-
ciples govern 2. Whatever those principles may be, however, U2 does not
succeed in generalizing U1. For, as shown by Russell, there cannot be a set
which contains just those sets x which are not members of themselves (in
the sense that ¬x 2 x). Thus, no consistent set theory allows us to derive
from U2 the existence of a fusion of the individuals which are not members
of themselves. But this is an instance of U1.

Second-order logic provides a way out of this di�culty, by replacing quan-
tification over sets with monadic second-order quantification:

(U3) 8Z9y Fu(y, Zx)

This has the intended e↵ect only if every instance of U1 follows from U3,
which requires an unrestricted principle of comprehension for second-order
quantifiers, as discussed above, which guarantees the existence of a prop-
erty Z possessed by exactly the individuals x satisfying �(x). Whereas the
corresponding (“naive”) unrestricted comprehension principle for sets is in-
consistent, this second-order principle is consistent, and included in standard
deductive systems for higher-order logic.

In sum, U3 says that every property has a fusion of its instances. We can
consistently combine this in higher-order logic with an unrestricted compre-
hension principle which ensures that every condition determines a property.
Every instance of U1 then becomes derivable. Higher-order languages thereby
allow us to properly and consistently express unrestricted mereological fu-
sion, unlike first-order languages.

There is something unnatural about appealing to properties when formu-
lating unrestricted fusion. Intuitively, unrestricted fusion just says that any
things—however delineated—have a fusion. A more direct formalization is
therefore available using the plural quantifiers discussed earlier (section 2.4).
We used xx, yy, . . . for plural variables, and x � yy to say that x is one of
yy. The claim that any things have a fusion can then be formalized as:

(U4) 8zz9y Fu(y, x � zz)

This plural version of mereology is now extremely widespread, following its
influential use in (van Inwagen, 1990) and (Lewis, 1991). The example illus-
trates how di↵erent kinds of higher-order quantifiers may be better suited to
di↵erent metaphysical applications.
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Moving beyond mereology, we have already mentioned (section 1.2) an-
other application of higher-order metaphysics: to the nominalist view that
there are no properties, understood as individuals over which first-order quan-
tifiers range. Since we’re using ‘property’-talk to pronounce higher-order
quantification, we’ll follow the helpful practice adopted by Tim Button and
Robert Trueman in chapter 7 of using ‘universal’ for the first-order notion.
On this way of speaking, the present nominalist view says that there are
properties but no universals. For further discussion of this view and its the-
oretical benefits, see (Jones, 2018), (Trueman, 2021), and Bacon’s chapter 2
in this volume.

One prominent problem for this view arises as follows. English and other
natural languages contain nominalizing devices for converting predicates into
names for universals. For example, ‘is wise’ can be nominalized into ‘wisdom’.
Now consider the predication ‘wisdom is a virtue’, which has a nominalized
universal-name as subject. Plausibly, this predication is true only if ‘wisdom’
refers to a universal. Since the predication seems true, we have a problem
for nominalism. And this clearly isn’t an isolated example.

Button and Trueman’s chapter develops a detailed response to this prob-
lem. On their view, simple predications like ‘wisdom is a virtue’ containing
nominalized names for universals are all false, and so universal names like
‘wisdom’ needn’t refer. We talk as if there were universals, even though
there really are none. Button and Trueman develop the underlying theory of
universals and nominalization governing this practice before proving a con-
servativeness result about it, roughly: adding their theory of nominalization
to a theory that does not mention universals does not a↵ect the theory’s con-
sequences about properties; the new consequences only concern universals.
This makes available for Button and Trueman a fictionalist attitude to or-
dinary talk about universals: we talk in accordance with a literally false yet
harmless fiction. The fiction is harmless in that its false consequences con-
cern only universals, not properties. Although reasoning in accord with the
fiction can lead from truth to falsity, the resulting false claims must concern
universals, not just properties, and so cannot lead to false claims concerning
only what really (outside the fiction) exists.

Another fruitful application of higher-order metaphysics has been to modal-
ity. As noted earlier, vocabulary expressing metaphysical modality is some-
times treated as logical, sometimes not; it’s arguably a borderline case. Vo-
cabulary expressing other modalities is not usually treated as logical. The
higher-order metaphysics of modality thus exhibits the vagueness of the
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boundary between pure and applied higher-order metaphysics.
Williamson’s 2013 book Modal Logic as Metaphysics provided an influ-

ential catalyst to higher-order metaphysics. Williamson applied higher-order
modal logic to metaphysical modality, arguing for necessitism: necessarily,
it is not contingent what there is. Formally:

(NNE) ⇤8x⇤9y(y = x)

Strikingly, Williamson’s necessitism was not just about individuals, the ver-
sion of NNE in which the variables have type e. He advocated versions of
NNE in which the variables may be assigned any (relational) types whatso-
ever (with the type of = adjusted accordingly).

At one key point in Modal Logic as Metaphysics, Williamson argued from
necessitism about non-individuals to necessitism about individuals. One line
of argument goes via the existence of haecceities, i.e. identity properties such
as being identical to Socrates ; see (Skiba, 2022) for recent discussion. Another
line of argument goes via opposition to an asymmetric treatment of first-order
existence and higher-order existence, on which NNE holds for higher-order
quantifiers but not for first-order quantifiers: the challenge for opponents of
necessitism about individuals is to say what explains this asymmetry.

Maegan Fairchild takes up this challenge in chapter 8, focussing on a
di↵erence between two argumentative routes to NNE. For each type, the
corresponding version of NNE is derivable from certain appropriately typed
principles of the classical logic of quantification, necessity, and identity; call
this the classical route to NNE. For types other than e, Williamson also
o↵ers a di↵erent argument for NNE, which makes essential appeal to an ap-
propriately typed unrestricted comprehension principle (we introduced these
principles in section 2); call this the comprehension route to NNE. There isn’t
an obvious principle for type e which can play the same role as comprehen-
sion in the comprehension route to NNE. Fairchild’s response to Williamson
makes use of this observation. She endorses a restriction of classical logic
to free logic, which blocks the classical route to NNE by weakening univer-
sal instantiation (at each type). Yet the comprehension route to NNE still
succeeds: NNE (for types other than e) is still derivable from unrestricted
comprehension in free logic. The resulting view explains the asymmetry be-
tween first-order existence and higher-order existence as arising from two
factors. First, an underlying free quantificational logic which is the same at
all types. Second, a structural di↵erence between type e and all other types
concerning how free logic interacts with unrestricted comprehension.
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The final paper in part III concerns propositional attitudes. Already in
(Prior, 1971, chapter 3), we find the view that belief (and other propositional
attitudes) is a relation between thinkers and propositions, rather than a
relation between thinkers and other individuals. Adopting relational type
theory for concreteness, this means that belief is a relation of type he, hii
rather than type he, ei. On this view, generalising about the contents of
attitudes requires higher-order quantification. The true claim that Peter
believes something, should be formalized as:

9p(Peter believes that p)

where p has type t, not as:

9x(Peter believes x)

where x has type e. In the former but not the latter, the quantified variable
can be instantiated for the sentence ‘modality reduces to logic’. Conversely,
in the latter but not the former, the quantified variable has to be instanti-
ated with a singular term, typically a nominalization of a sentence like ‘that
modality reduces to logic’. In chapter 9, Harvey Lederman labels the view
that propositional attitudes can be formalized as such higher-order relations
naive (higher-order) relationism. Naive relationism has been popular in re-
cent higher-order metaphysics (Jones, 2019), (Trueman, 2021).

Lederman develops a problem for naive relationism in his chapter, from
which he generates two more foundational problems about the interpretation
of higher-order languages. The initial problem arises from Frege Puzzles.
Intuitively, although Hesperus is Phosphorous, Plato believed that Hesperus
is visible in the morning, and did not believe that Phosphorous is visible in
the morning. Formally:

(FP) h =e p ^ B(V h) ^ ¬B(V p)

Here, B has type hhii and formalizes ‘Plato believed that’; V has type hei
and formalizes ‘is visible in the morning’; h and p have type e and formalize
‘Hesperus’ and ‘Phosphorous’ respectively. Lederman observes that (FP) is
inconsistent in standard higher-order logics, since they contain the following
principle of Atomic Congruence:

a = b ! Fa = Gb (where a, b have any type ⌧ and F,G have type h⌧i)
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Higher-order metaphysicians have three options: (i) reject Frege Puzzle claims
like (FP), (ii) reject naive relationism and adopt a di↵erent treatment of
propositional attitudes, or (iii) reject Atomic Congruence. Lederman ar-
gues that rejection of naive relationism or Atomic Congruence gives rise to
two foundational problems for the widespread primitivist interpretations of
higher-order languages.

The first problem is metasemantic. On a primitivist view of higher-order
quantifiers, their meaning is not determined by a translation into English or
any other antecedently understood language. Yet something must be done to
bestow this novel theoretical vocabulary with meaning: some metasemantic
constraints must be in place to select an intended interpretation and rule
out unintended interpretations. Those constraints plausibly come from the
theory taken to govern the novel vocabulary and its connections with other
antecedently understood notions. In the case of higher-order languages, these
constraints come from two sources. Firstly, logical principles provide the
theory. Lederman argues that Atomic Congruence is a central such principle.
Secondly, antecedently understood notions are connected to the higher-order
formalizm by formalizing them using formal constants. Lederman argues
that the naive relationist formalization of propositional attitudes is central
here too. Rejecting naive relationism or Atomic Congruence thus threatens
to leave higher-order languages highly indeterminate in meaning.

The second problem is epistemological. Lederman argues that we have
two primary sources of evidence for the meaningfulness of primitively inter-
preted higher-order languages, and also about the existence and character
of entities of various types. As with his first problem, those sources in-
clude the logical principles governing the language as well as formalizations
of antecedently understood notions into it. Rejecting naive relationism or
Atomic Congruence thus threatens to leave us with little evidence for either
the meaningfulness of higher-order languages or the existence and character
of the higher-order entities over which their variables range.

These examples give some indication of how higher-order metaphysics
o↵ers new insights about the topics of mainstream metaphysics. We con-
clude this section with some further references to recent work in this rapidly
expanding field.

Propositional attitudes and Frege Puzzle principles like (FP) are also dis-
cussed in the context of higher-order metaphysics by (Bacon and Russell,
2019), (Caie et al., 2020), and (Yli-Vakkuri and Hawthorne, 2022). Aside
from Frege Puzzles, discussion of the attitudes within higher-order meta-
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physics has largely focussed on some seemingly paradoxical results tracing
back to (Prior, 1961) and Kaplan (1995). For example, these results show
that in a relatively weak higher-order system, one can prove that there is
some proposition which cannot be uniquely entertained. This is sometimes
called the Prior-Kaplan paradox ; for recent discussion, see (Bacon et al.,
2016) and (Bacon and Uzquiano, 2018).

For further applications of higher-order logic to the metaphysics of modal-
ity, see (Bacon, 2018) and (Bacon and Zeng, 2022) on necessities and the
existence of a broadest necessity, (Dorr et al., 2021) on puzzles of modal
variation, (Fritz and Goodman, 2016, 2017) on necessitism, (Jacinto, 2019)
on serious actualism, (Roberts, 2022) on the relation between metaphysical
and physical necessity, and (Roberts, 2023) on the necessity of identity.

Higher-order resources have also been usefully applied to fundamental-
ity and free recombination (Bacon, 2020), time (Banfi and Deasy, 2022),
essence (Ditter, 2022, Litland, forthcoming), ground (Krämer, 2013, Fritz,
2022, Goodman, forthcoming), truth (Künne, 2003, Trueman, 2021), and
the metaphysics of abstraction (Litland, 2022).

4 The History of Higher-Order Metaphysics

The need for quantifiers binding variables other than those taking the place
of singular terms was already noted at the inception of modern formal logic,
by Gottlob Frege (1879), who developed an early form of second-order logic.
Frege did not rigorously define the syntax of his language, but clearly included
atomic formulas composed of a predicate and some individual terms as ar-
guments, as in modern predicate logic. Without feeling the need to remark
on it, he allowed variables to take the place not just of these arguments but
also the place of predicates, and allowed quantifiers to bind these variables.
Further, he considered his logical language not just as a formal construct,
but as a meaningful language. Can we already think of these earliest uses
of higher-order quantifiers as instances of higher-order metaphysics? The
answer depends crucially on how Frege understood higher-order quantifiers.
Kevin Klement addresses this question in chapter 10.

Klement explains that Frege thought of higher-order quantifiers as rang-
ing over functions. To illustrate this, consider an atomic sentence of first-
order logic, such as Fa. According to Frege, what Fa represents can be
obtained by applying the function represented by F to the individual repre-
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sented by a. Eventually, Frege argued that sentences represent truth-values;
a predicate like F therefore represents a function from individuals to truth-
values. Unary second-order quantifiers thus range over such functions. Fur-
thermore, Frege’s functions come in a hierarchy similar to the type hierarchies
introduced in section 2. For example, Frege already suggested an understand-
ing of quantifiers over individuals on which they combine with a predicate
like F to form a sentence 9F stating that the function represented by F maps
some individual to truth; we introduced this kind of view in section 2.2. The
quantifier can then be understood as representing a higher-order function
which takes functions from individuals to truth-values as arguments, and
maps them to truth-values.

Frege’s work predates the ascendancy of set theory as a widely accepted
foundational theory of mathematics. So we shouldn’t assume that he iden-
tifies functions with sets of pairs as is common today. We do better to take
his notion of a function as primitive, and see what features they must have
to play the role Frege wants them to play. Klement notes that Frege devel-
oped logic in order to carry out his logicist project of reducing arithmetic
to logic, and that this requires an abundant metaphysics of functions. This
suggests a strongly non-linguistic conception of functions, with the functions
over which we quantify outstripping the functions we can express using our
linguistic resources. Frege went on to carry out his logicist project in great
detail in (Frege, 1884, 1893/1903). In doing so, he found himself compelled
to assume that what higher-order quantifiers range over is reflected in the
individuals: for every X there is an individual e(X), the extension of X.
Fatally, he assumed his Basic Law V, which entails that having the same
extension entails being coextensive, in the following sense:

e(X) = e(Y ) ! 8z(Xz $ Y z)

Frege needs extensions for his logicist ambitions, in order to ensure that
numbers are individuals. However, as Russell famously showed in a letter to
Frege from 1902 (van Heijenoort, 1967), the resulting system is inconsistent.
Two features of this result are important to note. First, the appeal to ex-
tensions and Basic Law V is essential since Frege’s basic higher-order logic
is demonstrably consistent. Second, Frege’s adoption of a higher-order lan-
guage with its hierarchy of expressions and quantifiers predates the discovery
of the inconsistency, and was therefore not motivated by it.

Russell tried to rescue logicism by avoiding the appeal to extensions. In
carrying out this work, he developed a type theory more complicated than
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the “simple” type theories we have been discussing: the so-called “ramified”
type theory, also discussed in chapter 5. This theory sub-divides each simple
type into many orders, and uses these orders to impose predicative restric-
tions on comprehension principles. Klement explains how, like Frege, Russell
also thought of higher-order quantifiers as ranging over functions. However,
Russell thought of these functions not as functions to truth-values, but as
functions to propositional complexes which contain individuals and proper-
ties as constituents. Klement traces the di↵erent conceptions of propositional
functions which Russell adopted as his views developed.

Russell’s mature view of higher-order quantification can be found in the
culmination of his e↵orts to establish logicism, the three-volume (Whitehead
and Russell, 1910–1913). Klement notes that on this view, the truth and fal-
sity of higher-order quantified statements can always be explained in terms
of the truth and falsity of their instances. Moreover, any statement involving
higher-order quantifiers expresses a proposition which just attributes proper-
ties and relations to individuals, thereby freeing us from making any room in
our metaphysics for propositional functions. As Klement discusses, this out-
look is complicated by (Whitehead and Russell, 1910–1913) including in its
system an axiom of reducibility intended to overcome a weakness introduced
by ramification. Although not leading to outright inconsistency, this axiom
shares some similarities with Frege’s Basic Law V. Moreover, Klement argues
that reducibility runs the risk of inconsistency if we want to accommodate
general facts.

For Frege, Russell, and many other early analytic philosophers, higher-
order logic was simply logic. The fragment we now know as first-order pred-
icate logic emerged only after several decades of development; according to
(Moore, 1988), it was first explicitly formulated in unpublished lectures by
David Hilbert in 1917. For several further decades, higher-order logic con-
tinued to play an important role. Later milestones include more rigorous
presentations of higher-order logic and its set-theoretic model theory, includ-
ing the functional type theory of Alonzo Church (1940) and completeness
result of Leon Henkin (1950). Corresponding work for relational type theory
can be found in (Orey, 1959); see also (Myhill, 1958).

Thoralf Skolem argued for a restriction of logic to first-order logic as early
as 1923 (Moore, 1988); although see (Eklund, 1996). This was particularly
successful in the context of developing set theory, and mathematical logic
more generally. In philosophy, skepticism about higher-order logic is more re-
cent in origin. The chief originator of this skepticism in philosophy is Willard
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Van Orman Quine, e.g. in (Quine, 1961). In chapter 11, Fraser MacBride
lays out and assesses Quine’s arguments against second- (and higher-)order
logic, drawing principally on Quine (1970). MacBride focuses on two lines of
argument.

The first line of argument aims at establishing that second-order logic,
even if it is intelligible, does not count as logic proper. This conclusion is
based on Quine’s contention that logic must be obvious, topic neutral, and
universally applicable. Quine rejects an interpretation of second-order logic
as quantifying over entities like properties and propositions, since according
to him, the latter lack su�ciently clear individuation conditions. He therefore
assumes that second-order quantifiers range over sets, whence second-order
logic becomes a fragment of set theory. It follows that second-order logic
violates the requirements to count as logic. For example, it is not obvious
that there is an empty set—indeed, any set—even though classical second-
order logic proves 9X8y¬Xy.

For higher-order metaphysics as a research program, the conclusion that
higher-order logic does not count as logic proper is not necessarily fatal: if we
can still use higher-order languages to articulate and investigate metaphysical
questions, we can still carry out higher-order metaphysics. We just wouldn’t
be doing higher-order logic. It would, however, still be important that higher-
order quantifiers are not interpreted as ranging over sets; for otherwise, we
might as well employ a first-order set theoretic language. A non-set-theoretic
interpretation of higher-order quantification is required. In his second line of
argument, MacBride develops a problem for such interpretations of higher-
order language. Although the argument was not made by Quine himself,
it is based on Quine’s philosophy. The conclusion of the argument is that
higher-order quantifiers cannot be understood as ranging over universals,
although they might be interpreted either substitutionally, or primitively
(see section 1.2).

Despite Quine’s opposition, various forms of higher-order logic continued
to play an important role in regimenting talk of properties and propositions.
In metaphysics, a prominent voice which explicitly rejected Quine’s skep-
ticism can be found in the work of Prior. Prior’s understanding of higher-
order quantification is the topic of chapter 12 by Adriane Rini. Propositional
and other higher-order quantifiers play a key role in many of Prior’s works.
Most immediately relevant for metaphysics is his work on time and modal-
ity (Prior, 1957, 1967) (recall Example 1b in section 1.1). Prior also made
essential use of such quantifiers in talking about propositional attitudes (re-
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call the Prior-Kaplan paradox mentioned in section 3). Rini uncovers two
motivations which are important for understanding Prior’s appeal to higher-
order languages. First, Prior wanted to avoid a commitment to universals
such as properties and propositions conceived of as individuals. Yet he still
wanted to be able to formalize, e.g., the claim that one person believes ev-
erything someone else says. His solution was to use propositional quantifiers.
Second, Prior was influenced on the one hand by the logical approach to
philosophy pioneered by Russell, also drawing on influences like the work of
Frank Ramsey and Stanis lewski Leśniewski, and on the other hand by the
ordinary language philosophy contemporary with Prior. This motivated him
to find instances of higher-order quantification in English, as mentioned in
section 1.2.

Prior’s most explicit defense of higher-order logic can be found in (Prior,
1971), which includes a reply to Quine’s criticism. Rini explains that this
work was published posthumously, based on notes circulated in 1964. Be-
tween then and his death in 1969, Prior visited UCLA, where Richard Mon-
tague was developing his own application of higher-order logic to the se-
mantics of natural language (Montague, 1974). Rini notes that Montague
employed much more sophisticated mathematical methods than Prior, and
wonders whether Prior abandoned his work which later was published as
(Prior, 1971) as a consequence, maybe considering it outdated. The log-
ical underpinnings of Montague’s theory were developed by Daniel Gallin
(1975), and its linguistic applications were developed further by Barbara
Partee (1975). Through these and further developments, Montague’s work
has had an enduring impact on formal semantics. One consequence is that in
mainstream formal semantics, unlike mainstream metaphysics, higher-order
logic continued to play an important role throughout the late twentieth cen-
tury and into the present day.

5 Debating Higher-Order Metaphysics

The main alternative to the use of higher-order quantifiers in regimenting
talk of propositions, properties and relations in metaphysics is the use of
first-order quantifiers, restricted by certain predicates. For example, instead
of regimenting universal quantification over propositions using 8p . . . , where
p is a variable taking the place of sentences, it may be regimented using
8x(Px ! . . . ), where x is a first-order variable and P is a predicate for
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propositions. The final part V of this volume is devoted to a discussion of
the reasons for and against higher-order metaphysics, given this alternative
way of regimenting metaphysical discourse.

We will be comparing the conceptions of properties and propositions
arising from first-order and higher-order formalizations of metaphysical dis-
course. For clarity, we will use di↵erent terminology for properties and propo-
sitions as understood on each approach, adopting conventions from Button
and Trueman in chapter 7 and Lederman in chapter 9. We use ‘universal’
and ‘e-proposition’ for properties and propositions understood as individuals,
following the first-order approach. ‘Property’ and ‘t-proposition’ we reserve
for the higher-order conception.

On the first-order approach, several additional notions are required. This
is best illustrated using some examples. Recall our first example of proposi-
tional quantification in section 1:

(1) Every truth is grounded in some truth

We formalized (1) as:

(1a) 8p(p ! 9q(q ^ (q � p)))

Note how propositional variables occur here as arguments to the sentential
connectives ^ and !. Since first-order variables cannot do so, a first-order
formalization of (1) requires a truth-predicate T to combine with first-order
variables to produce formulas. Where x and y are first-order variables and
� is now a regular binary predicate, we can formulate this first-order coun-
terpart to (1a):

(1a*) 8x(Px ^ Tx ! 9y(Py ^ Ty ^ y � x))

The interpretation of (1a*) depends on the interpretation of the truth-predicate
T and e-proposition predicate P . Given primitivism about higher-order
quantification, the interpretation of (1a) does not so depend.

The need for further notions can be illustrated using another example
from section 1 concerning aboutness:

(2) A proposition is about an individual just in case the proposition at-
tributes some property to that individual

We formalized (2) as:
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(2b) 8p8x(A(p, x) $ 9Y (p = Y x))

To formalize (2) in a first-order setting, we need a predicate U for (unary)
universals and a regular two-place predicate A for aboutness. We can use
these to construct a sentence of the following form:

8z(Pz ! 8x(Azx $ 9y(Uy ^ z = . . . ))

The . . . will be filled with a singular term for the e-proposition that x in-
stantiates universal y. To obtain such a term, two more devices are needed.
First, a binary instantiation predicate I, with xIy stating that x instantiates
universal y. Second, a propositional abstraction device [. . . ] which turns a
formula into a singular term standing for the e-proposition expressed by the
formula. With this, [xIy] stands for the e-proposition that x instantiates
universal y. We can then formalize (2) as:

(2b*) 8z(Pz ! 8x(Azx $ 9y(Uy ^ z = [xIy]))

The interpretation of (2a*) depends on the interpretation of the e-proposition
predicate P , universal predicate U , instantiation predicate I, and the term-
forming square bracket operator. Given primitivism about higher-order quan-
tification, the interpretation of (2a) does not so depend.

The square bracket notation allows us to talk about e-propositions spec-
ified using complex formulas, like [Fx ^ Gx], the e-proposition that x is F
and G. Similarly, we would like to talk about universals specified using com-
plex formulas, like the universal of being both F and G. In higher-order
languages, � serves the analogous purpose by providing complex predicates
such as �x.Fx ^ Gx. On a first-order approach, the natural way to obtain
singular terms for such universals is to extend the square bracket notation
so that, e.g., [x.Fx^Gx] denotes the relevant universal of being both F and
G.

The di↵erences between the first-order and higher-order approaches are
not merely notational. Consider the question of what it takes to have a
property specified by a complex term. In higher-order logic, a widely en-
dorsed principle is that of �-conversion, according to which, e.g., any y has
the property of being both F and G just in case y is F and y is G:

8y((�x.Fx ^Gx)y $ Fy ^Gy)

More generally, writing �[y/x] for the result of replacing every free occurrence
of x in � by y (and assuming that no occurrence of y becomes bound), a weak
form of �-conversion states:
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(�) 8y((�x.�)y $ �[y/x])

This principle is very natural. It is also included in many standard theories
in higher-order logic based on classical principles of quantification, which are
demonstrably consistent. Now consider the analogous first-order principle
that any y has universal [x.�] just in case �[y/x]:

(�*) 8y(yI[x.�] $ �[y/x])

This is classically inconsistent, by a version of Russell’s paradox, the argu-
ment mentioned in the previous section, by which Russell showed Frege’s
Basic Law V to be inconsistent. To see why, consider the instance of (�*) in
which � is ¬xIx. Abbreviating [x.¬xIx] as r, that instance is:

8y(yIr $ ¬yIy)

Instantiating y with the singular term r, we obtain:

rIr $ ¬rIr

Which is a classical contradiction.
Assuming classical propositional logic, the first-order approach therefore

has to restrict universal instantiation or the counterpart (�*) of (�). No
analogous problem arises for the higher-order approach because there is no
�-term corresponding to [x.¬xIx]. In standard higher-order languages, the
role of I is played by predication. No variable x can occupy its own argument
to form a self-predication xx, whatever the type of x. So although there
are first-order self-instantiation formulas xIx, there are no counterpart self-
predication formulas; hence no negations thereof; hence no contradictory
�-term �x.¬xx.

Providing a consistent and substantial theory of universals and e-propositions
is a di�cult challenge for the first-order approach. In contrast, the higher-
order approach can include unrestricted �-conversion alongside the classical
laws of quantification for quantifiers of all types. However, the higher-order
approach comes with di�cult challenges of its own, which conversely are
not faced by the first-order approach. Christopher Menzel discusses these
challenges in chapter 13, where he also develops a first-order theory of e-
propositions.

One kind of example comes from nominalizations like ‘wisdom’, in sen-
tences such as ‘wisdom is a virtue’. We mentioned these in section 3, in
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the context Button and Trueman’s fictionalist proposal in chapter 7. They
formalize nominalizations using terms of type e. A natural alternative in
higher-order metaphysics formalizes ‘is wise’ and ‘wisdom’ using the same
predicate W of type hei. To say that wisdom is a virtue, one combines W
with a predicate V of type hheii that formalizes ‘virtue’ to yield V (W ). This
formalization runs into di�culties when we consider the claim that one loves
wisdom.

The verb ‘to love’ is most naturally formalized using a predicate L of type
he, ei. We can use this to say one individual loves another. The predicate W
cannot serve as the second argument of L, since it has type hei not e. So we
cannot say using only L and W that one loves wisdom.

One solution is to formalize ‘to love’ using multiple predicates of di↵erent
types, depending on the type of the second argument. But we still cannot
then say that someone loves loving, i.e. that very same loving relation: two
di↵erent loving predicates of di↵erent types must be involved. This seems
to miss the point of the claim to be formalized. It also delivers unattractive
distinctions between di↵erent versions of that claim, made using di↵erent
pairs of loving predicates.

Di�cult questions thus arise for both the first-order and the higher-order
approach. An informed assessment requires detailed developments of both
approaches. Menzel provides one such development of the first-order ap-
proach, laying out a theory of e-propositions in first-order logic. Besides
avoiding the need to complicate first-order logic by the introduction of higher-
order quantifiers, he argues that it also has the advantage of keeping logic
pure: the paradoxes of universals and e-propositions essentially involve non-
logical predicates like I and T , and so are not purely logical matters. Men-
zel’s theory also individuates propositions very finely, a feature he motivates
using attitude ascriptions. Recall that due to the Russell-Myhill argument,
discussed in section 2.5, many proponents of higher-order logic are committed
to individuating propositions relatively coarsely.

In chapter 14, Williamson replies to Menzel in defense of higher-order
metaphysics. Williamson scrutinizes the two aspects just mentioned of Men-
zel’s first-order approach. First, he puts pressure on the distinction between
logical and non-logical matters, and so on the sense in which Menzel’s ap-
proach keeps logic pure. For example, Williamson challenges Menzel’s treat-
ment of the identity relation = but not the instantiation relation I as purely
logical. Second, Williamson questions whether attitude ascriptions really mo-
tivate fine-grained distinctions between e-propositions. Based on a variation
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on the Frege Puzzle cases (discussed also in Lederman’s chapter 9), he argues
that some such cases cannot be explained in terms of distinctions between
the relevant e-propositions. According to Williamson, this undermines the
case for fine-grained e-propositions using attitude ascriptions.

The second critical chapter in part V is chapter 15 by Bryan Pickel. Pickel
addresses the question of how higher-order logic is to be interpreted. He be-
gins by noting an apparent problem for those proponents of higher-order
metaphysics, like Williamson (2003, 2013), who think that first-order quan-
tifiers can be given an unrestricted reading: how can first-order quantifiers
be unrestricted, if they don’t range over what the second-order quantifiers
range over? Pickel focuses on second-order quantifiers, but the point extends
to all other higher-order quantifiers too.

In standard higher-order languages, an identity statement x = y is not
well-formed if the variables x and y are not of the same type. This suggests
a possible response, which is to say that it does not even make sense to say
that first-order quantifiers range over what second-order quantifiers range
over. Pickel probes the motivations for this response. He notes that the
motivation cannot be purely syntactic, since the syntactic limitations of one
language do not prevent a syntactically more inclusive language from being
fully meaningful. The motivation must therefore be semantic, and establish
a kind of semantic incommensurability between first- and second-order vari-
ables. This brings us back to the question discussed in section 1.2: what do
higher-order quantifiers mean?

Pickel considers the primitivism about higher-order quantification, and
notes that it does not alone su�ce for incommensurability. In particular,
he asks why—assuming second-order quantifiers are in good standing—we
cannot further extend second-order logic so that second-order variables can
meaningfully occupy the argument positions of the predicates of first- and
second-order logic, thereby rendering first- and second-order variables com-
mensurable. He considers a number of proposals, including (Florio and Jones,
2021), and finds them wanting.

Williamson responds to Pickel in chapter 16. He agrees with Pickel that
a semantic explanation of second-order quantification in terms of first-order
quantification over universals is a natural hypothesis, which initially is as
plausible as the hypothesis that the syntactic di↵erences between first- and
higher-order quantifiers indicate semantic di↵erences which render their vari-
ables incommensurable. However, Williamson argues that the Russellian
arguments considered above decide the matter, showing that second-order
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quantifiers can’t function as restricted first-order quantifiers. In response to
the question why we cannot allow second-order variables as arguments of
regular predicates, Williamson notes that Pickel’s proposal involves posit-
ing a deep syntactic and semantic divide between second-order variables and
first-order predicates, and questions the reasons for this divide.

If higher-order quantifiers are understood as restricted first-order quanti-
fiers, higher-order metaphysics loses much of its appeal. Menzel and Pickel
both argue that higher-order quantifiers should be understood in this way,
and so argue against higher-order metaphysics. In the final chapter 17,
Agust́ın 5Rayo notes that Menzel and Pickel nevertheless agree with many
proponents of higher-order metaphysics, such as Williamson, that we can
make sense of an unrestricted interpretation of first-order quantifiers. Rayo
develops a more radical alternative: a view which employs higher-order quan-
tifiers without conceding that they can be understood as restricted first-order
quantifiers, while also denying that we can make sense of an unrestricted in-
terpretation of first-order quantifiers.

On Rayo’s view, the domains over which quantifiers, including higher-
order quantifiers, can range are open-ended. In particular, it is open-ended
what propositions and modalities there are. Rayo applies this feature of his
view to provide accounts of some of the puzzling commitments of higher-
order metaphysical theorizing, such as the Prior-Kaplan paradox mentioned
in section 3.

As the discussions in this part of the volume indicate, it is a substan-
tial and di�cult question whether metaphysical theorizing about properties
and propositions is better formalized in first-order or higher-order terms. An
evaluation of the options must be based on their overall fruitfulness, which re-
quires developing both higher-order metaphysics and first-order competitors
as well as possible. This volume is intended to contribute in an open-minded
spirit to this attempt to determine what is ultimately the better framework.

Although the first-order and the higher-order approach are naturally con-
sidered as competitors, it is important to note that they can be combined into
a single system which provides higher-order quantifiers as well as first-order
quantifiers restricted to universals and e-propositions. Indeed, as we have
seen, the inconsistent system of (Frege, 1884, 1893/1903) was of roughly this
form, and a modern such combination can be found in the ‘object theory’ of
(Zalta, 1983, 1988).

Further critical discussion of higher-order metaphysics can be found in
chapter 9 by Lederman and chapter 11 by MacBride. An influential de-
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velopment of the first-order approach can be found in (Bealer, 1982), and
an example of an explicit debate of the merits of this approach compared
to the higher-order approach can be found in (Anderson, 1987) and (Bealer,
1994). A recent criticism of higher-order metaphysics is (Sider, unpublished).
And (Florio, forthcoming) critically examines arguments from expressibility
considerations to higher-order languages, such as those we used to motivate
higher-order metaphysics in section 1.1.
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