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ABSTRACT

Classical electrodynamicsÐif developed consistently, as in Dirac's classical theory of

the electronÐis causally non-local. I distinguish two distinct causal locality principles

and argue, using Dirac's theory as my main case study, that neither can be reduced to a

non-causal principle of local determinism.
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1 Introduction

Classical electrodynamics is generally understood to be the paradigm of a

local and causal physical theory. After all, electromagnetic ®elds, which

mediate all electromagnetic in¯uences, propagate at a ®nite speed. One of my

aims in this paper is to set the record straight: perhaps surprisingly, non-

locality is already a feature of purely classical electromagnetic systems,

independently of any quantum mechanical considerations. On its standard

interpretation, P. A. M. Dirac's classical theory of the electron (Dirac [1938])

allows for forces to act where they are not, and for superluminal causal

propagation.

The general philosophical question in which I am interested is: what is it

for a theory to be local or non-local? I will argue that there are several

logically distinct locality conditions that are invoked in the context of

classical physics and that these conditions are often not distinguished

carefully enough. Two of these conditions, I want to argue, are irreducibly

causal.
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Informally, locality principles are often introduced in causal terms.

Newtonian gravitational theory, for example, is said to be non-local, because

it allows for action-at-a-distance; while the theory of special relativity is

sometimes (if perhaps incorrectly) said to imply the locality condition that

there can be no superluminal causal propagation. According to a widespread

view, however, the notion of causation is inherently suspect and whatever

genuine content such prima facie causal principles have should be explicated

in non-causal terms. For example, Bertrand Russell famously argued that in

the advanced sciences the notion of functional dependency has replaced that

of causation. Any more substantive notion of causality, he claimed, `is a relic

of a bygone age, surviving, like the monarchy, only because it is erroneously

supposed to do no harm' ([1918], p. 180).

Russell's wariness of a rich notion of causation is echoed by a currently

in¯uential view of scienti®c theories that identi®es theories (in the physical

sciences) with a mathematical formalism (or a class of mathematical models)

and an interpretation whose only job it is to ®x the ontology of the theory.

Absent from this account is the idea that part of the job of an interpretation

may be to stipulate causal structures consistent with the mathematical models

with which the theory provides us. Thus, prima facie causal locality

conditionsÐsuch as the prohibition against action-at-a-distanceÐwould,

on this view, have to be spelled out purely in terms of the mathematical

formalism (plus its associated ontology).

Gordon Belot's recent discussion of non-locality in electromagnetism

(Belot [1998]) can be understood as contributing to this broadly neo-Humean

project. Belot there proposes a non-causal principle of determinism which he

takes to be equivalent to the condition that e�ects propagate at a ®nite speed.

But I will argue that Belot's condition is logically independent from the

causal principle it is meant to explicate. In particular, I will argue that Dirac's

classical theory of the electron comes out as local according to Belot's

condition, even though the theory is causally non-local.

Although my main focus will be on Belot's principle and its relation to

causal locality conditions, I believe that my conclusion generalizes: no non-

causal explication of the two causal locality principlesÐthat of a ®nite

velocity of all causal propagation and that of action-by-contactÐseems

possible. As additional evidence for this claim I will discuss a locality

criterion proposed by John Earman ([1987]) that is meant to capture the

content of the action-by-contact principle. Earman's criterion, as I will argue,

also fails as a strictly non-causal explication.

In the next section (section 2), I will present certain salient features of

Dirac's classical theory of the electron and I will show that (under its

standard interpretation) the theory violates both the action-by-contact

condition and the ®nite causal propagation condition. In section 3 I
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introduce Belot's locality condition and discuss his own application of that

condition to interpretations of classical electrodynamics. In sections 4 and 5 I

show that the three locality principles that I have distinguishedÐthe two

causal principles and Belot's conditionÐare all logically independent from

one another. Section 6 argues that Earman's condition fails to provide a non-

causal explication of the action-by-contact condition and addresses a

Russellian objection to my account. In the last section I provide a brief

summary.

2 Dirac's classical theory of the electron

Microscopic classical electrodynamics is concerned with the interaction

between electric charges and electromagnetic ®elds. In the theory familiar

from physics textbooks, such as Jackson ([1999]), electromagnetic phenom-

ena are treated as being governed by two sets of lawsÐthe microscopic

Maxwell equations, on the one hand, and the Lorentz force law together with

Newton's second law (or its relativistic generalization), on the other. The

Maxwell equations allow us to calculate the electromagnetic ®elds associated

with a given charge and current con®guration, while the Lorentz law allows

us to calculate the motion of a charge in an external ®eld. The Maxwell±

Lorentz approach to electrodynamics results in a local and forward-causal

theory. It is this theory that people seem to have in mind when they refer to

electromagnetism, as Belot does, as `the paradigm of all that a classical (i.e.

non-quantum) theory should be' ([1998], p. 531). The only trouble with this

theory is that it is inconsistent. According to the Maxwell equations,

accelerated charges radiate o� energy, but the Lorentz law ignores any e�ects

on the motion of a charge due to its own radiation. If one assumes energy-

momentum conservation (in its standard formulation), then the Maxwell

equations imply that the acceleration of a charge cannot be what the Lorentz

law predicts. The reason why the Lorentz force law ignores a charge's own

radiation ®eld is that this ®eldÐas predicted by the Maxwell equationsÐis

in®nite at the location of the charge, if charges are treated as point particles

(as is standardly done).1

As Dirac ([1938]) has shown, however, it is possible to include in a

consistent way a charge's radiation ®eld in an equation of motion for a

charged particle. The stumbling block in trying to derive an equation of

motion for a point charge from the Maxwell equations and the principle of

energy-momentum conservation is the in®nity in the charge's ®eld, which

implies that the energy associated with the ®eld is in®nite. Dirac showed that
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one can overcome this di�culty by absorbing part of the in®nite self-energy

of a charge into its mass (which nevertheless is taken to be ®nite). With the

help of this procedure, which is known as `renormalization' (and which has

become a standard technique in quantum ®eld theories), one can derive the

relativistic Lorentz±Dirac equation (Rohrlich [1965], equation 6±57):2

mam � Fm � 2e2

3c3

�
dam

dt
ÿ 1

c2
alalv

m

�
(1)

where F m is the total external force (due to the external electromagnetic ®eld

F mv and any non-electromagnetic forces acting on the charge), the mass term

m on the left represents the renormalized ®nite mass, and derivatives are with

respect to the proper time t. This equation di�ers from familiar Newtonian

equations in that it is a third-order equation, involving not only the

acceleration am of the charge, but also its derivative.3 In renormalizing the

mass one needs to assume as an asymptotic condition that the acceleration of

the charge tends to zero at both future and past in®nity. Thus even though (1)

is a local equation in that it relates quantities at a single proper time t to one

another, it is derived with the help of a global assumption.

If the external force is zero, one class of solutions to (1) describes a free

particle that (for no apparent `reason') accelerates and continues to accelerate

with an ever increasing rate. These so-called runaway solutions violate the

asymptotic condition of vanishing acceleration at in®nity and are generally

rejected as unphysical. If we impose explicitly the requirement that all

acceptable solutions to the Lorentz±Dirac equation have to satisfy the

asymptotic condition, equation (1) can be integrated once and we arrive at

the following second-order integro-di�erential equation of motion (Ibid.,

equation 6±76):

am(t) �
�1
t

e�tÿt
0 �=t0
�

1

mt0
Fm(t0)ÿ 1

c2
al(t0)al(t0)vm(t0)

�
dt0 (2)

where the constant t0 � 2e2=3mc3. This is a non-local equation in that it

relates the acceleration at t to the acceleration at all other times after t.
The asymptotic condition is usually motivated physically, ®rst, by the

assumption that any interaction between a charge and external ®elds can be

modeled as a scattering processÐthat is, as an interaction between a charge

that is `asymptotically free' and localized external ®eldsÐand, second, by
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appealing to something like a principle of inertia according to which the

acceleration goes to zero su�ciently far away from any force acting on the

charge.4 Even though this principle is weaker than the familiar Newtonian

principle of inertia, adopting it has the advantage of ensuring a certain

interpretive continuity between Dirac's theory and Maxwell±Lorentz

electrodynamics (and Newtonian theories in general5). Just as in Maxwell±

Lorentz electrodynamics, a charge which never experiences a force moves

with constant velocity in Dirac's theory.6

The `obvious' interpretation (Rohrlich [1965], p. 149), then, of (2) is that in

Dirac's theory, too, forces should be taken to be causally responsible for the

acceleration of a charge, where the `e�ective force' is given by the expression

in square brackets under the integral in (2) and includes both the external

force and a force on the charge due to its own radiation ®eld. Thus, the

acceleration at t is due to the force at t plus all non-zero forces on the world

line of the charge at all later times, where (due to the strong exponential

damping factor in the integral) forces contribute less and less the farther they

are in the future. Since, according to (2), the acceleration at t is due partly to

e�ective forces at times other than t, forces can act where they are not in

Dirac's theory.

This non-local feature of the theory is perhaps most evident in the

following approximation to (2). Since t0 is small, the equation of motion can

be approximated by (Rohrlich [1965], equation 6±84):

mam(t) � Km(t� xt0) (3)

where

Km � Fm ÿmt0
c2

alalv
m

is the e�ective force. (3) almost looks like a Newtonian equation of motion,

except for the fact that there is a time delay between acceleration and e�ective

force: the acceleration at t depends on the force at a slightly later proper time.

The non-local dependence between force and acceleration could be spelled

out in terms of what the consequences of counterfactual interventions into an
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that charges which never experience a force move with constant velocity that Dirac's theory
satis®es Newton's principle of inertia. As one can see from (2), the acceleration of a charge in
Dirac's theory can be non-zero even at times when the force on the charge is zero. Thus, Dirac's
charges can violate Newton's principle of inertia.



otherwise closed system would be: if we were to introduce an additional

external force at t� xt0, then the acceleration at t would have to be di�erent.

By contrast, an intervention into a purely Newtonian system would a�ect

only the acceleration at the time of the intervening force.

Against the interpretation of Dirac's theory I am presenting here,

GruÈ nbaum ([1976]) has argued that acceleration in the theory plays a role

analogous to that of velocity in Newtonian theories. If the analogy held, it

would be a mistake to interpret (2) causally non-locally. Adolf GruÈ nbaum

points out that we can write down equations which allow us to retrodict a

particle's Newtonian velocity from its ®nal velocity (as `initial' condition)

together with future forces, but this does not show that these forces cause the

current velocity. Similarly, we should not take the fact that (2) allows us to

retrodict the present acceleration from future forces to suggest that future

forces cause the present acceleration since that equation is derived with the

help of the asymptotic condition as `initial' condition. But GruÈ nbaum

misunderstands the role of the asymptotic condition in Dirac's theory and the

analogy is ¯awed. First, the asymptotic condition does not merely play the

role of an extraneous initial condition, as GruÈ nbaum claims, since it needs to

be assumed in the very derivation of the Lorentz±Dirac equation; and,

second, there is of course no principle analogous to the Diracian principle of

inertia in Newtonian physics which says that velocities go to zero su�ciently

far away from any force. Thus, the non-local causal interpretation of Dirac's

theory follows not merely from the fact that (2) is a non-local equation; rather

it follows from (2) in light of the explicitly causal assumption that (®eld)

forces cause accelerations, where this assumption in turn is motivated as a

natural way to account for the asymptotic condition.

The fact that Dirac's theory is non-local might seem surprising, since it is a

theory in which all interactions between particles are mediated by ®elds

propagating with a ®nite velocity. Are not ®eld theories local (almost) by

de®nition? But we need to be careful here. The electromagnetic ®eld alone is

local in that the state of the total ®eld (in a given frame at a certain time) is

given by the state of the ®eld in all sub-regions of space. Moreover,

disturbances in the ®eld propagate at a ®nite speed through the ®eld. Non-

local features arise when we consider how the electromagnetic ®eld interacts

with charged particles. The ®eld produced by a charge again is locally

connected to the charge: according to the Maxwell equations, radiation ®elds

associated with a charge arise at the location of the charge and propagate

away from the charge at a ®nite speed. But the ®eld a�ects charges non-

locally: the acceleration of a charge at an instant is due to the ®elds on the

entire future world line of the charge. Belot says that it is a `well-entrenched

principle that classical ®elds act by contact rather than at a distance' ([1998],

p. 532), and in this he is surely right. But it is a striking (and under-
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appreciated) fact that in microscopic classical electrodynamics this well-

entrenched principle is satis®ed only by the inconsistent Maxwell±Lorentz

theory, and not by Dirac's consistent theory.

A second sense in which Dirac's theory is non-local is that the theory

allows for superluminal causal propagation. On the one hand, the present

acceleration of a charge is determined by future ®elds according to (2). On the

other hand, an accelerated charge produces a so-called retarded radiation

®eld which a�ects the total electromagnetic ®eld along the forward light cone

of the charge. The combination of the backwards causal e�ect of an external

®eld on a charge and the forward causal in¯uence of a charge on the total

®eld can result in causal propagation between space-like separated events. If

the radiation ®eld due to a charge q1 at t1 is non-zero where its forward light

cone intersects the world line of a charge q2, then the acceleration of q2 at t2
will be a�ected by the ®eld due to q1, even when the two charges are space-

like separated. Again one could make this point in terms of interventions into

an otherwise closed system: if q1 were accelerated by an external force, then

the motion of a space-like separated charge q2 would be di�erent from what it

is without the intervention. In principle (if t0 were not so extremely small) the

causal connection between space-like separated events could be exploited to

send superluminal signals. By measuring the acceleration of q2, an

experimenter could ®nd out whether the space-like separated charge q1 was

accelerated or not, and therefore it should in principle be possible to transmit

information superluminally in Dirac's theory.7

I can think of two objections to my claim that Dirac's theory allows

superluminal signaling. First, one could argue that since the e�ect of the

acceleration ®eld of q1 are `felt' on the entire world line of q2 prior to the point

where the world line intersects the future light cone of q1 at t1, one cannot

really speak of signaling between space-like separated points, since no

information that was not already available on the world line of q2 is

transmitted from q1. But while I take it that signaling implies a causal

connection, the converse does not hold. So even if it were impossible to send

signals between space-like separated charges, this does not imply that the two

charges cannot causally a�ect each other. Moreover, we can imagine a

scenario in which two experimenters could use two charges to signal to each

other. We only need to assume that the experimenter who is to receive the

signal at t2 has a detection device that is not sensitive enough to detect the

in¯uence of q1 on q2 at times prior to t2.
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Second, one could object to my appeal to counterfactual interventions.8

Counterfactual interventions are strictly speaking miracles and one should

not, it seems, draw any consequences concerning a theory's interpretation

from what happens if miracles violating the theory's laws occur. We would,

for example, not wish to draw any consequences for the causal structure of

the theory from a miracle that created additional charges: even though the

e�ect of the additional charge will be felt instantaneously over space-like

intervals, this does not show that traditional Maxwell±Lorentz electro-

dynamics is non-local. But the intervention in the situation I am considering

di�ers from one creating a charge in that it does not require an

electromagnetic miracle, for the additional force accelerating the charge

could be a non-electrodynamic force. Since the laws of electrodynamics are

not violated in such an intervention, it appears legitimate to appeal to these

laws in assessing the e�ects of the intervention.

Dirac's theory, then, violates two causal locality conditions: the condition

that all action is by contact, and the condition that causal propagation takes

place with a ®nite velocity. Both conditions are causal in an intuitive sense:

the action-by-contact principle restricts causes to be contiguous to their

immediate e�ects. And the propagation condition states that causal

in¯uences propagate at a ®nite speed. If the maximum velocity of causal

propagation is the speed of light, this means that causes and their e�ects

cannot be space-like separated.9 Now, can either of these two causal locality

conditions be explicated in non-causal terms? In the next section I will

introduce a non-causal locality condition due to Belot that looks like a

promising candidate for such a non-causal explication.

3 Belot's diachronic locality and electromagnetism

Belot ([1998]) distinguishes the following two locality conditions:

(i) Synchronic Locality: the state of the system at a given time can be

speci®ed by specifying the states of the subsystems located in each region

of space (which may be taken to be arbitrarily small).
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(ii) Diachronic Locality: in order to predict what will happen here in a

®nite amount of time, �t, we need only look at the present state of the

world in [a] ®nite neighbourhood of here, and the size of this

neighbourhood shrinks to zero as �t!0. (p. 540)

The ®rst criterion, according to Belot, is meant to capture the non-holist

intuition that the properties of a (classical) system ought to be reducible to

the properties of its parts. The second criterion is meant to be equivalent to

the condition of ®nite signaling speed. Newtonian gravitational theory, for

example, is diachronically non-local, Belot says, `since gravitational e�ects

propagate with in®nite velocity' (Ibid., p. 541), while (Maxwell±Lorentz)

electrodynamics under the traditional interpretation is diachronically local,

since `electromagnetic radiation propagates at a ®xed speed' (Ibid.).

According to Belot, diachronic locality implies synchronic locality. Since

he also says that if a magnetic ®eld were allowed to act where it is not

synchronic locality would be violated, it follows that, according to his

account, the condition of diachronic locality implies the condition of action-

by-contact.

Before investigating the relations between Belot's conditions and the two

causal conditions in detail, I want to digress for a moment and comment on

the case Belot himself discusses. Belot is interested in comparing various

possible interpretations of Maxwell±Lorentz electrodynamics. According to

the standard interpretation, the theory's basic ontology is taken to consist of

electromagnetic ®elds and charged particles, which results in a theory which is

both synchronically and diachronically local, as Belot says. The theory's

mathematical formalism also makes use of what are known as vector and

scalar potentials, but in the standard interpretation the potentials are treated

as mere mathematical ®ctions, since they are not determined uniquely by the

observable ®elds but only up to what is known as a gauge transformation.

Thus, if we want the theory to be deterministic (in the sense that the evolution

of the state of an electromagnetic system is completely determined by what,

according to the theory, we can know about the state of the system), then the

potentials cannot be interpreted realistically.

However, Belot argues that since the quantum mechanical Aharanov±

Bohm e�ect shows that di�erences in the vector potentials can have

empirically observable consequences, we should, for reasons of interpretive

continuity, abandon the standard interpretation. The Aharanov±Bohm

e�ect has taught us, he says, that we had `misunderstood what

electromagnetism was telling us about the world' (Ibid., p. 532). Two

alternative interpretations are suggested by the Aharanov±Bohm e�ect.

Either, we can take the electromagnetic potential to represent a real

physical ®eld. Or, we take the state of an electromagnetic system to be given

partly by the values of all closed-loop integralsÐso-called holonomiesÐover
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the vector potential.10 The second alternative has the advantage of retaining

determinism, since the holonomies, unlike the potential, are gauge-invariant

and are uniquely determined by the values of the ®elds, but it has the

disadvantage of rendering classical electrodynamics radically non-local. If

we interpret the holonomies, but not the vector potential, realistically, then

the theory is synchronically (and hence, Belot says, also diachronically)

non-local: since holonomies are `spread out' in space, the state of the system

at a given time cannot be speci®ed by specifying the states of spatially

localized subsystems.

Belot also claims that interpreting the potentials realistically results in a

general diachronically non-local theory, but this claim is mistaken. As an

example of how the potential supposedly depends non-locally on a change in

current-density, Belot cites the case of a very long solenoidÐa conducting

wire coiled around a cylinder. If a constant current is running through the

wire, then (according to the Biot±Savart law) there will be a constant

magnetic ®eld inside the device, while the magnetic ®eld outside will be zero.

Since the holonomy around a closed curve which loops around the solenoid is

equal to the magnetic ¯ux through the area enclosed by the curve, Belot

argues that `it follows that the vector potential propagates with in®nite

velocity' and that `If we switch the thing on, then the values of the vector

potential at some point arbitrarily far away must change instantaneously'

(Ibid., p. 549, n. 29). But of course no such thing follows, since the Biot±

Savart law is a law of magnetostatics and does not apply to a case of time-

dependent currents. The math in this case is a lot more complicated, since

the magnetic ®eld depends not only on the current density but also on the

derivative of the current density. What we would ®nd is that if we switch the

solenoid on at t�0, there will be a non-zero electromagnetic pulse spreading

out from the solenoid which ensures that the ¯ux through any area with

radius greater than ct is zero.11

Belot's mistake here might be partly responsible for the fact that he does

not see his claim that synchronic non-locality implies diachronic non-locality

to be in need of much discussion. However, on one natural construal of what
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it is `to predict what will happen here', one can only predict how local

quantities change here, since non-local quantities, like holonomies, do not

`happen here' at all. But then synchronic non-locality does not entail

diachronic non-locality. Since a synchronically non-local theory can be

concerned with local quantities as well (witness electric ®elds on the

holonomy interpretation of electromagnetism), such a theory can be

diachronically local in the sense that what will happen here to the values of

localized quantities can be determined locally. Moreover, even if we are

willing to accept that holonomies are the kind of things that can happen here,

electrodynamics is still local across time in an intuitive sense that Belot's

criterion does not capture: even though holonomies are `spread out' through

space, changes in their values do not propagate instantaneously. Since the

vector potential propagates at a ®nite speed, holonomies around paths far

away from a disturbance in the ®eld will change only after a ®nite time, when

the disturbance has reached some point on the path.

4 Locality: let me count the ways

Now what are the relations between Belot's condition of diachronic locality

and the two causal conditions? And how, if at all, are the two causal

conditions related? Belot takes his condition to be equivalent to the principle

of ®nite causal propagation. Interestingly, Belot's condition is identical to a

principle proposed by Erwin SchroÈ dinger as a non-causal analysis of the

prohibition against action-at-a-distance. Since SchroÈ dinger took this

prohibition to be at the core of the very notion of causation, he calls his

principle the `principle of causality':

The exact situation at any point P at a given moment is unambiguously

determined by the exact physical situation within a certain surrounding

of P at any previous time, say tÿt. (SchroÈ dinger [1951], p. 28)

SchroÈ dinger adds that `the ``domain of in¯uence'' [that is, the `surrounding'

of P] becomes smaller and smaller as t becomes smaller' and he maintains

that `[c]lassical physics rested entirely on this principle' (Ibid., p. 29).

Putting Belot's and SchroÈ dinger's proposals together, we get the view that

the condition that all action is by contact and the condition that causal

propagation takes place with a ®nite velocity are equivalent. And an initial

survey of physical theories might seem to support this view. Dirac's theory, as

we have seen, violates both conditions, as does the paradigm example of a

non-local classical theoryÐNewton's gravitational theory. Pure ®eld

theories, by contrast, which are paradigmatic examples of local classical

theories, satisfy both conditions.
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In fact, however, the two causal conditions are distinct and neither implies

the other. On the one hand, the principle of action-by-contact does not imply

the ®nite propagation condition, as the example of non-relativistic rigid body

mechanics shows. In this theory, forces act only by contact, but since

extended bodies are treated as rigid the action of forces on a body are

transmitted instantaneously throughout the entire body.

On the other hand, Wheeler and Feynman's in®nite absorber theory

([1945]) suggests that the converse implication fails as well. In Wheeler and

Feynman's theory (which is a pure particle theory of electrodynamics), forces

between distant particles are not mediated by an intervening ®eld and are

transmitted across gaps between particles, but nevertheless the force

associated with the acceleration of one charge reaches the world line of

another spatially-separated charge only after a ®nite time. Fields are treated

in the theory as mere calculational devices (analogously to the treatment of

gravitational ®elds in Newton's theory). Now, the Wheeler±Feynman theory

does not itself provide us with a straightforward counterexample to the claim

that the ®nite propagation condition implies the action-by-contact principle,

since the equation of motion for a charge in the Wheeler±Feynman theory is

the Lorentz±Dirac equation. Thus, the theory does permit superluminal

signaling through the combination of forward causal and backward causal

e�ects in the way I have discussed above. Still, the theory suggests how one

could `cook up' a theory that satis®es the ®nite propagation condition while

violating the principle of action-by-contact. For example, a pure particle

version of standard Maxwell±Lorentz electrodynamics which by analogy with

the Wheeler±Feynman theory treated ®elds as mere calculational devices

would be such a theory. Clearly, that causal in¯uences take a ®nite time to

propagate across spatial distances does not by itself imply that there is a

medium in which the propagation takes place.

We can appeal to the same two examples to show that neither of the two

causal principles implies Belot's condition of diachronic locality. A pure

particle version of standard electrodynamics is diachronically non-local, even

though the e�ects of one charge on another propagate at a ®nite speed. Since

there is no ®eld that transmits the e�ects that charges have on one another,

they do not `show up' in a small neighborhood of a test charge before they are

felt by that charge. Thus, the present state of the world in a small, ®nite

neighborhood of a charge does not allow us to predict what will happen to

the charge next.

Similarly, rigid body mechanics is diachronically non-local, since in order

to predict, for example, what will happen next to one end of a rigid rod, one

always has to look at the entire rod and at whatever other objects are in its

immediate vicinity. Thus, the size of the neighborhood of here at which we

have to look does not shrink to zero as Dt!0. Yet the theory only allows for
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action-by-contact. So the condition of action-by-contact does not imply

diachronic locality either.

One might think that, nevertheless, some logical connection between the

di�erent conditions exists and that the condition of diachronic locality is

strictly stronger than both the condition of action-by-contact and that of

®nite signaling speeds. But as I want to argue now, the condition of

diachronic locality implies neither of the two causal locality principles, since,

perhaps surprisingly, Dirac's theory is diachronically local.12

5 Diachronic locality in Dirac's theory

It might appear that Dirac's theory is diachronically non-local simply because

equation (2) is non-local, since (2) appears to indicate that one needs to look

at the state of the world at all times later than t in order to determine the

acceleration at t. However, this appearance is deceptive for two reasons.

First, (2) is not the only way of writing down an equation of motion in

Dirac's theory. Since in the derivation of (2) one needs to assume that the

®eld is an analytic function of the proper time t, the ®eld and acceleration

functions can be expanded in a Taylor series and the non-local equation (2) is

mathematically equivalent to the local equation (Rohrlich [1965], equation

6±87):

mam(t) �
X1
n�0

tn0

�
F m(t)ÿ 1

c2
al(t)al(t)vm(t)

�n
(4)

Equation (4) involves only local quantities, and thus Dirac's theory appears

to be diachronically local. According to the condition, a theory is local if it is

possible to determine what will happen here by looking at the present state of

the world close to here, and (4) shows that this is possible. But the possibility

of representing the motion of a charge in terms of equation (4) instead of (2)

does not a�ect the causal interpretation of the theory: even though it might be

possible to calculate the acceleration of a charge from the Taylor expansion

of the e�ective force, the forceÐand not any of its derivativesÐis understood

to be the cause of the acceleration. Thus (4) notwithstanding, Dirac's theory

is causally non-local in the two senses I have distinguished.

One might want to object to this line of argument by claiming that the

appeal to analyticity involves some kind of illegitimate trick. The fact that the

®eld is represented by an analytic function, one might say, is merely an

artifact of the mathematical formalism and has no physical signi®cance.

Thus, that the values of the derivatives of the ®eld here allow us to determine
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the value of the ®eld elsewhere does not imply that Dirac's theory is

diachronically local. A consideration in favor of this response is that

physicists treat the analyticity condition rather loosely, when they apply the

theory. For example, two applications of Dirac's theory discussed by

Rohrlich are the motion of a charge subject to a delta function ®eld-pulse and

a step function pulse, both of which violate the analyticity condition. If the

analyticity condition was physically signi®cant, then looking at situations in

which the condition is not satis®ed and in which, therefore, the theory does

not apply is arguably not a good way of investigating what the theory tells us

about the world. Moreover, we already know that relying too heavily on the

analyticity condition is problematic: analyticity gives us determinism on the

cheap (see Earman [1986], p. 15). Thus, since diachronic locality is a principle

of determinism, it is (not surprisingly) automatically satis®ed once we assume

analyticity.

Yet even if in the end we want to reject arguments that rely solely on the

analyticity condition, doing so without further discussion skirts some

important issues. Given that the very derivation of Dirac's equation of

motion relies on the analyticity condition, why is it that we should be allowed

to rely on the condition in certain circumstances but not in others? Are there

reasons for why considerations of analyticity can sometimes be discounted?

Why should only (2) but not (4) be a guide to whether Dirac's theory is

diachronically local, given that the two equations are mathematically

equivalent? I believe that the correct answer to the last question is that (2)

is privileged in that it represents the causal structure of the theory accurately.

If I am right, this means that the condition of diachronic locality could not

provide a non-causal explication of either of the two causal conditions, since

it would have to be supplemented by the requirement that in predicting what

happens here next we have to use an adequate causal representation of the

phenomena.

A di�erent question that arises in this context is this: precisely what

quantities characterize the local state of a system now and can legitimately be

used as inputs to predict future states? Belot's talk of properties which can be

looked at is rather vague and is obviously meant only metaphorically, but

perhaps one might try to respond to the di�culty raised by the equivalence

between (2) and (4) in the following way: since derivatives represent changes

of quantities, derivatives of the ®eld function are not genuinely local

quantities13 and thus cannot be used as inputs in Belot's condition. But the

problem with this suggestion (aside from the worry that it is far from clear

why we cannot think of derivatives as genuinely local quantities) is that we

now get non-locality too easily: even Newtonian mechanics would come out
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as diachronically non-local, since Newton's laws require velocities, which are

derivatives, as inputs.

Dirac's theory comes out as diachronically local for a second reasonÐone

that is independent of the analyticity requirement. Looking at the present

state of a system here presumably reveals not only the charge's position and

velocity but also the local value of the acceleration function to us.14 Since

disturbances in the electromagnetic ®eld propagate at a ®nite speed, we can in

addition determine the ®elds on the world line of the charge during a time

interval Dt into the future by determining the ®elds now in a ®nite

neighborhood of here, where this neighborhood shrinks to zero as Dt goes
to zero. But then we can use equation (1), the Lorentz±Dirac equation, to

determine the trajectory of the charge during the time interval Dt. The state of
the charge here together with the ®eld in a ®nite neighborhood of here allows

us to predict what will happen here in a ®nite amount of time. This does not

con¯ict with the fact that the theory is causally non-local in the two senses I

have distinguished, since the e�ects of future ®eldsÐsuch as that of the ®eld

of a signaling charge q1Ðare already encoded in the present acceleration of

the charge q2 here. Thus, even though we can determine the local evolution of

the system from local data, this does not imply that what happens to the

system is due only to locally-acting causes whose e�ects propagate at a ®nite

speed.

6 Localizations of global models and an objection

I have argued that Belot's condition of diachronic locality is logically distinct

from both the condition that causal propagation occurs at a ®nite speed and

the condition that all action is by contact. Belot's condition is what one might

call a condition of local determinism: we can predict what will happen here

next, if and only if the evolution of a localized subsystem is completely

determined by the local state of the systemÐthe state of the system in a ®nite

neighborhood of here. For if the evolution of a local subsystem is not

completely determined by the local state, we cannot know what will happen

here next without looking elsewhere; and similarly, if the evolution of the

subsystem is determined by the local state, then we can use our knowledge of

the local state to predict what will happen here next.15
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I now want to discuss very brie¯y another condition that might be thought

to provide a non-causal explication of one of the two causal locality

conditions. John Earman has proposed the following condition as a possible

explication of the action-by-contact principle: `Every localization of a global

model of T is again a model of T ' (Earman [1987], p. 455), where a

localization is a restriction of a model of T to a neighborhood U which is a

subset of the manifold M on which the models are de®ned.16 If a localization

of a global model is again a model of the theory, then it does not matter to

local properties of the system whether these properties can `see' the values of

quantities far away. That is, if a localization is itself a model of the theory,

then all properties of a local subsystem are completely determined by the

values of local quantities. Thus Earman's condition, like Belot's, is a

condition of local determinism. Yet Earman's condition is distinct from the

principle of diachronic locality, as the example of non-relativistic rigid body

mechanics shows: the theory is, as we have seen, diachronically non-local, yet

it satis®es Earman's condition.

Does Dirac's theory satisfy Earman's condition? The answer is: that

depends, once more, on which equation we take to be the fundamental

equation of motion of the theory. If the non-local equation (2) is taken to be

the fundamental equation of motion, then Dirac's theory does not seem to

obey Earman's condition. According to (2), the acceleration of a charge

which only `sees' the ®elds in a ®nite neighborhood U of the charge is in

general di�erent from the acceleration in a global model (and hence in a

localization of the global model), in which the acceleration also depends on

future ®elds outside of U.17 Thus, a localization of a global model will not in

general be a model of Dirac's theory. If, however, the local equations (1) or

(4) were to be taken to be the fundamental equation of motion, then

the theory would satisfy Earman's condition. Since according to (4) the

acceleration is determined from the local values of all the derivatives of the

®eld, a localization of (4) is itself a model of (4). Dirac's theory would come

out as local, according to Earman's condition, even though it violates the

action-by-contact principle. Now, we have already seen that one way to

decide which of the two equations is fundamental is to appeal to the causal

structure of the theory: (2) is more fundamental, since it gives the acceleration

in terms of its causes, that is, the electromagnetic ®elds. But if Earman's
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condition needs to be supplemented by considerations concerning the causal

structure of the theory, then it cannot provide us with a strictly non-causal

explication of the action-by-contact principle.

The failure of Belot's and Earman's principles of determination to provide

adequate explications of the two causal locality conditions suggests that there

is more to causation than determination. And this in turn implies that in the

case of those scienti®c theories that make causal claims, the job of an

interpretation cannot be exhausted by stipulating how the mathematical

formalism maps onto the ontology of the theory. For a theory's causal

structure will generally be constrained by the mathematical formalism but not

uniquely determined by it. In classical electrodynamics, for example, it is part

of the causal structure that force (and not any of its derivatives) is the cause

of acceleration; but this cannot be inferred from the theory's formalism alone.

Whether a theory is causally non-local in either of the two senses I have

distinguished depends crucially on the causal interpretation of the theory. Yet

whether a theory satis®es a condition of local determinism depends only on

the theory's mathematical formalism (and the associated ontology).

At this point the following response suggests itself: the fact that the

intuitive causal claims associated with a scienti®c theory can outrun what can

be legitimately inferred from the theory's mathematical formalism and the

fact that taking the causal locality principles too seriously can lead to rather

strange results (as in the case of the putatively backwards causal theory of

Dirac) only further support Russell's view that a rich notion of causality

which cannot be reduced to that of functional dependency should have no

place in science. But what this reply misses is that a theory's causal

interpretation can play a signi®cant methodological role. In the case of

Dirac's theory (as we have seen above) causal assumptions play an important

role in motivating various steps in the derivation of the theory's equation of

motion.

First, the assumption that ®eld forces are the cause of a charge's

acceleration makes plausible the adoption of what I have called the weak

principle of inertia, according to which the acceleration of the charge should

vanish far away from any forces. This principle then helps to motivate the

asymptotic condition of vanishing accelerations at in®nity. Without the

causal framework, the asymptotic condition can only be given a purely

mathematical motivation: one can renormalize the mass only if the condition

is presupposed. Assuming that ®elds cause charges to accelerate provides a

physical reason for the condition as well.

Second, the causal assumption helps to motivate the rejection of the

runaway solutions as unphysical. For given that ®elds cause a charge to

accelerate, a charge should not accelerate in the absence of any external ®elds.

We can contrast the case of the runaway solutions in the absence of any
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external ®elds with that of a charge in a step-function ®eld. In the latter case

the charge begins to accelerate even before the ®eld turns on. This, on the

standard interpretation, is an example of the backward causation allowed by

Dirac's theory. Even if backward causation might strike one as somewhat

problematic, the fact that one can point to the future ®eld as cause of and

reason for the acceleration of the charge makes this situation physically more

palatable than that of the runaway solutions.

7 Conclusion

One of my two aims in this paper was to correct what seems to be a

widespread misconception of classical electrodynamics. By contrast with

Newton's gravitational theory and quantum theories, classical electro-

dynamics is thought to satisfy various (often only vaguely characterized)

locality principles and is generally taken to be the paradigm of a well-behaved

classical theory. I have argued that this characterization is highly misleading.

In fact, we must distinguish between two quite di�erent approaches to

microscopic classical electrodynamics, neither of which measures up to our

ideal of a classical theory. Maxwell±Lorentz electrodynamics, on the one

hand, is indeed causally well-behaved and is local in every interesting sense.

But that theory is inconsistent. Dirac's consistent microscopic electro-

dynamics, on the other handÐthe theory on which I have focused hereÐis

backward causal and causally non-local.

My second aim was to distinguish several di�erent locality conditions and

to argue that there are two distinct irreducibly causal principles of localityÐ

the principle that all causal propagation takes place at a ®nite velocity and

that all action is by contact. In particular, I have argued in detail that neither

of the two causal principles can be reduced to Belot's non-causal condition of

diachronic locality. Since any non-causal explication of the two prima facie

causal principles would apparently have to invoke some principle of local

determinism, and since the concept of causation does not seem to be reducible

to that of determinism, the prospects for a successful empiricist reduction of

either of the two causal locality principles appear to be dim.
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