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Laws and Initial Conditions

Mathias Frisch†

I discuss two case studies from classical electrodynamics challenging the distinction
between laws that delineate physically possible words and initial conditions. First, for
many reasonable initial conditions there exist no global solutions to the Maxwell-
Lorentz equations for continuous charge distributions. Second, in deriving an equation
of motion for a charged point particle one needs to invoke an asymptotic condition
that seems to express a physically contingent fact even though it is mathematically
necessary for the derivation.

1. Introduction. There is a widespread conception of the respective roles
of so-called “laws” and initial conditions in scientific theorizing according
to which the laws of a theory delineate the worlds that, according to the
theory, are physically possible. Particular possible worlds are then picked
out by particular contingent initial conditions. Thus, on the standard
picture there is a sharp distinction between laws and initial conditions:
The former govern the interrelation between states of the world at one
time and another; these interrelations are a matter of physical necessity.
In the case of the deterministic laws of classical mechanics or electro-
dynamics, the laws determine how a given state must evolve. By contrast,
initial conditions are a purely contingent matter and are not dictated by
the theory itself.

In the possible worlds allowed by the theory’s laws, the laws hold
everywhere and everywhen. In this sense the laws are “global.” Of course,
most of the equations referred to as “laws” in the sciences do not express
universal truths in the actual world and at best govern phenomena in a
limited domain. On the standard picture, this is due to a mismatch between
the possible worlds allowed by the theory and the real world; there is
only an approximate fit between certain regions of some of the possible
worlds allowed by the theory and certain regions of the real world, where
these latter regions constitute the domain of the theory.

†To contact the author, please write to: Department of Philosophy, University of
Maryland, Skinner Building, College Park, MD 20742; e-mail: mfrisch@umd.edu.
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In this paper I will present certain aspects of one of the central theories
of contemporary physics, classical electrodynamics, which suggest that
the standard picture may be inadequate: laws need not be global (in the
sense of permitting of global solutions) and there are principles that are
not easily classified as either laws or initial conditions.

Two preliminary remarks are in order. First, I summarized the standard
picture in ways in which it is often presented, but there is one obvious
way in which the picture is inadequate as it stands. For there are many
examples of equations in physics which appear to be perfectly good in-
stances of physical “laws,” but which impose constraints on the state of
the world at a given time. In fact, we need not look any further than the
laws of classical electrodynamics, the Maxwell equations, for an example
of this. That these equations impose not only dynamical constraints on
how the state of an electromagnetic system changes follows from the order
of the equations. The electromagnetic field has six degrees of freedom at
each point (the components of the electric and magnetic field vectors),
while the equations provide us with eight independent conditions as con-
straints: the two equations for the divergence of the electric and magnetic
fields, which provide one constraint each, and the two vector equations
(Faraday’s and Ampere’s laws), which are equivalent to six equations
relating individual components of the fields to components of the curl of
the field.

Several years ago in a paper at the PSA, Professor Sklar argued against
the idea that “the initial state of the world at a given time is purely
contingent” (Sklar 1991, 553). But if that was all there was at issue, then
the case against the standard picture could be made quite easily. Rather,
what is at stake is whether the role of the so-called “laws” of a theory is
to delineate the range of what is physically possible, independently of
whether the lawful constraints are diachronous or synchronous con-
straints, and whether the role of the laws sharply contrasts with that of
merely contingent initial conditions, which can be specified freely within
the bounds set by any synchronous lawful constraints.

Second, the type of mathematical problem usually used to motivate the
standard picture is that of an initial-value or Cauchy problem. It is as-
sumed that the laws take the form of ordinary partial differential equations
which can be solved by specifying the state of the world on an appropriate
initial-value surface—the Cauchy data. Phenomena in classical electro-
dynamics are not usually, however, represented in terms of a pure initial-
value problem. Instead the electromagnetic field associated with a collec-
tion of charges is usually given in terms of a retarded-field problem, where
the field at each point P is determined by the states of charged particles
at the points of intersection of their trajectories with the backward light
cone with vertex at P. This means that the total field is determined by
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the field at the initial time t in conjunction with the entire trajectories
(from t onward) of all the charged particles present.

One might suspect that the reasons for choosing a retarded-field rep-
resentation with trajectories given rather than one in terms of a pure
initial-value problem are entirely pragmatic, since it is easier simply to
assume the trajectories of the charges than to try to determine the tra-
jectories through an initial-value problem as well. But that is not the main
reason. Rather phenomena involving charged particles and electromag-
netic fields are not represented in terms of pure initial-value problems,
because there does not appear to be a fully satisfactory and consistent
theory governing the mutual interaction of charges and fields. Generally,
the effect of external fields on the motion of a charge is taken to be given
by the Lorentz force law, which is treated as a Newtonian force law.
However, for finitely charged discrete particles the Lorentz force law is
strictly inconsistent with the Maxwell equations and the principle of en-
ergy conservation. I will discuss a rival force law below, but the standard
response to this problem (when we are interested in the dependence of
the field on the motion of charged particles) is to assume that the trajec-
tories of all charges are somehow given and to ignore the question as to
how the field affects the motion of a charge. That is, particle trajectories
together with the initial value of the field are treated as contingent inputs
into the Maxwell equations, which then determine the value of the field
everywhere.

The internal inconsistency of the laws or basic equations of classical
electrodynamics seriously calls into question the standard view of laws as
delineating coherent classes of physically possible worlds. I discuss this
issue in Frisch 2005. Here I want to focus on some other aspects of classical
electrodynamics here and show that even arguably consistent versions of
classical electromagnetism do not fit the standard account of laws and
initial conditions.

2. Continuum Electrodynamics. Unlike a theory of discrete finitely
charged particles, classical electrodynamics of continuous charge distri-
butions or charged fluids is consistent. (The difference from the particle
theory is that self-interactions, which are responsible for the inconsistency
in the particle theory are infinitesimal for infinitesimal fluid “particles.”)
For that reason some would like to think of the continuum theory as the
fundamental or basic theory of electromagnetism. But even this seemingly
so well-behaved theory spells trouble for the standard view.

For a charged fluid one can formulate a pure Cauchy problem for the
full system of the Maxwell-Lorentz equations—that is, for the Maxwell
equations, governing the dependence of the fields on the charge distri-
bution, and the Lorentz law, governing the motion of the charge distri-
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bution in external fields (Parrott 1987, sec. 5.1–5.3). More specifically,
one can show that initial conditions consisting of the initial fields

, and the velocity of the fluid determineE(t p 0, x) B(t p 0, x) v(t p 0, x)
a unique solution to the Maxwell-Lorentz equations on an open subset
of R4, if one assumes that satisfies . (TheB p B(t p 0, x) ∇ 7 B p 00 0

charge density r need not be introduced separately, but is defined via
Coulomb’s law , where is the factor familiar from rel-∇ 7 E p 4pgr g(v)
ativity theory.) Unlike the Maxwell equations alone, the Maxwell-Lorentz
equations are only quasi-linear, but nevertheless the theory seems to fit
the standard view rather well. The initial conditions can be freely chosen,
with one constraint, and the laws then determine how a “world” with
given initial state has to evolve. In other words, the Maxwell-Lorentz
equations seem to delineate the class of electrodynamically possible
worlds, where different worlds are picked out by different contingent
initial conditions.

The problem, however, is that standard existence and uniqueness proofs
only ensure that there are local solutions to the Maxwell-Lorentz equa-
tions, defined on some open set , . And there is in factt ! t ! t r ! r ! r1 2 1 2

a large class of seemingly physically reasonable initial conditions for which
global solutions to the equations can easily be shown not to exist, namely
spherically symmetric charge distributions with zero initial velocity for
which the fluid density thins out sufficiently rapidly as .r r �

In this case each fluid particle will experience an acceleration propor-
tional to , where Q is the total charge inside the sphere with radius2Q/r
r (centered at the origin) and is constant on the worldline of the particle.
Since the initial velocity is zero, fluid particles will move outwards for

with ever increasing velocity and . functions as thet 1 0 r(�) p � Q/r
potential energy of a fluid particle at distance r from the origin. If a
particle has a higher potential energy at , then it will end up havingt p 0
a higher terminal velocity . Now consider two fluid particles 1 and 2v(�)
with , such that the inner particle has a higher potential energy;r (0) ! r (0)1 2

that is, we assume that . This will be the case whenever theQ /r 1 Q /r1 1 2 2

charge density thins out sufficiently rapidly with r, so that the difference
in the total charges contained in the spheres with radii r1 and r2 is more
than made up for by the increase in radius. Intuitively, the inner particle
will have greater potential energy if the total charge contained in the sphere
will increase only slightly as the radius of the sphere increases appreciably.

Since particle 1 starts inside the sphere of particle 2, but its terminal
velocity is larger than that of particle 2, there must be a time t* atv (�)1

which . That is, if we take two particles with same angularr (t*) p r (t*)1 2

coordinates, the worldlines of the particles intersect, which is impossible.
For, first, this contradicts the assumption that the potential energy of
particle 1 is larger than that of 2 or that Q is constant on the worldline



700 MATHIAS FRISCH

of a charge (which is a consequence of the Maxwell equations). And,
second, if two worldlines of infinitesimal fluid particles were to intersect,
the velocity of the fluid would not be well defined at that point, since two
different velocity vectors would be associated with one and the same point.

The upshot of the discussion is that there are no global solutions to
the Maxwell-Lorentz equations for the kind of case we discussed; the
solutions cannot be extended beyond some time , and (since thet* 1 0
equations are time symmetric) backward in time beyond a time .�t* ! 0
What are we to conclude from this? Given how the problem arises, it
seems plausible that the problem is not limited to the specific case discussed
and that intersecting worldlines are a typical feature characterizing many
more types of initial conditions than the ones we discussed. One possible
response might be to argue that the case is just one further example that
shows that initial conditions cannot be chosen as freely as we might
initially have thought. This is a point familiar from discussions of closed
causal loops in general relativity (see Sklar 1991). In that context it is
often argued that the impossibility of engineering the death of one’s own
grandfather, for example, does not show that causal loops are impossible,
but only that the relevant initial conditions could not possibly obtain and,
hence, that there is an added constraint of self-consistency on possible
solutions to the field equations. Applied to our case, one might argue that
the upshot of my discussion ought to be that what appear to be physically
reasonable initial conditions are shown to be physically impossible after
all. But in the current context this response does not seem all that plau-
sible. Unlike in the case of closed causal loops, it is not clear how the
breakdown of the solution in the future could have any effects, as it were,
on an experimenter’s effort to set up a spherically symmetric charge dis-
tribution that thins out relatively rapidly, for example. How could the
breakdown of the solutions in the future affect our ability to prepare a
state that is electromagnetically possible locally?

Parrott suggests that the possibility of intersecting worldlines calls into
doubt whether the retardation condition is consistent with the Maxwell-
Lorentz equations, since, as he says, retarded solutions must be defined
on the entire backward light cones of each field point (Parrott 1987, 187).
The worry seems to be this. According to the retarded-field representation
the field at each point depends on what happens on the entire backward
light cone erected at that point. So if there is a finite time past�t* ! 0
which the solution cannot be extended, then the retarded solution is not
well defined. But the problem seems to lie more directly with the non-
existence of global solutions. For if we set up a local initial-value problem
for a finite region of spacetime, the retarded solution needs to be defined
only within that region, since the contribution of charges in the past of
the region will be encoded in the incoming field. Thus, if we rest content
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with only local solutions of the Maxwell-Lorentz equations, there is no
problem with the retardation condition.

For a wide class of intuitively physically reasonable initial conditions
the Maxwell-Lorentz equations have no global solutions. That is, there
are no electrodynamically possible worlds in which any of these initial
conditions hold. This does not mean, however, that continuum electro-
dynamics is practically useless. The theory is useful since it allows us to
construct local models of the phenomena, even in situations where initial
conditions such as the ones discussed above are appropriate.

3. The Asymptotic Condition in Particle Electrodynamics. The previous
example challenged the view that the laws of a theory need to delineate
possible worlds, or global models, in order to be used successfully. The
next case I want to discuss is meant to call into doubt that the division
between physically necessary laws and contingent boundary conditions is
exhaustive. In particle electrodynamics the traditional Lorentz force law
is inconsistent with the Maxwell equations, since it ignores any effect that
the radiation field of a charged particle should have on the motion of the
charge. The Lorentz-Dirac equation is an alternative equation of motion
that includes a radiation reaction term (see Parrott 1987 and Rohrlich
1990 for detailed discussions of the Lorentz-Dirac theory). This equation
is unusual in that it is a third-order differential equation of motion. Thus,
to solve the equation one needs to specify three initial conditions, such
as the initial acceleration in addition to initial position and velocity (and
not only the customary two conditions as in the Newtonian case). One
odd feature of the Lorentz-Dirac equation is that it allows for so-called
runaway solutions according to which a charge can accelerate even in the
absence of any external forces and then continue to accelerate at an ever
increasing rate. These solutions are usually excluded by imposing as one
of the “initial” conditions the condition that the acceleration of the charge
should vanish at future infinity. Imposing this condition then allows us
to reduce the order of the equation and derive a second-order integro-
differential equation of motion, which can be solved by assuming standard
initial conditions.

What I am interested in here is how we should think about the first
condition—that of zero final acceleration. The case is unusual in that the
equation is being solved by assuming a mixture of initial and final con-
ditions—that is, the final acceleration in conjunction with initial position
and velocity—but aside from that one might think that the standard
account should apply: the initial conditions are contingent sets of con-
ditions that pick out specific possible worlds from the set of worlds defined
by the Lorentz-Dirac equation. Yet a first indication that this cannot be
the whole story is given by the reasons typically offered for choosing
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. The condition is chosen in order to avoid the runaway solutions,a(�) p 0
which are assumed to be unphysical. That is, the vanishing acceleration
at future infinity is not understood as one among many physically possible
values for the acceleration, but as the only possible value; other values
do not result in physically possible worlds.

In what sense is a nonzero terminal acceleration physically impossible?
The laws of the theory from which the Lorentz-Dirac equation is derived
are the Maxwell equations and the principle of energy-momentum con-
servation. Clearly, a nonzero acceleration does not conflict with the Max-
well equations and arguably is even consistent with energy conservation
(although this is a delicate issue to decide). Rather, one reason for ex-
cluding nonzero accelerations seems to be that they conflict with some
intuitive assessment of what a physically reasonable solution should look
like. Thus, one might want to characterize the situation as follows: Since
the Lorentz-Dirac equation permits unphysical solutions it is incomplete.
Adding the asymptotic condition completes the theory. But thisa(�) p 0
suggests that the condition is more than a mere de facto condition, despite
the fact that it looks like a standard contingent “initial” condition.

But there is a deeper reason for demanding that the acceleration at
infinity vanish; without assuming the condition the Lorentz-Dirac equa-
tion could not be derived. The equation is derived by considering the
energy balance for a tube surrounding a portion of the world line of a
point charge as the radius of the tube is shrunk to zero. A problem with
this derivation is that the field associated with the charge itself is infinite
at the location of the charge and the energy integrals over the “caps” of
the tube diverge. There appears to be no procedure available for dealing
with this infinity in general. In the special case, however, where both the
initial and final velocities of the particle are constant, there is a plausible
way to proceed. In this case the difference between the integrals over the
caps looks formally like a difference between particle four-momenta,

, where mf is the diverging integral that is identified as am u � m uf out f in

“field mass” of the particle and uout and uin are the particle’s final and
initial four-velocities. The infinity can then be “swept under the rug” by
combining the field mass with the so-called “bare” mass of the particle,
assuming that the total empirically observable mass is finite: m ptotal

. This procedure is known as mass renormalization.1m � mf bare

The assumption that the initial and final acceleration vanish is generally
motivated by assuming that one is dealing with a scattering process, and

1. The equation of mass-energy conservation should read (integral over sides of the
tube) � (integral over caps) � . The mass renormalization con-m u � m u p 0bare out bare in

sists in combining the integral over the caps with the momenta associated with the
bare mass, to yield (integral over sides of the tube) � .m u � m u p 0ren out ren in
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looks at the initial or final acceleration at past and future infinity, re-
spectively. That is, one assumes that the charged particle comes in from
spatial infinity, interacts with a localized external field, and then flies off
again towards spatial infinity. It then seems plausible that far enough
away from any field the acceleration ought to vanish, and that therefore
the scattered particle will be “asymptotically free”—that is, the particle
will have asymptotically constant velocity. The important point here is
that the mass renormalization cannot be performed, and hence the Lor-
entz-Dirac equation cannot be derived, unless one assumes that the ac-
celeration vanishes asymptotically, because otherwise the diverging inte-
grals over the caps of the tube do not have the right mathematical form.
That is, the runaway solutions do not merely conflict with what might
be an intuitively obvious physical constraint, but violate a condition nec-
essary for deriving the equation.

What, then, is the status of the condition that particles are asymptot-
ically free in the theory? One might think that it has the status of a purely
contingent “initial” condition. Similarly to the case of position and ve-
locity, zero initial (or final) acceleration is just one of infinitely many
possible values for the acceleration. But in the possible worlds framework,
a contingent fact is one that holds in some physically possible worlds but
not at all. That is, there ought to be some worlds (in which the laws of
the theory hold) that are scattering worlds, and others that are not. Yet
since it seems to be impossible to derive an equation of motion for a
charged particle from the Maxwell equation without assuming that the
particle’s acceleration vanishes at infinity, there are no well-defined Max-
wellian worlds with charged particles in which the condition does not
hold.

Now this suggests that a vanishing acceleration at infinity is physically
necessary. But this also does not seem like the right thing to say. Why,
for example, one might ask, should a spatially infinite world with a back-
ground field that is constant throughout space be physically impossible?
Or why shouldn’t a world be possible in which two charges are perma-
nently attached to each other through a spring (so that they never move
infinitely far away from each other)? In both cases there will be a field
force acting on a charged particle at infinity. One reason for thinking that
such worlds should be physically impossible, on the standard account,
would be if these worlds violated the Maxwell equations (or perhaps
energy-momentum conservation). But this is not obviously so. Rather
than these worlds violating the Maxwell equations, we simply would not
know how to apply the Maxwell equations consistently to these worlds,
since we would not know what to do with the infinite self-fields associated
with the charged particles. Moreover, if we thought that such fields were
physically impossible, we would be forced to accept the counterintuitive
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conclusion that constant background fields are physically possible in
charge-free worlds but not in worlds which also contain a charged particle.

Physicists themselves do not seem to think that a vanishing acceleration
at infinity is physically necessary, for some of the standard applications
of the Lorentz-Dirac equation concern models in which the condition is
not satisfied. Examples include a charge undergoing uniform acceleration
(Rohrlich 1990, sec. 6.11) or a charge on a circular orbit (Rohrlich 1990,
sec. 6.15). Thus, even though the asymptotic condition is necessary for
deriving the Lorentz-Dirac equation, it is not treated as an assumption
that all the systems to which the equation can be applied need to satisfy.
Curiously enough, then, there are models governed by the Lorentz-Dirac
equation which violate the condition of vanishing acceleration. Of course,
according to the standard picture this should be impossible, for these
models do not satisfy one of the conditions that need to be satisfied for
the equation to be applicable. As far as the condition’s modal status is
concerned, however, since there are models in which the asymptotic con-
dition is not satisfied, the condition is not physically necessary.

I want to suggest that the assumption is best thought of as a condition
that is mathematically necessary, in a certain sense. It is an assumption
without which the Maxwell equations could not be consistently applied
to systems of charged particles. As such, the assumption tells us something
about the mathematical modeling of the behavior of charged particles,
while the connection of the condition to actual systems that may be mod-
eled with its help is rather murky. Take the case of a charged particle in
a central field. The relevant idealized mathematical model that can be
derived from the Lorentz-Dirac equation does not satisfy the asymptotic
condition. Yet Rohrlich argues that actual charged particles in a central
field, unlike the model, do satisfy the condition, since no actual system
has an imposed force doing work over an infinite period of time (Rohrlich
1990, 136). Or consider a particle undergoing uniform acceleration. In his
treatment Rohrlich (1990, sec. 6.11), first solves the equation of motion
for this case, where the solution violates the asymptotic condition, and
then argues that due to the asymptotic condition uniform acceleration is
possible only for a finite time interval. In both these examples the models
violate a condition that needs to be made in deriving them; but also in
both cases the asymptotic condition is not ignored completely, but is
invoked in discussing the model-world relation and is here treated as a
contingent fact.

The asymptotic condition is mathematically necessary, I want to submit,
in a manner similar to that in which certain continuity or smoothness
assumptions are necessary in certain derivations. For example, in deriving
the Lorentz-Dirac equation one also needs to assume that all relevant
functions are analytic—that is, infinitely differentiable. This is not, how-
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ever, treated as an assumption about the world; for the derivation one
needs to assume neither that it is contingent nor that it is physically
necessary that actual fields be infinitely differentiable. And as in the case
of the asymptotic condition, the analyticity requirement need not even be
satisfied by all the models of the theory in which physicists are interested.
Thus, one stock toy model of the theory is a charge subject to a step
function field force. The analyticity assumption is a mathematical mod-
eling assumption that may or may not receive a physical interpretation.
What may be surprising is that an assumption concerning “initial con-
ditions” can play a similar role. There really seems to be no room for this
kind of condition in the standard picture. The distinction between con-
tingent initial conditions and physically necessary laws appears to be
exhaustive: Either all possible worlds allowed by classical point electro-
dynamics satisfy the asymptotic condition—then the condition is physi-
cally necessary, according to the theory—or there are some electromag-
netically possible worlds that do not satisfy the condition and some that
do—then the condition is contingent. But the status of the asymptotic
condition appears to fit neither. In order to escape this dilemma, I want
to suggest that we should give up the view that models of the phenomena
in physics are stand-ins for physically possible worlds.

Another way to make this point is this. For the standard picture to be
applicable, there needs to be a unique answer to the question what the
laws of the theory are. But the electrodynamics of point charges is treated
ambiguously in that respect. If the laws of the theory are the Maxwell
equations and the principle of energy conservation (and the Lorentz-Dirac
equation has only derivative status) then all mathematical models of that
theory have to satisfy the asymptotic condition. By contrast, if the Lor-
entz-Dirac equation is treated as a law in its own right and we ignore
how we initially arrived at the law, then the theory can have models that
violate the asymptotic condition. But I think that the standard picture is
mistaken in demanding a unique answer to this question. Thus, I want
to propose a different picture in its stead.

4. Conclusion. We have seen that even perfectly “respectable” laws, such
as the Maxwell-Lorentz equations in continuum electrodynamics, need
not have global solutions and that some conditions used in constructing
mathematical models of electromagnetic phenomena do not seem to fit
the contingent-necessary dichotomy very well. I think we can make sense
of both of these features of scientific theorizing, if instead of thinking of
laws as delineating the class of possible worlds allowed by a theory, we
think of the laws as tools for model-building. On this conception, the
primary aim of physical theorizing is to enable us to build mathematical
models of the phenomena in which we are interested. This means, for
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one, that a theory need not provide us with global models to be successful.
Most, if not all, electromagnetic phenomena we are interested in occur
in finite regions of spacetime. Models of such phenomena can be adequate
even if they cannot be extended to all of spacetime. But it also calls into
question what, if any, modal force should be associated with the so-called
“laws” of a theory. On the conception I want to advocate here, the as-
sumptions we make in constructing mathematical models of the phenom-
ena range from specific assumptions that do not carry over to other con-
texts to more general, more robust assumptions that generalize to a wide
variety of contexts. The latter type of assumptions often earns the hon-
orific “law,” but as I see it there is no sharp distinction between the latter
and the former. Whether all or just some models satisfy the asymptotic
condition teaches us something about the modeling of electromagnetic
phenomena, but not about metaphysics. Moreover, not all assumptions
are motivated on purely empirical grounds. Rather, some assumptions,
like the asymptotic condition, are adopted for mathematical reasons. And
such assumptions, as we have seen, need not even consistently apply to
all models; there is no general prohibition against “inconsistent modeling.”
Of course one needs to be careful in constructing models that violate such
a condition, but I am not sure one can say more than the platitude that
(echoing Duhem) physicists have to make use of their good sense in such
applications.
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