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Abstract

Well-known results due to David Makinson show that there are exactly two Post
complete normal modal logics, that in both of them, the modal operator is truth-
functional, and that every consistent normal modal logic can be extended to at least
one of them. Lloyd Humberstone has recently shown that a natural analog of this re-
sult in congruential modal logics fails, by showing that not every congruential modal
logic can be extended to one in which the modal operator is truth-functional. As
Humberstone notes, the issue of Post completeness in congruential modal logics is
not well understood. The present article shows that in contrast to normal modal
logics, the extent of the property of Post completeness among congruential modal
logics depends on the background set of logics. Some basic results on the correspond-
ing properties of Post completeness are established, in particular that although a
congruential modal logic is Post complete among all modal logics if and only if its
modality is truth-functional, there are continuum many modal logics Post complete
among congruential modal logics.

Keywords: Propositional Modal Logic, Post Completeness, Congruential Modal
Logics, Classical Modal Logics

1 Introduction
The notion of Post completeness captures the intuitive idea of a logic being
maximal, in the sense of it not being possible to strengthen the logic without
collapsing it into inconsistency. This can be made precise in a very abstract
setting: Let L be a set, informally understood as a set of formulas, and C a
subset of the power set of L containing L itself, informally understood as the
set of logics under consideration. A set ⇤ 2 C such that ⇤ 6= L can then be
defined to be Post complete in C if there is no ⇤0 2 C such that ⇤ ⇢ ⇤0 ⇢ L.
Post completeness in C is thus simply the property of being a coatom of C,

1 Thanks to Rohan French, Lloyd Humberstone and David Makinson for very helpful
discussions and comments on drafts of this paper, and to three anonymous reviewers for
their suggestions concerning presentational matters.
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partially ordered by ✓. Calling a member of C consistent if it is distinct from
L, the coatoms of C can also be described as the maximal elements of the set
of consistent members of C.

This abstract account of Post completeness makes clear that logics, un-
derstood as sets of formulas, are not Post complete simpliciter, but only Post
complete relative to a given set of logics. Of course, if only one such set is con-
sidered, one may naturally talk about Post completeness simpliciter, leaving
the relativity to this set implicit. Most of the literature on Post completeness
in propositional modal logic operates on such an assumption, considering only
Post completeness relative to the set of all modal logics, defined as sets of for-
mulas containing all truth-functional tautologies and closed under the rules of
modus ponens and uniform substitution. This is somewhat surprising, as the
vast majority of research in modal logic focuses on the much more restrictive
set of normal modal logics. The matter is partly explained by results due to
Makinson [11], which show that among normal modal logics, the background
set of logics is irrelevant, as a normal modal logic is Post complete in the set
of all logics if and only if it is Post complete in the set of normal modal logics.
(This section gives an informal introduction and overview; formal definitions
and results will be stated more precisely below.)

The present article explores Post completeness beyond normal modal logics,
in particular in the context of congruential modal logics. As will be shown, the
background set of logics matters in this context, as most logics Post complete
in the set of congruential modal logics fail to be Post complete in the set of all
modal logics. First, however, some remarks on why Post completeness is an
interesting notion.

Much of mathematical research in modal logic it is concerned with inves-
tigating various aspects of the set of normal modal logics, which, ordered by
✓, forms a complete lattice. Indeed, Rautenberg [13, p. 219] goes so far as to
suggest that any investigation of normal modal logics is in e↵ect aimed at im-
proving our understanding of the lattice of normal modal logics. A natural part
of such an enterprise is the investigation of the lattice’s coatoms – the logics
Post complete in it. What about its atoms? A version of Lindenbaum’s lemma
guarantees that every consistent normal modal logic can be extended to (i.e.,
is a subset of) a maximal consistent one (i.e., a coatom). But no such result
guarantees that every normal modal logic distinct from the smallest normal
modal logic K is an extension of an atom. In fact, Kracht [10, Theorem 7.7.2]
notes, drawing on results due to Blok [2], that the lattice of normal modal
logics is atomless.

A further reason for studying Post completeness arises from Makinson’s re-
sults mentioned above, which also show that the lattice of normal modal logics
has exactly two coatoms. This fact, and various specific details concerning these
two logics, have proved extremely useful in a wide variety of applications (see,
e.g., the appeals to “Makinson’s Theorem” at various places in [10]). The in-
trinsic interest and evident usefulness of investigating Post completeness among
normal modal logics therefore motivate studying this notion in wider classes of
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modal logics, and the present article makes a start, focusing in particular on
congruential modal logics.

Section 2 briefly sets out the background theory of modal logics and cor-
responding models. Section 3 states the fundamental facts concerning Post
completeness in normal modal logics which follow from Makinson’s results, and
some recent results due to Humberstone on Post completeness in congruential
modal logics. Section 4 determines the number of logics Post complete in the
lattice of congruential modal logics to be that of the continuum, and shows that
infinitely many such logics are determined by a class of neighborhood frames.
Section 5 shows that there are precisely four congruential modal logics which
are Post complete in the lattice of all modal logics; with the first result of
section 4, this shows that Post completeness among congruential modal logics
is dependent on the background set of logics. Section 5 also shows that there
is a continuum of extensions of congruential modal logics Post complete in the
lattice of all modal logics which are not extensions of normal modal logics.
Section 6 generalizes an observation of Humberstone’s that the intersection of
logics Post complete in lattice of all modal logics and closed under certain rules
can be axiomatized using conditionals corresponding to these rules. Section 7
concludes, highlighting a number of open questions.

2 Modal Logics and Algebraic Models
Let L be the set of formulas of a propositional modal language, built up as
usual from a countably infinite set of proposition letters p, q, . . . using the
nullary operator > (trivial truth), the unary operator ¬ (negation), the binary
operator ^ (conjunction) and the unary operator 2 (the modality). Other
operators, such as ?, _ and ! will be used as syntactic abbreviations as
usual. Let a substitution be a function � : L ! L such that for all ', 2 L,
�(>) = >, �(¬') = ¬�('), �(' ^  ) = �(') ^ �( ) and �(2') = 2�(').
Let ⌃ be the set of substitutions. Let a modal logic be a set ⇤ ✓ L such that
⇤ contains all propositional tautologies (' 2 L not containing 2 true under
every classical truth-value assignment) and is closed under modus ponens (if
',' !  2 ⇤ then  2 ⇤) and uniform substitution (if ' 2 ⇤ then �(') 2 ⇤
for any substitution �). Let a modal logic be consistent if it is distinct from L.

Usually, restrictions on modal logics are formulated in terms of containing
certain axioms and being closed under certain rules. To provide an abstract
framework for such restrictions, let a rule be a set of finite non-empty sequences
of formulas. Let any � ✓ L be closed under a rule R just in case for all
h⇢0, . . . , ⇢ni 2 R, if ⇢i 2 � for all i < n, then ⇢n 2 �. The members of a
rule will be called its instances. A rule R is substitution-invariant if for all
h⇢0, . . . , ⇢ni 2 R and substitutions �, h�(⇢0), . . . ,�(⇢n)i 2 R. In this setting,
the usual requirement of being closed under “necessitation” can be formulated
as being closed under the substitution-invariant rule {h�(p),�(2p)i : � 2 ⌃}.
The treatment of axioms can be subsumed under this account of rules, using
sequences of formulas of length one. So, being a normal modal logic can be
formulated as being a modal logic closed under the substitution-invariant rule
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N = {h�(K)i, h�(p),�(2p)i : � 2 ⌃}, where K is the familiar distributivity
axiom 2(p ! q) ! (2p ! 2q).

For any substitution-invariant rule R, let L(R) be the set of modal logics
closed under R. It is routine to show that this is a complete lattice with
top element L. Let a modal logic ⇤ be R-Post complete just in case it is a
coatom of L(R) (a consistent member of L(R) which is not a subset of any
other consistent member of L(R)). Let R-Post be the set of ⇤ 2 L(R) which
are R-Post complete, and, for any set � ✓ L, R-Post(�) the set of ⇤ 2 R-Post
which contain �. A routine version of Lindenbaum’s lemma establishes that
L(R) is coatomic: every consistent modal logic closed under R can be extended
to an R-Post complete modal logic.

Among the most important restrictions on modal logics are those of being
normal, congruential, quasi-normal and quasi-congruential. (See [14] and [5] for
general discussion of these classes and the models for them used below; the term
“classical” is sometimes used instead of “congruential”.) Normality was defined
above as being closed under N ; congruentiality can be defined analogously as
being closed under the substitution-invariant rule C = {h�(p $ q),�(2p $
2q)i : � 2 ⌃}. A modal logic is quasi-normal if it is an extension of a normal
modal logic, and quasi-congruential if it is an extension of a congruential modal
logic. Note that quasi-normality and quasi-congruentiality can also be defined
by appeal to substitution-invariant rules, viz. the rules whose instances are the
singleton sequences of members of the smallest normal and congruential modal
logics, respectively.

Although each of the four lattices of modal logics just defined gives rise to a
distinct notion of Post completeness, not each of these notions gives rise to its
own set of questions. To illustrate this, consider normal and congruential modal
logics. It is routine to show that a congruential modal logic ⇤ (i.e., ⇤ 2 L(C)) is
normal (i.e., ⇤ 2 L(N)) if and only if it contains both K and 2>. Thus L(N)
is simply the principal filter of L(C) generated by the smallest congruential
modal logic containing K and 2>, which is of course the familiar modal logic
K. Thus it is clear that any ⇤ 2 L(N) is N -Post complete if and only if it is
C-Post complete, which means that among normal modal logics, the notion of
N -Post completeness coincides with that of C-Post completeness, and so the
investigation of N -Post completeness is a special case of the investigation of
C-Post completeness. A similar point applies to the constraints of being quasi-
normal and quasi-congruential, as the notions of Post completeness to which
they give rise are special cases of the notion of ;-Post completeness.

Several of the following results will appeal to standard algebraic mod-
els for congruential modal logics. Let a modal matrix be a structure A =
hA, 1,�,u, ⇤, Di such that hA, 1,�,ui is a Boolean algebra, ⇤ : A ! A and
D ✓ A is a filter of the algebra. For such a modal matrix A, let an interpretation
be a function ◆ mapping proposition letters to elements of A. Extend such func-
tions implicitly to L, by letting ◆(>) = 1, ◆(¬') = �◆('), ◆('^ ) = ◆(')u ◆( )
and ◆(2') = ⇤◆('). Define ⇤(A), the logic of A, to be the set of formulas ' such
that ◆(') 2 D for all interpretations ◆. Using Lindenbaum-Tarski algebras, it
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is routine to show that a modal logic is quasi-congruential if and only if it is
the logic of a modal matrix, and congruential if and only if it is the logic of a
modal matrix with singleton filter (see, e.g., Hansson and Gärdenfors [8]).

3 Makinson’s and Humberstone’s Results
It follows from the results of Makinson [11] that among normal modal logics, ;-
Post completeness coincides with N -Post completeness, and that these proper-
ties are had by exactly two logics, both of which interpret 2 truth-functionally.
These logics are most naturally described using algebraic models:

Treating T and F as the usual truth-values, every function ⇤ : {T, F} !
{T, F} gives rise to a modal matrix T⇤ = h{T, F}, T,�,u, ⇤, {T}i in which �
and u are the usual truth-functional operations of negation and conjunction.
Let t and f be the constant one-place functions to T and F , respectively, i the
identity function and n the function mapping T and F to each other. Each
such function ⇤ thus gives rise to a logic ⇤⇤ = ⇤(T⇤) in which the modality 2

behaves according to the truth-function ⇤. Call these the four truth-functional
modal logics. It is easy to see that no two truth-functions give rise to the same
truth-functional modal logic. The two normal modal logics which are ;/N -Post
complete are ⇤t and ⇤i, and thus every consistent normal modal logic can be
extended to at least one of these.

Can similar results be obtained for congruential modal logics? Humberstone
[9] gives a negative answer, by showing that some congruential modal logics
cannot be extended to any truth-functional modal logic. Since every consistent
congruential modal logic can be extended to a C-Post complete one, it follows
that some C-Post complete modal logics are not truth-functional. So, what is
the extent of the property of Post completeness among congruential and quasi-
congruential modal logics, and how do these sets of modal logics relate to each
other and to the set of truth-functional modal logics? The remainder of this
paper gives some basic answers to these and closely related questions.

4 Continuum Many C-Post Complete Logics
The first result to be established shows that the number of modal logics Post
complete in the lattice of congruential modal logics is i1 (= 2@0):

Theorem 4.1 The number of C-Post complete modal logics is i1.

Proof. Let hA,!,�,\i be the countable Boolean algebra of finite and cofinite
sets of natural numbers. Let B be the set of finite non-empty sets of natural
numbers, and hbn : n 2 !i an enumeration of B. For each set of natural
numbers S ✓ !, define a modal matrix AS = hA,!,�,\, ⇤, {!}i, where ⇤ is
defined as follows:

⇤(!) = b0

⇤(bn) = bn+1 for all n 2 !

⇤(�bn) = ! for all n 2 S

⇤(�bn) = ; for all n 2 !\S



Fritz 293

⇤(;) = !

Since every modal matrix with a singleton filter determines a congruential
modal logic, ⇤(AS) is a congruential modal logic. Furthermore, for all S ✓ !
and n 2 !,

2¬2n2> 2 ⇤(AS) i↵ n 2 S

¬2¬2n2> 2 ⇤(AS) i↵ n /2 S

where 2n is a string of n 2 operators. Thus for any distinct S, S0 ✓ !, ⇤(AS)
and ⇤(AS0) cannot be extended to the same consistent modal logic. As every
consistent congruential modal logic can be extended to a C-Post complete
modal logic, there are i1 such logics. 2

Theoremhood in ⇤(AS) depends not only on S, but also on the choice of
the enumeration of B. E.g., consider a set S containing 2 but not 3. Then
2(2> ^22>) 2 ⇤(AS) if b0 \ b1 = b2, but not if b0 \ b1 = b3.

Similar to relational frames for normal modal logics, so-called neighborhood
frames are naturally used to provide possible world models for congruential
modal logics. A neighborhood frame is a pair hW,Ni such that W is a set (the
“worlds”) and N : P(W ) ! P(W ), from which a model can be obtained by
adding a valuation function V which maps every proposition letter to a set of
worlds. Truth of a formula at a world is defined as in relational frames, with
the following clause for the modal operator:

hW,N, V i, w ✏ 2' i↵ {v 2 W : hW,N, V i, v ✏ '} 2 N(w)

The logic of a class of neighborhood frames is the set of formulas true at every
world in every model based on a frame in the class.

For every set W , the powerset P(W ) forms a Boolean algebra, and it is easy
to see that the modal matrices with singleton filter based on P(W ) correspond
uniquely to the neighborhood frames onW . Neighborhood frames can therefore
be seen as modal matrices with singleton filters based on powerset algebras.
Not every Boolean algebra is isomorphic to a powerset algebra, however, which
opens up the possibility that some congruential modal logic is not the logic
of any class of neighborhood frames. That there are such logics was shown
by Gerson [6]. With Theorem 4.1, this raises the question how widespread
such incompleteness is among logics Post complete in the set of congruential
modal logics. The following result gives a partial answer, by showing that
there are infinitely many C-Post complete logics which are the logic of a class
of neighborhood frames. What their precise number is will be left open, as well
as the question whether there are any C-Post complete logics which fail to be
the logic of a class of neighborhood frames, and if so, how many such logics
there are.

Theorem 4.2 There are at least @0 C-Post complete modal logics each of
which is the logic of a class of neighborhood frames.

Proof. For every natural number n, let An be a matrix based on the powerset
algebra A on n = {0, . . . , n� 1} with filter n and function ⇤ to be defined. Let
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B = A\{n} and hbi : i < 2n � 1i an enumeration of B such that b0 = ;. Define
⇤ as follows:

⇤(n) = n

⇤(bi) = bi+1 for all i < 2n � 2

⇤(b2n�2) = b0

Let ⇤n = ⇤(An), which is congruential by construction. For any n, the smallest
l > 0 such that ¬2l? 2 ⇤n is 2n � 1. So if n 6= n0, ⇤n 6= ⇤n0 . Since An is
based on a power set algebra, ⇤n is the logic of the corresponding neighborhood
frame. It only remains to argue that ⇤n is C-Post complete.

Consider any congruential modal logic ⇤ properly extending ⇤n. Then there
is a ' 2 ⇤ which is not in ⇤n. Since ' /2 ⇤n, there is an interpretation ◆ such
that ◆(') 6= n. For each element x 2 A, there is a formula �(x) containing
no proposition letters such that (�(x)) = x for every interpretation : let
�(n) = > and �(bi) = 2i?. Let � be the substitution mapping each proposition
letter p to �(◆(p)). A routine induction on the complexity of formulas shows
that for every interpretation , (�('))) = ◆('), and so (�('))) 6= n.

One the one hand, by construction of An, there is a number k such that
(2k�(')) = ; for all interpretations . So ¬2k�(') is a member of ⇤n and
thus a member of ⇤. On the other hand, since ' 2 ⇤, by uniform substitution,
�(') 2 ⇤. So > $ �(') 2 ⇤, and therefore by k applications of the congruen-
tiality rule, 2k> $ 2k�('). But 2k> is a member of ⇤n and so a member of
⇤, hence 2k�(') 2 ⇤. It follows that ⇤ is inconsistent. 2

5 Truth-Functionality and Quasi-Congruentiality
From Theorem 4.1, it follows immediately that there are i1 congruential modal
logics which cannot be extended to a truth-functional modal logic. In this
sense, C-Post completeness di↵ers markedly from N -Post completeness. But it
turns out that one consequence of Makinson’s results does extend to congruen-
tial modal logics: ;-Post completeness coincides with truth-functionality also
among congruential modal logics. The proof relies on a lemma of Segerberg
[15, p. 712, Lemma A]; to state it, let L0 be the set of formulas containing no
proposition letters (i.e., built up entirely from >).

Lemma 5.1 A consistent modal logic ⇤ has exactly one ;-Post complete ex-
tension if and only if for all ' 2 L0, ' 2 ⇤ or ¬' 2 ⇤.

Theorem 5.2 A congruential modal logic is ;-Post complete if and only if it
is truth-functional.

Proof. The if direction is routine, so consider a congruential modal logic ⇤ 2
;-Post. It follows by Lemma 5.1 that for each of 2> and 2?, ⇤ contains either
it or its negation. The rest of the argument follows along the lines of [11]: Since
⇤ is congruential, ⇤ = ⇤(A) for some modal matrix A = hA, 1,�,u, †, {1}i. Let
h : {T, F} ! A map T to 1 and F to 0 (= �1). Since {†(1), †(0)} ✓ {1, 0}, a
truth-function ⇤ can be defined as h�1 � † � h, and it is easily seen that h is a
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homomorphism from T⇤ to A. Consequently, ⇤ is a sublogic of ⇤⇤, and so as
⇤ 2 ;-Post, ⇤⇤ = ⇤. 2

Among congruential modal logics, C-Post completeness and ;-Post com-
pleteness therefore come wide apart. The results established so far thus em-
phasize the remarkableness of the fact that these two properties coincide among
normal modal logics.

Consider now quasi-congruential modal logics, which can be characterized
as the modal logics closed under the substitution-invariant rule QC = {h'i :
' 2 E}, where E is the smallest congruential modal logic. As noted above,
;-Post completeness and QC -Post completeness trivially coincide on L(QC ).
Moreover, the number of such logics has already been determined to be i1 by
Segerberg [15, p. 713], who shows that there are i1 ;-Post complete quasi-
normal modal logics. 2 Given Theorem 5.2, there must be i1 of them which
are not congruential. This observation leaves open the possibility that all of
them are quasi-normal, but the proof of Theorem 4.1 can be adapted to rule
this out:

Theorem 5.3 There are i1 ;-Post complete quasi-congruential modal logics
which are not quasi-normal.

Proof. Since the modal matrices used in the proof of Theorem 4.1 are based
on an algebra generated by the single element 1, it follows with [12, Theorem 1]
that extending the filter of any such modal matrix AS to an ultrafilter produces
a matrix which determines a quasi-congruential modal logic which is ;-Post
complete. Let AS(U) be such a matrix with ultrafilter U such that �bn 2 U
for some n 2 !. Then ¬2n+1> 2 ⇤(AS(U)), which entails that this logic is
not quasi-normal. As in Theorem 4.1, ⇤(AS(U)) 6= ⇤(AS0(U)) for any distinct
S and S0, from which the claim to be proven follows. 2

6 Characterizing Intersections of Post-Complete
Extensions

For any substitution-invariant rule R and set of formulas �, let ⇤R(�) be the
smallest modal logic closed under R which contains �; since L(R) is a complete
lattice, this is well-defined. Call ⇤R(�) the R-logic axiomatized by �. Hum-
berstone [9] notes that

T

(;-Post \ L(N)), the intersection of the two ;-Post
complete normal modal logics, is the normal modal logic axiomatized by the
formula NC = p ! 2p, i.e., ⇤N ({NC}). He also notes that the intersection
of the four truth-functional modal logics is the congruential modal logic ax-
iomatized by the “extensionality conditional” EC = (p $ q) ! (2p $ 2q).
With Theorem 5.2, it follows that this is the intersection of the ;-Post complete
congruential modal logics.

The axioms appealed to in these observations strongly suggest a general
connection between ;-Post complete logics closed under a given substitution-

2 The claim in [7, pp. 133, 136 & 142] that there are only two such logics is therefore
incorrect; this also seems to a↵ect the discussion in [9, Coda].
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invariant rule and the conditionals corresponding to the instances of this rule.
This section establishes such a connection. The result to be proven shows, for
any set of formulas �, how to characterize the intersection of the ;-Post com-
plete logics closed under a substitution-invariant rule R which contain � using
the conditionals corresponding to the instances of R. The natural conjecture
is that this intersection is simply the modal logic axiomatized by the union of
� and the set of these conditionals. It turns out that this is incorrect, but that
applying a natural operation to the logic so axiomatized produces the desired
intersection.

To motivate the required operation, consider the case of R = ;. The
natural conjecture just mentioned says that

T

;-Post(�) is ⇤;(�), the modal
logic axiomatized by �. This is not the case: As shown by Segerberg [16],
;-Post(�) = ;-Post(�) whenever � \ L0 = � \ L0. Thus, as long as no L0

formulas are added, ⇤;(�) can be expanded without adding formulas not in
T

;-Post(�). (That there are logics which can be so expanded will follow from
lemmas to be established presently.) This problem can be solved by expanding
⇤;(�), adding all formulas whose substitution instances in L0 are already con-
tained in ⇤;(�). This turns out to be the required operation. It will now be
defined formally, and some lemmas will be established, with which the desired
result can be established.

Let a substitution � be a 0-substitution if �(') 2 L0 for all formulas '. For
any set of formulas �, define

"0(�) = {' 2 L : �(') 2 � for every 0-substitution �}.

Call this the 0-expansion of �.

Lemma 6.1 For any modal logics ⇤,⇤0:

(i) ⇤ ✓ "0(⇤)

(ii) "0(⇤) is a modal logic.

(iii) If ⇤ is closed under a given substitution-invariant rule, so is "0(⇤).

(iv) If ⇤ is consistent, so is "0(⇤).

(v) If ⇤ \ L0 ✓ ⇤0 then "0(⇤) ✓ "0(⇤0).

Proof. Routine. 2

With this lemma, it is easy to see that for every substitution-invariant rule
R, "0 is a closure operator on L(R)\L, the consistent modal logics closed under
R, ordered by ✓.

Lemma 6.2 For every substitution-invariant rule R and R-Post complete logic
⇤, "0(⇤) = ⇤.

Proof. Let ⇤ 2 L(R) such that "0(⇤) 6= ⇤. Then by Lemma 6.1 (i), ⇤ ⇢ "0(⇤).
By Lemma 6.1 (ii) and (iii), "0(⇤) 2 L(R). Since ⇤ ⇢ "0(⇤), ⇤ is consistent,
and so with Lemma 6.1 (iv), "0(⇤) is consistent. So ⇤ is not R-Post complete.2
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Before applying this lemma to establish the main theorem of this section, it
is worth relating the operation of 0-expansion to the closely related notions of 0-
reducibility and general Post completeness, which Chagrov and Zakharyaschev
[4, chapter 13] discuss in detail. A modal logic ⇤ is 0-reducible just in case
for every formula ' /2 ⇤, there is a 0-substitution � such that �(') /2 ⇤. It
is easy to see that ⇤ is 0-reducible just in case "0(⇤) = ⇤, and that "0(⇤) is
the smallest 0-reducible modal logic containing ⇤. ⇤ is generally Post complete
if ⇤ is R-Post complete, where R is the union of substitution-invariant rules
under which ⇤ closed. Chagrov and Zakharyaschev [4, Theorem 13.11] show
that a consistent modal logic ⇤ is 0-reducible if and only if it is generally Post
complete. 3 Since there are consistent modal logics which are not generally
Post complete (see, e.g., their Theorem 13.2), it follows, as claimed above, that
there are modal logics ⇤ such that "0(⇤) 6= ⇤. The connections just drawn
also show that fittingly, a modal logic is generally Post complete just in case
it is R-Post complete for some substitution-invariant rule R; this observation
provides an alternative route to establishing Lemma 6.2.

Returning to the theorem to be established, define, for any rule R,
�!
R =

{
V

i<n ⇢i ! ⇢n : h⇢0, . . . , ⇢ni 2 R}. A final lemma leads to the desired result:

Lemma 6.3 For any ;-Post complete modal logic ⇤ closed under a sub-

stitution-invariant rule R,
�!
R ✓ ⇤.

Proof. Let ⇤ 2 ;-Post \ L(R) and consider any h⇢0, . . . , ⇢ni 2 R. Since by
Lemma 6.2, "0(⇤) = ⇤, it su�ces to show, for an arbitrary 0-substitution �,
that

V

i<n �(⇢i) ! �n(⇢) 2 ⇤. This can be done by a case distinction, using
Lemma 5.1: If

V

i<n �(⇢i) /2 ⇤, then ¬
V

i<n �(⇢i) 2 ⇤, and so
V

i<n �(⇢i) !
�(⇢n) 2 ⇤. If

V

i<n �(⇢i) 2 ⇤, then as ⇤ is closed under the substitution-
invariant rule R, �(⇢n) 2 ⇤, and therefore

V

i<n �(⇢i) ! �(⇢n) 2 ⇤. 2

Theorem 6.4 For any set of formulas � and substitution-invariant rule R,
\

(;-Post(�) \ L(R)) = "0(⇤;(� [ �!
R )).

Proof. ✓: Consider any formula ' /2 "0(⇤;(� [ �!
R )). Thus there is a 0-

substitution � such that �(') /2 ⇤;(� [ �!
R ). A routine argument shows that

then, ⇤;(� [ �!
R [ {¬�(')}) is consistent, which can therefore be extended to

a ;-Post complete modal logic ⇤. Since ⇤ contains the conditionals in
�!
R , it is

closed under R. Thus ⇤ 2 ;-Post(�) \ L(R). As ⇤ is consistent, ' /2 ⇤, and
therefore ' /2

T

(;-Post(�) \ L(R)).
◆: Consider any ⇤ 2 ;-Post(�) \ L(R) (if there is no such element, this

direction is trivial). It su�ces to show that "0(⇤;(� [ �!
R )) ✓ ⇤. Since ⇤ is ;-

Post complete, it follows with Lemma 6.2 that "0(⇤) = ⇤. So by Lemma 6.1 (v),

it su�ces to show that ⇤;(�[�!
R ) ✓ ⇤, which is immediate using Lemma 6.3.2

3 The treatment of rules in [4] is slightly di↵erent from the present treatment, which a↵ects
the definition of general Post completeness. For present purposes, the di↵erence is merely a
matter of presentation.
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The case of R = ; showed that the operation of 0-expansion appealed to
in this result is essential, but Humberstone’s observation did not appeal to
it. However, the observation falls out as a corollary of Theorem 6.4 with the
following lemma:

Lemma 6.5 For any modal logic ⇤ containing EC , "0(⇤) = ⇤.

Proof. Assume EC 2 ⇤; note that this means that ⇤ is congruential. It follows
by a routine induction that for any substitution � and formula ' built up from
proposition letters p0, . . . , pn�1,

V

i<n(pi $ �(pi)) ! (' $ �(')) 2 ⇤. By
Lemma 6.1 (i), it su�ces to show that "0(⇤) ✓ ⇤, so consider any ' 2 "0(⇤)
built up from proposition letters p0, . . . , pn�1. Let ⌃0 be a finite set of 0-
substitutions such that for every truth-value assignment among p0, . . . , pn�1,
there is � 2 ⌃0 mapping each proposition letter among p0, . . . , pn�1 corre-
spondingly to > or ?. Then

W

�2⌃0
V

i<n(pi $ �(pi)) is a tautology. With the
schema derived earlier, it follows that

W

�2⌃0('$ �(')) 2 ⇤. Since ' 2 "0(⇤),
�(') 2 ⇤ for all � 2 ⌃0, and therefore ' 2 ⇤. 2

The desired corollary follows immediately from Theorem 6.4 and
Lemma 6.5:

Corollary 6.6 For any set of formulas �,

\

(;-Post(�) \ L(C)) = ⇤;(� [ {EC}).

As a second corollary of Theorem 6.4, another characterization of general
Post completeness can be obtained: 4

Corollary 6.7 A modal logic is generally Post complete if and only if it is the
intersection of a non-empty set of ;-Post complete modal logics.

Proof. The claim is immediate for inconsistent modal logics, so let ⇤ be a
consistent modal logic. As noted above, ⇤ is generally Post complete if and only
if "0(⇤) = ⇤. Letting R = ;, it follows from Theorem 6.4 that

T

;-Post(⇤) =
"0(⇤). If "0(⇤) = ⇤, then

T

;-Post(⇤) = ⇤. If ⇤ =
T

S for some nonempty set
S ✓ ;-Post, then S ✓ ;-Post(⇤), so ⇤ =

T

;-Post(⇤), and thus "0(⇤) = ⇤. 2

Having characterized the intersection of the modal logics extending a given
set which are closed under a substitution-invariant rule R and ;-Post complete,
it is natural to ask for characterizations of similar intersections. First, one might
ask for a characterization of the intersection of the modal logics extending �
which are closed under R and generally Post complete. Second, one might ask
for a characterization of the intersection of the modal logics extending � which
are R-Post complete (and thus closed under R). Third, given a substitution-
invariant rule R0 ✓ R, one might ask for a characterization of the intersection
of the modal logics closed under R extending � which are R0-Post complete.

4 The result is due to David Makinson (p.c.), who provided a more direct proof, appealing to
the observation that "0 commutes with intersection: "0(

T{�i : i 2 I}) = T{"0(�i) : i 2 I}.
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The first question can be answered relatively easily; the others will be left
open. Writing g-Post(�) for the set of generally Post complete modal logics
extending �, a natural characterization can be given as follows:

Theorem 6.8 For any set of formulas � and substitution-invariant rule R,
\

(g-Post(�) \ L(R)) = "0(⇤R(�)).

Proof. The claim is immediate if ⇤R(�) is inconsistent, so assume otherwise.
✓: It su�ces to show that "0(⇤R(�)) 2 g-Post(�) \ L(R). As noted

earlier, "0(⇤R(�)) is 0-reducible and therefore generally Post complete; by
Lemma 6.1 (iii), it is a member of L(R).

◆: For any ⇤ 2 g-Post(�) \ L(R), ⇤R(�) ✓ ⇤. As noted earlier, since
⇤ is generally Post complete, "0(⇤) = ⇤, and therefore with Lemma 6.1 (v),
"0(⇤R(�)) ✓ ⇤. 2

7 Conclusion
This paper made a start at investigating Post completeness among congruen-
tial modal logics. Both similarities and di↵erences to the case of normal modal
logics were established, most importantly that while ;-Post completeness coin-
cides with truth-functionality in both settings, there are i1 modal logics Post
complete in the set of congruential modal logics, in contrast to the two modal
logics Post complete in the set of normal modal logics. The few elementary
results established here bring out many open questions.

Two clusters of questions were already mentioned above: First, how many
modal logics Post complete in the set of congruential modal logics are the logic
of a class of neighborhood frames, and how many (if any) are not? An anal-
ogous question arises for quasi-congruential modal logics and neighborhood
frames with distinguished elements (and quasi-normal modal logics and rela-
tional frames with distinguished elements, a question which seems not to have
been considered). Second, for any substitution-invariant rules R0 ✓ R and
set of formulas �, how can one characterize the intersection of modal logics
extending � which are R-Post complete, and the intersection of modal logics
extending � which are R0-Post complete and closed under R?

Similar to the questions considered in Bellissima [1], one could also in-
vestigate, for each cardinal   i1, the number of congruential modal log-
ics ⇤ such that |C-Post(⇤)| = . 5 It would also be interesting to know
whether what Segerberg [16] calls “Halldén’s Theorem” holds among congru-
ential modal logics, in the sense that for all congruential modal logics ⇤ and
⇤0, C-Post(⇤ \ ⇤0) = C-Post(⇤) [ C-Post(⇤0). More generally, the question
could be asked for any substitution-invariant rule.

Further interesting questions arise from the intersection of modal logics
whose only Post complete extension is a specific logic. As Blok and Köhler [3,

5 [1] is concerned with an analogous question for ;-Post completeness, focusing on normal
modal logics. Surprisingly, it seems to presuppose the truth of of the continuum hypothesis
without mentioning it; see the four-fold case distinction in the proof of Theorem 3.1, p. 133.
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p. 952–954] note, one can show with Lemma 5.1 that for any ;-Post complete
modal logic ⇤, the set of modal logics whose only ;-Post complete extension is
⇤ contains its intersection. This, as they note, does not carry over to normal
modal logics: while the set of normal modal logics whose only N -Post complete
extension is ⇤i contains its intersection, the set of normal modal logics whose
only N -Post complete extension is ⇤t does not. The former intersection is D,
the smallest normal modal logic containing the axiom D = 3>, and the latter
intersection is K. Furthermore, D and ⇤t give rise to a so-called splitting of
the lattice of normal modal logic, since for any normal modal logic ⇤, D ✓ ⇤ or
⇤ ✓ ⇤t but not both. (See [10, section 7.2] for more on splittings.) Since there
are far more C-Post complete modal logics than N -Post complete ones, it is an
interesting question to ask for which C-Post complete modal logics ⇤ the set of
congruential modal logics whose only C-Post complete extension is ⇤ contains
its intersection, and for cases in which the answer is a�rmative, whether the
relevant intersection gives rise to a splitting of the lattice of congruential modal
logics. One might also ask which C-Post complete modal logics give rise to a
splitting of this lattice, and investigate whether there are cases in which the
intersection of congruential modal logics whose only C-Post complete extension
is a given logic and another C-Post complete modal logic form a splitting pair.
More generally, one could consider an arbitrary set S of C-Post complete modal
logics, and ask similar questions concerning the set of congruential modal logics
whose C-Post complete extensions are precisely the members of S.

Many more questions could be asked concerning Post completeness in con-
gruential modal logics, but the ones mentioned so far should su�ce to indicate
that much remains to be done in this area.
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