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Abstract. The logical positivists adopted Poincare's doctrine of the conventionality of 
geometry and made it a key part of their philosophical interpretation of relativity the- 
ory. I argue, however, that the positivists deeply misunderstood Poincare's doctrine. For 
Poincare's own conception was based on the group-theoretical picture of geometry ex- 
pressed in the Helmholtz-Lie solution of the "space problem", and also on a hierarchical 
picture of the sciences according to which geometry must be presupposed be any properly 
physical theory. But both of this pictures are entirely incompatible with the radically new 
conception of space and geometry articulated in the general theory of relativity. The logi- 

cal positivists's attempt to combine Poincare's conventionalism with Einstein's new theory 
was therefore, in the end, simply incoherent. Underlying this problem, moreover, was a 
fundamental philosophical difference between Poincare's and the positivists concerning the 
status of synthetic a priori truths. 

The great French mathemat ic ian  Henri Poincard is also well-known, in 
philosophical circles, as the father of geometrical conventionalism. In par- 
ticular, the logical positivists appealed especially to Poincard in articulating 
and defending their own conception of the conventionality of geometry. As a 
mat ter  of fact, the logical positivists appealed both  to Poincar~ and to Ein- 
stein here, for they believed that  Poincard's philosophical insight had been 
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realized in Einstein's physical theories. They then used both - Poincar~'s 
insight and Einstein's theories - to support  and to illustrate their conven- 
tionalism. They thus viewed the combination of Poincard's geometrical con- 
ventionalism and Einstein's theory of relativity as a single unified whole. 

How, then, do the logical positivists understand Poincard's argument? 
They concentrate on the example Poincar~ presents in the fourth chapter of 
Science and Hypothesis: the example, namely, of a world endowed with a 
peculiar temperature field. According to this example we can interpret the 
same empirical facts in two different ways. On the one hand, we can imagine, 
in the given circumstances, that we live in an infinite, non-Euclidean world - 
in a space of constant negative curvature. On the other hand, we can equally 
well imagine, in the same empirical circumstances, that  we live in the interior 
of a finite, Euclidean sphere in which there also exists a special temperature 
field. This field affects all bodies in the same way and thereby produces a 
contraction, according to which all bodies - and, in particular, our measuring 
rods - become continuously smaller as they approach the limiting spherical 
surface. (Poincar~ of course obtains the law of this contraction from his own 
model of Bolyai-Lobachevsky space.) We are thus here confronted with a 
case of observational equivalence; and so no empirical facts can force us to 
select either the Euclidean or the non-Euclidean description as the uniquely 
correct description. In this sense the choice of geometry is entirely free and 
therefore conventional. 

Moritz Schlick, the founder of the Vienna Circle, presents just such an 
interpretation of Poincar~'s argument in his 1915 article on the philosoph- 
ical significance of the theory of relativity - which was the first article on 
relativity theory within the tradition of logical positivism: 

Henri Poincar~ has shown with convincing clarity (although Gauss 
and Helmholtz still thought otherwise), that  no experience can 
compel us to lay down a particular geometrical system, such as 
Euclid's, as a basis for depicting the physical regularities of the 
world. Entirely different systems can actually be chosen for this 
purpose, though in that  case we also have at the same time to 
adopt other laws of nature. The complexity of non-Euclidean 
spaces can be compensated by a complexity of the physical hy- 
potheses, and hence one can arrive at an explanation of the sim- 
ple behavior that  natural bodies actually display in experience. 
The reason this choice is always possible lies in the fact (already 
emphasized by Kant) that it is never space itself, but always the 
spatial behavior of bodies, that  can become an object of expe- 
rience, perception and measurement. We are always measuring, 
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as it were, the mere product  of two factors, namely the spatial 
properties of bodies and their physical properties in the narrower 
sense, and we can assume one of these two factors as we please, 
so long as we merely take care that  the product agrees with ex- 
perience, which can then be attained by a suitable choice of the 
other factor. (Schlick (1979), pp. 168-169) 

This argument and relativity theory fit together especially well, according 
to Schlick, because relativity theory is also based on the idea that  space and 
matter  cannot be separated from one another. 

Approximately fifty years later (1966) we find Rudolf Carnap still pre- 
senting essentially the same argument in his Introduction to the Philosophy 

of Science: 

Suppose, Poincar~ wrote, that  physicists should discover that  
the structure of actual space deviated from Euclidean geometry. 
Physicists would then have to choose between two alternatives. 
They could either accept non-Euclidean geometry as a descrip- 
tion of physical space, or they could preserve Euclidean geome- 
try by adopting new laws stating that  all solid bodies undergo 
certain contractions and expansions. As we have seen in earlier 
chapters, in order to measure accurately with a steel rod, we must 
make corrections that  account for thermal expansions or contrac- 
tions of the rod. In a similar way, said Poincar~, if observations 
suggested that  space was non-Euclidean, physicists could retain 
Euclidean space by introducing into their theories new forces - 
forces that  would, under specified conditions, expand or contract 
the solid bodies. (Carnap (1974) pp. 144-145) 

Carnap then concludes this chapter on Poincar@'s philosophy of geometry by 
remarking that  we will see in the next two chapters on relativity theory how 
Poincar@'s insight into the observational equivalence of Euclidean and non- 
Euclidean theories of space leads to a deeper understanding of the structure 
of space in relativity theory. 

In my opinion, however, this conception of the relationship between 
Poincar6 and Einstein rests on a remarkable - and in the end ironical - 
misunderstanding of history. The first point to notice is that  the logical 
positivists' argument from observational equivalence is in no way a good ar- 
gument for the conventionality of geometry - at least as this was understood 
by Poincar~ himself. For the argument from observational equivalence has 
no particular relevance to physical geometry and can be applied equally well 
to any part of our physical theory. The argument shows only that geometry 
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considered in isolation has no empirical consequences: such consequences 
are only possible if we also add further hypotheses about the behavior of 
bodies. But this point is completely general and is today well-known as 
the Duhem-Quine thesis: all individual physical hypotheses require further 
auxiliary hypotheses in order to generate empirical consequences. 

Poincar~'s own conception, by contrast, involves a very special status for 
physical geometry. He emphasizes in the Preface to Science and Hypothesis, 
for example, that his leading idea is that hypotheses of different kinds should 
be carefully distinguished from one another: 

We will also see that there are various kinds of hypotheses; that 
some are verifiable and, when once confirmed by experiment, 
become truths of great fertility; that others, without being able 
to lead us into error, become useful to us in fixing our ideas, 
and that the others, finally, are hypotheses in appearance only 
and reduce to definitions or conventions in disguise. (Poincar~ 
(1913), p. 28) 

Poincar~ then enumerates the sciences where we are involved principally 
with the free activity of our own mind: arithmetic, the theory of mathemat- 
ical magnitude, geometry, and the fundamental principles of mechanics. At 
the end of the series of sciences, however, comes something quite different: 
namely, experimental physics. Here we are certainly involved with more 
than our own free activity: 

Up to here [mechanics] nominalism triumphs, but we now ar- 
rive at the physical sciences properly speaking. Here the scene 
changes: we meet with hypotheses of another kind, and we rec- 
ognize their great fertility. No doubt at first sight our theories 
appear fragile, and the history of science shows us how ephemeral 
they are; but they do not entirely perish, and from each of them 
something remains. It is this something that it is necessary to 
try to discover, because it is this, and this alone, that is the true 
reality. (Poincar~ (1913), pp. 29-30) 

The fourth part of Science and Hypothesis explicitly considers precisely these 
physical sciences properly speaking. There, under the heading "Nature," 
Poincar~ discusses what he takes to be genuinely physical theories: e.g., op- 
tics and electrodynamics. Despite the obvious fact that the above-mentioned 
Duhemian argument applies equally well to these theories as well, Poincar~ 
nevertheless considers them to be non-conventional. Hence, this Duhemian 
argument can certainly not - at least by i tself-  be Poincar~'s own argument 
for the conventionality of geometry. 
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Poincar6's own argument involves two closely related ideas. The first is 
the already indicated idea that the sciences constitute a series or a hierarchy. 
This hierarchy begins with the purest a priori science - namely arithmetic - 
and continues through the above-mentioned sciences to empirical or experi- 
mental physics properly speaking. In the middle of this hierarchy - and thus 
in a very special place - we find geometry. The second idea, however, is the 
most interesting and important part of Poincar6's argument. For Poincar@ 
himself is only able to argue for the conventionality of geometry by making 
essential use of the Helmholtz-Lie solution to the "problem of space." This 
specifically group-theoretical conception of the essence of geometry, that is, 
is absolutely decisive - and thus unavoidable - in Poincar6's own argument. 
In what follows I will consider these two ideas more closely. 

The series or hierarchy of sciences begins, as we said, with arithmetic. 
For Poincar6 arithmetic is of course not a branch of logic; for logic is a 
purely analytical science and thus purely tautological, whereas arithmetic is 
the first and foremost synthetic science - which therefore genuinely extends 
our knowledge. Arithmetic is synthetic, because it is based on our intuitive 
capacity to represent the (potentially) infinite repetition of one and the same 
operation. And this intuition is then the ground for the characteristically 
mathematical procedure of reasoning: namely, mathematical induction or 
reasoning by recurrence. Such reasoning by recurrence comprehends as it 
were an infinite number of syllogisms and is precisely for this reason in no 
way merely analytic. For no merely analytical procedure can possibly lead us 
from the finite to the infinite. Nevertheless, arithmetic is wholly a priori as 
well: mathematical induction forces itself upon us uniquely and necessarily, 
because it is precisely the expression of a unique power of our own mind. 
Therefore, arithmetic is neither an empirical science nor conventional. 

The next lower level in the hierarchy of sciences is occupied by the the- 
ory of mathematical magnitude. Here Poincar6 considers what we nowadays 
refer to as the system of real numbers. Poincar6, however, is not only inter- 
ested in the purely formal properties of this system; on the contrary, he is 
interested above all in the psychological-empirical origin of our concept of 
this system. Specifically, he explains the origin of our concept of the sys- 
tem of real numbers in two steps. He first describes how the idea of the 
continuum arises: namely, through the repeated or iterative application of 
the principle of non-contradiction to just noticeable differences in Fechner's 
sense. But here we have only obtained the idea of an order-continuum, 
which does not yet contain metrical or measurable magnitudes. In order, 
then, to construct the latter, we must introduce a further element: namely, 
an addition operation. And, according to Poincar6, the introduction of such 
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an addition operation is almost entirely arbitrary. It must of course satisfy 
certain conditions - the conditions for a continuous, additive semi-group. 
Nevertheless, we are according to Poincar~ entirely free to introduce any ad- 
dition operation whatsoever that satisfies the given formal conditions. Here, 
therefore, for the first time, we have a convention properly speaking - that  
is, a free stipulation. 

So far we have considered only one dimensional continua. When we at- 
tempt  to apply these ideas to multi-dimensional continua we reach the next 
level in the hierarchy of sciences: namely, the science ofgeometry.  A multi- 
dimensional continuum becomes an object of geometry when one introduces 
a metric - the idea of measurability - into such a continuum. And, anal- 
ogously to the case of one dimensional continua, we achieve this through 
the introduction of group-theoretical operations. In this case, however, the 
structure of the operations in question is much more interesting from a math- 
ematical point of view. In the case of a three dimensional continuum, for 
example, instead of a continuous, additive semi-group of one dimension, we 
have a continuous group of free motions (in modern terminology a Lie group) 
of six dimensions. And, in my opinion, we can achieve a deeper understand- 
ing of Poincar@'s own conception of the conventionality of geometry only 
through a more careful consideration of precisely these group-theoretical 
structures. 

I will come back to this question in a moment. First, however, it is 
necessary briefly to consider the remaining two levels in. the hierarchy of 
sciences. The next lower level after geometry is occupied by the science of 
mechanics. The laws of mechanics - for example, the Newtonian laws of 
motion - govern the fundamental concepts of time, motion, mass, and force; 
and these laws are also according to Poincar@ conventional - at least for 
the most part. I understand him here to be arguing that  the fundamental 
concepts of time, motion, mass, and force have no determinate empirical 
meaning independently of the laws of mechanics. Thus, for example, the 
laws of motion supply us. with an implicit definition of the inertial frames of 
reference, without which no empirically applicable concepts of time or motion 
is possible; the concepts of mass and force are only empirically applicable 
on the basis of the second and third Newtonian laws of motion; and so on. 
The laws of mechanics do not therefore describe empirical facts governing 
indepen.dently given concepts. On the contrary, without these laws we would 
simply have no such concepts: no mechanical concepts, that is, of time, 
motion, mass, and force. In this sense the laws of mechanics are also free 
creations of our mind, which we must first inject, as it were, into nature. 

Now, however, we have finally reached the empirical laws of nature prop- 
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erly speaking. For we have now injected precisely enough structure into 
nature in order to extract the genuinely empirical laws from nature. We 
do this, for example, by discovering particular force laws that realize the 
general concept of force defined by the laws of mechanics. Poincar6 himself 
considers in this connection the Maxwell-Lorentz theory of the electromag- 
netic field and electrodynamic force especially, for this theory was of course 
of most interest in his time. But the point can perhaps be made even more 
clearly if we consider Newton's theory of universal gravitation. For Newton's 
Principia had already clearly shown how we can empirically discover the law 
of universal gravitation - on the presupposition, that is, of the Newtonian 
laws of motion and Euclidean geometry. Without these presuppositions, 
however, we would certainly not have been able to discover the law of grav- 
itation. And the same example also shows clearly how every level in the 
hierarchy of sciences presupposes all Of the preceding levels: we would have 
no laws of motion if we did not presuppose spatial geometry, no geometry if 
we did not presuppose the theory of mathematical magnitude, and of course 
no mathematics  at all if we did not presuppose arithmetic. 

I now return to a more detailed consideration of geometry. The metrical 
properties of physical space are based, as indicated above, on a Lie group 
of free motions; and the idea of such a group arises, according to Poincar@, 
from our experience of the motion of our own bodies. We thereby learn, in 
particular, to distinguish between changes in external objects and changes 
(that is, motions) of our own bodies. Then, through an idealization, we 
construct a separate concept of these latter changes (motions of our own 
bodies), and we represent this concept by means of a mathematical  group. 
In this sense - that  is, through an idealization - the idea of such a Lie 
group arises from our experience. At this point, however, a remarkable 
mathematical  theorem comes into play: namely, the Helmholtz-Lie theorem. 
For, according to his theorem, there are three and only three possibilities 
for such a group: either it can represent Euclidean geometry (that is, it 
is a group of free motions of rigid bodies in a Euclidean space), or it can 
represent a geometry of constant negative curvature (hyperbolic or Bolyai- 
Lobachevsky space), or it can represent a geometry of constant positive 
curvature (elliptic, or, as it is sometimes called, Riemannian space). What  
is important  here, for Poincar@, is that  only the idea of such a Lie group can 
explain the origin of geometry, and, at the same time, this idea drastically 
restricts the possible forms of geometry. 

Poincar6 of course believes that  the choice of any one of the three groups 
is conventional. Whereas experience suggests to us the general idea of a Lie 
group, it can in now way force us to select a specific group from among the 
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three possibilities. Analogously to the case of the theory of mathematical 
magnitude we are here concerned basically with the selection of a standard 
measure or scale: 

This is the object of geometry: it is the study of a particular 
"group"; but the general concept of a group preexists in our 
mind, at least potentially. It imposes itself upon us - not as 
a form of our sensibility, but as a form of our understanding. 
However, from among all possible groups it is necessary to choose 
one that  will be so to speak the standard measure [dtalon] to 
which we relate the phenomena of nature. Our experience guides 
us in this choice but does not impose it upon us; it allows us 
recognize, not which is the truest geometry, but rather which is 
the most convenient. (Poincar@ (1913), pp. 79-80) 

In our mind the latent idea of a certain number of groups preex- 
ists: those for which Lie has supplied the theory. Which shall we 
choose to be a kind of standard measure by whicl~ to compare 
the phenomena of nature? [... ] Our experience has guided us by 
showing us which choice is best adapted to the properties of our 
ownbody.  But there its role ends. (Poinc~tr6 (1913), p. 91) 

But such a selection in this case is much more interesting from a mathemat-  
ical point of view. In contrast to the case of one dimensional continua, a 
selection of the relevant group-theoretical operations here determines that  
the resulting system has one (and only one) of the three possible mathemat-  
ical structures (Euclidean, constant negative curvature, or constant positive 
curvature). In this sense the mathematical laws here are completely deter- 
mined by the selection of a particular scale. 

Poincar~'s conception becomes clearer when we contrast it with Helmholtz' 
earlier conception of geometry. For Helmholtz of course also proceeds from 
such group-theoretical considerations - that  is, from the possibility of free 
motion - in at tempting to justify a more empiricist conception of geome- 
try; and, for precisely this reason, Helmholtz gives the title, "On the Facts 
which Lie at the Basis of Geometry," to his main contribution here. Where, 
then, lies the disagreement between Helmholtz and Poincar@? We should 
first remind ourselves that  Helmholtz had first left Bolyai-Lobachevsky ge- 
ometry completely out of consideration. His original idea was that  there 
are only two possible geometries: namely, Euclidean geometry and ellipti- 
cal (or spherical) geometry. From the fact that free motion in general is 
possible it follows that space must be either Euclidean or spherical. From 
the further fact that  free motion is possible to infinity (so that  an infinite 
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straight line is possible) it then follows that  space must be Euclidean. Now 
Helmholtz of course soon corrected this erroneous idea when he became ac- 
quainted with Bolyai-Lobachevsky geometry (through the work of Beltrami); 
but Poincar~, by contrast, clearly recognized from the very beginning that  
the most important  and interesting choice is that  between Euclidean and 
Bolyai-Lobachevsky geometry. 

In the second place, however, Poincar~ also clearly saw that  the idea of 
the free motion of rigid bodies is itself an idealization: strictly speaking, 
there are in fact no rigid bodies in nature, for actual bodies are always sub- 
ject to actual physical forces. It is therefore completely impossible simply 
to read off, as it were, geometry from the behavior of actual bodies, without 
first formulating theories about physical forces. (In my opinion, the point of 
the temperature  field example is precisely to make this situation intuitively 
clear.) And it now follows that  geometry cannot depend on the behavior of 
actual bodies. For, according to the above described hierarchy of sciences, 
the determination of particular physical forces presupposes the Iaws of mo- 
tion, and the laws of motion in turn presuppose geometry itself: one must 
first set up a geometry before one can establish a particular theory of phys- 
ical forces. We have no other choice, therefore, but to select one or another 
geometry on conventional grounds, which we can then use so to speak as a 
standard measure or scale for the testing and verification of properly em- 
pirical or physical theories of force. Moreover it is also remarkable (and we 
shall return to this point below) that  relativity theory confirms Poincard's 
conception more than it does Helmholtz'. For we here apply non-Euclidean 
geometry to nature, not through the mere observation of the behavior of 
rigid bodies, but rather through a fundamental revision of both the laws of 
motion and our physical theory of gravitation. 

Nevertheless, relativity theory also shows that  Poincard's own conception 
of the role of geometry in physics is false in principle. For Poincar~'s concep- 
tion is entirely based, as we have seen, on an application of the Helmholtz-Lie 
theorem: geometry is conventional precisely because the general idea of a 
Lie group of free motions has three (and only three) possible geometrical re- 
alizations. Poincard therefore presupposes throughout that  the free motion 
of an ideal rigid body is possible and hence that  space is homogeneous and 
isotropic: the only geometries that  are possible on Poincar~'s conception are 
the classical geometries of constant curvature. By contrast, in the general 
theory of relativity we use the much more general conception of geometry 
articulated in Riemann's theory of manifolds (not to be confused, of course, 
with the very particular case of constant positive curvature - which is some- 
times also called Riemannian geometry). According to the general theory 
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of relativity space (more precisely, the space-time continuum) is a manifold 
of variable curvature - and, in fact, a curvature that depends essentially on 
the distribution of matter. 

Poincar~ was not of course acquainted with the general theory of rel- 
ativity. (He died in 1912.) He is nevertheless completely clear that his 
conception of geometry is not compatible with Riemann's theory of mani- 
folds. And, for precisely this reason~ he considers this more general theory 
to be purely analytical: 

If, therefore, one admits the possibility of motion~ then one can 
invent no more than a finite (and even rather restricted) number 
of three dimensional geometries. However, this result appears 
to be contradicted by Riemann; for this scientist constructs an 
infinity of different geometries, and that to which his name is or- 
dinarily given is only a special case. [... ] This is perfectly exact, 
but most of these definitions [of different Riemannian metrics] 
are incompatible with the motion of an invariable figure - which 
one supposes to be possible in Lie's theorem. These Rieman- 
nian geometries, as interesting as they are in various respects, 
can therefore never be anything but purely analytic, and they 
would not be susceptible to demonstrations analogous to those 
of Euclid. (Poincar(! (1913), p. 63) 

The l:tiemannian theory is purely analytical, because it is not based on group- 
theoretical operations and therefore not on the possibility of repeating a 
given operation indefinitely: 

Space is homogeneous and isotropic. One may say that a motion 
that is produced once can be repeated a second time, a third time, 
and so on, without changing its properties. In the first chapter, 
where we studied the nature of mathematical reasoning, we have 
seen the importance that one should attribute to the possibility 
of repeating indefinitely the same operation. It is in virtue of 
this repetition that mathematical reasoning acquires its force; it 
is thanks to the law of homogeneity that it applies to the facts 
of geometry. (Poincar~ (1913), p. 75) 

Poincar6's conception is therefore entirely coherent. For the Riemannian 
manifolds of variable curvature contradict his explanation of the fact that 
geometry is a properly synthetic science. 

Yet the general theory of relativity also contradicts Poincar~'s conception 
in an even more fundamental way. This theory describes the motion of a 
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body in a gravitational field as a geodesic (straightest possible curve) in a 
four dimensional manifold - that is, as a geodesic in a space-time continuum 
possessing a variable curvature depending explicitly on the distribution of 
matter. And this completely new formulation of the law of gravitation then 
also takes over the role previously played by the laws of motion. For the 
geodesics in space-time traversed by bodies in a gravitational field have here 
precisely the role previously played by the inertial motions. In other words, 
the law of gravitation takes over here the role of the law of inertia. It 
then follows, however, that one can no longer separate geometry from the 
laws of motion, and one can no longer separate the latter from the law of 
gravitation. On the contrary, in the general theory of relativity, geometry is 
simply identical to the theory of gravitation; this theory is in turn identical 
to the laws of motion or mechanics; and geometry is therefore also identical 
to mechanics. 

In the general theory of relativity there can therefore by no question of 
a hierarchy of sciences in Poincar@'s sense. Poincar@ presents mathematical 
physics as a series of sciences in which every succeeding science presupposes 
all preceding sciences. General mechanics is presupposed by particular force 
laws and thus makes the latter possible; geometry is presupposed by general 
mechanics and thus makes both it and particular force laws possible; the 
theory of mathematical magnitude is presupposed by geometry; and arith- 
metic is presupposed by the theory of mathematical magnitude. In this way, 
Poincar@'s conception of the sciences is actually quite similar to the Kantian 
conception. Yet Poincar@ is writing at the end of the nineteenth century 
and can therefore not proceed from the idea that Euclidean geometry is 
the only possible geometry. In the context of the Helmholtz-Lie solution 
to the "problem of space" it then appears natural to suppose that we have 
a conventional choice among three (and only three) possibilities. And, pre- 
cisely because geometry still appears to be the presupposition of all properly 
empirical sciences, this choice cannot itself be empirical. Thus, Poincar@'s 
modernized Kantianism is particularly well adapted to the scientific situation 
of the late nineteenth century - such a modified Kantianism can no longer 
be maintained in the context of the radically new physics of the twentieth 
century, however. 

In contrast to Poincar@, it is clear that the logical positivists, for their 
part, belong entirely to the twentieth century. And, in fact, Rudolf Carnap, 
Hans Reichenbach, and Moritz Schlick all attempted in their earliest writings 
philosophically to comprehend the theory of relativity. They even undertook 
the task of fundamentally reforming philosophy itself through precisely this 
attempt to comprehend Einstein's physical theories. Thus, for example, from 
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the very beginning the logical positivists explicitly asserted that Einstein's 
new theories are completely incompatible with the Kantian conception of the 
synthetic a priori, so that this philosophical conception is simply now un- 
tenable. They also clearly recognized that Helmoltz' geometrical empiricism 
is untenable as well. For, in the general theory of relativity, we construct a 
non-Euclidean description of nature (as emphasized above), not by simply 
observing the behavior of rigid measuring rods, but rather by fundamentally 
revising both general mechanics and our theory of gravitational force. The 
logical positivists therefore sought for an intermediate position, as it were, 
lying between traditional Kantianism and traditional empiricism. And it 
seemed to them that precisely such an intermediate position is to be found 
in Poincar~'s conception of convention. 

We have seen, however, that Poincar~'s own argument for geometrical 
conventionalism actually fails in the context of the general theory of relativ- 
ity: neither his conception of a hierarchy of sciences nor his penetrating and 
insightful application of the Helmholtz-Lie theorem make sense in this new 
conceptual framework. The general theory of relativity essentially employs 
a geometry of variable curvature and also effects a holistic unification of pre- 
viously separated sciences. For the logical positivists there was therefore no 
alternative but simply to ignore the characteristic elements of Poincar~'s own 
argument and to concentrate instead solely on the example of the peculiar 
temperature field. In the absence of Poincar~'s own conception of a hierar- 
chy of sciences, however, it is clear that this example by itself can have no 
particular relevance to geometry. On the contrary, we thereby obtain (as em- 
phasized at the very beginning) only a completely general holism, according 
to which every individual scientific hypothesis has empirical consequences 
only in connection with further auxiliary hypotheses. In other words, we 
thereby obtain only what is nowadays referred to as Duhemian or Duhem- 
Quine holism. And Quine himself, as is well-known, uses this Duhemian 
holism precisely to attack the conventionalism of the logical positivists: ac- 
cording to Quine there is of course no longer a difference in principle between 
facts on the one side and conventions on the other. It is therefore extremely 
problematic, at best, to base the thesis of the conventionality of geometry 
on Duhemian holism. As we have seen, what is most ironical here is the 
circumstance that just this holistic collapse of the conventional/factual dis- 
tinction was already prefigured in the earlier encounter between Poincar~'s 
geometrical conventionalism and the general theory of relativity. 

It is therefore noteworthy that there was one logical positivist who, at 
least once in his life, correctly and explicitly recognized the incompatibility 
of Poincar~'s conventionalism with the general theory of relativity. This was 
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Hans Reichenbach, in his first book, The Theory of Relativity and A Priori 
Knowledge, of 1920: 

It was from a mathematical  standpoint asserted that geometry 
has only to do with conventional stipulations - with an empty 
schema containing no statements about reality but rather chosen 
only as the form of the latter, and which can with equal justi- 
fication be replaced by a non-Euclidean schema.* Against these 
objections, however, the claim of the general theory of relativity 
presents a completely new idea. This theory makes the equally 
simple and clear assertion that  the propositions of Euclidean ge- 
ometry are just false. (Reichenbach (1965), pp. 3-4) 

*Poincar6 has represented this view. Cf. [Science and Hypothesis, Chap. 
III]. It is significant that  for his proof of equivalence he excludes from the 
beginning Riemannian geometry, because it does not permit the displace- 
ment of a body without change of form. If he had guessed that precisely this 
geometry would be taken up by physics, he would never have been able to 
assert the arbitrariness of geometry. 

Unfortunately, Reichenbach was soon convinced by Schlick that  Poincard's 
conception could still be valid in the context of the general theory of relativ- 
ity. As is well-known, Reichenbach then occupies himself, in his later writ- 
ings, precisely with the a t tempt  to combine relativity theory with conven- 
tionalism. That  this a t tempt  must fail is implicit in the analysis of Poincard's 
conventionalism I have presented. 

Here, however, I will not pursue the story of Reichenbach's later conven- 
tionalism further. But  I do want to emphasize how far the basic philosophical 
conception of the logical positivists deviates from that of Poincard himself. 
For the empiricism of the logical positivists consists in precisely the circum- 
stance that  they completely reject the Kantian doctrine of synthetic a priori 
judgements. In their case the concept of convention is then a substitute 
for the synthetic a priori that is supposed to take over the function of the 
Kantian a priori in all domains of thought: they apply the concept of con- 
vention, not only to comprehend physical geometry, but also to explain pure 
mathematics and even logic. According to the logical positivists all a priori 
sciences rest in the end on conventional stipulations - and precisely in this 
way is Kantianism once and for all decisively overcome. 

By contrast, Poincar~ himself gives a central place to the synthetic a 
priori. In fact, as we have seen, his conception of arithmetic is extremely 
close to the original Kantian conception of arithmetic. First, arithmetic 
is based on our intuitive capacity for representing the indefinite repetition 
or iteration of one and the same operation, and therefore arithmetic for 
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Poincard is not a merely analytic science. Second, ari thmetic is also not 
conventional for Poincard: mathematical  induction forces itself necessarily 
upon us, and there are thus no alternatives here. Third, ari thmetic occupies 
the apex or summit  of a hierarchy of sciences: all other sciences - all other 
a priori sciences, in particular - presuppose arithmetic,  because all others 
presuppose mathematical  induction or reasoning by recurrence. 

Now Poincar~'s conception of geometry is also very similar to the Kantian 
conception of geometry. For Poincar~, as for Kant, geometry is synthetic, 
because it is based, like arithmetic, on the possibility of indefinitely repeat- 
ing particular operations: namely, group-theoretical operations constituting 
a Lie group of free motions. Moreover, geometry is also viewed as the pre- 
supposition of all properly empirical physical theories: neither for Poincard 
nor for Kant can geometry itself be either empirically confirmed or empir- 
ically disconfirmed. The difference, of course, is that  Poincard, in contrast 
to Kant, is acquainted with alternative geometries. Poincar~ is acquainted, 
in particular, with the Helmholtz-Lie theorem, according to which geometry 
is constrained, but  by no means uniquely determined, by the idea of a Lie 
group of free motions. It then follows for Poincard, because three alterna- 
tive possibilities are still left open, that  we have here - in this very special 
situation - a conventional choice or free stipulation. 

Poincar~'s basic philosophical conception thus by no means implies a gen- 
eral rejection of the synthetic a priori. On the contrary, without the synthetic 
a priori his argument simply makes no sense. Precisely because geometry - 
like ari thmetic - is synthetic, but also - according to the Helmholtz-Lie the- 
orem and in contradistinction to arithmetic - is not uniquely determined, it 
follows that  geometry is conventional. For the logical positivists, by contrast, 
there can be no question of this kind of argument  for geometrical conven- 
tionalism. Because ari thmetic is no longer viewed as synthetic a priori in the 
Kantian sense, they, for their part, a t tach no particular importance to our in- 
tuitive capacity for representing the indefinite repetition of some or another 
operation. Moreover, because we now consider geometry first and foremost 
in the context of the Riemannian theory of manifolds, group theory and the 
Helmholtz-Lie theorem are no longer relevant in any case. And, finally, we 
now accept the general theory of relativity (indeed, as the very paradigm 
of a successful physical theory); and, according to this theory, there is no 
longer any possibility of conceiving geometry as the presupposition of prop- 
erly empirical physics. As we have seen, we are in fact forced by this theory 
to subscribe to a holistic conception of the relationship between geometry 
and empirical physics. Before the development of the general theory of rel- 
ativity theory we were of course free to adopt such a holistic conception if 
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we wished - but after this development there is simply no alternative. 

The main point of our earlier discussion, however, is that  such a holism 
is much too weak to support a special, non-empirical status for geometry. 
Holism by itself is obviously also completely unable to explain the non- 
empirical status of arithmetic. If the logical positivists really wish to apply 
the concept of convention as an explanation of the status of the a priori 
in general, therefore, they clearly need to add some entirely new element 
that goes beyond mere holism. And this, in fact, is precisely what happens: 
When Rudolf  Carnap then at tempts  to articulate a general conventionalistic 
conception of the a priori in The Logical Syntax of Language in 1934, holism 
plays only a very subsidiary role. Instead, everything depends on the new 
conception of analyticity he at tempts  to develop there. 

Carnap considers purely formal languages or linguistic frameworks that  
can be chosen entirely arbitrarily. We can, for example, choose a language 
governed by the rules of classical (Prege-Russell) logic; but we can also, with 
equal justification, choose an entirely different type of language governed by 
the rules of intuitionistic logic. In fact, there can here be no question at all of 
either "justification" or "correctness," for the very concept of "correctness" 
itself only has meaning when we have antecendently specified a particular 
linguistic framework. Hence, the choice of one or another such framework 
can only be based on a convention, which we stipulate entirely freely on 
pragmatic grounds. What is most important,  however, is the following: 
Relative to any particular formal language or linguistic framework there 
is a sharp distinction between the logical rules or analytic sentences of the 
framework and the physical rules or synthetic sentences of the framework. In 
particular, the former constitute the underlying logic of the framework which 
first makes questions of "correctness," "justification," and so on possible. 
Our conventional choice of a language - together with the characteristic 
logical rules of this language - then clarifies the special epistemological (and 
non-empirical) status of such rules. 

Carnap does not therefore represent a general holism, according to which 
all sentences whatsoever have precisely the same status: instead, v~e are 
given a sharp distinction between logical and physical rules - analytic and 
synthetic sentences. Within a framework for classical mathematical  physics, 
for example, (classical) logic, arithmetic, and the theory of the real num- 
bers belong to the logical rules, whereas Maxwell's field equations belong 
to the physical rules. The former are therefore conventional in the context 
of this framework, whereas the latter are non-conventional and thus empir- 
ical. And what is the status of geometry here? From the present point 
of view Carnap's result is especially interesting and noteworthy. Within a 
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framework for classical mathematical physics, in which space has constant 
curvature, geometry also belongs to the logical (or analytic) rules. Within 
a framework like that of the general theory of relativity, by contrast, in 
which space (more precisely, space-time) no longer has constant curvature 
but rather a curvature depending essentially on the distribution of matter 
- within such a framework geometry belongs rather to the physical (and 
therefore synthetic) rules! Carnap's result here thus agrees completely with 
our argument - and also with the conception defended by Reichenbach in his 
.first book (last quotation). In the context of classical mathematical physics 
Poincar~ is perfectly correct: physical geometry belongs to the a priori part 
of our theoretical framework and hence to the conventional part. In the 
context of the general theory of relativity, however, Poincar6 is incorrect: in 
this context physical geometry belongs rather to the empirical part of our 
theoretical framework and hence to the non-conventional part. 

Carnap's conception in Logical Syntax is thus in a much better position 
to establish a meaningful version of conventionalism than is a purely general 
Duhemian holism. Unfortunately , however, Carnap's conception has its own 
fatal difficulties - difficulties that have only become clear in the course of 
the Quinean criticism of the concept of analyticity. But this story I must 
definitely leave for another occasion. 
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