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Abstract

The aim of this paper is two-fold. Recently, Lewis has presented an
argument, now known as the ‘counting anomaly’, that the spontaneous
localization approach to quantum mechanics, suggested by Ghirardi,
Rimini, and Weber, implies that arithmetic does not apply to ordinary
macroscopic objects. I will take this argument as the starting point for
a discussion of the property structure of realist collapse interpretations
of quantum mechanics in general. At the end of this I present a proof of
the fact that the composition principle, which holds true in Standard
Quantum Mechanics, fails in all realist collapse interpretations. On
the basis of this result I reconsider the counting anomaly and show
that what lies at the heart of the anomaly is the failure to appreciate
the peculiarities of the property structure of collapse interpretations.
Once this flaw is uncovered, the anomaly vanishes.



1 Introduction: collapse interpretations, tails,
and the counting anomaly

Lewis (1997) considers a marble and a box. The marble has two states,
namely |¢;,) (the marble is inside the box) and |ty,:) (the marble is outside
the box). These states are mutually exclusive and therefore orthogonal; that
is, (Yin|tous) = 0. Furthermore, consider a measurement device B, measuring
whether the marble is inside or outside the box. Quantum mechanics has
it that not only eigenstates of B, |¢;n) and [¢,y), but any superposition
|¥m) = a|thin) +b|1oyu:) of these can be the state of the marble-system (where
a and b are arbitrary complex numbers satisfying |a|? + |b|> = 1). But what
are the physical properties of a system in such a state? The answer to
this question obviously depends on how the connection between quantum
states and physical properties is construed. The standard way to relate
quantum states and properties is the Figenstate-Eigenevalue Rule (‘E-E rule’
henceforth).!

An observable O has a well-defined value for a quantum system
S in state |¢) if, and only if, |¢) is an eigenstate of O.

Since [t,,) is not an eigenstate of B, it defies interpretation on the basis
of the E-E rule and the marble is neither inside nor outside the box. But
this conclusion is obviously unacceptable, since our macroscopic experience
indicates that the marble has a definite location. Reconciling everyday ex-
perience with this unwelcome consequence of the quantum formalism is the
infamous measurement problem.

In an attempt to overcome this difficulty, von Neuman (1955) postulated
that whenever a measurement is performed on the system its state instan-
taneously collapses into one of the eigenstates of the measured observable.
What we are left with then is a state that can be interpreted on the basis of
the E-E rule without any difficulty. However, although the collapse postulate
restores the interpretability of the post-measurement state in terms of the E-
E rule, it turns out that it raises more problems than it solves. What defines
a measurement? At what stage of the measurement process does the collapse
take place (trigger problem)? Why should the properties of a system depend

LA classical source for this rule is Dirac (1930, pp. 46-47).



on actions of observers or, even worse, on their minds in the first place? - To
mention just a few.

An ingenious way to overcome these difficulties has been suggested by
Ghirardi, Rimini, and Weber (1986) and has been put in a particularly el-
egant and simple form by Bell (1987). It has become customary to refer
to this account as ‘GRW theory’. Tts leading idea is to evade the above-
mentioned problems by reformulating collapse interpretations in a way that
avoids appeal to observers. This is achieved by no longer considering col-
lapses as measurement-induced and making them an integral part of what
happens in nature; collapses ‘just happen’ at random in nature and do not in
any way depend on observers. To be more precise, GRW theory postulates
that in an N-particle system a collapse occurs once in 7/N seconds, where
7 is a new constant of nature (which, according to GRW, is of order 10'5
seconds). To flesh this basic idea out, GRW theory provides a well-defined
collapse mechanism, but since the details do not matter for what follows I
will not dwell on them here.

Unfortunately this is not the end of the story yet. Collapses have been
introduced to ensure that the system is in an eigenstate of some observable,
B for instance, at the conclusion of a measurement, but upon closer exami-
nation it turns out that this is exactly what they generally cannot achieve.
A collapse can leave the system in a proper eigenstate only if the basis is
discrete. In the case of continuous observables, such as position, this is not
possible. (This point is directly relevant to the above example, since mea-
suring whether a marble is in the box amounts to measuring its position).
There are three independent reasons why a collapse to a position eigenstate,
say, is unattainable. First, as a consequence of the uncertainty relation, the
more localized a wavefunction is in position space, the higher its dispersion
in momentum space becomes, and the more energy the system can possess
after a collapse. Thus, if we allow for strongly localizing collapses, the system
could spontaneously heat up (Clifton and Monton 1999, 698). However, such
spontaneous heating has never been observed. Therefore, a collapse can-
not render the wavefunction too narrow without contradicting experimental
facts. Second, it is by now a well-known property of QM that a wavefunction
which, at a certain instant, lacks tails (i.e. has no parts that extend to infin-
ity) will always instantaneously grow them back. Hence, even if a strongly
localizing collapse were allowed to occur, an instant later we would be back
where we started. Third, the position eigenstate |z) is not even an element
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of the (separable) Hilbert space which is the state space of the system. To
accommodate states like |z) one would have to move to a formulation of QM
based on a rigged Hilbert space, and it is still controversial whether this is
the right move.

As a consequence of this, a system’s wave function cannot be arbitrarily
narrow after a collapse. At the conclusion of a reduction process, we find
the system in a state exhibiting tails. The GRW theory does justice to this
limitation since a GRW-hit does not leave the marble in a precise eigenstate
of the position operator but in a state that is ‘close’ to it in the sense that
it is a somehow ‘smeared out’ eigenstate (technically speaking, the original
state ¥ gets multiplied by a Gaussian which makes it more localized, but it
never becomes equal to a proper position eigenstate).

However, now we are back where we started. If at the conclusion of a
collapse the system is not in a proper position eigenstate, the E-E rule is
not applicable and we cannot tell what the location of the object is. So
an alternative to the E-E rule is needed. Common physical wisdom has
it that ‘close’ is actually good enough. In order to say that a particle is
located at z, it is too restrictive to require that the system’s state is |z).
Rather, it is sufficient to say that it is somewhere ‘within a narrow interval
around z’ (see for instance Sakurai 1994, 42-3). This idea has recently been
rendered more precise and introduced into the philosophical literature by
Albert and Loewer (1995). According to them, a particle with wavefunction
¥(r) is located in the interval R iff the major part of |¢/(r)|? is in R; that
is, iff [, |[¢(r)|?dr > 1 — ¢, where ¢ is a positive real number close to zero.
The generalization of this rule to a system with n degrees of freedom is
straightforward: the system with wavefunction ¢(ry,...,r,) is located in the
n-dimensional interval By X ... x R, iff fp . p [tb(r1,...,70)]Pd"r > 1—c.
Clifton and Monton (1999) call this rule the ‘fuzzy link’. The choice of an
appropriate value for € is a subtle issue, and I will have more to say about
it later on. In what follows I will use the label ‘fuzzy quantum mechanics’
(FQM) to refer to any interpretation of QM that takes into account the fact
that collapses do not leave the system in precise (position) eigenstates and
that interprets these non-eigenstates in terms of the fuzzy link - in particular,
GRW theory and a realistically understood von Neumann collapse theory fall
under this category.

The fuzzy link naturally gives rise to the following definition.



Let eq,...,e, be n arbitrary entities (e.g. marbles). Then the
ensemble? consisting of these entities, F = {¢;, ..., e, }, with wave-

function 9 (ry,...,r,) has the property of being in the interval
R x...x R, iff

/ (1, ) 2% > 1 — e (1)
RiX..XxRy,
Furthermore, let P, . (ei;...,ey,) be the proposition stating

that F has the property of being in the interval R, X ... X R,;
this proposition is true iff Equ.(1) holds.

Note that F can also consist of just one object e. In this case the definition
reduces to: the entity e with wavefunction 4 (r) has the property of being in
the interval R, i.e. P (e) is true, iff [ [¢(r)[?dr > 1 —e.

Let’s now see how all this bears on the marbles. For the reasons outlined
above, the best we can expect is to find the system after a collapse in a
highly asymmetric state of the form [¢,) = a|ty) + b|tew) (or |tn) =
b|win)+a|tour) likewise) where 1 > |al > |b] > 0 and |a|?+]b|> = 1. According
to the fuzzy link, if [b]* < e then the marble is in the box: [ [0, (r)|*dr =
la|2 > 1 — ¢, where R, is the region we associate with being in the box.

So far so good. However, in his recent paper Lewis (1997) has presented an
argument to the conclusion that this relaxation of the Eigenstate-Eigenvalue
Rule entails that arithmetic does not apply to ordinary macroscopic objects
such as marbles. This argument is now commonly referred to as the ‘counting
anomaly’ and runs as follows. Enlarge your box and place not only one but
a large number n of marbles in it. Furthermore assume that no interaction
takes place between the marbles (this can be accomplished, for example, by
making the box long and slim so that all marbles lie side by side without
touching each other). The state of the ensemble 18 |¢yopa1) = [Vm)1 -+ - |Um)n-

When we now interpret |tyy44) in terms of the fuzzy link we are faced with
a paradox. More specifically, we find that the ensemble consisting of the n
marbles is not in the box: [p _  p | l’d"r = |a[*", but |a|*" < 1 —¢€
since |a| is smaller than 1. Hence, we make up a system of n marbles each of
which individually is in the box and end up with an n-marble system which
is not in the box. This paradox is called ‘counting anomaly’ for the following

2The choice of this term is somehow arbitrary, one might just as well use ‘system’,
‘collective’, or ‘composite entity’.



reason. Making sure that marble 1, marble 2, ..., marble n are in the box
is exactly how we count marbles (Lewis calls this the ‘enumeration princi-
ple’), and this means that putting one marble after the other in the box is
structurally identical to the process of counting. But, as the above argument
shows, by doing so we end up with a state in which it is false that the en-
semble of marbles ends up being in the box. Hence counting is impossible
and we must conclude that arithmetic does not apply to macroscopic objects
such as marbles - that is the counting anomaly.

Finally I should stress again that although this anomaly has been pre-
sented as an argument against GRW theory in particular, the above discus-
sion has made it clear that it equally threatens every interpretation of QM
falls into the category of FQM.? Even if we were to solve all the problems in
connection with the notion of measurement (the trigger problem and so on)
the counting anomaly would still await a solution.
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2 Unsuccessful routes around the anomaly

This anomaly is embarrassing and calls for a solution. In this section I discuss
three attempts to deal with it, all of which turn out to fail, as I shall argue.
The first turns on the fact that position, as construed by the fuzzy link, is
a vague notion; the second and the third are arguments put forward in a
debate between Ghirardi and Bassi (1999) and Bassi and Ghirardi (1999,
2001) on one side, and Clifton and Monton (1999, 2000) on the other side.
These failures suggest that deeper reflection on the problem is needed. In the
following section I will prove a general theorem about the property structure
of collapse interpretations and show how this theorem can be brought to bear
on the anomaly.

31 should note that FQM does not exhaust all collapse interpretations of QM since there
may be methods other than the fuzzy link to associate properties with non-eigenstates. Tn
particular, there is the so-called mass-density interpretation now favoured by Ghirardi and
co-workers (Ghirardi et al. 1995; Bassi and Ghirardi 1999b). Space constraints prevent me
from discussing this approach here. However, not much seems to be lost by this omission
since, as Clifton and Monton (2000, 156-161) point out, the anomaly equally arises under
this interpretation. Moreover, their discussion shows that it arises in the same way and for
the same reasons as under the fuzzy link interpretation. For this reason, my arguments
in what follows carry over mutatis mutandis to an interpretation of QM based on the
mass-density approach.



Suppose we have a heap of sand (Sainsbury 1995, 23-4). Now we remove
one grain, what remains is still a heap - removing a single grain cannot turn
a heap into something that is not a heap. Nevertheless, if we keep removing
one grain after the other, we end up with no grains at all, and no grains
certainly do not make up a heap. So it seems that there must be a least
number of grains which still makes up a pile. But what is this number? We
simply may not know, or we arguably can think that it is just silly to assume
that such a number even exists. But isn’t location, as construed by the fuzzy
link, just like the number of grains in a heap? Yes it is. How close to zero
need € be in order to have a localized state? Albert and Loewer (1995, pp.
87-92) discuss the issue of the choice of a correct value for ¢ at length and
come to the conclusion that, apart from the obvious restriction that ¢ has to
be larger than zero and smaller than one half, there fails to be any precise
matter of fact about what the correct value of € is.

Does this give rise to a revision of the anomaly? If there is, after all, no
unique correct value for €, is it not possible to evade the anomaly by being a
bit more liberal about the admissible values of €7 Concretely, this suggestion
amounts to saying that even if [ p |¥u|*d"r < 1 — ¢, there always
exists an € such that [ g [the|*d"r > 1 — €. Since there is no one
single correct value for ¢, there is no reason why we should prefer ¢ to ¢ and
hence all marbles are in the box.

Unfortunately, a closer look at the actual numerical values reveals that in
general this will not do. If a sufficiently large number of marbles is available,
T xoxcro, Vo *d™r = |al*™ can be as close to zero as we please and even
on a liberal reading one then can no longer say that the n marbles are in
the box (since € < 1/2). Another suggestion would be to make the original
€ in the one-marble fuzzy link smaller instead of the one in the n-marble
fuzzy link bigger. But here we also run into trouble. By making e smaller
we get closer to a proper position eigenstate, and when ¢ is small enough
we may require more than what is physically possible. For the reasons men-
tioned above, there are limits as to how close a physical state can come to
a position eigenstate and by making € smaller and smaller we may pass the
threshold beyond which a collapse no longer produces a determinate prop-
erty. Therefore, € cannot be arbitrarily small. But then we cannot evade the
conclusion that, by taking a large enough number of marbles, |a[*" almost




equals zero and the n-marble ensemble cannot possibly be inside the box.*
The upshot of all this is that fiddling around with the value of € does not
help.

This anomaly has also been the starting point of a lively debate between
Ghirardi and Bassi on one side and Clifton and Monton on the other. The
scope of this debate is restricted to the discussion of the anomaly within the
context of GRW theory. The remainder of this section will be devoted to a
discussion of the arguments put forward in this debate. My conclusion will
be that none of the lines of reasoning taken in this debate leads to a solution
of the problem.

In a first reply to Lewis, Ghirardi and Bassi (1999) have argued that the
alleged anomaly is not an anomaly at all and dismiss the argument as ‘devoid
of any sense’. They argue that the state |t)y,4), on which the argument turns,
is not stable according to GRW dynamics and will collapse immediately to
an unproblematic state. Clifton and Monton (1999) have pointed out that
this is not correct. They show that even if |14} is reduced immediately,
the reduced state still has tails and therefore gives rise to the same difficulty.

Clifton and Monton consider the counting anomaly to be a serious prob-
lem for the GRW theory, one that calls for a solution. For this reason, in
the second part of their paper, they present a sophisticated argument for the
conclusion that while the enumeration principle can fail, GRW theory itself
ensures that this failure can never be observed. They point out that once
the counting apparatus which records how many marbles are in the box is
modelled correctly on the basis of the principles of GRW theory, i.e. once we
give a correct operationalisation of the counting process, the anomaly disap-
pears. In three subsequent papers (Bassi and Ghirardi 1999, 2001; Clifton
and Monton 2000) each of the parties defends its view but no new arguments
come into play.

Where does all that leave us? Though there is no agreement as to what
the correct solution of this problem is, in the end, both parties at least agree
that the anomaly can be dismissed. Does that mean that the clouds over
GRW have been blown away and the sky is clear again? T do not think so.

4This, of course, may well involve an unrealistically large number of marbles. As
Ghirardi and Bassi (1999, 55) have pointed out, more than the entire mass of the universe
may be needed to produce the required number of marbles. But this does not matter in
the present context. Although such considerations my be important for practical matters,
they have no force when it comes to foundational issues.



On the contrary, it seems to me that notwithstanding everything that has
been said so far, the problem has not been solved. There are two reasons for
this. First, Ghirardi and Bassi’s reply is flawed for the reasons Clifton and
Monton have pointed out. I have nothing to add to their argument. But,
second, Clifton and Monton’s own solution does not seem satisfactory to me
either.

Let’s briefly recall their argument. The crucial question is whether it is
sufficient or not to suppress the anomaly. Can we continue to take the theory
seriously just because there is a mechanism that suppresses the manifesta-
tions of the anomaly? Clifton and Monton are quite sensitive to this question
and discuss it at length in the last section of their (1999). They point out
that ‘by itself” suppressing the empirical manifestations does not resolve the
problem. Nevertheless, their final answer to the above question is ‘yes’. They
justify their decision as follows. Prima facie, GRW is a theory about wave-
functions, and nothing else. It is only once we relate these wavefunctions to
our ordinary language via the fuzzy link that all these problems can crop up.
The fuzzy link does not add anything of ontological import to the theory, but
simply provides a way of mapping our ‘particle’ language onto a theory whose
fundamental language concerns wavefunctions. Therefore, the fuzzy link has
something of ‘the status of a postulate that (to echo Reichenbach [...]) “is
neither true nor false, but a rule which we use to simplify our language”.’
(Clifton and Monton 1999, 716) Hence, the fuzzy link does not in any way
occupy a prominent place in the theory, and for this reason suppressing the
anomaly seems to be enough.

I don’t think that this argument is satisfactory. Though there is nothing
inherently wrong with it, it contradicts the spirit of GRW theory. This
is because GRW falls into a class of proposals which attempt to salvage a
firmly realist view of QM, that is one in which things have, or at least end
up having, definite properties. And this must be true not only of waves, but
also of ordinary objects. Cats really are dead or alive; the predicates ‘dead’
and ‘alive’ are not merely convenient jargon we introduce to facilitate our
language.® To make the connection between the wavefunction and ordinary
properties a mere postulate we use to simplify our language, which as such

5This seems also to be the view of Ghirardi and co-workers. They never denied that a
tidy connection between waves and ‘ordinary’ properties must be established (Ghirardi et
al. 1995).



is neither true nor false, gives the theory an antirealist thrust that is totally
foreign to its spirit. For this reason, I think, we must be able to tell a
clear and anomaly-free story about how to retrieve particle properties from
wavefunctions if we want to continue to take the theory at all seriously -
merely suppressing the anomaly is not enough.

In what follows I will try to sketch how this can be achieved. The solu-
tion I will offer is simple and straightforward. There is no counting anomaly.
The alleged anomaly is based on the seemingly plausible but faulty assump-
tion that the composition principle holds in FQM. In the following section
I will introduce this principle, prove that it holds true in Standard Quan-
tum Mechanics (SQM) and show that and how it fails in FQM. T then argue
that what lies at the heart of the anomaly is the failure to appreciate this
peculiar feature of the property structure of collapse interpretations. Once
this is realized, the anomaly vanishes. What remains, however, is a violation
of common sense. Our everyday experience tells us that the composition
principle holds true for spatial properties (an intuition which is borne out in
classical mechanics as well as in SQM) and it is quite irritating to realise that
this is wrong in FQM. Yet it is not the first time that everyday experience
turns out to be a bad guide in quantum matters, and so we should neither
be too surprised nor too worried about being forced to give up an element of
our common intuitions.

3 The composition principle and its failure in
FQM

The composition principle posits that if every object e; of an ensemble E' =
{e1,...,e,} has property P, then the ensemble FE itself has property P as
well, and vice versa. Formally, Pe,&...& Pe,, ifft PE; or if we do not restrict
ourselves to finite ensembles: Vz(x € F — Px) iff PE. Both sides of these
biconditionals refer to properties of the ensemble F. ‘PFE’ means that the
ensemble F itself has property P whereas ‘Pe&...& Pe,,’ expresses the fact
that every member of E has property P. When we call the latter property P,
the composition principle simply reads: PE iff PE. This principle holds true
in many cases. If a couple of objects of temperature T are put together the
resulting ‘composite object’ still has temperature T', or if all objects are blue
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the ensemble is blue as well. However, this principle does not always hold
true. Water is wet but water molecules are not; gases have a temperature, gas
molecules do not; horses have a heart, a herd of horses does not; each musician
of an orchestra plays an instrument but the orchestra as a whole does not,
and so on. More sophisticated examples include well-known problems from
the philosophy of the social sciences: one cannot infer from the premise that
every individual is rational to the conclusion that a group of individuals is
rational in the same sense; or what is good for each individual need not
necessarily be good for the community.

These examples highlight that to assert PE is prima facie not the same
as to assert PFE. To say that that every member of an ensemble has a certain
property P is entirely different from saying that the ensemble itself has this
property - P and P are two distinct properties, and PE and PE are not
logically equivalent. As a consequence, PE and PE cannot be used inter-
changeably. If we nevertheless wish to do so, the composition principle has
to be invoked to ‘bridge the gap’ between the two. This principle, however,
is not a truth of logic and its validity in a given context needs to be justified.
If we fail to provide such a justification and assume, without further argu-
ment, that the composition principle holds true, we are guilty of a fallacy of
composition.

How does this bear on the marbles? Let ¢;, i = 1,...,n stand for the
marbles and E = {ey, ..., e,} for the ensemble of all marbles. Now, ev-
erything that has been said so far about properties of ensembles and their
members also applies to the property ‘being in the box’: all members of the
ensemble F being in the box and the ensemble E itself being in the box are
two different states of affair. Despite their seeming equivalence, it is prima
facie not the same to assert that all members of the ensemble F are in the
box and to assert that the ensemble F itself is in the box.

One might now be inclined to dismiss this point as futile logical hair-
splitting, since ‘being in the box’, or more generally ‘being located within
the interval R’, seems to be a clear example of a property for which the
composition principle holds: if all members of F are located in the interval
R then the ensemble F' itself is located within R as well. In this section I
will prove that this intuition, though borne out in SQM, fails in FQM. The
situation is the following. In SQM it is possible to prove the composition
principle as relating to position as a theorem, and as a consequence spatial
properties of an ensemble and spatial properties of its members can be used
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interchangeably - as we would expect it to be. This, however, is no longer
true in FQM. Within this framework, the composition principle is provably
false and therefore properties of ensembles and properties of their members
must be carefully distinguished. And it is this peculiarity of FQM, T will
argue, that lies at the heart of the so-called counting anomaly.

The composition principle. Consider an ensemble in a disentangled state
W(ry, ... ) = Wi(r1) ... Yy(ry). Furthermore notice (for details see the
appendix) that we retrieve the usual definitions of a property in SQM if
we set € = 0 and replace ‘>’ by ‘=" in Equ. (1); for this reason I drop
the subscript ‘¢’ in the symbols that denote the properties and just write
P, (-)and P, . (+,..., -) respectively, where Ry, ..., R, are finite but
otherwise arbitrary intervals. Then one can prove that the following holds in

SQM.

Composition Principle (CP):
P, (en)&... &P, (e,) istrueif, andonlyif, P, . (e1;..., ;)

R
1S true.

The proof is straightforward and will be given in the appendix. As a
consequence, P, (e1)&... &P, (e,)and P, . (€1, ..., e,) can be used
interchangeably in SQM, that is, the ensemble F is in the box if all its
members are in the box as well, and vice versa - just as we intuitively expect
it to be.

This situation changes drastically in FQM. A brief look at the proof of
CP reveals that the implication which goes from left to right no longer holds
when one moves from SQM to FQM, and therefore CP is not valid any more
(see again the appendix for details). The best we can obtain in this case is

the following.

Restricted Compostion Principle (RCP):
P, r (€1, .., ey)istrue, then P, (e))&.. . &P, (e,) is
true as well, but not vice versa.

Applied to the marble case RCP says that if the ensemble of all marbles
is in the box, then every one of its members is in the box as well. The
converse, however, is false: if every member of the ensemble, i.e. every
individual marble, is in the box, the same need not be true for the ensemble.
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Admittedly, this is counterintuitive, but that simply is how things are in
FQM.

The failure of the composition principle and the counting anomaly. T now
argue that what lies at the heart of the anomaly is an unwarranted use of the
composition principle. To see how this comes about note that, from a logical
point of view, the anomaly amounts to holding the following three contradic-

tory statements. (1) P, (e1)&... &P, (ep) and P, . (e1, ... ,¢€)
are the same, (2) P, , (e1)& ... &P , (e,) istrue, (3) P, . ., (€1, ..., €n)
is false.® Moreover, note that the anomaly does not arise in SQM because

premise (1) holds and P_,
ments are consistent.

While there is nothing wrong with premises (2) and (3), premise (1) is
false. Since CP fails in FQM there is no reason to identify the two properties.
This changes the situation drastically. If premise (1) is removed from the
argument no contradiction can be derived - and with the contradiction the
anomaly vanishes as well.

This needs some spelling out. In order to see how driving a wedge between
P, &...&P , and P, . dissolves the anomaly, some reflection on
the nature of these propoé?tions”énd the properties of the system they are
ascribed to is required.”

How do we check that all marbles are in the box? I take it that what we
do is no more and no less than making sure first that marble 1 is in the box,
second that marble 2 is in the box, and so on through marble n. If this is the
case, then all n marbles are in the box. Lewis (1997, pp. 320-321) refers to
this as the ‘enumeration principle’. That is, we check one marble after the
other and if we find each of them in the box then all are in the box. Given
this procedure, the only thing we need in order to have all n marbles neatly
in the box is that P, &... &P, is true.

‘But what about P, . 7 "Doesn’t it represent the state of affairs

. (e1, ..., ey) is true, hence the three state-

6The characterisation of the anomaly in logical terms is in line with Clifton and Monton
(1999, p. 700 and p. 703). However, Lewis’ emphasis is on the violation of common sense
and not on logical structure. But this difference is one of style rather than of substance,
since what does violence to common sense is the denial of premise (1) which is implicitly
endorsed.

"To facilitate notation T drop the brackets in what follows and write
P &.. &P . instead of P, , (e1)&... &P, (en) and P, _ instead of

R X...XR
Pe,Rinx...xRin (61: s ,61)-

13



of all marbles being in the box just as well?’, one might now ask. No it
doesn’t - that is the crucial thing to realize. The procedure for ensuring
that all marbles are in the box as described above does not square with this
proposition. There is no reason to assume that P, . should be true if
the only thing we do is to observe one marble after the other and to make sure
that it is in the box. Or to put it differently, the assumption that P,

represents the state of affairs of all marbles being in the box is unwarranteg

One might now try to resist this point by arguing that it is (at least intu-
itively) obvious that P, . represents the state of affairs of all marbles
being in the box, regardless of whether or not it squares with the above pro-
cedure. But this reply is effectively undercut by the failure of CP in FQM.
From what has been said so far it is clear that P, & &P . does rep-
resent the state of affairs at stake. Therefore, if we want to estabhsh that

ko x..xn.. equally does, we are (at least) committed to the claim that these
twozrf)ropolsnitions are true of the same things (i.e. that they are extensionally
equivalent). A minimal condition for this to be correct is that the two have
the same truth conditions. But this is not the case, as the failure of CP in-
structs us. There are cases where P, &... &P , istruewhile P
fails. For this reason, the two properties are not extensionally equwalent “and
I conclude that, provided we grant that the former expression represents the
state of affairs of all marbles being in the box, the latter fails to so.

But if P, Ru xR does not represent the state of affairs of all marbles
being in the box what then does it represent? The property has so far always
been paraphrased as ‘the ensemble being in the box’. This nice phrase masks
the fact that we actually don’t have any firm grip on what this property is.
When we think about an ensemble of marbles, what we have in mind is,
roughly speaking, a bunch of individuals sitting there in the box. But this is
precisely not what P, . expresses: it just is not the property of each
marble sitting in the box. Although P . . «n, implies that all marbles sit
in the box (by RCP), this does not exhaust its Teaning, as the failure of CP
shows. But what then does?

I have no answer to this question; and I think we don’t need one. First,
the interest in P, . is based on the belief that it reflects the ‘counting
property’; but, as I have grgued, this is not the case. For this reason we don’t
need it and we don’t yet have a need to worry about its interpretation. Sec-
ond, it is in general a mistake to think that everything we can define in the

formalism represents something interesting in the world. Not every expres-
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sion we can write down corresponds to a property that is physically relevant
and that is accessible to observation. Some expressions that the formalism
allows for may be no more than mathematical constructs not amenable to
measurement and without physical significance; and P. may well
belong to this class.

To sum up, we don’t have to bother about P_, . because, first, it
does not play any role in the problem at hand (sifinée it does not represent
the state of affairs of all marbles being in the box) and, second, there is no
prima facie reason to assume that it represents anything of physical interest.

Once we get rid of the faulty identification of the two propositions P, &
&P, and P, . the contradiction, and with it the anomaly, van-
ishes. We put n marbles in the box and indeed end up having them there; we
have been fooled into believing that they are not by the falsity of P, . .
But is just not relevant to the issue of where the marbles are. The failur
of CP in FQM has the counter-intuitive consequence that we are forced to
divorce two propositions which intuitively seem to be the same (or at least
extensionally equivalent) - an intuition which is borne out in classical me-
chanics as well as in SQM. But this is a matter of fact about propositions
and not an anomaly.

To drive my point home I have to deal with a further problem. There is
an argument - endorsed by Lewis (1997, p. 320) and echoed in Clifton and
Monton (2000, p. 160) - for the conclusion that it is unacceptable to assert
that all marbles are in the box on the grounds that there is a vanishing prob-
ability in the state |Via) = (alin) + b|ous) )1---(a|thin ) + blthous) )n of finding
them there. The argument is straightforward and runs as follows. Born’s
rule tells us that the probability of finding the system in state |t )1...|%in )
is |a|**; and since |a|*® < 1, there is a vanishing probability of finding all the
marbles in the box.

This argument is flawed. But it is flawed in an interesting way because
it draws our attention to an issue that does not seem to be much discussed,
namely how to calculate probabilies in FQM. Given that FQM alters the con-
ditions for a property to obtain, one would expect that the way to calculate
the probability for this to happen has to be altered as well. In the remainder
of this section T argue that this is indeed the case and show that the above
argument is flawed because it uses a way of calculating probabilities adequate
to SQM but not to FQM.

To get the gist, consider a marble in state |¢,,) = a|t;,) + bty ). What

\RipX...XRip,
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is the probability p of it being true that the marble is in the box? In SQM we
associate this with the eigenstate |¢;,) and using Born’s rule we get p = |a|?.
However, in FQM by definition it is true that a system is in the box if it is
in some state |,,,) where |a|?> > 1 —¢. Given this, it does not make sense
to say that the probability of finding the marble in the box equals |a|?
|tm). We cannot both define the conditions such that the proposition is true
when the system is in state |¢,,,) and at the same time take the probability
of the proposition to be true to be smaller than 1. This is contradictory. If
we allow a proposition to be true in non-eigenstates, we have to take these
same non-eigenstates when using Born’s rule to calculate probabilities. In
the present example, perhaps one might say that the FQM probability of a
marble in state [¢)) to be in the box is [{(1)|¢y,)]?, and not |{|¢,), as SQM
has it.%

From this it is clear where the rub lies. It is true that the probability of
finding the system in state |t )1...|%m)n 18 vanishingly small, but from this
it does not follow that the probability of finding all the marbles in the bozx is
equally small. Tt is the leading idea of FQM that less than a precise eigenstate
is needed in order for a property to obtain. However, Lewis” argument infers
from the fact that the probability of finding the system in state |t )1...|¥in )
is small that the probability of finding it in the box is equally small, and
thus implicitly associates ‘being in the box’ with the state |t,)1...|%in)n-
Thereby it carries over to FQM a way of thinking about probabilities that
is inappropriate to it. It is the whole point of FQM that it is too restrictive
to require the system to be in a precise eigenstate in order for it to be true
that the marbles are in the box; ‘being in the box’ can be true in a state
that is somewhat close but not equivalent to |¢,)1...|tin)n. For this reason
it is true in SQM but not in FQM that the probability of finding all marbles
in the box equals |a|?*®. The correct probability of finding all marbles in the

n

8 A problem with this suggestion is that the choice of |/,,,) is ambiguous. Since according
to the fuzzy link, all |¢,,) with |a|> > 1 — ¢ have the property at stake, any will do. One
possible solution to this problem is to choose the state with the smallest admissible a
(Ja]?* = 1 —€) and stipulate that p equals |[(1]|1,,)|? for all states whose coefficient of |1, )
is smaller than a and 1 for all states with this coeflicient greater that a. The last clause is
needed to prevent that a state which is closer to the eigenstate |);,) than |4, ) is assigned
a probability smaller than one of being in the box. This is a workable suggestion, but it
admittedly has the air of adhocness to it; the issue of how to calculate probabilities in
FQM will certainly need further consideration.
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box seems to be p = [(Yora| (|¥m)1.[¥m)n)|?; which immediately yields that
the probability of finding all marbles in the box is one, as one would expect
within FQM.

4 Objections

In this section I consider two objections to the dissolution of the anomaly I
have just presented.

First, to discuss a property of the ensemble as a whole, one must represent
that property using a ‘collective variable’ (such as the centre of mass of
the total system, for instance) and a mere n-tuple of positions does not
make up a collective variable.” For this reason, P p v «r, does not truly
reflect a property of the ensemble but is merely another way to describe a
bunch of single particle properties. But since I maintain that the anomaly is
dissolved by realizing that the property of the ensemble being in the box is
not equivalent to the property of each and every marble individually being in
the box, my argument depends on the claim that P, , . indeed reflects
a claim about the ensemble. Hence, so the objection goes, my argument is
flawed because it turns on this faulty assumption.

I don’t think that this argument is concluisive. Representability by a
‘collective variable’ is certainly a sufficient, but not a necessary condition for
a collective property. The underlying intuition of this objection seems to be
that P o sr does not make a genuine claim about the ensemble because
the opergtor involved is just a tensor product, and as such merely ‘patches
together’ single marble properties without adding anything to them.

This, however, is to carry over to FQM a criterion of identity from SQM
that is no longer appropriate. To individuate a property it is not sufficient
to specify an operator; we also have to provide truth conditions. And it
is at this point where SQM and FQM diverge.'® Due to the fact that CP
obtains in SQM the truth conditions for P, . are equivalent to the ones
for P, &...&P, and for this reason it is true that forming a product does
not add anything to the properties possessed by the individuals.

However, this is no longer the case in FQM. The truth conditions for

P «..xr, ar€, as the failure of CP shows, different from the ones for P, , & ...

9T am grateful to Rob Clifton for having drawn my attention to this point.
OThanks to Nancy Cartwright for having pointed this out to me.
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&P . . Therefore, whether or not P i . «r, 1s true is independent of the
obtaining of properties of the components, and for this reason, I think, it
reflects a genuine property of the ensemble.

The second objection slightly changes the set-up of the experiment and
considers n individual boxes, one for each marble, instead of one big box.
Then, so the argument goes, one cannot even commit a fallacy of composition
because committing the fallacy involves the attribution of the wvery same
property (being in the box) to the ensemble as a whole and to its members.
But if every marble is in a different box, spatially separated from all the other
boxes, there simply is no such property because there is not even a uniform
property assigned to the marbles.

To meet this objection it suffices to realize that nothing in the above argu-
ment hinges on the fact that all marbles are within the same box. Putting all
the marbles in different boxes (instead of just one box) amounts to replacing
P, & &P, byP ,&.. &P ,  where Ri,.., R, are non-overlapping

intervals associated with the n one-marble boxes, and substituting P. Rix xn

for P o v The ‘individual box version’ of the anomaly then is: F has
the prdfjerty that one of its members is within R, one within R,, ..., and
one within R, while, as an ensemble, it fails to be located within the n-
dimensional interval Ry X ... X R,. Logically, this comes to holding the
following contradictory statements. (1) P, &... &P , and P . are
the same, (2) P, , & ... &P, , istrueand (3) P, . is false.

But by now it is obvious that this does not pose any threat to my line
of argument. Even if all intervals R; are different, the failure of CP, as
formulated in section 3, assures that the truth of P, .~ does not follow
from the truth of P, &... &P, . For this reason premise (1) is false. As a
consequence, the anomaly vanishes, just as in the ‘single box version’ of the
argument. So, after all, it has not much bearing on the anomaly whether one
thinks of all the marbles being put in one single box or of each marble being

located in an individual box, spatially separated from all the others.

5 Facing the consequences
Where does this leave us? I have argued that since we are dealing with a

bunch of non-interacting marbles, it is sufficient for the marbles to be in
the box that P, &...&PF, ., holds. Nothing else is needed. Since this
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conjunction holds true by assumption, each marble is neatly in the box as
we expect it to be and no anomaly pops up. And similarly for arithmetic.
Since counting is a process that is concerned with individual objects rather
than with ensembles as a whole, the thing we need in order to count is that
the conjunction of all P, (e;) is true. The general lesson we learn from
this discussion is that the ”f)roperty structure of FQM is far more complex
than that of SQM - that is the price we have to pay for the admission of
non-eigenstates as property-bearing states.

All this may strike one as rather peculiar and one might be inclined to
interpret the failure of CP and the resulting proliferation of properties as
a reductio ad absurdum of FQM. Although one certainly can (and many
probably will) adopt this point of view, it is by no means compelling to do
so. The failure of compositionality, in some form or another, is a problem that
besets other interpretations of QM (some brands of the modal interpretation,
see Clifton 1996, 385ff.) and more generally other domains of philosophy as
well. In the remainder of this section I briefly discuss how the problem arises
in epistemology and draw some parallels to the failure of CP in FQM.

Consider the following situation. There are ten thousand tickets in a
lottery and just one price. Hence I have good reasons to believe that the
one ticket T bought will not win. But the same argument goes through for
every ticket, and it is therefore rational to believe that each ticket will not
win. Thus, T seem justified in believing that ticket No. 1 will not win, and
ticket No. 2 will not win, and ..., ticket No. 10000 will not win. If we
now assume that the (informal version of the) composition principle (in this
context often referred to as the ‘conjunction principle’) holds - i.e. that given
we are justified in believing p, and we are also justified in believing in ¢, then
we are justified in believing (p & ¢) - then we come to the conclusion that no
ticket at all will win. This is the by now well known [ottery paradoz, first
developed in Kyburg (1961, p. 197). The conclusion is false but apparently
justified. So we are in the awkward position of being justified to believe
in the conjunction of individually justified propositions although we know
that it is false. This paradox gave rise to extended debates and there is no
generally agreed-upon solution, but one obvious way to evade the difficulty
is to reject the composition principle for justified belief.

Another related epistemic paradox arises if we posit (plausibly) that we
know p if our subjective probability that p is true is at least 0.95. However,
adopting the composition principle we run into the same problem. Given
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we know pq, ..., prgg with probability 0.95, the probability of p; & ... & p1oo is
0.95'% which is much smaller than 0.95. Hence, we don’t know p; & ... & proo
although we know py, ..., p1go individually.

There are striking similarities between these epistemic paradoxes and
the counting anomaly. Both deal with individual objects that have some
property while a collection of individuals, which we intuitively would expect
to have the same property, actually fails to do so. And in all cases there are
good reasons to lay the blame on the composition principle. Nevertheless
we keep taking concepts like knowledge and belief seriously and take these
paradoxes to be a challenge for future research rather that a reason to give
up on the issue all together. Why not adopt the same attitude towards
properties in FQM? CP fails and properties proliferate, but that can also be
taken as setting the agenda for further investigation and need not lead to the
damnation of the theory.
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Appendix: proof of the composition principle
in SQM

First, note that we obtain the usual definition of a property in SQM when
the integrals on the left-hand side of Equ. (1) are set equal to one. In
some more detail, the argument runs as follows. A system in state [¢)) has
the property U iff [{(1) | e,)|* = 1, where |e,) is the state in the Hilbert
space associated with the property U. This is equivalent to the condi-
tion (¢ | Z5u | ) = 1, where P, is the projection operator on |e,). If

€u
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there is not just one single vector, but an entire subspace 5, of the Hilbert
space associated with U, the condition reads (¢ | ]55 | ¥y = 1, where
Psu is the projection operator on the subspace S,. Now choose U to be
‘being located within interval Ry x ... x R,’. Then this condition reads

W | Py vn | ¥ = 1. Now expand both |¢)) and P in the

RyX...XRn

position basis: [¢) = [ ... [ d"ri(ry,...,m)|r1...ry) and P =

RyX...XRn

[0 o Jg d™r|ryry)(r1...my|. Plugging this into the above condition (after
some calculations) yields: (¢ | PRlean |9y = [riwxr, 101, o) [Pd"r =
1, which obviously is Equ. 1 with the aforementioned changes.

This said, we are now in a position to prove that CP holds for properties
thus defined.
=: Assume P, (e1)&P, (e2)& ... &P, (e,) holds, that is, [p |4;(r;)[?dr; =
1;4 =1, ...,n. Since we built up our collective ‘n-marble entity’ from n
non-interacting marbles the state will not be entangled and can be writ-
ten as the product of the states of the individual marbles: (ry,...,r,) =
P1(r1) ... n(ry); and since in SQM the wave functions of a well-behaved
quantum state is integrable we can factorise the integral in Def. 2: [, = .
W1 (r) - b () Pd™r = [, [ (r)Pdry ... fp |¥n(rs)Pdr,.  But by as-
sumption all terms of this product equal one, hence [ o p [91(r1) ... P (1) |?
d"r = 1. qged.
<: Assume P, . (e1,...,¢e,) holds, that is, [p . g [41(r1) .. ()]
d"r = 1. Factorise the integral as above: [p . g |¥1(r1)... 0, (rs)|%d"r =
Jr, [ (r) Pdry .. fp [¥n(rs)|?dr, = 1. Tt is an axiom of SQM that [5_[1;(r;)|?
dr; <1foralli=1,...,n For this reason the above product can equal 1
only if [p. |;(r3)|?dr; = 1 foralli = 1, ..., n. qed. This completes the proof
of CP for SQM.

Furthermore, it is straightforward to see that the first half of the proof no
longer goes through if the SQM definition of a property is replaced by Equ.
(1) above; the second part, however, is not affected by this change. For this
reason, CP does not hold in FQM, but RCP does.
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