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Abstract

Timothy Williamson has argued that in the debate on modal ontology,
the familiar distinction between actualism and possibilism should be re-
placed by a distinction between positions he calls contingentism and neces-
sitism. He has also argued in favor of necessitism, using results on quanti-
fied modal logic with plurally interpreted second-order quantifiers showing
that necessitists can draw distinctions contingentists cannot draw. Some
of these results are similar to well-known results on the relative expressiv-
ity of quantified modal logics with so-called inner and outer quantifiers.
The present paper deals with these issues in the context of quantified
modal logics with generalized quantifiers. Its main aim is to establish two
results for such a logic: Firstly, contingentists can draw the distinctions
necessitists can draw if and only if the logic with inner quantifiers is at
least as expressive as the logic with outer quantifiers, and necessitists can
draw the distinctions contingentists can draw if and only if the logic with
outer quantifiers is at least as expressive as the logic with inner quantifiers.
Secondly, the former two items are the case if and only if all of the gen-
eralized quantifiers are first-order definable, and the latter two items are
the case if and only if first-order logic with these generalized quantifiers
relativizes.

1 Logic and Ontology

In this first section, the philosophical and technical background is reviewed and
the necessary formal definitions are stated. I start with the distinctions between
actualism and possibilism and between contingentism and necessitism, as well
as the argument for necessitism given in Williamson (2010). I then describe gen-
eralized quantifiers, quantified modal logic, and the class of logics resulting from
adding generalized quantifiers to quantified modal logic. The second section will
be devoted to the statement and proof of the central theorem of the paper, which
I call the equivalence theorem. The third section will concern the philosophical
relevance of the result, and the fourth section will give a concluding summary.

1.1 Modal Ontology

A central question in the metaphysics of modality is an ontological question.
It is often put thus: Are there objects that are possible but not actual? This
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question is then used to distinguish two positions: Those who answer Yes are
called possibilists; those who answer No are called actualists.

Williamson (2010) criticizes this question, and consequently also this distinc-
tion, as obscure. His main complaint is that it is unclear what actual and possible
mean in this instance. Instead of trying to clarify these terms, Williamson refor-
mulates the question as follows: Is necessarily everything necessarily something?
He also uses this question to demarcate two positions: Those who answer Yes
he calls necessitists; those who answer No he calls contingentists. More on these
positions can be found in Williamson (2012).

The main aim of Williamson (2010) is to argue in favour of necessitism by
showing that there are certain distinctions only necessitists can draw, although
they seem sensible without a prior commitment to necessitism. He argues for
this along the following lines: For every sentence, there is a second sentence
that is neutral in the dispute between necessitism and contingentism such that
it follows from contingentism that the two sentences are equivalent. Therefore,
the necessitist can map everything the contingentist can say to something the
contingentist must consider equivalent, and which is independent of their dis-
pute. Further, the converse is not the case; there are sentences such that no
sentence is both neutral in the dispute and equivalent to the first, given ne-
cessitism. Therefore, if the necessitist utters such a sentence, the contingentist
cannot map it to a sentence the necessitist must consider equivalent, and which
is independent of their dispute.

Williamson argues for this using so-called chunky-style versions of contingen-
tism and necessitism, which are formulated using a property he calls chunkiness.
Chunkiness can roughly be understood as being grounded in the concrete, and
it plays a similar role in chunky-style contingentism and necessitism as exis-
tence plays in actualism and possibilism. Chunky-style contingentism adds to
the denial of the claim that necessarily, everything is necessarily something, the
assertion that necessarily, everything is chunky, while chunky-style necessitism
adds to the assertion that necessarily, everything is necessarily something, the
denial of the claim that necessarily, everything is chunky. We can motivate the
use of the chunky-style positions by considering how a necessitist can draw the
distinction a contingentist can draw with an existential claim. To do so, they
have to restrict existential quantification to a domain of things about which they
are not in dispute with the contingentist, and this is what the property of chunk-
iness makes possible. In the following, talk of necessitism and contingentism will
always be about chunky-style necessitism and contingentism.

To be able to give formal proofs for his claims about the existence of map-
pings for contingentists and necessitists, Williamson uses a quantified modal
logic along the lines of Kripke (1963). He represents the positions of contin-
gentism and necessitism using two auxiliary principles called Aux[Con] and
Aux[Nec]. These principles are not straightforward formalizations of contingen-
tism and necessitism, as it turns out that necessitists can define their mapping
for a position that just assumes that necessarily, everything is chunky. Similarly,
to enable contingentists to at least define their mapping in first-order quantified
modal logic, necessitists are taken to assume that everything is possibly chunky,
and necessarily, whatever has a property or stands in a relation is chunky, in
addition to their position that necessarily, everything is necessarily something.
Using C to represent chunkiness, the auxiliary principles can therefore be stated
as follows:
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Aux[Con] ⇤8xCx

Aux[Nec] ⇤8x⇤9y(x = y) ^ 8x⌃Cx ^
V

R ⇤8x̄
⇣
Rx̄ !

V
j Cxj

⌘

In Aux[Nec], the conjunction in the third conjunct ranges over all non-logical
relation symbols R – Williamson assumes that we are working in a language
with a finite signature – and x̄ indicates a sequence of variables.

Being neutral in the dispute between necessitism and contingentism is for-
malized by defining a formula to be neutral if it is equivalent to one in which
all quantifiers and predications are restricted to C. Here, a predication Rx̄ is
restricted to C if it occurs in a conjunction of the form Rx̄ ^

V
j Cxj . For each

formula ', let 'Con be ' with all of its quantifiers and predications restricted
to C. Williamson proves that the function that assigns 'Con to every formula
' can be used as the necessitist’s mapping, since for every ', 'Con is neutral
and Aux[Con] entails ' $ '

Con . In the following, I will sometimes say that '
is equivalent to 'Con , given contingentism, which is meant to say the same.

Williamson notes that an analogous mapping for the contingentist does not
exist if the quantified modal logic contains only the modal operators ⌃ and ⇤.
However, he proves that in first-order quantified modal logic, it can be defined
once two operators " and # are added to the logic. Figuratively speaking, "
allows us to store the world of evaluation, and # allows us to retrieve it. This is
used in the central clause of the recursive definition of the mapping ·Nec , which
assigns to each formula one that is neutral and equivalent to the first, given
necessitism:

(9x')Nec ="⌃9x
�
Cx ^ #'Nec

�

A side note on these operators: They derive from the formalization of the
temporal indexicals “once” and “then” given in Vlach (1973). Modal analogs
of Vlach’s operators were used in Bricker (1989) and Forbes (1989) in a way
similar to Williamson’s use of " and #. By incorporating ideas presented in
Hodes (1984), Williamson gives " and # a richer semantics, which solves some
problems noted in Forbes (1989). A di↵erent set of operators that achieve the
same has also been described in Correia (2007). Interestingly, both Williamson’s
as well as Correia’s extensions were anticipated in Vlach (1973, appendix A).

The crucial result in Williamson (2010) is that ·Con can be extended to
second-order quantifiers on the plural interpretation (as described in Boolos
(1984)), but that this is not the case for ·Nec , even if the logic contains " and
#. That is, in quantified modal logic with second-order quantifiers on the plural
interpretation, there is a formula such that there is no neutral formula which is
equivalent to the first, given necessitism. One such formula is the following:

(34) 9X(9xXx ^ 9x¬Xx ^ 8x8y(⌃Rxy ! (Xx ! Xy)))

It says that there are some things, of which some but not every thing is one,
which can have R only to themselves (adapted from Williamson (2010, p. 705)).
The distinctions necessitists can draw with (34) under given interpretations of R

seem sensible independently of necessitism, although they assume necessitism to
express it. Since there is no neutral formula equivalent to (34) given necessitism,
contingentists are unable to draw these distinctions.
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It is important that the second-order quantifiers are interpreted plurally,
since Williamson’s formal result uses the fact that what a bound second-order
variable applies to does not vary from world to world. This is not plausible if
second-order quantifiers range over properties: That John has some property
does not imply that he necessarily has that property. But it is plausible for
plural quantification: If there are some things of which John is one, then he is
necessarily one of them.

This concludes my sketch of Williamson’s argument. It raises many philo-
sophical questions: Is the metaphysical dispute on modal ontology really better
characterized in terms of contingentism and necessitism, rather than in the more
traditional terms of actualism and possibilism? If so, are the relevant positions
really the chunky-style versions of contingentism and necessitism, rather than
the non-chunky-style versions? Is it enough to show that contingentists are un-
able to draw certain distinctions in a particular formal language, rather than
in natural language, or in any one of a philosophically relevant class of formal
languages?

Some of these philosophical questions raise related technical questions. In
the discussion on actualism and possibilism, results have been used which con-
cern the relative expressivity of quantified modal logics with two di↵erent kinds
of quantifiers, called inner and outer quantifiers. In many respects, these results
resemble Williamson’s results described above. For the philosophical question
on the correct characterization of the metaphysical dispute, it may be interest-
ing to ask the technical question how these kinds of results relate. Similarly, the
philosophical question concerning Williamson’s use of his particular formal lan-
guage raises the technical question in which quantified modal logics the analogs
of his results hold.

It is these technical issues that I will be concerned with in this paper. They
can be summed up in the following two questions:

(Q1) What is the relation between Williamson’s results and the more tradi-
tional results on the relative expressivity of logics with inner and outer
quantifiers?

(Q2) How stable are Williamson’s results across di↵erent quantified modal log-
ics?

It would be nice if we could give a general answer to these questions for
all philosophically relevant quantified modal logics. Although nice, this would
be very di�cult. It would be di�cult from a philosophical perspective, since
we would have to delineate the philosophically relevant quantified modal logics,
and it would also be di�cult from a technical perspective, since we would have
to work in a framework in which all of them can be represented, and then prove
general results about them.

I therefore work with a compromise in this paper; a range of logics that is
wide enough to yield an interesting amount of variety, but narrow enough to be
manageable. It is the range of logics obtained by adding generalized quantifiers
to the first-order modal logic used by Williamson. One important feature of
generalized quantifiers that makes this range manageable is that they use first-
order variables, whose interpretation is already settled by the first-order case.
To be able to state and settle (Q1) and (Q2) for this range of logics, I will now
introduce generalized quantifiers as well as quantified modal logic formally.
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1.2 Generalized Quantifiers

I start by introducing generalized quantifiers. Generalized quantifiers as I will
use them were introduced in Lindström (1966) as a generalization of the defini-
tion given in Mostowski (1957), which is why they are sometimes called “Lind-
ström quantifiers”. I roughly follow Peters and Westerst̊ahl (2006); for a concise
introduction to generalized quantifiers, see Westerst̊ahl (2011).

Syntactically, generalized quantifiers can be used similarly to the first-order
quantifiers 8 and 9. Simple generalized quantifiers bind one variable and operate
on one formula just as 8 and 9 do, but more complex ones can also bind several
variables and operate on several formulas. An example of the simple kind is the
generalized quantifier Q0 which is interpreted in a way such that Q0x' is true
in a model if and only if there are are infinitely many things in its domain that
satisfy '(x).

To extend first-order logic with this quantifier, it would be straightforward
to write down this condition slightly more formally in the form of a clause of
recursive truth-conditions. But to give uniform truth-conditions for generalized
quantifiers, one can also define Q0 to be the function that maps every set D

to the set Q0D of infinite subsets of D. Then we can define Q0x' to be true
in a model with domain D if and only if the set of elements of D satisfying
'(x) is in Q0D. This suggests that we can define a generalized quantifier to be
a function that maps every set to a set of its subsets. And in fact, this is almost
correct; there are only two things that have to be adjusted: Firstly, we want
truth in a model to be invariant under isomorphisms, so we have to make sure
that generalized quantifiers preserve bijections between sets. Secondly, we have
to generalize the definition to generalized quantifiers binding several variables
and operating on several formulas. This gives us the following definition:

A generalized quantifier of type hn1, . . . , nki is a function Q that maps every
set D to a k-ary relation over nj-ary relations over D such that the following
condition is satisfied:

(Isom) For any bijection f from a set D to a set D

0 and relations R1, . . . , Rk of
arities n1, . . . , nk over D, QD(R1, . . . , Rk) if and only if QD0(f(R1), . . . ,
f(Rk)).

Here, f is lifted to relations in the obvious way: f(ō) 2 f(R) if and only if
ō 2 R, where f(ō) is hf(o1), . . . , f(on)i. QD(R1, . . . , Rk) is meant to express
that R1, . . . , Rk stand in the relation QD.

Although we will later be concerned with quantified modal logics with gener-
alized quantifiers, I first define the result of adding a set of generalized quantifiers
Q to first-order logic. To fit the following discussion of quantified modal logics
best, I only consider signatures containing a finite number of relation symbols of
di↵erent arities, and no individual constants or function symbols. Formulas are
obtained from these relation symbols and a countably infinite set of first-order
variables in the usual way, using the logical constants =, ¬, ^ and 8. As usual,
other common operators such as _ or 9 will be used as syntactic abbreviations.
To add generalized quantifiers, we introduce the following syntactic rule:

If Q 2 Q is of type hn1, . . . , nki and for each j  k, 'j is a formula and
x̄j is a sequence of nj variables, then Qx̄1 . . . x̄k('1, . . . ,'k) is a formula.

For brevity, I will also write Q¯̄
x'̄ for Qx̄1 . . . x̄k('1, . . . ,'k). Note that we just

use the metalanguage symbol “Q” which denotes a generalized quantifier again
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in the formal syntax of our logic, where it is interpreted using that generalized
quantifier. In practice, this will not lead to any confusion. With this, we can de-
fine the syntax of our language: Call all the expressions that can be constructed
using the usual rules for the construction of first-order formulas and the above
rule for generalized quantifiers LQ-formulas. Such a formula is called closed or
a sentence if all occurrences of variables in it are bound. Finally, let LQ be the
set of closed LQ-formulas.

For the semantics, we interpret LQ-formulas on structures of the form A =
hD, ei, where D is a set and e is a function that maps every relation symbol
R to a set e(R) ✓ D

n, n being the arity of R. Note that D may be empty.
We write |A| for D and R

A for e(R). I call such structures models, and use the
term structure more freely. An LQ-formula ' is interpreted relative to a model
A and an assignment a for A. Such an assignment is a partial function that
maps variables to elements of |A|. The partiality is required for models with
empty domains. We write a[o/x] for the assignment that maps x to o and every
variable y in the domain of a besides x to a(y), and extend this notation to
tuples in the obvious way, writing a[ō/x̄]. Truth of a formula is only defined
relative to assignments whose domain includes all free variables of the formula
in question. A formula ' being true in a model A relative to an assignment a

is written A, a ✏ ', and the truth relation ✏ is defined recursively in the usual
manner, with the following clause for generalized quantifiers Q 2 Q:

A, a ✏ Q¯̄
x'̄ i↵ Q|A|

�
'1(x̄1)A,a

, . . . ,'k(x̄k)A,a
�

where 'j(x̄j)A,a = {ō 2 |A|nj : A, a[ō/x̄j ] ✏ 'j}.
Truth of a sentence relative to a model is derived from this as follows:

A ✏ ' i↵ A, a ✏ ' for all assignments a

Besides the syntax and semantics of first-order logics with added generalized
quantifiers, we also need a number of notions to talk about these kinds of logics.
As we will need the same notions again for the quantified modal logics discussed
later, I will introduce an abstract format in which a logic can be specified, and
define these notions for any such logic. In abstract model theory, logics are taken
to be specified by a set of sentences and a truth relation; see, e.g., Barwise and
Feferman (1985). But for these logics, it is assumed that their sentences are
interpreted relative to models as defined above, and the quantified modal logics
that we will work with later use a di↵erent kind of models. Therefore, we will use
a more general notion of a logic here, namely as a triple hL,X,✏i, where L is a
set (the set of sentences), X is a class (the class of structures), and ✏ is a binary
relation that holds between members of X and L (the truth relation). Letting
M be the class of models, we can define first-order logic with the generalized
quantifiers in Q as LQ = hLQ,M,✏i. For singleton sets {Q}, I will shorten L{Q}
to LQ, and similarly for many other pieces of notation.

We first define the notions of validity and consequence, for which we re-use
the symbol for truth in a structure. For any logic L = hL,X,✏i, we write ✏ '

for a sentence ' being valid, and � ✏ ' for a sentence ' being a consequence of
a set of sentences �, which are defined as follows:

✏ ' i↵ S ✏ ' for all S 2 X

� ✏ ' i↵ S ✏ ' for all S 2 X such that S ✏  for all  2 �
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For singleton sets {�}, I write � ✏ ' instead of {�} ✏ '.
Another notion we will need for various logics is that of relative expressivity,

which was already mentioned above. The following definition is based on the idea
that a logic is at least as expressive as another if for any sentence of the latter,
there is a sentence of the former that expresses the same, while two sentences
express the same if they are true in the same structures. More formally, let
L1 = hL1,X,✏1i and L2 = hL2,X,✏2i be two logics that use the same class of
structures X. Then L2 is (at least) as expressive as L1, written L1 � L2, if for
all ' 2 L1 there is a  2 L2 such that for all S 2 X, S ✏1 ' if and only if
S ✏2  .

In the definition of Williamson’s mapping ·Con , first-order quantifiers where
treated by restricting them to the predicate C. We can expect that a similar
procedure will be necessary for generalized quantifiers if we want to extend ·Con

to a modal logic containing generalized quantifiers. Fortunately, the concept of
relativizing, which is standard in the literature on generalized quantifiers, cap-
tures the relevant property. We therefore also define what it is for a logic to
relativize, although we only define this for first-order logics with added gener-
alized quantifiers. This definition needs two additional concepts, namely that of
definability of a generalized quantifier, and that of relativization of a generalized
quantifier. We start with these auxiliary concepts.

Let Q be a set of generalized quantifiers and Q a generalized quantifier
of type hn1, . . . , nki. Q is definable in LQ if there is a ' 2 LQ containing at
most relation symbols V1, . . . , Vk of arities n1, . . . , nk such that for all models
A, A ✏ ' if and only if Q|A|

�
V

A
1 , . . . , V

A
k

�
. Further, the relativization of Q,

written Qrel, is the unique generalized quantifier of type h1, n1, . . . , nki such
that Qrel

D (S, R1, . . . , Rk) if and only if QS(R1 \ S

n1
, . . . , Rk \ S

nk).
With these two notions, we can define which logics relativize: LQ relativizes

if for each Q 2 Q, Qrel is definable in LQ. Another characterization of relativiz-
ing can be given with the notion of relative expressivity, using the following
equivalence linking definability and relative expressivity: LQ � LQ0 if and only
if each Q 2 Q is definable in LQ0 . (See Peters and Westerst̊ahl (2006, p. 452,
Proposition 1) for a proof.) From this, it follows directly that LQ relativizes if
and only if LQrel � LQ, where Qrel = {Qrel : Q 2 Q}.

1.3 Quantified Modal Logic

I will now define the kind of quantified modal logics we will be working with,
namely the logics resulting from adding generalized quantifiers to the first-order
quantified modal logic used in Williamson (2010). I will deviate slightly from
Williamson’s presentation to make the definitions in this paper more uniform.
Syntactically, the language is like the extensional language used above, except
that three unary sentential operators are added to the recursive definition of a
formula: ⇤, " and #. As usual, we use ⌃ as an abbreviation for ¬⇤¬. Call the
formulas that can be constructed in this way the L⇤Q-formulas.

For the semantics, we take a variant of the kind of structures used in Kripke
(1963), which I call Kripke models. A Kripke model is a structure hW,D, d, i, @i,
where W and D are sets, d is a function from W to subsets of D, i is a function
mapping every relation symbol R to a function mapping every w 2 W to a
relation i(R)(w) ✓ D

n, n being R’s arity, and @ 2 W . W is called the set of
worlds, D the outer domain, d the domain function, i the intepretation function,
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and @ the actual world. Let K be the class of Kripke models. To identify some
subclasses of K, we introduce two conditions on Kripke models. The first requires
any object having a property or standing in a relation in a world to be in the
domain of that world, while the second requires the outer domain to be the
union of the domains of all worlds:

(P) i(R)(w) ✓ d(w)n for all relation symbols R and w 2 W

(D) D =
S

v2W d(v)

The assumption of (P) is sometimes called property actualism or the being con-
straint. Define P to be the class of Kripke models satisfying (P), D the class
satisfying (D), and PD the class satisfying both (P) and (D). While Williamson
uses P as his model theory, the other two classes are needed for the discussion
of actualism and possibilism.

Truth of an L⇤Q-formula in a Kripke model will be relativized to a world, a
finite sequence of worlds, and an assignment. The relativization to a sequence
of worlds is not standard in quantified modal logic; this is needed to interpret
the operators " and #. Here, an assignment is a function from variables to
members of the outer domain of the Kripke model. As before, we don’t require
assignments to be total. To be able to specify the truth-conditions, we introduce
the convention that for a sequence of world s and a world w, we write s

^
w for

the sequence obtained from appending w to s. Now we can state the conditions
for a formula being true in a Kripke model M = hW,D, d, i, @i relative to a
world w, sequence of worlds s and assignment a whose domain includes the free
variables in ', for which we write M, w, s, a ✏ ':

M, w, s, a ✏ Rx̄ i↵ a(x̄) 2 i(R)(w)
M, w, s, a ✏ x = y i↵ a(x) = a(y) and a(x) 2 d(w)
M, w, s, a ✏ ¬' i↵ not M, w, s, a ✏ '
M, w, s, a ✏ ' ^  i↵ M, w, s, a ✏ ' and M, w, s, a ✏  
M, w, s, a ✏ ⇤' i↵ M, v, s, a ✏ ' for all v 2 W

M, w, s, a ✏"' i↵ M, w, s

^
w, a ✏ '

M, w, s

^
v, a ✏#' i↵ M, v, s, a ✏ '

M, w, hi, a ✏#' i↵ M, w, hi, a ✏ '
M, w, s, a ✏ 8x' i↵ M, w, s, a[o/x] ✏ ' for all o 2 d(w)

M, w, s, a ✏ Q¯̄
x'̄ i↵ Qd(w)

�
'1(x̄1)M,w,s,a

, . . . ,'k(x̄k)M,w,s,a
�

where 'j(x̄j)M,w,s,a = {ō 2 d(w)nj : M, w, s, a[ō/x̄j ] ✏ 'j}. Note that I use the
same symbol “✏” for the truth relation here as for the truth relation of LQ. Of
course, they are two di↵erent relations, but this di↵erence will always be clear
from the context since the two relations relate formulas to di↵erent kinds of
structures, so there is no need to clutter up the notation by further indices.

We now have to define which formulas are sentences, and define the notion
of truth in a Kripke model for them. The natural definition of truth in a Kripke
model is as truth in the actual world relative to all sequences and assignments.
This notion will be most useful if the syntactic characterization of sentences
ensures that truth of a sentence is invariant under variation of the sequence of
worlds and the assignment. For the assignment, we can require sentences to be
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closed, which we can define as before as the property of having no free occur-
rences of variables. But we also need an analogous property for the sequence
of worlds, which I call arrow-closure. Roughly, a formula is arrow-closed if for
every occurrence of #, there is an occurrence of " in whose scope it lies, which
ensures that the initial choice of the sequence of worlds is irrelevant for the truth
of the whole formula. To make this precise, we first inductively define the arrow
degree ad(') of an L⇤Q-formula ' as follows:

ad(Rx̄) = ad(x = y) = 0
ad(¬') = ad(⌃') = ad(8x') = ad(')
ad(' ^  ) = max(ad('), ad( ))
ad(Q¯̄

x'̄) = max(ad('1), . . . , ad('k))
ad("') = max(ad(')� 1, 0)
ad(#') = ad(') + 1

Now we can define a formula to be arrow-closed if its arrow degree is 0. By
induction on the complexity of formulas, it can be proven that for all Kripke
models M, worlds w, assignments a for M, and sequences of worlds s, t of length
� ad(') that agree on the last ad(') elements, M, w, s, a ✏ ' if and only if
M, w, t, a ✏ '. As the special case for ad(') = 0, it follows that arrow-closure
does want we want it to do: Truth of an arrow-closed formula is preserved under
any variation in the sequence of world. So we can define sentences to be formulas
that are closed and arrow-closed. Let L⇤Q be the set of these sentences.

With this, we can define truth of a sentence in a Kripke model as indicated
above:

M ✏ ' i↵ M,@, s, a ✏ ' for all sequences s and assignments a

With the sentences, the semantic structures, and the truth relation defined,
we can put our logics in the abstract form introduced above. As mentioned,
Williamson uses the class of Kripke structures P satisfying constraint (P). So
to discuss his results in the context of quantified modal logics with generalized
quantifiers, we define a logic LP

⇤Q = hL⇤Q,P,✏i for every set of generalized
quantifiers Q. With this, we can immediately apply the notions of validity, con-
sequence, and relative expressivity to these logics, as they were defined for any
logic in this form. But before going on, there are two things to note concerning
validity and consequence:

Firstly, these notions di↵er from the ones used in Williamson (2010), since
according to Williamson’s definition, formulas that are not sentences can be
valid and stand in the consequence relation. However, this is not important, since
this is neither technically needed for his results, nor philosophically relevant (see
Williamson (2010, p. 705) for the latter). Secondly, the re-use of the symbol for
truth as the symbol for validity and consequence will introduce some ambiguity,
as we will later discuss logics using di↵erent classes of Kripke models. Hence I
will add the class of Kripke models to the symbol for validity and consequence,
e.g., writing ✏P

' for ' being a valid sentence of LP
⇤Q. Similarly, stating that two

sentences are equivalent will depend on the class of Kripke models considered,
as being equivalent is being true in the same structures of the relevant class.
However, to keep things readable, I will rely on context to disambiguate in this
case.
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Now that we have set up logics with generalized quantifiers in which we can
discuss Williamson’s results, we have to specify analogs of the formal claims he
uses to argue that necessitists can draw more distinctions than contingentists
in second-order logic. On the one hand, to show that necessitists can draw the
distinctions contingentists can draw, Williamson proves that there is a function
·Con that maps every sentence to a neutral sentence that is equivalent to the
first, given contingentism. On the other hand, to show that there are some
distinctions only the necessitist can draw, he shows that there is a sentence
such that no neutral sentence is equivalent to the first, given necessitism. These
conditions can be applied in the context of a logic with generalized quantifiers
as well, except that we have to specify what it means for a sentence of such a
logic to be neutral.

In all the languages he considers, Williamson defines neutrality as being
equivalent to '

Con for some formula ', where ·Con just restricts predications
and quantifiers to C, as explained above. If the generalized quantifiers are such
that LQ relativizes, there is a natural extension of this definition, using the
relativization of each generalized quantifier to restrict the quantificational do-
main to the chunky things; and in fact, we will use exactly this construction
in Proposition 12 below. But if LQ does not relativize, this strategy no longer
works, although we would still like to di↵erentiate between neutral and non-
neutral sentences. We could solve this problem by allowing sentences of LQrel in
the condition for neutrality, but we can also solve it in a more general way by
replacing Williamson’s syntactic criterion of neutrality by a semantic one.

As described in Williamson (2010, p. 675), the motivation behind the syn-
tactic definition of neutrality is the idea that a contingentist and a necessitist
do not disagree on what is chunky, and how chunky things are; at least, they
do not disagree on this qua being a contingentist and a necessitist. So a sen-
tence is neutral if and only if it only says something about what the domain
of the chunky is and the properties and relations of chunky things. Williamson
captures this syntactically, by requiring neutral sentences to be equivalent to
sentences in which all predications and quantifiers are restricted to C. But it
can also be captured semantically, by requiring the truth of neutral sentences
to be invariant under changes between Kripke models that agree on the chunky
things and their properties and relations.

To make this formally precise, define two Kripke models M,M0 2 P to
chunky-coincide if they have the same set of worlds W , the same actual world,
and their interpretation functions i and i

0 agree on the chunky things, in the
sense that i(R)(w)\ i(C)(w)n = i

0(R)(w)\ i

0(C)(w)n for all relation symbols R

and w 2 W . Note that i(C) = i

0(C) follows from the case in which R is C. Now
we can define a sentence in L⇤Q to be neutral if for any two chunky-coinciding
Kripke models M,M0 2 P, M ✏ ' if and only if M0 ✏ '.

The adequacy of this definition is confirmed by the fact that for all sets
of generalized quantifiers for which LQ relativizes, the semantic criterion just
defined is equivalent to the natural extension of Williamson’s syntactic criterion
sketched above, as we will see in Proposition 13 below. In particular, this result
implies that the two definitions are equivalent in the first-order case considered
by Williamson.

With this model-theoretic definition of neutrality, we have made precise what
it means for contingentists and necessitists to be able to map every sentence in
L⇤Q to a neutral one that is equivalent, given the other theory. We introduce
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the following notation for this:

Con CQ Nec i↵ for all ' 2 L⇤Q there is a neutral  2 L⇤Q such that Aux[Con] ✏P

'$  .

Nec CQ Con i↵ for all ' 2 L⇤Q there is a neutral  2 L⇤Q such that Aux[Nec] ✏P

'$  .

With this, we can discuss question (Q2), and state and prove things about
the analogs of Williamson’s results in the context of quantified modal logics
with generalized quantifiers. But we also want to consider question (Q1), and
say something about the older discussion concerning the relative expressivity
of logics with outer and inner quantifiers. In this discussion, one distinguishes
two ways of defining the semantics of the ordinary existential and universal
quantifiers on Kripke structures. One is the definition for 8 and 9 given above,
where the quantifiers range over the domain of the world of evaluation. These
are called inner quantifiers. On the other definition, universal and existential
quantification is interpreted as ranging over the outer domain of the Kripke
model. These are called outer quantifiers. Analogously, we can distinguish two
ways of evaluating generalized quantifiers in Kripke models, as we will see be-
low. To distinguish them syntactically, I will keep using 8 and 9 only as inner
quantifiers, and introduce ⇧ and ⌃ for the universal and existential outer quan-
tifiers. Similarly, for any generalized quantifier Q, I will use QO in the syntax
to mark that the quantifier is interpreted as an outer quantifier. We therefore
define a quantified modal language just as before, except that 8 is replaced by
⇧, and any generalized quantifier Q is replaced by QO. Call the set of sentences
in this language L⇤QO.

This language is also interpreted on Kripke models, and truth is relativized
to a world, a sequence of worlds, and an assignment as well. The only semantic
di↵erence lies in the interpretation clauses for outer quantifiers. For any Kripke
model M = hW,D, d, i, @i, they are as follows:

M, w, s, a ✏ ⇧x' i↵ M, w, s, a[o/x] ✏ ' for all o 2 D

M, w, s, a ✏ QO ¯̄
x'̄ i↵ QD

⇣
'1(x̄1)M,w,s,a

O , . . . ,'k(x̄k)M,w,s,a
O

⌘

where 'j(x̄j)M,w,s,a
O = {ō 2 D

nj : M, w, s, a[ō/x̄j ] ✏ 'j}.
To discuss the relative expressivity of logics with inner and outer quantifiers,

we have to use the class PD of Kripke models as the semantics, rather than the
class P. So we also require that Kripke models satisfy (D), which means that
their outer domain is the union of the domains of all worlds. We do so because
this assumption is usually made in the discussion of possibilism and actualism.
And making the assumption does make a di↵erence: At least in the case of first-
order quantifiers, i.e., if we choose Q = ;, it is often claimed that the logics
with inner and outer quantifiers are equally expressive. But if there are Kripke
models in which something in the outer domain is not in the domain of any
world, the sentence ⌃x⇤¬x = x distinguishes these Kripke models from the
others, and it is clear that this class cannot be delineated using any sentence
of L⇤Q. Hence to make sure that the question of relative expressivity remains
interesting, we have to restrict ourselves to Kripke models satisfying (D) as well
here.
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So we define two logics, one with inner quantifiers, which is supposed to
stand in some relation with actualism and which I call LPD

⇤Q, and another with
outer quantifiers, which is supposed to stand in some relation with possibilism
and which I call LPD

⇤QO. Let LPD
⇤Q = hL⇤Q,PD,✏i and LPD

⇤QO = hL⇤QO,PD,✏i. It
should be noted that just replacing inner with outer quantifiers is not the most
natural formal representation of possibilism. E.g., since identity statements are
only true of objects in the domain of the world of evaluation, the sentence
⇧x(x = x) is not valid in LPD

⇤QO. But possibilists may not be prepared to give
up such basic laws of identity. A more natural formalization will therefore be
discussed in section 3.3, and shown to give equivalent results. To keep things
as simple as possible, we stick with the variants of Williamson’s logic defined
above for the equivalence theorem.

2 The Equivalence Theorem

We can now investigate questions (Q1) and (Q2) for the range of extensions of
Williamson’s first-order quantified modal logic by generalized quantifiers. The
first question concerns the relation between the ability of contingentists and
necessitists to map sentences to neutral sentences that are equivalent, given the
other theory, and the relative expressivity of logics with inner and outer quanti-
fiers. Since the mappings used by Williamson are very similar to the mappings
used to prove the equivalence in expressivity of inner and outer quantification
in first-order modal logic, it is natural to conjecture that the two are equivalent
for any set of generalized quantifiers Q. That is, it is natural to conjecture that
a mapping for necessitists exists if and only if the logic with outer quantifiers
is at least as expressive as the logic with inner quantifiers, and a mapping for
contingentists exists if and only if the logic with inner quantifiers is at least
as expressive as the logic with outer quantifiers. We will see below that this
conjecture is correct.

The second question concerns the existence of mappings for necessitists and
contingentists in di↵erent quantified modal logics. Using the notation introduced
above, we would like to know for any set of generalized quantifiers Q whether
Con CQ Nec and Nec CQ Con hold. From Williamson’s definitions of mappings
for necessitists in first- and second-order quantified modal logic, it is clear that
the crucial feature of a logic that enables necessitists to define their mapping
is the ability to restrict its quantifiers to a predicate. To capture this ability, I
introduced the notion of relativizing. Therefore, the natural conjecture is that a
mapping for necessitists exists in a logic LP

⇤Q if and only if LQ relativizes, and we
will see below that this is correct. When is there a mapping for contingentists?
It is clear that there is one if every member of Q is first-order definable. The
interesting question is whether this is also a necessary condition, and we will
see below that this is in fact the case.

To complete the picture, we add to these results the well-known facts that
LQ relativizes if every member of Q is first-order definable, but not vice versa.
Establishing all this will answer questions (Q1) and (Q2) for the restricted range
of logics considered here. We can summarize the results to be proven with the
following theorem:

Theorem 1 (Equivalence Theorem). For any set Q of generalized quantifiers,
(A1)–(A3) are mutually equivalent, (B1)–(B3) are mutually equivalent, and the
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latter imply the former, while the former do not imply the latter:

(A1) Con CQ Nec (B1) Nec CQ Con
(A2) LPD

⇤Q � LPD
⇤QO (B2) LPD

⇤QO � LPD
⇤Q

(A3) LQ relativizes (B3) LQ � L;

We will prove this by establishing two circles of implications in parallel; first
from 1 to 2, then from 2 to 3, and finally from 3 to 1. That (B1)–(B3) imply
(A1)–(A3), but not vice versa, follows with these implications from the fact that
(B3) implies (A3), but not vice versa.

2.1 From 1 to 2

The central idea behind the proof of the implications from (A1) to (A2) and
(B1) to (B2) is that the information represented by any contingentist model (a
Kripke model in P satisfying Aux[Con]) can be represented in a Kripke model
in PD using inner quantification without the chunkiness predicate C, and vice
versa. Similarly, the information represented by any necessitist model (a Kripke
model in P satisfying Aux[Nec]) can be represented in a Kripke model in PD
using outer quantification without the chunkiness predicate C, and vice versa.
This will be made precise and proven below, in terms of mappings between
such models and appropriate formulas. These results will enable us to transfer
any mapping witnessing Con CQ Nec to a mapping witnessing LPD

⇤Q � LPD
⇤QO,

and analogously any mapping witnessing Nec CQ Con to a mapping witnessing
LPD

⇤QO � LPD
⇤Q. Before going through the formal proof, let me give an illustration

of the four di↵erent representations of information according to contingentism,
necessitism, actualism and possibilism, where actualism and possibilism are rep-
resented by logics with inner and outer quantifiers. In the following example,
we have two worlds, and we represent things that are in the domain of a world,
in the quantifier range, or chunky by vertical lines. In the left world, there are
some (chunky) things, but in the right world, there are more (chunky) things.
This simple picture of modal space is represented in di↵erent ways according
to the four positions, but as Figure 1 shows, none of them adds or omits any
information.

contingentist necessitist

actualist possibilist

dqc
d: inner domain
q: quantifier range
c: chunky things

Figure 1: Variants of a Kripke model
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I will now define the mappings in detail. We have to go from contingentism
to actualism and vice versa, and similarly from necessitism to possibilism and
vice versa. In each direction, we need a mapping for formulas as well as a corre-
sponding mapping for Kripke models. Hence we require eight mappings. They
will be denoted by two letters, the first letters of the position from which we
map and the position to which we map. E.g., MCA is the actualist version of a
contingentist model M. What a contingentist says about M with ', an actualist
says about MCA with 'CA. We also have to be explicit about signatures, since
we will have maps between languages in di↵erent signatures – contingentism and
necessitism use a chunky predicate, which actualism and possibilism don’t use.
I will use ⌧ for an arbitrary signature, and write L1[⌧ ] for the set of sentences in
L1 of signature ⌧ , and “L1[⌧ ]-formulas” for the corresponding set of formulas.
Similarly, I write X[⌧ ] for the Kripke models of signature ⌧ in X. Finally, I write
⌧C for the signature that results from adding a new unary predicate C to ⌧ , and
i|⌧ for the result of restricting the function i to ⌧ . Note that when specifying a
recursive mapping from one language to another, I only specify the non-trivial
recursion clauses.

To map from contingentism to actualism, we just have to replace predications
of chunkiness by statements about self-identity in any formula, and remove the
interpretation of C from the interpretation function in any Kripke model, while
setting the outer domain to the union of the domains of all worlds to ensure
that the resulting Kripke model is in PD:

·CA : L⇤Q[⌧C]-formulas! L⇤Q[⌧ ]-formulas:

(Cx)CA = (x = x)

·CA : P[⌧C] ! PD[⌧ ]:
hW,D, d, i, @iCA = hW,D

CA
, d, i

CA
,@i, where D

CA =
S

v2W d(v) and
i

CA = i|⌧

To map from actualism to contingentism, we do not have to change any
formulas, and can just add the interpretation of C according to the domain
function in any Kripke model:

·AC : L⇤Q[⌧ ]-formulas! L⇤Q[⌧C]-formulas:
the identity function

·AC : PD[⌧ ] ! P[⌧C]:
hW,D, d, i, @iAC = hW,D, d, i

AC
,@i, where i

AC |⌧ = i and i

AC(C) = d

To map from necessitism to possibilism, we have to replace predications of
chunkiness by statements about self-identity in any formula, as well as replacing
identity statements by statements of possible identity and inner quantifiers by
outer quantifiers. Models are treated as in the mapping from contingentism to
actualism, except that we have to set the domain function to the interpretation
of C:
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·NP : L⇤Q[⌧C]-formulas! L⇤QO[⌧ ]-formulas:

(Cx)NP = (x = x)

(x = y)NP = ⌃x = y

(8x )NP = ⇧x 

NP

�
Q¯̄

x ̄

�NP = QO ¯̄
x ̄

NP

·NP : P[⌧C] ! K[⌧ ]:
hW,D, d, i, @iNP = hW,D

NP
, d

NP
, i

NP
,@i, where D

NP =
S

v2W d(v),
d

NP = i(C) and i

NP = i|⌧

Note that if M 2 P[⌧C] satisfies Aux[Nec], then MNP 2 PD[⌧ ].
To map from possibilism to necessitism, we have to add a predication of

chunkiness to any identity statement in any formula, as well as replacing outer
quantifiers by inner quantifiers. Models are treated by adding the interpretation
of C according to the domain function, and setting the new domain function to
be the constant function to the outer domain:

·PN : L⇤QO[⌧ ]-formulas! L⇤Q[⌧C]-formulas:

(x = y)PN = (x = y ^ Cx)

(⇧x )PN = 8x PN

�
QO ¯̄

x ̄

�PN
= Q¯̄

x ̄

PN

·PN : PD[⌧ ] ! P[⌧C]:
hW,D, d, i, @iPN = hW,D, d

PN
, i

PN
,@i, where d

PN (w) = D for all w 2
W , i

PN |⌧ = i and i

PN (C) = d

First of all, we have to show that these mappings work correctly, in the sense
that truth of a sentence in a Kripke model is invariant under mapping both the
sentence and the Kripke model with corresponding mappings. More formally,
we need the following lemma:

Lemma 2. Let ⌧ be a signature and M 2 K.

(i) If M 2 P[⌧C] and M ✏ Aux[Con] then for all ' 2 L⇤Q[⌧C]: MCA ✏ '

CA

if and only if M ✏ '.

(ii) If M 2 PD[⌧ ] then for all ' 2 L⇤Q[⌧ ]: MAC ✏ 'AC if and only if M ✏ '.

(iii) If M 2 P[⌧C] and M ✏ Aux[Nec] then for all ' 2 L⇤Q[⌧C]: MNP ✏ 'NP

if and only if M ✏ '.

(iv) If M 2 PD[⌧ ] then for all ' 2 L⇤QO[⌧ ]: MPN ✏ 'PN if and only if M ✏ '.

Proof. By inductions on the complexity of formulas.

With this lemma, we can prove the implication from (A1) to (A2) by transfer-
ring any mapping witnessing ConCQNec to a mapping witnessing LPD

⇤Q � LPD
⇤QO,
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and similarly for the implication from (B1) to (B2). To do so, we need the defini-
tions of two mappings on Kripke models defined in Williamson (2010, pp. 728–
729, 731). Let M = hW,D, d, i, @i be a Kripke model in P. Then MCon =
hW,D, d

C
, i

C
,@i, where d

C = i(C) and i

C(R)(w) = i(R)(w) \ i(C)(w)n for
every w 2 W and relation symbol R. Further, MNec = hW,D, d

N
, i

C
,@i, where

d

N (w) =
S

v2W i(C)(v) for all w 2 W , and i

C is as above.

Proposition 3 ((A1))(A2)). If Con CQ Nec then LPD
⇤Q � LPD

⇤QO.

Proof. Assume that ConCQNec and consider any ' 2 L⇤Q[⌧ ]. Since ConCQNec,
there is a neutral  2 L⇤Q[⌧C] such that Aux[Con] ✏P

'

AC $  . We prove that
✏PD

' $  

NP . So consider any M 2 PD[⌧ ]. By Lemma 2 (ii), M ✏ ' if and
only if MAC ✏ 'AC . MAC ✏ Aux[Con], so MAC ✏ 'AC if and only if MAC ✏  .
MAC and

�
MAC

�
Nec chunky-coincide and  is neutral, so the latter is the

case if and only if
�
MAC

�
Nec ✏  . Since by Williamson (2010, appendix, 1.18),

�
MAC

�
Nec ✏ Aux[Nec], it follows from Lemma 2 (iii) that this in turn is the

case if and only if
⇣�

MAC
�
Nec

⌘NP

✏  

NP . As
⇣�

MAC
�
Nec

⌘NP

= M, this is
the case if and only if M ✏  

NP . Together, it follows from these equivalences
that M ✏ ' if and only if M ✏  

NP . Since  NP 2 L⇤QO[⌧ ], this establishes
that LPD

⇤Q � LPD
⇤QO.

Analogously, we can prove the implication from (B1) to (B2):

Proposition 4 ((B1))(B2)). If Nec CQ Con then LPD
⇤QO � LPD

⇤Q.

Proof. Analogous to the proof of Proposition 3, using Lemma 2 (i) and (iv).

2.2 From 2 to 3

We first prove the implication from (A2) to (A3) by contraposition; i.e., assum-
ing that LQ does not relativize, we show that LPD

⇤Q � LPD
⇤QO. I will first sketch

the proof strategy for a single generalized quantifier Q of type h1i: If LQ does
not relativize, then Qrel is not definable in LQ. By the semantics of inner and
outer generalized quantifiers, Qx⌃V x is equivalent to

�
Qrel

�O
yx(y = y,⌃V x).

But if there is a sentence of L⇤QO that is equivalent to the latter sentence,
then we should be able to define Qrel in LQ. So Qx⌃V x has no equivalent in
L⇤QO, which means that LPD

⇤Q � LPD
⇤QO. To rigorously prove that Qx⌃V x has

no equivalent in L⇤QO, we map any sentence in this language to one in LQ.
Since Qrel is not definable in LQ, we can find a model showing that the latter
sentence does not define Qrel. We can now map this model to a Kripke model
which witnesses that the original sentence is not equivalent to Qx⌃V x.

I start making this proof idea precise by defining these mappings for any
generalized quantifier Q of type hn1, . . . , nki. Let ⌧ be the signature containing
only relation symbols V1, . . . , Vk of arities n1, . . . , nk, and let U be a unary
predicate. For any model A 2 M[⌧U ], define A01 = h{0, 1}, |A|, d, i, 0i, where
d(0) = U

A, d(1) = |A|, i(Vj)(0) = ; and i(Vj)(1) = V

A
j for all j  k. Note

that A01 2 PD[⌧ ]. Further, we define a mapping ·w,s from L⇤QO[⌧ ]-formulas to
LQ[⌧U ]-formulas for any sequence s and element w in {0, 1} by simultaneous
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induction:

(Vj x̄)0,s = ? (Vj x̄)1,s = Vj x̄

(x = y)0,s = (x = y ^ Ux) (x = y)1,s = (x = y)

(⌃')w,s = '

0,s _ '1,s

("')w,s = '

w,s^w

(#')w,s^v = '

v,s

(#')w,hi = '

w,hi

(⇧x')w,s = 8x('w,s)
�
QO ¯̄

x'̄

�w,s
= Q¯̄

x('̄w,s)

To prove the implication, we need a lemma on these mappings:

Lemma 5. For any A 2 M[⌧U ] and ' 2 L⇤QO[⌧ ],

A ✏ '0,hi if and only if A01 ✏ '.

Proof. By induction on the complexity of formulas.

Proposition 6 ((A2))(A3)). If LPD
⇤Q � LPD

⇤QO then LQ relativizes.

Proof. Assume that LQ does not relativize. Then there is a Q 2 Q such that
Qrel is not definable in LQ. We will show that Q¯̄

x(⌃V1x̄1, . . . ,⌃Vkx̄k) wit-
nesses LPD

⇤Q � LPD
⇤QO. So consider any ' 2 L⇤QO[⌧ ]. Since Qrel is not defin-

able in LQ, there is a model A such that it is not the case that A ✏ '

0,hi

if and only if Qrel
|A|

�
U

A
, V

A
1 , . . . , V

A
k

�
. Lemma 5 states that A ✏ '

0,hi if and
only if A01 ✏ '. Furthermore, Qrel

|A|
�
U

A
, V

A
1 , . . . , V

A
k

�
if and only if A01 ✏

Q¯̄
x(⌃V1x̄1, . . . ,⌃Vkx̄k). Therefore it is not the case that A01 ✏ ' if and only

if A01 ✏ Q¯̄
x(⌃V1x̄1, . . . ,⌃Vkx̄k). Since ' was chosen arbitrarily among L⇤QO[⌧ ],

it follows that LPD
⇤Q � LPD

⇤QO.

We prove the implication from (B2) to (B3) by contraposition as well. So
assuming that LQ � L;, we show that LPD

⇤QO � LPD
⇤Q. As above, I will first sketch

the proof strategy: We map any sentence ' witnessing LQ � L; to a sentence
'

⌃ 2 L⇤QO, and prove that it has no equivalent in L⇤Q. To do so, we use
the fact that for any m 2 N, there are models A and B that satisfy the same
sentences up to quantifier rank m, but evaluate ' di↵erently. We map these
models to Kripke models An and Bn, for which we show that A/B satisfies ' if
and only if An/Bn satisfies '⌃. Further, we prove that An and Bn satisfy the
same sentences in L⇤Q up to a certain modal degree determined by m and n, by
showing that if A and B are related by a back-and-forth system, then An and
Bn are also related by such a system. Since any sentence in L⇤Q has a finite
modal degree, we can find Kripke models An and Bn witnessing that no such
sentence is equivalent to '⌃.

Carrying out this proof strategy in a general way crucially relies on two
ideas. The first is the construction of the Kripke models An and the correspond-
ing mapping ·⌃ between formulas, which are adapted from Williamson (2010,
appendix 3). The second is the idea of using back-and-forth systems to prove
that two structures satisfy the same sentences up to a certain complexity. Such
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systems are common in many branches of logic; see Hodges (1997, section 3.2)
for variants for first-order logic, which are sometimes called potential or partial
isomorphisms, or Ehrenfeucht-Fräıssé games, when presented in game-theoretic
form; see Blackburn et al. (2001, section 2.2) for a variant for propositional
modal logic, which they call bisimulations; and Peters and Westerst̊ahl (2006,
section 13.3) for applications of such systems to results on the definability of
generalized quantifiers. Back-and-forth systems are rarely defined for quantified
modal logic; van Benthem (2010, p. 123) contains one of many ways of doing
so, for which he uses the term world-object bisimulations. I will use a definition
which is tailor-made for this proof.

First, we define the mappings ·⌃ and ·n. ·⌃ maps LQ-formulas to L⇤QO-
formulas, by prefixing predications with ⌃-symbols and replacing inner by outer
quantifiers:

(Rx̄)⌃ = ⌃Rx̄

(x = y)⌃ = ⌃x = y

(8x')⌃ = ⇧x'

⌃

(Q¯̄
x'̄)⌃ = QO ¯̄

x'̄

⌃

For any n 2 N and model A, define An = hW, |A|, d, i, ;i, where W = {S ✓ |A| :
|S|  n}, d(w) = w, and i(R)(w) = R

A \ d(w)n for all relation symbols R and
w 2 W . In analogy to Williamson (2010, appendix, 3.1), we can prove that the
mappings preserve truth in the following sense:

Lemma 7. For all n 2 N, models A and ' 2 LQ such that all relation symbols
occurring in ' have arity  n,

A ✏ ' if and only if An ✏ '⌃
.

Proof. By induction on the complexity of formulas.

The next notions that need to be defined are those of quantifier rank and
modal degree, which measure the complexity of formulas by determining the
depth of the deepest nesting of quantifiers or ⇤ symbols. We define the quantifier
rank qr(') of an L;-formula ' inductively as follows:

qr(Rx̄) = qr(x = y) = 0
qr(¬') = qr(')
qr(' ^  ) = max(qr('), qr( ))
qr(8x') = qr(') + 1

The modal degree md(') of an L⇤Q-formula ' is defined similarly:

md(Rx̄) = md(x = y) = 0
md(¬') = md("') = md(#') = md(8x') = md(')
md(' ^  ) = max(md('),md( ))
md(⇤') = md(') + 1
md(Q¯̄

x'̄) = max(md('1), . . . ,md('k))
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Using these notions, we introduce two useful pieces of notation, with which
we can express that two structures satisfy the same sentences up to a certain
complexity. Let l 2 N. For any models A,B, we write A ⌘l

; B if for all sentences
' 2 L; such that qr(')  l, A ✏ ' if and only if B ✏ '. Similarly, for any Kripke
models M,N 2 PD, we write M ⌘l

⇤Q N if for all sentences ' 2 L⇤Q such that
md(')  l, M ✏ ' if and only if N ✏ '.

To define back-and-forth systems, we need some additional definitions: For
models A and B, we write f : A ⇠= B if f : |A| ! |B| is an isomorphism; i.e.,
if f is a bijection such that for any relation symbol R, ō 2 R

A if and only if
f(ō) 2 R

B. Further, for any model A and S ✓ |A|, we write A|S for the submodel
of A based on S; i.e., the unique model B with |B| = S and R

B = R

A \ S

n

for all relation symbols R. For every Kripke model M = hW,D, d, i, @i in P
and world w 2 W , we define the inner model of M at w, written Mw, to be
hd(w), ei, where e(R) = i(R)(w) for all relation symbols R.

We start with back-and-forth systems for the logic L;. Let A,B be models.
A partial isomorphism from A to B is a partial injection from |A| to |B| such
that f : A|dom(f) ⇠= B|im(f), where dom(f) and im(f) are the domain and the
image of f . For any l 2 N, a back-and-forth system from A to B of length l is a
sequence I = hIj : 0  j  li of non-empty sets of partial isomorphisms from A
to B such that for all j such that 0 < j  l:

(i) Ij ✓ Ij�1.

(ii) For all f 2 Ij and o 2 |A|, there is a g ◆ f such that g 2 Ij�1 and
o 2 dom(g).

(iii) For all f 2 Ij and o

0 2 |B|, there is a g ◆ f such that g 2 Ij�1 and
o

0 2 im(g).

If I is a back-and-forth system from A to B of length l, we write I : A ⇠=l B.
We write A ⇠=l B if there is an I such that I : A ⇠=l B.

We need a similar definition of back-and-forth systems for logics of the form
L⇤Q. Let M = hW,D, d, i, @i and M0 = hW 0

, D

0
, d

0
, i

0
,@0i be Kripke models.

A partial isomorphism from M to M0 is a tuple h�, ⇢i such that � is a partial
injection from W to W

0 and ⇢ is a partial injection from D to D

0 such that
�(@) = @0 and for all w 2 dom(�), ⇢|d(w) : Mw

⇠= M0
�(w). For any l 2 N, a

back-and-forth system from M to M0 of length l is a sequence I = hIj : 0  j  li
of non-empty sets of partial isomorphisms from M to M0 such that for all j such
that 0 < j  l:

(i) Ij ✓ Ij�1.

(ii) For all h�, ⇢i 2 Ij and w 2 W , there is a �0 ◆ � and a ⇢0 ◆ ⇢ such that
h�0, ⇢0i 2 Ij�1 and w 2 dom(�0).

(iii) For all h�, ⇢i 2 Ij and w

0 2 W

0, there is a �0 ◆ � and a ⇢0 ◆ ⇢ such that
h�0, ⇢0i 2 Ij�1 and w

0 2 im(�0).

If I is a back-and-forth system from M to M0 of length l, we write I : M ⇠=l M0.
We write M ⇠=l M0 if there is an I such that I : M ⇠=l M0.

We can prove that Kripke models related by back-and-forth systems satisfy
the same sentences whose modal degree does not exceed the length of the back-
and-forth system. More concisely:
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Lemma 8. If M ⇠=l M0 then M ⌘l
⇤Q M0.

Proof. By induction on the complexity of formulas.

The final lemma that is needed for this proof shows that being related by a
back-and-forth system transfers in a certain way from A and B to An and Bn:

Lemma 9. If A ⇠=ln B then An ⇠=l Bn.

Proof. Let A,B be models and I = hIj : 0  j  lni be a back-and-forth system
from A to B of length ln. We use this to construct a back-and-forth system from
An to Bn of length l: For any partial isomorphism f from A to B, define f

l,n =
h�f , fi, where �f (w) = {f(o) : o 2 w} for all w ✓ dom(f) such that |w|  n.
Define I

l,n = hI l,n
j : 0  j  li, where I

l,n
j = {f l,n : f 2 Ijn}. By checking the

conditions of back-and-forth systems, we can prove that I

l,n : An ⇠=l Bn.

Proposition 10 ((B2))(B3)). If LPD
⇤QO � LPD

⇤Q then LQ � L;.

Proof. By contraposition. Assume that LQ � L;. It follows by the Fräıssé-
Hintikka Theorem (see Hodges (1997, p. 84, Theorem 3.3.2)) that there is a
' 2 LQ such that for all m 2 N, there are models A,B such that A ✏ ',
B 2 ', and A ⌘m

; B. To show that '⌃ has no equivalent in L⇤Q, consider
any  2 L⇤Q. Let n be the maximal arity of the relation symbols occurring in
 and l = md( ). Then there are structures A,B such that A ✏ ', B 2 ',
and A ⌘ln

; B. Since A ⌘ln
; B, by a theorem of Carol Karp (see Karp (1965,

Theorem 1)), A ⇠=ln B, which by Lemma 9 implies An ⇠=l Bn. By Lemma 8,
An ⌘l

⇤Q Bn, so An ✏  if and only if Bn ✏  . By Lemma 7, the fact that A ✏ '
and B 2 ' implies that An ✏ '⌃ and Bn 2 '

⌃. Since '⌃ 2 L⇤QO,  was chosen
arbitrarily from L⇤Q, and An

,Bn 2 PD, it follows that LPD
⇤QO � LPD

⇤Q.

This proof could be simplified by replacing '⌃ with QO ¯̄
x(⌃V1x̄1, . . . ,⌃Vkx̄k)

for a generalized quantifierQ that is not first-order definable, similar to the proof
of Proposition 6. However, the proof method used here is more interesting as it
indicates how it can be adapted to other extensions of first-order logic.

2.3 From 3 to 1

For the implications in this section, we need a lemma stating that relations of
relative expressivity transfer from first-order logics with generalized quantifiers
to the corresponding quantified modal logics with generalized quantifiers:

Lemma 11. If LQ � LQ0 then LP
⇤Q � LP

⇤Q0 .

Proof. If LQ � LQ0 , then for everyQ 2 Q, there is a sentence 'Q 2 LQ0 [V1 . . . Vk]
that is equivalent to Q¯̄

x(V1x̄1, . . . , Vkx̄k). Let  2 LP
⇤Q. If we replace any subfor-

mula starting with a generalized quantifier Q 2 Q in  by 'Q, while replacing
V1x̄1, . . . , Vkx̄k in 'Q by the appropriate subformulas of  , then we get a sen-
tence in LP

⇤Q0 which is equivalent to  , as we can prove by induction on the
complexity of formulas. This establishes that LP

⇤Q � LP
⇤Q0 .

Proposition 12 ((A3))(A1)). If LQ relativizes then Con CQ Nec.
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Proof. We first extend the mapping ·Con from L⇤;-formulas to L⇤;-formulas
defined in Williamson (2010, appendix 1, p. 728) to a mapping ·RCon from
L⇤Q-formulas to L⇤Qrel -formulas, by adding the following clause for any Q 2 Q:

(Q¯̄
x'̄)RCon = Qrel

y

¯̄
x

�
Cy,'

RCon

1 , . . . ,'

RCon

k

�

We can prove that M ✏ '

RCon if and only if MCon ✏ ' by extending the
induction on the complexity of formulas in Williamson (2010, appendix, 1.1) by
a clause for generalized quantifiers.

If LQ relativizes, then LQrel � LQ, and so by Lemma 11, LP
⇤Qrel � LP

⇤Q.
Hence for any ' 2 L⇤Q, there is a sentence  2 L⇤Q that is equivalent to
'

RCon . Define ·Con : L⇤Q ! L⇤Q to be a function that maps every ' to such a
 . By choice, M ✏ '

Con if and only if MCon ✏ ' for all M 2 P. With the fact
that M ✏ Aux[Con] implies M = MCon , shown in Williamson (2010, appendix,
1.7), it follows that Aux[Con] ✏P

'$ '

Con . That 'Con is neutral follows from
the fact that for any chunky-coinciding Kripke models M,N 2 P, MCon and
NCon di↵er at most in the outer domain, which is irrelevant for the truth of
sentences in L⇤Q. So Con CQ Nec.

Using the extension of ·Con in this proof, we can now show that if Williamson’s
syntactic condition of neutrality can be extended to a set of generalized quan-
tifiers Q, it coincides with the model-theoretic condition used here:

Proposition 13. Assume that LQ relativizes, and let ·Con be as in the proof of
Proposition 12. Then any ' 2 L⇤Q is neutral if and only if there is a  2 L⇤Q
such that ✏P

'$  

Con .

Proof. First, assume that ' is neutral, and consider any M 2 P. Since M and
MCon chunky-coincide, M ✏ ' if and only if MCon ✏ '. Since MCon ✏ ' if and
only if M ✏ 'Con , it follows that M ✏ ' if and only if M ✏ 'Con .

Now assume that there is a  2 L⇤Q such that ✏P
' $  

Con , and let
M,N 2 P chunky-coincide. Then, as noted above, MCon ✏  if and only if
NCon ✏  . Therefore M ✏  

Con if and only if N ✏  

Con , from which it follows
that M ✏ ' if and only if N ✏ '.

Proposition 14 ((B3))(B1)). If LQ � L; then Nec CQ Con.

Proof. By Lemma 11 and the fact that NecC;Con, which follows from William-
son (2010, appendix, 1.15 and 1.21) and Proposition 13.

This concludes the proof of the equivalence theorem.

3 What Does It Show?

Now that we have proven the equivalence theorem, we can ask: What does it
show? What does this formal result tell us about the metaphysical dispute on
modal ontology? Naturally, we have to combine the formal result with some
philosophical assumptions to arrive at some interesting conclusions. In the first
part of this section, I will extend some of the philosophical conclusions that have
been drawn in the literature on similar technical results. Roughly, the upshot
will be that in some way, the result supports necessitism or possibilism. The
subsequent parts of this section will be devoted to di↵erent objections or replies
contingentists or actualists might make.
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3.1 Necessitism, Possibilism, and Verbal Disputes

In the debate on necessitism and contingentism, the equivalence theorem sub-
stantiates Williamson’s result on second-order logic: For every set of generalized
quantifiers Q such that LQ is more expressive than first-order logic, there is a
sentence that has no neutral equivalent, given necessitism. E.g., if it contains
the infinity quantifier Q0 introduced in section 1.2, then the following sentence
has no neutral equivalent, given necessitism:

(!) Q0x⌃Fx

It says that there are infinitely many things which could be F . If Williamson’s
reasoning is correct, then this means that the necessitist can use this to draw
a distinction the contingentist cannot draw, which is a point in favor of neces-
sitism.

It is worth considering more concretely what the distinction is the contin-
gentist is accused of not being able to make in this instance. As an example, let
F stand for the property of being an electron, assume that there are only finitely
many electrons, and assume that the contingentist takes being an electron to be
an essential property. Then if the necessitist utters “There are infinitely many
things that could be electrons”, the contingentist will dispute this, since there
are only finitely many electrons, and according to them, what is not an electron
could not be one. However, it seems that there is some claim the necessitist
makes with their utterance, which, although stated in a way that assumes ne-
cessitism, is a metaphysical claim that is independent of the ontological dispute
between necessitism and contingentism.

To bring this out more clearly, we can consider finitary analogs of (!). (Sim-
ilar considerations for (34) are described in Williamson (2010, pp. 710–711).)
For every natural number n, let 9�n be the generalized quantifier formalizing
“there are at least n things such that . . . ”. With this, we can write down the
following finitary analog of (!):

(n) 9�nx⌃Fx

Since 9�n is first-order definable, it follows from the equivalence theorem
that there is a sentence of first-order quantified modal logic that is neutral
and equivalent to (n), given necessitism. This means that contingentists are
faced with the following situation: For any natural number n, if a necessitist
claims that there are n objects that could be electrons, they can disentangle
a metaphysical question from the necessitist’s utterance they can engage with,
but they can no longer do so if the necessitist claims that there are infinitely
many such objects. But if there is a distinction involved that is intelligible to
the contingentist in the former case, why shouldn’t there be such a distinction
involved in the latter case?

A natural response to this challenge is to allow for conjunctions of infinite
sets of formulas in the formal syntax, as the conjunction of neutral equivalents,
given necessitism, to instances of (n) is a neutral equivalent, given necessitism,
to (!). However, this strategy is specific to the generalized quantifier Q0, and
we will see in section 3.4 that such infinitary devices do not provide a general
solution, even if quantification over infinite sets of variables is allowed.

Besides providing more examples for Williamson’s claim that some distinc-
tions can only be drawn under the assumption of necessitism, the equivalence
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theorem and the techniques used to prove it strengthen Williamson’s argu-
ment in a number of ways. Firstly, some of these examples are simpler than
the ones Williamson gives; e.g, compare (!) with (34) in section 1.1. Secondly,
Williamson’s result on second-order logic makes the artificial assumption that
there is no world in which infinitely many things are chunky. The proof used
here for the equivalence theorem can be modified so as to allow for Kripke mod-
els that do not make this assumption. The relevant parts of the proof can also
be extended to quantified modal logic with plural second-order quantifiers while
still dispensing with this assumption. Thirdly, the equivalence theorem shows
that Williamson’s result does not trade on any peculiarity of plural second-order
logic. So even if there are philosophical problems with plural second-order quan-
tifiers, unless they apply to generalized quantifiers as well, contingentism is still
faced with the same kind of troubles.

In the debate on possibilism and actualism, the equivalence theorem can be
used in arguments in favor of possibilism rather than actualism. E.g., Kit Fine
and Saul Kripke have argued against certain arguments for possibilism using the
fact that first-order quantified modal logic is as expressive with inner quantifiers
as with outer quantifiers. (See Fine (1977, p. 156), Kripke (1983, p. 488) and
Fine (2003, section 4); Fine refers to Prior (1967, pp. 149–151) and Kripke
to Hazen (1976).) The equivalence theorem shows that this expressivity result
does not extend to generalized quantifiers, since for generalized quantifiers that
are not first-order definable, quantified modal logic is not as expressive with
inner quantifiers as with outer quantifiers. Although this may not show that
possibilism is correct, it certainly casts doubt on the viability of Fine’s and
Kripke’s reply to these arguments for possibilism.

Another application of the equivalence theorem concerns the position that
the metaphysical dispute at hand – whether put in terms of contingentism and
necessitism or actualism and possibilism – is merely verbal. Arguments in favor
of a metaphysical dispute being verbal are sometimes based on the claim that
the di↵erent positions in the dispute just come down to the use of di↵erent,
intertranslatable ways of speaking, e.g., in Hirsch (2009). In the present case,
the equivalence theorem indicates that such arguments cannot be given for the
position that the dispute between contingentism and necessitism or actualism
and possibilism is merely verbal, since it shows that statements made by propo-
nents of the two positions are in fact not intertranslatable – at least not in the
languages considered here. (See Williamson (2010, p. 671, fn. 14) for a similar
observation concerning second-order logic.)

It seems likely that the equivalence theorem can be extended to a wide range
of tense logics, which would mean that the consequences just stated also apply to
the temporal analog of the dispute on modal ontology. The temporal analogs of
actualism and possibilism are called presentism and eternalism, and Williamson
(2012) calls the analogs of contingentism and necessitism temporaryism and
permanentism. It is interesting to note that in the discussion of presentism
and eternalism, generalized quantifiers have already been used in ways that are
similar to what I am suggesting, both for the criticism of presentism, as well
as for the defense of the substantiality of the dispute about temporal ontology.
As an example for criticisms of presentism, Lewis (2004, pp. 6–7) has argued
that it is di�cult for a presentist to analyze sentences such as “There have
been infinitely many kings named John”. For an example of a defense of the
substantiality of the dispute about temporal ontology, see Sider (2006, pp. 91–
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92), who uses sentences such as “Half the objects from all of time that are Ks
are Ls” as examples of statements for which a translation from eternalist to
presentist discourse is di�cult to find. Both of these generalized quantifiers are
not first-order definable, so the equivalence theorem provides a way of formally
substantiating their arguments.

I now turn to ways in which contingentists and actualists might try to counter
these applications of the equivalence theorem.

3.2 Relativizing

As I have presented it above, the equivalence theorem points in favor of neces-
sitism or possibilism, since for any set of generalized quantifiers Q such that LQ is
more expressive than first-order logic, contingentists cannot map every sentence
to a neutral one that is equivalent to the first, given necessitism, and the logic
with inner quantifiers is not as expressive as the logic with outer quantifiers.
But contingentists or actualists may point to the other part of the equivalence
theorem and ask: What if LQ does not relativize? Then the logic with outer
quantifiers is also not as expressive as the logic with inner quantifiers, and ne-
cessitists cannot map every sentence to a neutral one that is equivalent to the
first, given contingentism. Doesn’t this show that necessitists and contingentists
or possibilists and actualists are in a similar position?

The first thing to note is that, as the equivalence theorem states, whenever
first-order logic is as expressive as LQ, the latter relativizes. Therefore, if the
logic with inner quantifiers is as expressive as the logic with outer quantifiers, or
contingentists can map every sentence to a neutral one that is equivalent given
necessitism, then the logic with outer quantifiers is as expressive as the logic
with inner quantifiers, and necessitists can map every sentence to a neutral one
that is equivalent given contingentism. So whenever contingentists or actualists
don’t have a problem, neither do necessitists or possibilists.

This leaves the cases where LQ does not relativize. One might ask: Although
these cases might be problematic for contingentists or actualists as well, why
shouldn’t they be problematic for necessitists or possibilists? The reason is that
for any set of generalized quantifiers Q, the set of generalized quantifiers Qrel

is such that LQrel is at least as expressive as LQ, and LQrel relativizes. (See
Peters and Westerst̊ahl (2006, p. 454, Facts 5 and 6).) So when considering a
set of generalized quantifiers Q for which LQ does not relativize, necessitists
or possibilists can claim that this set is unnaturally restrictive. Note that such
an answer is unavailable to contingentists or actualists; if LQ0 is at least as
expressive as LQ and LQ is more expressive than first-order logic, then LQ0 is
more expressive than first-order logic as well.

This can be illustrated using the generalized quantifier QR of type h1i – the
so-called Rescher quantifier first discussed in Rescher (1964) – and a generalized
quantifier of type h1, 1i for which I will use the symbol M. We can read QR as
formalizing the phrase “most things are . . . ”, and M as formalizing “most . . .
are . . . ”. Consequently, they are defined as follows:

QRD(S) i↵ |S| > |D\S|
MD(S1, S2) i↵ |S1 \ S2| > |S1\S2|

As shown in Barwise and Cooper (1981, Theorem C13), LQR does not rel-
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ativize, but since M =
�
QR

�rel, LM does relativize. So if we consider L⇤QR ,
then there are some distinctions only contingentists can draw. An example is
the one they can draw using the sentence QRx⌃Nx, which for the sake of con-
creteness, we may read as “Most things could be nice”. However, by moving
to the more expressive language L⇤M, necessitists can draw the same distinc-
tion using the sentence Myx(Cy,⌃Nx), which we then read as “Most chunky
things could be nice”. Hence necessitists might just need slightly more expres-
sive logical resources to draw the distinctions contingentists can draw, but this
doesn’t seem to be a philosophically relevant point. We can argue similarly in
the case of inner and outer quantifiers: Although there is no sentence in L⇤QRO

with the same truth-conditions as QRx⌃Nx, there is one in L⇤MO, namely
MO

yx(y = y,⌃Nx).

3.3 Without the Being Constraint

Actualists could also object to the use of the equivalence theorem in arguing
for possibilism by claiming that the logics LPD

⇤Q and LPD
⇤QO are not the correct

formal representations of actualism and possibilism. Indeed, in comparing the
expressivity of these logics, we considered a question that is slightly di↵erent
from one that is often discussed in the literature on actualism and possibilism,
e.g. in Forbes (1989) and Correia (2007). These authors consider a semantics
in which the being constraint (P) is not enforced. That is, they allow Kripke
models in which it is not the case that i(R)(w) ✓ d(w). Since they allow objects
outside the domain of a world to have properties there, they assume that x = y

is true in a world under an assignment that maps these variables to the same
object, even if it isn’t in the domain of the world. Finally, they assume that there
is a unary logical predicate E expressing existence, whose semantics is given by
the domain function. To make sure that this objection by the actualist is not
e↵ective, I will now show that the equivalence theorem can be extended to these
logics. I will first give the formal definitions, which I will mark by indexing the
appropriate symbols by ⇤.

Syntactically, these logics di↵er from the ones considered before only in con-
taining an additional logical unary predicate E. I use L⇤Q⇤ and L⇤Q⇤O for the
languages obtained from adding this predicate to the languages L⇤Q and L⇤QO.
The truth relation is defined as above, except for a new truth-condition for E

and an amended truth-condition for =:

M, w, s, a ✏⇤ Ex i↵ a(x) 2 d(w)
M, w, s, a ✏⇤ x = y i↵ a(x) = a(y)

All other operators are interpreted as before, including inner and outer quanti-
fiers. As models, we use the class of Kripke models D satisfying the requirement
that the outer domain is the union of the domains of all worlds. With this,
we can define the new logics as follows: LD

⇤Q⇤ = hL⇤Q⇤,D,✏⇤i and LD
⇤Q⇤O =

hL⇤Q⇤O,D,✏⇤i. We show that it makes no di↵erence whether these logics are
considered instead of those used in the equivalence theorem:

Proposition 15. For any set Q of generalized quantifiers, (A2) if and only if
(A2*), and (B2) if and only if (B2*):

(A2) LPD
⇤Q � LPD

⇤QO (B2) LPD
⇤QO � LPD

⇤Q
(A2*) LD

⇤Q⇤ � LD
⇤Q⇤O (B2*) LD

⇤Q⇤O � LD
⇤Q⇤
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We prove this by showing that (A2*) follows from (A3) and implies (A2),
and analogously, that (B2*) follows from (B3) and implies (B2).

We start with the implications from 3 to 2*. As in section 2.3, we need a
lemma which states that relations of relative expressivity transfer from first-
order logics with generalized quantifiers to the corresponding quantified modal
logics with generalized quantifiers:

Lemma 16. If LQ � LQ0 then LD
⇤Q⇤O � LD

⇤Q0⇤O.

Proof. Analogous to the proof of Lemma 11.

Proposition 17 ((A3))(A2*)). If LQ relativizes then LD
⇤Q⇤ � LD

⇤Q⇤O.

Proof. We can show that LD
⇤Q⇤ � LD

⇤Qrel⇤O using the following mapping ·E from
L⇤Q⇤-formulas to L⇤Qrel⇤O-formulas:

(8x')E = ⇧x

�
Ex ! '

E
�

(Q¯̄
x'̄)E =

�
Qrel

�O
y

¯̄
x

�
Ey, '̄

E
�

If LQ relativizes, then LQrel � LQ, so by Lemma 16, LD
⇤Qrel⇤O � LD

⇤Q⇤O. It
follows by the transitivity of � that LD

⇤Q⇤ � LD
⇤Q⇤O.

Proposition 18 ((B3))(B2*)). If LQ � L; then LD
⇤Q⇤O � LD

⇤Q⇤.

Proof. We can show that LD
⇤;⇤O � LD

⇤Q⇤ using the following mapping ·"# from
L⇤;⇤O-formulas to L⇤Q⇤-formulas:

(⇧x')"# ="⇤8x #'"#

If LQ � L;, then by Lemma 16, LD
⇤Q⇤O � LD

⇤;⇤O. It follows by the transitivity
of � that LD

⇤Q⇤O � LD
⇤Q⇤.

Now we prove the implications from 2* to 2. For this, we define two mappings.
The first, ·+⇤, maps L⇤Q(O)-formulas to L⇤Q⇤(O)-formulas:

(x = y)+⇤ = (x = y ^ Ex)

The second, ·�⇤, maps L⇤Q⇤(O)-formulas to L⇤Q(O)-formulas:

(Ex)�⇤ = (x = x)

(x = y)�⇤ = ⌃x = y

We prove that when considering Kripke models in PD, they both map sentences
to equivalent ones:

Lemma 19. For all M 2 PD:

(i) For all ' 2 L⇤Q or ' 2 L⇤QO: M ✏ ' if and only if M ✏⇤ '+⇤.

(ii) For all ' 2 L⇤Q⇤ or ' 2 L⇤Q⇤O: M ✏⇤ ' if and only if M ✏ '�⇤.

Proof. By inductions on the complexity of formulas.

Proposition 20 ((A2*))(A2)). If LD
⇤Q⇤ � LD

⇤Q⇤O then LPD
⇤Q � LPD

⇤QO.
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Proof. Assume that LD
⇤Q⇤ � LD

⇤Q⇤O. Consider any ' 2 L⇤Q. Then there is a
 2 L⇤Q⇤O such that M ✏⇤  if and only if M ✏⇤ '+⇤ for all M 2 D, and so in
particular for all M 2 PD. By Lemma 19, for all M 2 PD, M ✏ ' if and only if
M ✏⇤ '+⇤, and M ✏⇤  if and only if M ✏  

�⇤. Hence for all M 2 PD, M ✏ '

if and only if M ✏  �⇤. Since  �⇤ 2 L⇤QO, LPD
⇤Q � LPD

⇤QO.

Proposition 21 ((B2*))(B2)). If LD
⇤Q⇤O � LD

⇤Q⇤ then LPD
⇤QO � LPD

⇤Q.

Proof. Analogous to the proof of Proposition 20.

This concludes the proof of the result that (A2*) is equivalent to (A2) and
(B2*) is equivalent to (B2). Hence as far as the equivalence theorem and its
philosophical implications for actualism and possibilism is concerned, it makes
no di↵erence which versions of the logics we consider.

3.4 Infinitary Logics

Confronted with problems like the ones posed by the equivalence theorem, it is
natural for actualists to turn to infinitary languages, as it is done, e.g., in Fine
(1977, p. 158) and Fine (2003, pp. 226–227). Considering the analogous strat-
egy for contingentism, Williamson (2010, section 10) argues that the specific
infinitary constructions proposed by Fine are problematic from a philosophical
perspective, and that more standard infinitary constructions do not solve the
contingentist’s problems with second-order logic. In particular, he considers log-
ics in which conjunctions can range over arbitrarily large sets of formulas, and
first- as well as second-order quantifiers can range over arbitrarily large sets of
variables. He shows that in the case of second-order logic, the result that some
sentences have no neutral equivalent, given necessitism, can be extended to such
infinitary variants.

We can ask how the results on generalized quantifiers fare in such a context.
Most of the implications in the proof of the equivalence theorem can easily be
extended to such infinitary logics; in particular, this is straightforward for the
implications from 1 to 2. It is clear that the most interesting implication for the
contingentist or actualist is the one which shows that for any set of generalized
quantifiers Q such that LQ is more expressive than first-order logic, the logic
with inner quantifiers is not as expressive as the logic with outer quantifiers. We
might ask whether this still holds in the context of infinitary logic. I will now
show that the implication still holds, by proving that in this setting, no logic
with inner quantifiers is as expressive as the corresponding logic with outer
quantifiers. Surprisingly, this means that introducing infinitary devices leaves
contingentists and actualists in a worse position than before, since even if no
generalized quantifiers are used, there will be sentences that have no neutral
equivalent, given necessitism, and sentences with outer quantifiers that have no
equivalent with inner quantifiers. So not only do the infinitary constructions
not help contingentists or actualists with generalized quantifiers, they introduce
problems themselves.

To define the infinitary variants of LPD
⇤Q and LPD

⇤QO, we add the syntactic rules
that for any set of formulas �,

V
� is a formula, and for any set of variables X,

8X' or ⇧X' is a formula. Note that we do not extend generalized quantifiers
in any way; only first-order quantifiers can now bind sets of variables. Call the
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resulting languages L⇤Q11 and L⇤QO11. For these new constructions, we
introduce the following truth-conditions:

M, w, s, a ✏ V
� i↵ M, w, s, a ✏ ' for all ' 2 �

M, w, s, a ✏ 8X' i↵ M, w, s, a

0 ✏ ' for all assignments a

0 that agree with a on
the variables not in X and for which a

0(x) 2 d(w) for all x 2 X

M, w, s, a ✏ ⇧X' i↵ M, w, s, a

0 ✏ ' for all assignments a

0 that agree with a on
the variables not in X and for which a

0(x) 2 D for all x 2 X

Define LPD
⇤Q11 = hL⇤Q11,PD,✏i and LPD

⇤QO11 = hL⇤QO11,PD,✏i.
To show that LPD

⇤QO11 � LPD
⇤Q11 holds for any set of generalized quantifiers

Q, we show that there is a sentence '1 containing only first-order outer quanti-
fiers which is true in a Kripke model if the outer domain contains uncountably
many things which have the property F in some world. We then show that
there is no equivalent sentence using only inner quantifiers, no matter which
generalized quantifiers are admitted. Similar to the proof in section 2.2, we use
back-and-forth systems for the latter claim. I start with a definition of back-
and-forth systems that is appropriate for infinitary logics.

Let M = hW,D, d, i, @i and M0 = hW 0
, D

0
, d

0
, i

0
,@0i be Kripke models. A

back-and-forth system from M to M0 is a non-empty set I of partial isomor-
phisms from M to M0 such that:

(i) For all h�, ⇢i 2 I and w 2 W , there is a �0 ◆ � and a ⇢0 ◆ ⇢ such that
h�0, ⇢0i 2 I and w 2 dom(�0).

(ii) For all h�, ⇢i 2 I and w

0 2 W

0, there is a �0 ◆ � and a ⇢0 ◆ ⇢ such that
h�0, ⇢0i 2 I and w

0 2 im(�0).

If there is a back-and-forth system from M to M0, we write M ⇠=1 M0. Similar
to before, we can prove that Kripke models related by a back-and-forth system
satisfy the same sentences. To state this, we write M ⌘⇤Q11 M0 if for all
sentences ' 2 L⇤Q11, M ✏ ' if and only if M0 ✏ '.

Lemma 22. If M ⇠=1 M0 then M ⌘⇤Q11 M0.

Proof. By induction on the complexity of formulas.

For the proof of the next proposition, we use two Kripke models that will also
be useful in the next section. Define N = hN, N, dN, iN, 0i and R = hR, R, dR, iR, 0i,
where dN(m) = {m} and iN(R)(m) = {m}n for all m 2 N and relation symbols
R, and dR(r) = {r} and iR(R)(r) = {r}n for all r 2 R and relation symbols R.

Proposition 23. LPD
⇤QO11 � LPD

⇤Q11.

Proof. We first define '1 to be the following sentence:

⌃{x↵ : ↵ < !1}
⇣⇣V

↵<�<!1
¬x↵ = x�

⌘
^

�V
↵<!1

⌃Fx↵

�⌘

By quantifying over a set of variables of size @1, this sentence expresses that
|
S

w2W i(F )(w)| � @1. We can show that N ⇠=1 R using the back-and-forth
system consisting of the partial isomorphisms h�,�i for all partial injections �
from N to R with a finite domain such that �(0) = 0. By Lemma 22, it follows
that N ⌘⇤Q11 R. Since N 2 '1 and R ✏ '1, it follows that LPD

⇤QO11 �
LPD

⇤Q11.
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3.5 Modal Extensions

As infinitary logics seem not to help them, contingentists and actualists might
hope that more expressive modal operators do so. To back this up, contingentists
might point out that in first-order modal logic without the modal operators "
and #, they had the same problem of not being able to draw certain distinctions,
but once these operators were added, the problem disappeared, and actualists
can tell a similar story about relative expressivity. Natural examples for modal
operators that might provide a helpful increase in expressivity are propositional
quantifiers, which are already used in Fine (1977) and Kripke (1983), or quanti-
fiers over worlds, which are often discussed under the label of hybrid logic, e.g.,
in Areces and ten Cate (2007).

As with infinitary logics, many of the implications in the equivalence theorem
can be extended to many such additions. And again, it is the proof showing
that if LQ is more expressive than first-order logic then the logic with inner
quantifiers is not as expressive as the logic with outer quantifiers which does
not immediately generalize in all cases. E.g., while it does work for quantifiers
over worlds, it doesn’t work without modification for propositional quantifiers.
But as with infinitary logics, the proof technique using back-and-forth systems
can be adapted to accommodate propositional quantifiers. To demonstrate this,
I will now show that first-order modal logic with the generalized quantifier Q1,
which formalizes “there are uncountably many”, and propositional quantifiers is
not as expressive using inner quantifiers as using outer quantifiers. This shows
that the problems for contingentists and actualists with generalized quantifiers
cannot be solved in general by adding propositional quantifiers.

To add propositional quantifiers to LPD
⇤Q and LPD

⇤QO, we use a countably infi-
nite set of propositional variables, and add the syntactic rules that any propo-
sitional variable is a formula, and that for any formula ' and propositional
variable p, 8p' is a formula. Of course, being a sentence now also requires hav-
ing no free propositional variables. Adapting notation from Fine (1970), I call
the resulting languages L⇤Q⇡+ and L⇤QO⇡+. As usual, we formalize propositions
as sets of worlds; thus, assignments now also map propositional variables to sets
of worlds. Taking any set of worlds to be a proposition, we get the following
truth-conditions for the new constructions:

M, w, s, a ✏ p i↵ w 2 a(p)

M, w, s, a ✏ 8p' i↵ M, w, s, a[P/p] ✏ ' for all P ✓ W

Define LPD
⇤Q⇡+ = hL⇤Q⇡+,PD,✏i and LPD

⇤QO⇡+ = hL⇤QO⇡+,PD,✏i. Let Q1 be
the generalized quantifier such that Q1D = {S ✓ D : |S| � @1}. To show that
LPD

⇤Q1O⇡+ � LPD
⇤Q1⇡+, we adapt the proof idea of Proposition 23, and show that

the Kripke models N and R defined above are indistinguishable using LPD
⇤Q1⇡+.

As usual, I start by introducing an appropriate kind of back-and-forth systems.
Let M = hW,D, d, i, @i and M0 = hW 0

, D

0
, d

0
, i

0
,@0i be Kripke models. A

⇡+ partial isomorphism from M to M0 is a tuple h�, ⌃, ⇢i such that � is a partial
injection from W to W

0, ⌃ is a partial injection from P(W ) to P(W 0) and ⇢ is a
partial injection from D to D

0 such that �(@) = @0 and for all w 2 dom(�) and
P 2 dom(⌃), ⇢|d(w) : Mw

⇠= M0
�(w) and w 2 P if and only if �(w) 2 ⌃(P ).

A ⇡+ back-and-forth system from M to M0 is a non-empty set I of ⇡+ partial
isomorphisms from M to M0 such that:
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(i) For all h�, ⌃, ⇢i 2 I and w 2 W , there is a �0 ◆ � and a ⇢0 ◆ ⇢ such that
h�0,⌃, ⇢

0i 2 I and w 2 dom(�0).

(ii) For all h�, ⌃, ⇢i 2 I and w

0 2 W

0, there is a �0 ◆ � and a ⇢0 ◆ ⇢ such that
h�0,⌃, ⇢

0i 2 I and w

0 2 im(�0).

(iii) For all h�, ⌃, ⇢i 2 I and P ✓ W , there is a ⌃0 ◆ ⌃ such that h�, ⌃0
, ⇢i 2 I

and P 2 dom(⌃0).

(iv) For all h�, ⌃, ⇢i 2 I and P

0 ✓ W

0, there is a ⌃0 ◆ ⌃ such that h�, ⌃0
, ⇢i 2 I

and P

0 2 im(⌃0).

If there is a ⇡+ back-and-forth system from M to M0, we write M ⇠=⇡+ M0.
Similar to before, we can prove that Kripke models related by a ⇡+ back-and-
forth system satisfy the same sentences. To state this, we write M ⌘⇤Q⇡+ M0

if for all sentences ' 2 L⇤Q⇡+, M ✏ ' if and only if M0 ✏ '.

Lemma 24. If M ⇠=⇡+ M0 then M ⌘⇤Q⇡+ M0.

Proof. By induction on the complexity of formulas.

Lemma 25. N ⇠=⇡+ R.

Proof. For this proof, we need the notion of a partition, and of a certain kind
of functions from one partition to another. A partition of a set D is a set X of
non-empty subsets of D such that

S
X = D and A \ B = ; for any distinct

A, B 2 X. For any partitions X and Y , let f : X ! Y be a finite cardinality
bijection if it is a bijection and for any A 2 X, A and f(A) are both infinite or
|A| = |f(A)|.

Let F be the set of finite cardinality bijections from a finite partition of N to
a finite partition of R. For any f 2 F from X to Y , define fs to be the function
such that fs(

S
X

0) =
S

A2X0 f(A) for all X

0 ✓ X, and define fa to be the
function such that fa(n) = r if f({n}) = {r}. Now let I = {hfa, fs, fai : f 2 F

and f({0}) = {0}}. By checking the conditions, it can be verified that I is a ⇡+
back-and-forth system from N to R.

Proposition 26. LPD
⇤Q1O⇡+ � LPD

⇤Q1⇡+.

Proof. N 2 QO
1 x⌃Fx and R ✏ QO

1 x⌃Fx. By Lemmas 25 and 24, N ⌘⇤Q1⇡+ R,
so LPD

⇤Q1O⇡+ � LPD
⇤Q1⇡+.

While this result shows that propositional quantifiers do not solve all prob-
lems with generalized quantifiers for contingentists and actualists, they may still
hope that these problems can be solved by adding even richer modal resources.
Although we have not seen any reason to think that this can be done, we also
have not seen any reason to think that it cannot be done. This emphasizes the
importance of the philosophical question which motivated question (Q2): All the
technical results discussed here and in Williamson (2010) use particular formal
languages, and we have seen that for di↵erent languages, we get di↵erent results
about who can draw which distinctions and whose language is more expressive.
Which formal language is the one which is relevant? Does it have to stand in
some particular relation to natural language? Or should we consider richer and
richer languages? When can we draw philosophical conclusions – do we have to
establish that the relevant property holds for all languages that are at least as
expressive as a particular language?
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4 Conclusion

The problems for contingentism which Williamson (2010) has worked out in
the context of plurally interpreted second-order quantified modal logic can also
be formulated using quantified modal logics to which certain sets of generalized
quantifiers are added, namely those sets Q which contain a generalized quantifier
that is not first-order definable and for which LQ (first-order logic with the gen-
eralized quantifiers in Q) relativizes. Such extensions of quantified modal logic
are also relevant for the older debate between actualism and possibilism, since
for exactly these sets of generalized quantifiers, the logic with outer quantifiers
is strictly more expressive than the logic with inner quantifiers. This indicates
that there is a tight connection between the technical facts relevant for the two
debates. It also strengthens Williamson’s argument in favor of necessitism and
casts doubt on Fine’s and Kripke’s objections to certain arguments for possibil-
ism. In particular, the results presented here show that Williamson’s arguments
do not rely on peculiarities of second-order quantifiers on the plural interpre-
tation. Rather, the results suggest that these arguments are based on general
features of quantified modal logics with quantifiers whose expressivity exceeds
that of first-order logic, as they apply to a wide range of such logics and are
to some degree robust under extensions by infinitary devices and propositional
quantifiers. While these findings increase our understanding of the technical
facts relevant for the metaphysical dispute on modal ontology, I have mentioned
some of the many technical as well as philosophical issues that remain open.

Acknowledgements

Earlier versions of this article were presented at the CeLL Workshop on Philo-
sophical Implications of Second-Order Modal Logic in March 2010 and the Plu-
rals, Predicates, and Paradox Seminar in December 2010, both at the University
of London. I thank the participants on both occasions for comments and encour-
agement. For discussion and comments on di↵erent stages of the article, I thank
Sara Uckelman, Johan van Benthem and Timothy Williamson. This article was
completed while I was supported by an AHRC doctoral studentship.

References

Areces, C. and B. ten Cate: 2007, ‘Hybrid Logics’. In: P. Blackburn, J. van Ben-
them, and F. Wolter (eds.): Handbook of Modal Logic. Amsterdam: Elsevier,
pp. 821–868.

Barwise, J. and R. Cooper: 1981, ‘Generalized Quantifiers and Natural Lan-
guage’. Linguistics and Philosophy 4, 159–219.

Barwise, J. and S. Feferman: 1985, Model-Theoretic Logics. New York: Springer-
Verlag.

Blackburn, P., M. de Rijke, and Y. Venema: 2001, Modal Logic. Cambridge:
Cambridge University Press.

Boolos, G.: 1984, ‘To Be is to Be the Value of a Variable (or to Be Some Values
of Some Variables)’. Journal of Philosophy 81, 430–450.

31



Bricker, P.: 1989, ‘Quantified Modal Logic and the Plural de re’. Midwest Studies
in Philosophy 14, 372–394.

Correia, F.: 2007, ‘Modality, Quantification, and Many Vlach-Operators’. Jour-
nal of Philosophical Logic 36, 473–488.

Fine, K.: 1970, ‘Propositional quantifiers in modal logic’. Theoria 36, 336–346.

Fine, K.: 1977, Postscript to Worlds, Times and Selves (with A. N. Prior).
London: Duckworth. Reprinted in Fine (2005); page numbers refer to reprint.

Fine, K.: 2003, ‘The Problem of Possibilia’. In: M. J. Loux and D. W. Zimmer-
man (eds.): The Oxford Handbook of Metaphysics. Oxford: Oxford University
Press, pp. 161–179. Reprinted in Fine (2005); page numbers refer to reprint.

Fine, K.: 2005, Modality and Tense. Oxford: Clarendon Press.

Forbes, G.: 1989, Languages of Possibility. Oxford: Basil Blackwell.

Hazen, A.: 1976, ‘Expressive Completeness in Modal Language’. Journal of
Philosophical Logic 5, 25–46.

Hirsch, E.: 2009, ‘Ontology and Alternative Languages’. In: D. J. Chalmers,
D. Manley, and R. Wasserman (eds.): Metametaphysics: New Essays on the
Foundation of Ontology. Oxford: Clarendon Press, pp. 231–259.

Hodes, H. T.: 1984, ‘On Modal Logics Which Enrich First-Order S5’. Journal
of Philosophical Logic 13, 423–454.

Hodges, W.: 1997, A Shorter Model Theory. Cambridge: Cambridge University
Press.

Karp, C. R.: 1965, ‘Finite-Quantifier Equivalence’. In: J. W. Addison, L. Henkin,
and A. Tarski (eds.): The Theory of Models: Proceedings of the 1963 Interna-
tional Symposium at Berkeley. Amsterdam: North-Holland Publishing Com-
pany, pp. 407–412.

Kripke, S. A.: 1963, ‘Semantical Considerations on Modal Logic’. Acta Philo-
sophica Fennica 16, 83–94.

Kripke, S. A.: 1983, ‘Review of Fine’. Journal of Symbolic Logic 48, 486–488.

Lewis, D.: 2004, ‘Tensed Quantifiers’. In: D. W. Zimmerman (ed.): Oxford
Studies in Metaphysics, Vol. 1. Oxford: Oxford University Press, pp. 3–14.

Lindström, P.: 1966, ‘First Order Predicate Logic with Generalized Quantifiers’.
Theoria 32, 186–195.

Mostowski, A.: 1957, ‘On a generalization of quantifiers’. Fundamenta Mathe-
maticae 44, 12–36.

Peters, S. and D. Westerst̊ahl: 2006, Quantifiers in Language and Logic. Oxford:
Oxford University Press.

Prior, A. N.: 1967, Past, Present, and Future. Oxford: Clarendon Press.

32



Rescher, N.: 1964, ‘Plurality Quantification’. Journal of Symbolic Logic 27,
373–374.

Sider, T.: 2006, ‘Quantifiers and Temporal Ontology’. Mind 115, 75–97.

van Benthem, J.: 2010, Modal Logic for Open Minds. Stanford: CSLI Publica-
tions.

Vlach, F.: 1973, “Now’ and ‘Then’: A Formal Study in the Logic of Tense
Anaphora’. Ph.D. thesis, University of California, Los Angeles.

Westerst̊ahl, D.: 2011, ‘Generalized Quantifiers’. In: E. N. Zalta (ed.): Stanford
Encyclopedia of Philosophy. Summer 2011 edition.

Williamson, T.: 2010, ‘Necessitism, Contingentism, and Plural Quantification’.
Mind 119, 657–748.

Williamson, T.: 2012, Modal Logic as Metaphysics. Forthcoming.

33


