PROJECTIVE MAD FAMILIES

SY-DAVID FRIEDMAN, LYUBOMYR ZDOMSKYY

Abstract

Using almost disjoint coding we prove the consistency of the existence of a Π_{2}^{1} definable ω-mad family of infinite subsets of ω (resp. functions from ω to ω) together with $\mathfrak{b}=2^{\omega}=\omega_{2}$.

1. Introduction

A classical result of Mathias [7] states that there exists no Σ_{1}^{1} definable mad family of infinite subsets of ω. One of the two main results of [4] states that there is no Σ_{1}^{1} definable ω-mad family of functions from ω to ω. It is the purpose of this paper to analyse how low in the projective hierarchy one can consistently find a mad subfamily of $[\omega]^{\omega}$ or ω^{ω}.

Recall that $a, b \in[\omega]^{\omega}$ are called almost disjoint, if $a \cap b$ is finite. An infinite set A is said to be an almost disjoint family of infinite subsets of ω (or an almost disjoint subfamily of $[\omega]^{\omega}$) if $A \subset[\omega]^{\omega}$ and any two elements of A are almost disjoint. A is called a mad family of infinite subsets of ω (abbreviated from "maximal almost disjoint"), if it is maximal with respect to inclusion among almost disjoint families of infinite subsets of ω. Given an almost disjoint family $A \subset[\omega]^{\omega}$, we denote by $\mathcal{L}(A)$ the set $\left\{b \in[\omega]^{\omega}: b\right.$ is not covered by finitely many $a \in A\}$. Following [6] we define a mad subfamily A of $[\omega]^{\omega}$ to be ω-mad, if for every $B \in[\mathcal{L}(A)]^{\omega}$ there exists $a \in A$ such that $|a \cap b|=\omega$ for all $b \in B$.

Two functions $a, b \in \omega^{\omega}$ are called almost disjoint, if they are almost disjoint as subsets of $\omega \times \omega$, i.e. $a(k) \neq b(k)$ for all but finitely many $k \in \omega$. A set A is said to be an almost disjoint family of functions (or an almost disjoint subfamily of $\left.\omega^{\omega}\right)$ if $A \subset \omega^{\omega}$ and any two elements of A are almost disjoint. A is called a mad family of functions, if it is maximal with respect to inclusion among almost disjoint families of functions. Given an almost disjoint family $A \subset \omega^{\omega}$, we denote by $\mathcal{L}(A)$ the set $\left\{b \in \omega^{\omega}: b\right.$ is not covered by finitely many $a \in A\}$. A mad subfamily A of ω^{ω} is ω-mad ${ }^{1}$, if for every $B \in[\mathcal{L}(A)]^{\omega}$ there exists $a \in A$ such that $|a \cap b|=\omega$ for all $b \in B$.

The following theorems are the main results of this paper.
Theorem 1. It is consistent that $2^{\omega}=\mathfrak{b}=\omega_{2}$ and there exists a Π_{2}^{1} definable ω-mad family of infinite subsets of ω.

[^0]Theorem 2. It is consistent that $2^{\omega}=\mathfrak{b}=\omega_{2}$ and there exists a Π_{2}^{1} definable ω-mad family of functions.

By [8, Theorem 8.23], in L there exists a mad subfamily of $[\omega]^{\omega}$ which is Π_{1}^{1} definable. Moreover, $V=L$ implies the existence of a Π_{1}^{1} definable ω-mad subfamily A of ω^{ω}, see [4, §3]. It is easy to check that $A \cup\{\{n\} \times \omega$: $n \in \omega\}$ is actually an ω-mad family of subsets of $\omega \times \omega$ for every ω-mad subfamily A of ω^{ω}, and hence Π_{1}^{1} definable ω-mad subfamilies of $[\omega]^{\omega}$ exist under $V=L$ as well.

Regarding the models of $\neg \mathrm{CH}$, it is known that ω-mad subfamilies of $[\omega]^{\omega}$ remain so after adding any number of Cohen subsets, see [5] and references therein. Combining Corollary 53 and Theorem 65 from [10], we conclude that the ground model ω-mad families of functions remain so in forcing extensions by countable support iterations of a wide family of posets including Sacks and Miller forcings. If $A \in V$ is a Π_{1}^{1} definable almost disjoint family whose Π_{1}^{1} definition is provided by formula $\varphi(x)$, then $\varphi(x)$ defines an almost disjoint family in any extension V^{\prime} of V (this is a straightforward consequence of the Shoenfield's Absoluteness Theorem). Thus if a ground model Π_{1}^{1} definable mad family remains mad in a forcing extension, it remains Π_{1}^{1} definable by means of the same formula. From the above it follows that the Π_{1}^{1} definable ω-mad family in L of functions constructed in [4, § 3] remains Π_{1}^{1} definable and ω-mad in $L[G]$, where G is a generic over L for the countable support iteration of Miller forcing of length ω_{2}. Thus the essence of Theorems 1 and 2 is the existence of projective ω-mad families combined with the inequality $\mathfrak{b}>\omega_{1}$, which rules out all mad families of size ω_{1}.

It is not known whether in ZFC one can prove the existence of $\Sigma_{1}^{1} \mathrm{mad}$ families of functions or of ω-mad families of functions; see [10].

2. Preliminaries

In this section we introduce some notions and notation needed for the proofs of Theorems 1 and 2, and collect some basic facts about T-proper posets, see [2] for more details.
Proposition 3. (1) There exists an almost disjoint family $R=\left\{r_{\langle\zeta, \xi\rangle}\right.$: $\left.\zeta \in \omega \cdot 2, \xi \in \omega_{1}^{L}\right\} \in L$ of infinite subsets of ω such that $R \cap M=$ $\left\{r_{\langle\zeta, \xi\rangle}: \zeta \in \omega \cdot 2, \xi \in\left(\omega_{1}^{L}\right)^{M}\right\}$ for every transitive model M of ZF^{-}.
(2) There exists an almost disjoint family $\mathcal{F}=\left\{f_{\langle\zeta, \xi\rangle}: \zeta \in \omega \cdot 2, \xi \in\right.$ $\left.\omega_{1}^{L}\right\} \in L$ of functions such that $\mathcal{F} \cap M=\left\{f_{\langle\zeta, \xi\rangle}: \zeta \in \omega \cdot 2, \xi \in\left(\omega_{1}^{L}\right)^{M}\right\}$ for every transitive model M of ZF^{-}.
Proof sketch. Let $r_{\zeta, \xi}^{*}$ be the L-least real coding the ordinal $\left(\omega^{2} \cdot \xi\right)+\zeta$ and let $r_{\zeta, \xi}$ be the set of numbers coding a finite initial segment of $r_{\zeta, \xi}^{*}$. Similarly for functions.

One of the main building blocks of the required ω-mad family will be suitable sequences of stationary in L subsets of ω_{1} given by the following proposition which may be proved in the same way as [1, Lemma 14].

Say that a transitive ZF ${ }^{-}$model M is suitable iff $M \vDash$ " ω_{2} exists and $\omega_{2}=\omega_{2}^{L "}$.

Proposition 4. There exists a Σ_{1} definable over $L_{\omega_{2}}$ tuple $\left\langle T_{0}, T_{1}, T_{2}\right\rangle$ of mutually disjoint L-stationary subsets of ω_{1} and Σ_{1} definable over $L_{\omega_{2}}$ sequences $\bar{S}=\left\langle S_{\alpha}: \alpha<\omega_{2}\right\rangle, \bar{S}^{\prime}=\left\langle S_{\alpha}^{\prime}: \alpha<\omega_{2}\right\rangle$ of pairwise almost disjoint L-stationary subsets of ω_{1} such that

- $S_{\alpha} \subset T_{2}$ and $S_{\alpha}^{\prime} \subset T_{1}$ for all $\alpha \in \omega_{2}$;
- Whenever M, N are suitable models of $Z F^{-}$such that $\omega_{1}^{M}=\omega_{1}^{N}$, \bar{S}^{M} agrees with \bar{S}^{N} on $\omega_{2}^{M} \cap \omega_{2}^{N}$. Similarly for \bar{S}^{\prime}.

The following standard fact gives an absolute way to code an ordinal $\alpha<\omega_{2}$ by a subset of ω_{2}.

Fact 5. There exists a formula $\phi(x, y)$ and for every $\alpha<\omega_{2}^{L}$ a set $X_{\alpha} \in$ $\left(\left[\omega_{1}\right]^{\omega_{1}}\right)^{L}$ such that
(1) For every suitable model M containing $X_{\alpha} \cap \omega_{1}^{M}, \phi\left(x, X_{\alpha} \cap \omega_{1}^{M}\right)$ has a unique solution in M, and this solution equals a provided $\omega_{1}^{M}=\omega_{1}^{L}$;
(2) For arbitrary suitable models M, N with $\omega_{1}^{M}=\omega_{1}^{N}$ and $X_{\alpha} \cap \omega_{1}^{M} \in$ $M \cap N$, the solutions of $\phi\left(x, X_{\alpha} \cap \omega_{1}^{M}\right)$ in M and N coincide ${ }^{2}$.

Let γ be a limit ordinal and $r: \gamma \rightarrow 2$. We denote by Even (r) the set $\{\alpha<\gamma: r(2 \alpha)=1\}$. For ordinals $\alpha<\beta$ we shall denote by $\beta-\alpha$ the ordinal γ such that $\alpha+\gamma=\beta$. If B is a set of ordinals above α, then $B-\alpha$ stands for $\{\beta-\alpha: \beta \in B\}$. Observe that if ζ is an indecomposable ordinal (e.g., ω_{1}^{M} for some countable suitable model of $\left.\mathrm{ZF}^{-}\right)$, then $((\alpha+B) \cap \zeta)-\alpha=B \cap \zeta$ for all B and $\alpha<\zeta$. This will be often used for $B=X_{\alpha}$.

For $x, y \in \omega^{\omega}$ we say that y dominates x and write $x \leq^{*} y$ if $x(n) \leq y(n)$ for all but finitely many $n \in \omega$. The minimal size of a subset B of ω^{ω} such that there is no $y \in \omega^{\omega}$ dominating all elements of B is denoted by \mathfrak{b}. It is easy to see that $\omega<\mathfrak{b} \leq 2^{\omega}$. We say that a forcing notion \mathbb{P} adds a dominating real if there exists $y \in \omega^{\omega} \cap V^{\mathbb{P}}$ dominating all elements of $\omega^{\omega} \cap V$.

Definition 6. Let $T \subset \omega_{1}$ be a stationary set. A poset \mathbb{P} is T-proper, if for every countable elementary submodel \mathcal{M} of H_{θ}, where θ is a sufficiently large regular cardinal, such that $\mathcal{M} \cap \omega_{1} \in T$, every condition $p \in \mathbb{P} \cap \mathcal{M}$ has an $(\mathcal{M}, \mathbb{P})$-generic extension q.

The following theorem includes some basic properties of T-proper posets.
Theorem 7. Let T be a stationary subset of ω_{1}.
(1) Every T-proper poset \mathbb{P} preserves ω_{1}. Moreover, \mathbb{P} preserves the stationarity of every stationary set $S \subset T$.
(2) Let $\left\langle\mathbb{P}_{\xi}, \dot{\mathbb{Q}}_{\zeta}: \xi \leq \delta, \zeta<\delta\right\rangle$ be a countable support iteration of T proper posets. Then \mathbb{P}_{δ} is T-proper. If, in addition, CH holds in V, $\delta \leq \omega_{2}$, and the $\dot{\mathbb{Q}}_{\zeta}$'s are forced to have size at most ω_{1}, then \mathbb{P}_{δ} is ω_{2}-c.c. If, moreover, $\delta<\omega_{2}$, then CH holds in $V^{\mathbb{P}_{\delta}}$.

[^1]
3. Proof of Theorem 1

We start with the ground model $V=L$. Recursively, we shall define a countable support iteration $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle$. The desired family A is constructed along the iteration: for cofinally many α 's the poset \mathbb{Q}_{α} takes care of some countable family B of infinite subsets of ω which might appear in $\mathcal{L}(A)$ in the final model, and adds to A some $a_{\alpha} \in[\omega]^{\omega}$ almost disjoint from all elements of A_{α} such that $|a \cap b|=\omega$ for all $b \in B$ (here A_{α} stands for the set of all elements of A constructed up to stage α). Our forcing construction will have some freedom allowing for further applications.

We proceed with the definition of $\mathbb{P}_{\omega_{2}}$. For successor α let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α}-name for some proper forcing of size ω_{1} adding a dominating real. For a subset s of ω and $l \in|s|(=\operatorname{card}(s) \leq \omega)$ we denote by $s(l)$ the l^{\prime} th element of s. In what follows we shall denote by $E(s)$ and $O(s)$ the sets $\{s(2 i): 2 i \in|s|\}$ and $\{s(2 i+1): 2 i+1 \in|s|\}$, respectively. Let us consider some limit α and a \mathbb{P}_{α}-generic filter G_{α}. Suppose also that

$$
\begin{equation*}
\forall B \in\left[A_{\alpha}\right]^{<\omega} \forall r \in R(|E(r) \backslash \cup B|=|O(r) \backslash \cup B|=\omega), \tag{*}
\end{equation*}
$$

where R is the family constructed in Proposition 3. Observe that equation $(*)$ yields $|E(r) \backslash \cup B|=|O(r) \backslash \cup B|=\omega$ for every $B \in\left[R \cup A_{\alpha}\right]^{<\omega}$ and $r \in R \backslash B$. Let us fix some function $F: \operatorname{Lim} \cap \omega_{2} \rightarrow L_{\omega_{2}}$ such that $F^{-1}(x)$ is unbounded in ω_{2} for every $x \in L_{\omega_{2}}$. Unless the following holds, $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α}-name for the trivial poset. Suppose that $F(\alpha)$ is a sequence $\left\langle\dot{b}_{i}: i \in \omega\right\rangle$ of \mathbb{P}_{α}-names such that $b_{i}=\dot{b}_{i}^{G_{\alpha}} \in[\omega]^{\omega}$ and none of the b_{i} 's is covered by a finite subfamily of A_{α}. In this case $\mathbb{Q}_{\alpha}:=\dot{\mathbb{Q}}_{\alpha}^{G_{\alpha}}$ is the two-step iteration $\mathbb{K}_{\alpha}^{0} * \dot{\mathbb{K}}_{\alpha}^{1}$ defined as follows.

In $V\left[G_{\alpha}\right], \mathbb{K}_{\alpha}^{0}$ is some $T_{0} \cup T_{2}$-proper poset of size ω_{1}. Our proof will not really depend on \mathbb{K}_{α}^{0}. \mathbb{K}_{α}^{0} is reserved for some future applications, see section 5.

Let us fix some \mathbb{K}_{α}^{0}-generic filter h_{α} over $V\left[G_{\alpha}\right]$ and find a limit ordinal $\eta_{\alpha} \in \omega_{1}$ such that there are no finite subsets J, E of $(\omega \cdot 2) \times\left(\omega_{1} \backslash \eta_{\alpha}\right), A_{\alpha}$, respectively, and $i \in \omega$, such that $b_{i} \subset \bigcup_{\langle\zeta, \xi\rangle \in J} r_{\langle\zeta, \xi\rangle} \cup \bigcup E$. (The almost disjointness of the $r_{\langle\zeta, \xi\rangle}$'s imply that if $b_{i} \subset \bigcup R^{\prime} \cup \bigcup A^{\prime}$ for some $R^{\prime} \in[R]^{<\omega}$ and $A^{\prime} \in\left[A_{\alpha}\right]^{<\omega}$, then $b_{i} \backslash \bigcup A^{\prime}$ has finite intersection with all elements of $R \backslash R^{\prime}$. Together with equation (*) this easily yields the existence of such an η_{α}.) Let z_{α} be an infinite subset of ω coding a surjection from ω onto η_{α}. For a subset s of ω we denote by \bar{s} the set $\{2 k+1: k \in s\} \cup\{2 k: k \in(\sup s \backslash s)\}$. In $V\left[G_{\alpha} * h_{\alpha}\right], \mathbb{K}_{\alpha}^{1}$ consists of sequences $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle^{3}$ satisfying the following conditions:
(i) c_{k} is a closed, bounded subset of $\omega_{1} \backslash \eta_{\alpha}$ such that $S_{\alpha+k} \cap c_{k}=\emptyset$ for all $k \in \omega$;
(ii) $y_{k}:\left|y_{k}\right| \rightarrow 2,\left|y_{k}\right|>\eta_{\alpha}, y_{k} \upharpoonright \eta_{\alpha}=0$, and $\operatorname{Even}\left(y_{k}\right)=\left(\left\{\eta_{\alpha}\right\} \cup\left(\eta_{\alpha}+\right.\right.$ $\left.\left.X_{\alpha}\right)\right) \cap\left|y_{k}\right| ;$

[^2](iii) $s \in[\omega]^{<\omega}, s^{*} \in\left[\left\{r_{\langle m, \xi\rangle}: m \in \bar{s}, \xi \in c_{m}\right\} \cup\left\{r_{\langle\omega+m, \xi\rangle}: m \in \bar{s}, y_{m}(\xi)=\right.\right.$ $\left.1\} \cup A_{\alpha}\right]^{<\omega}$. In addition, for every $2 n \in\left|s \cap r_{\langle 0,0\rangle}\right|, n \in z_{\alpha}$ if and only if there exists $m \in \omega$ such that $\left(s \cap r_{\langle 0,0\rangle}\right)(2 n)=r_{\langle 0,0\rangle}(2 m)$; and
(iv) For all $k \in \bar{s} \cup(\omega \backslash(\max \bar{s}))$, limit ordinals $\xi \in \omega_{1}$ such that $\eta_{\alpha}<$ $\xi \leq\left|y_{k}\right|$, and suitable ZF^{-}models M containing $y_{k} \upharpoonright \xi$ and $c_{k} \cap \xi$ with $\omega_{1}^{M}=\xi, \quad \xi$ is a limit point of c_{k}, and the following holds in $M:\left(\operatorname{Even}\left(y_{k}\right)-\min \operatorname{Even}\left(y_{k}\right)\right) \cap \xi$ codes a limit ordinal $\bar{\alpha}$ such that $S_{\bar{\alpha}+k}^{M}$ is non-stationary.
For conditions $\vec{p}=\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$ and $\vec{q}=\left\langle\left\langle t, t^{*}\right\rangle,\left\langle d_{k}, z_{k}: k \in\right.\right.$ $\omega\rangle\rangle$ in \mathbb{K}_{α}^{1}, we let $\vec{q} \leq \vec{p}$ (by this we mean that \vec{q} is stronger than \vec{p}) if and only if
$(v)\left(t, t^{*}\right)$ extends $\left(s, s^{*}\right)$ in the almost disjoint coding, i.e. t is an endextension of s and $t \backslash s$ has empty intersection with all elements of s^{*};
(vi) If $m \in \bar{t} \cup\left(\omega \backslash(\max \bar{t})\right.$, then d_{m} is an end-extension of c_{m} and $y_{m} \subset z_{m}$.
This finishes our definition of $\mathbb{P}_{\omega_{2}}$. Before proving that the statement of our theorem holds in $V^{\mathbb{P}_{\omega_{2}}}$ we shall establish some basic properties of \mathbb{K}_{α}^{1}. In Claims $8,9,10,11$, and Corollary 12 below we work in $L\left[G_{\alpha} * h_{\alpha}\right]$.

Claim 8. (Fischer, Friedman [1, Lemma 1].) For every condition $\vec{p}=$ $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle \in \mathbb{K}_{\alpha}^{1}$ and every $\gamma \in \omega_{1}$ there exists a sequence $\left\langle d_{k}, z_{k}: k \in \omega\right\rangle$ such that $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle d_{k}, z_{k}: k \in \omega\right\rangle\right\rangle \in \mathbb{K}_{\alpha}^{1},\left\langle\left\langle s, s^{*}\right\rangle,\left\langle d_{k}, z_{k}:\right.\right.$ $k \in \omega\rangle\rangle \leq \vec{p}$, and $\left|z_{k}\right|, \max d_{k} \geq \gamma$ for all $k \in \omega$.

Claim 9. For every $\vec{p} \in \mathbb{K}_{\alpha}^{1}$ and open dense $D \subset \mathbb{K}_{\alpha}^{1}$ there exists $\vec{q} \leq \vec{p}$ with the same finite part as \vec{p} such that whenever \vec{p}_{1} is an extension of \vec{q} meeting D with finite part $\left\langle r_{1}, r_{1}^{*}\right\rangle$, then already some condition \vec{p}_{2} with the same infinite part as \vec{q} and finite part $\left\langle r_{1}, r_{2}^{*}\right\rangle$ for some r_{2}^{*} meets D.
Proof. Let $\vec{p}=\left\langle\left\langle t_{0}, t_{0}^{*}\right\rangle,\left\langle d_{k}^{0}, z_{k}^{0}: k \in \omega\right\rangle\right\rangle$ and let \mathcal{M} be a countable elementary submodel of H_{θ} containing $\mathbb{K}_{\alpha}^{1}, \vec{p}, X_{\alpha}$, and D, and such that $j:=\mathcal{M} \cap \omega_{1} \notin \bigcup_{k \in \bar{t}_{0} \cup\left(\omega \backslash\left(\max \bar{t}_{0}\right)\right)} S_{\alpha+k}$.

Let $\left\{\left\langle\vec{r}_{n}, s_{n}\right\rangle: n \in \omega\right\}$ be a sequence in which every pair $\langle\vec{r}, s\rangle \in\left(\mathbb{K}_{\alpha}^{1} \cap\right.$ $\mathcal{M}) \times[\omega]^{<\omega}$ with $\vec{p} \geq \vec{r}$ appears infinitely often. Let $\left\langle j_{n}: n \in \omega\right\rangle$ be increasing and cofinal in j. Using Claim 8, by induction on n construct sequences $\left\langle d_{k}^{n}, z_{k}^{n}: k \in \omega\right\rangle \in \mathcal{M}$ as follows:

If there exists $\vec{r}_{1, n} \in D \cap \mathcal{M}$ below both \vec{r}_{n} and $\left\langle\left\langle t_{0}, t_{0}^{*}\right\rangle,\left\langle d_{k}^{n}, z_{k}^{n}: k \in \omega\right\rangle\right\rangle$ and with finite part of the form $\left\langle s_{n}, s_{n}^{*}\right\rangle$ for some s_{n}^{*}, then let $\left\langle d_{k}^{n+1}, z_{k}^{n+1}\right.$: $k \in \omega\rangle$ be the infinite part of $\vec{r}_{1, n}$, extended further in such a way that $\left\langle\left\langle t_{0}, t_{0}^{*}\right\rangle ;\left\langle d_{k}^{n+1}, z_{k}^{n+1}: k \in \omega\right\rangle\right\rangle \in \mathbb{K}_{\alpha}^{1}$ and $\left|z_{k}^{n+1}\right|, \max d_{k}^{n+1} \geq j_{n}$ for all $n \in \omega$ and $k \in \bar{t}_{0} \cup\left(\omega \backslash\left(\max \bar{t}_{0}\right)\right)$. If there is no such $\vec{r}_{1, n}$, then let d_{k}^{n+1} be an arbitrary end-extension of d_{k}^{n} and z_{k}^{n+1} be an extension of z_{k}^{n} such that $\left|z_{k}^{n+1}\right|, \max d_{k}^{n+1} \geq j_{n}$ for all $n \in \omega$ and $k \in \overline{t_{0}} \cup\left(\omega \backslash\left(\max \bar{t}_{0}\right)\right)$, and $\left\langle\left\langle t_{0}, t_{0}^{*}\right\rangle ;\left\langle d_{k}^{n+1}, z_{k}^{n+1}: k \in \omega\right\rangle\right\rangle \in \mathbb{K}_{\alpha}^{1}$.

Set $d_{k}=\bigcup_{n \in \omega} d_{k}^{n} \cup\{j\}$ and $z_{k}=\bigcup_{n \in \omega} z_{k}^{n}$ for all $k \in \omega \backslash F, d_{k}=z_{k}=\emptyset$ for $k \in F$, and $\vec{q}=\left\langle\left\langle t_{0}, t_{0}^{*}\right\rangle,\left\langle d_{k}, z_{k}: k \in \omega\right\rangle\right\rangle$. We claim that \vec{q} is as required.

Let us show first that $\vec{q} \in \mathbb{K}_{\alpha}^{1}$. Only item (iv) of the definition of \mathbb{K}_{α}^{1} for $k \in \bar{t}_{0} \cup\left(\omega \backslash\left(\max \overline{t_{0}}\right)\right)$ and $\xi=j$ must be verified. Fix such a k and suitable ZF^{-}model M containing z_{k} and d_{k} with $\omega_{1}^{M}=j$. Let \bar{M} be the Mostowski collapse of \mathcal{M} and $\pi: \mathcal{M} \rightarrow \bar{M}$ be the corresponding isomorphism. Let us note that $j=\omega_{1}^{M}=\omega_{1}^{\bar{M}}$. Since $X_{\alpha} \in \mathcal{M}$, and \mathcal{M} is elementary submodel of H_{θ}, α is the unique solution of $\phi\left(x, X_{\alpha}\right)$ in \mathcal{M}, and hence $\bar{\alpha}:=\pi(\alpha)$ is the unique solution of $\phi\left(x, X_{\alpha} \cap j=\pi\left(X_{\alpha}\right)\right)$ in \bar{M}. In addition, $S_{\bar{\alpha}+k}^{\bar{M}}=\pi\left(S_{\alpha+k}\right)=S_{\alpha+k} \cap j$ for all $k \in \omega$. Applying Fact 5(2) and Proposition 4, we conclude that $\phi\left(\bar{\alpha}, X_{\alpha} \cap j\right)^{M}$ holds and $S_{\bar{\alpha}+k}^{M}=S_{\bar{\alpha}+k}^{\bar{M}}=S_{\alpha+k} \cap j$. Since $d_{k} \in M, d_{k} \cap S_{\alpha+k}=\emptyset$, and $d_{k} \backslash\{j\}$ is unbounded in $j=\omega_{1}^{M}$ by the construction of d_{k}, we conclude that $S_{\bar{\alpha}+k}^{M}$ is not stationary in M. This proves that $\vec{q} \in \mathbb{K}_{\alpha}^{1}$.

Now suppose that $\vec{p}_{1}=\left\langle\left\langle r_{1}, r_{1}^{*}\right\rangle,\left\langle d_{k}^{\prime}, z_{k}^{\prime}: k \in \omega\right\rangle\right\rangle \leq \vec{q}$ and $\vec{p}_{1} \in D$. Since r_{1}, r_{1}^{*} are finite, there exists $m \in \omega$ such that $\vec{r}:=\left\langle\left\langle r_{1}, r_{1}^{*} \cap \mathcal{M}\right\rangle,\left\langle d_{k}^{m}, z_{k}^{m}:\right.\right.$ $k \in \omega\rangle\rangle \in \mathbb{K}_{\alpha}^{1} \cap \mathcal{M}$. Let $n \geq m$ be such that $\vec{r}_{n}=\vec{r}$ and $s_{n}=r_{1}$. Since \vec{p}_{1} is obviously a lower bound of \vec{r}_{n} and $\left\langle\left\langle t_{0}, t_{0}^{*}\right\rangle,\left\langle d_{k}^{n}, z_{k}^{n}: k \in \omega\right\rangle\right\rangle$ with finite part $\left\langle s_{n}, r_{1}^{*}\right\rangle$, there exists $\vec{p}_{2}^{\prime} \in \mathcal{M} \cap D$ below both \vec{r}_{n} and $\left\langle\left\langle t_{0}, t_{0}^{*}\right\rangle,\left\langle d_{k}^{n}, z_{k}^{n}\right.\right.$: $k \in \omega\rangle\rangle$ with finite part $\left\langle s_{n}, r_{2}^{*}\right\rangle$ for some suitable $r_{2}^{*} \in \mathcal{M}$. Thus the first (nontrivial) alternative of the construction of d_{k}^{n+1}, z_{k}^{n+1},s took place. Without loss of generality, $\vec{r}_{1, n}=\vec{p}_{2}^{\prime}$. A direct verification shows that $\vec{p}_{2}=$ $\left\langle\left\langle s_{n}=r_{1}, r_{2}^{*}\right\rangle,\left\langle d_{k}, z_{k}: k \in \omega\right\rangle\right\rangle$ is as required.

Claim 10. Let \mathcal{M} be a countable elementary submodel of H_{θ} for sufficiently large θ containing all relevant objects with $i=\mathcal{M} \cap \omega_{1}$ and $\vec{p} \in \mathcal{M} \cap \mathbb{K}_{\alpha}^{1}$. If $i \notin \bigcup_{n \in \bar{s} \cup(\omega \backslash(\max \bar{s}))} S_{\alpha+n}$, then there exists an $\left(\mathcal{M}, \mathbb{K}_{\alpha}^{1}\right)$-generic condition $\vec{q} \leq \vec{p}$ with the same finite part as \vec{p}.

Proof. Let $\vec{p}=\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$ and $\left\langle D_{n}: n \in \omega\right\rangle$ be the collection of all open dense subsets of \mathbb{K}_{α}^{1} which are elements of \mathcal{M}, and $\left\langle i_{n}: n \in \omega\right\rangle$ be an increasing sequence of ordinals converging to i. Using Claims 8 and 9 , inductively construct a sequence $\left\langle\vec{q}_{n}: n \in \omega\right\rangle \subset \mathcal{M} \cap \mathbb{K}_{\alpha}^{1}$, where $\vec{q}_{n}=$ $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle d_{k}^{n}, z_{k}^{n}: k \in \omega\right\rangle\right\rangle$ and $\vec{q}_{0}=\vec{p}$, such that
(i) d_{k}^{n+1} is an end-extension of d_{k}^{n} and z_{k}^{n+1} is an extension of z_{k}^{n} for all $n \in \omega$ and $k \in \bar{s} \cup(\omega \backslash(\max \bar{s}))$;
(ii) $\left|z_{k}^{n}\right|$, $\max d_{k}^{n} \geq i_{n}$ for all $n \geq 1$ and $k \in \bar{s} \cup(\omega \backslash(\max \bar{s}))$; and
(iii) For every $n \geq 1$ and $\vec{r}=\left\langle\left\langle r, r^{*}\right\rangle,\left\langle d_{k}^{\prime}, z_{k}^{\prime}: k \in \omega\right\rangle\right\rangle \leq \vec{q}_{n}, \vec{r} \in D_{n}$, there exists r_{2}^{*} such that $\vec{r}_{2}:=\left\langle\left\langle r, r_{2}^{*}\right\rangle,\left\langle d_{k}^{n}, z_{k}^{n}: k \in \omega\right\rangle\right\rangle \in D_{n}$ and $\vec{r}_{2} \leq \vec{q}_{n}$.
Set $d_{k}=\bigcup_{n \in \omega} d_{k}^{n} \cup\{i\}$ and $z_{k}=\bigcup_{n \in \omega} z_{k}^{n}$ for all $k \in \bar{s} \cup(\omega \backslash(\max \bar{s}))$, $d_{k}=z_{k}=\emptyset$ for all other $k \in \omega$, and $\vec{q}=\left\langle\left\langle t_{0}, t_{0}^{*}\right\rangle,\left\langle d_{k}, z_{k}: k \in \omega\right\rangle\right\rangle$. We claim that \vec{q} is as required, i.e., $\vec{q} \in \mathbb{K}_{\alpha}^{1}$ and $D_{n} \cap \mathcal{M}$ is pre-dense below \vec{q} for every $n \in \omega$. The fact that $\vec{q} \in \mathbb{K}_{\alpha}^{1}$ can be shown in the same way as in the proof of Claim 9 .

Let us fix $n \in \omega$ and $\vec{r}_{1}=\left\langle\left\langle t_{1}, t_{1}^{*}\right\rangle,\left\langle d_{k}^{\prime}, z_{k}^{\prime}: k \in \omega\right\rangle\right\rangle \leq \vec{q}$. Without loss of generality, $\vec{r}_{1} \in D_{n}$. Since $\vec{r}_{1} \leq \vec{q}_{n}$, (iii) yields the existence of t_{2}^{*} such that $\vec{r}_{2}:=\left\langle\left\langle t_{1}, t_{2}^{*}\right\rangle,\left\langle d_{k}^{n}, z_{k}^{n}: k \in \omega\right\rangle\right\rangle \leq \vec{q}_{n}$ and $\vec{r}_{2} \in D_{n}$. It is
clear that $\vec{r}_{2} \in \mathcal{M}$. We claim that \vec{r}_{2} and \vec{r}_{1} are compatible. Indeed, set $\vec{r}_{3}=\left\langle\left\langle t_{1}, t_{2}^{*} \cup t_{1}^{*}\right\rangle,\left\langle d_{k}^{\prime}, z_{k}^{\prime}: k \in \omega\right\rangle\right\rangle$ and note that $\vec{r}_{3} \leq \vec{r}_{1}, \vec{r}_{2}$.

Let H_{α} be a \mathbb{K}_{α}^{1}-generic filter over $L\left[G_{\alpha} * h_{\alpha}\right]$. Set $Y_{k}^{\alpha}=\bigcup_{\vec{p} \in H_{\alpha}} y_{k}$, $C_{k}^{\alpha}=\bigcup_{\vec{p} \in H_{\alpha}} c_{k}, a_{\alpha}=\bigcup_{\vec{p} \in H_{\alpha}} s, A_{\alpha+1}=A_{\alpha} \cup\left\{a_{\alpha}\right\}$, and $S^{*}=\bigcup_{\vec{p} \in H_{\alpha}} s^{*}$, where $\vec{p}=\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$. The following statement is a consequence of the definition of \mathbb{K}_{α}^{1} and the genericity of H_{α}.
Claim 11. (1) $S^{*}=\left\{r_{\langle m, \xi\rangle}: m \in \overline{a_{\alpha}}, \xi \in C_{m}^{\alpha}\right\} \cup\left\{r_{\langle\omega+m, \xi\rangle}: m \in\right.$ $\left.\overline{a_{\alpha}}, Y_{m}^{\alpha}(\xi)=1\right\} \cup A_{\alpha} ;$
(2) $a_{\alpha} \in[\omega]^{\omega}$;
(3) If $m \in \overline{a_{\alpha}}$, then $\operatorname{dom}\left(Y_{m}^{\alpha}\right)=\omega_{1}$ and C_{m}^{α} is a club in ω_{1} disjoint from $S_{\alpha+m}$;
(4) a_{α} is almost disjoint from all elements of A_{α};
(5) If $m \in \overline{a_{\alpha}}$, then $\left|a_{\alpha} \cap r_{\langle m, \xi\rangle}\right|<\omega$ if and only if $\xi \in C_{m}^{\alpha}$;
(6) If $m \in \overline{a_{\alpha}}$, then $\left|a_{\alpha} \cap r_{\langle\omega+m, \xi\rangle}\right|<\omega$ if and only if $Y_{m}^{\alpha}(\xi)=1$;
(7) $\left|a_{\alpha} \cap b_{i}\right|=\omega$ for all $i \in \omega$;
(8) For every $n \in \omega, n \in z_{\alpha}$ if and only if there exists $m \in \omega$ such that $\left(a_{\alpha} \cap r_{\langle 0,0\rangle}\right)(2 n)=r_{\langle 0,0\rangle}(2 m) ;$ and
(9) Equation (*) holds for $\alpha+1$, i.e. for every $r \in R$ and a finite subfamily B of $A_{\alpha+1}, B$ covers neither a cofinite part of $E(r)$ nor of $O(r)$.

Proof. Items (1), (2), (4), and (9) are straightforward. Items (2), (5), (6), and (8) follow from the inductive assumption $(*)$. Item (3) is a consequence of Claim 8.

We are left with the task to prove (7). Let us fix $l, i \in \omega$ and denote by $D_{l, i}$ the set of conditions $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle \in \mathbb{K}_{\alpha}^{1}$ such that $(s \backslash$ $l) \cap b_{i} \neq \emptyset$. It suffices to show that $D_{l, i}$ is dense in \mathbb{K}_{α}^{1}. Fix a condition $\vec{p}=\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle \in \mathbb{K}_{\alpha}^{1}$ and set $x=b_{i} \backslash \cup s^{*}$. Note that $x \in[\omega]^{\omega}$ by our choice of η_{α} and items (i), (ii) of the definition of \mathbb{K}_{α}^{1}. Two cases are possible.

1. $\left|x \backslash r_{\langle 0,0\rangle}\right|=\omega$. Then

$$
\vec{q}:=\left\langle\left\langle s \cup\left\{\min \left(x \backslash\left(r_{\langle 0,0\rangle} \cup l \cup \max s\right)\right)\right\}, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle
$$

is an element of $D_{l, i}$ and is stronger than \vec{p}.
2. $x \subset^{*} r_{\langle 0,0\rangle}$. Without loss of generality, $x \backslash r_{\langle 0,0\rangle} \subset l$. Suppose that $\left|s \cap r_{\langle 0,0\rangle}\right|=2 j-1$ for some $j \in \omega$ (the case of even $\left|s \cap r_{\langle 0,0\rangle}\right\rangle$ is analogous and simpler). Let $y=r_{\langle 0,0\rangle} \backslash \cup s^{*}$ and note that $x \subset^{*} y$. By $(*), \mid y \cap$ $E\left(r_{\langle 0,0\rangle}\right)\left|=\left|y \cap O\left(r_{\langle 0,0\rangle}\right)\right|=\omega\right.$. Denote by m_{e} and m_{o} the minima of the sets $\left(y \cap E\left(r_{\langle 0,0\rangle}\right)\right) \backslash(l \cup(\max s+1))$ and $\left(y \cap O\left(r_{\langle 0,0\rangle}\right)\right) \backslash(l \cup(\max s+1))$, respectively. Set

$$
\vec{r}:=\left\langle\left\langle s \cup\left\{m_{e}\right\} \cup\left\{\min \left(x \backslash\left(m_{e}+1\right)\right)\right\}, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle
$$

if $j \in z_{\alpha}$ and

$$
\vec{r}:=\left\langle\left\langle s \cup\left\{m_{o}\right\} \cup\left\{\min \left(x \backslash\left(m_{o}+1\right)\right)\right\}, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle
$$

otherwise. A direct verification shows that $\vec{r} \in D_{l, i}$ and $\vec{r} \leq \vec{p}$.

Corollary 12. \mathbb{Q}_{α} is T_{0}-proper. Consequently, $\mathbb{P}_{\omega_{2}}$ is T_{0}-proper and hence preserves cardinals.

More precisely, for every condition $\vec{p}=\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle \in \mathbb{K}_{\alpha}^{1}$ the poset $\left\{\vec{r} \in \mathbb{K}_{\alpha}^{1}: \vec{r} \leq \vec{p}\right\}$ is $\omega_{1} \backslash \bigcup_{n \in \bar{s} \cup(\omega \backslash(\max \bar{s}))} S_{\alpha+n}$-proper. Consequently, $S_{\alpha+n}$ remains stationary in $V^{\mathbb{P}_{\omega_{2}}}$ for all $n \in \omega \backslash \overline{a_{\alpha}}$.

Let G be a $\mathbb{P}_{\omega_{2}}$-generic filter over L. The following lemma shows that A is a Π_{2}^{1} definable subset of $[\omega]^{\omega}$ in $L[G]$ and thus finishes the proof of Theorem 1.

Lemma 13. In $L[G]$ the following conditions are equivalent:
(1) $a \in A$;
(2) For every countable suitable model M of ZF^{-}containing a as an element there exists $\bar{\alpha}<\omega_{2}^{M}$ such that $S_{\bar{\alpha}+k}^{M}$ is nonstationary in M for all $k \in \bar{a}$.

Proof. (1) \rightarrow (2). Fix $a \in A$ and find $\alpha<\omega_{2}$ such that $a=a_{\alpha}$. Fix also a countable suitable model M of ZF^{-}containing a_{α} as an element. By Claim 11(5,6,8), $z_{\alpha} \in M$ and $C_{k}^{\alpha} \cap \omega_{1}^{M}, Y_{k}^{\alpha} \upharpoonright \omega_{1}^{M} \in M$ for all $k \in \overline{a_{\alpha}}$. Therefore $\eta_{\alpha}<\omega_{1}^{M}$. Since $\left\langle\langle\emptyset, \emptyset\rangle,\left\langle C_{k}^{\alpha} \cap\left(\omega_{1}^{M}+1\right), Y_{k}^{\alpha} \mid \omega_{1}^{M}: k \in \omega\right\rangle\right\rangle$ is a condition in \mathbb{K}_{α}^{1}, item $(i v)$ of the definition of \mathbb{K}_{α}^{1} ensures that for every $k \in \overline{a_{\alpha}}, \operatorname{Even}\left(Y_{k}^{\alpha} \upharpoonright \omega_{1}^{M}\right)-\min \operatorname{Even}\left(Y_{k}^{\alpha} \upharpoonright \omega_{1}^{M}\right)$ codes a limit ordinal $\bar{\alpha}_{k} \in \omega_{2}^{M}$ such that $S_{\bar{\alpha}_{k}+k}^{M}$ is nonstationary in M. By item (ii) of the definition of \mathbb{K}_{α}^{1},

$$
\operatorname{Even}\left(Y_{k}^{\alpha} \upharpoonright \omega_{1}^{M}\right)-\min \operatorname{Even}\left(Y_{k}^{\alpha} \upharpoonright \omega_{1}^{M}\right)=X_{\alpha} \cap \omega_{1}^{M}
$$

for every $k \in \overline{a_{\alpha}}$, and hence $\bar{\alpha}_{k}$'s do not depend on k.
$(2) \rightarrow(1)$. Let us fix a fulfilling (2) and observe that by LöwenheimSkolem, (2) holds for arbitrary (not necessarily countable) suitable model of ZF^{-}containing a. In particular, it holds in $M=L_{\omega_{8}}[G]$. Observe that $\omega_{2}^{M}=\omega_{2}^{L[G]}=\omega_{2}^{L}, \vec{S}^{M}=\vec{S}$, and the notions of stationarity of subsets of ω_{1} coincide in M and $L[G]$. Thus there exists $\alpha<\omega_{2}$ such that $S_{\alpha+k}$ is nonstationary for all $k \in \bar{a}$. Since the stationarity of some $S_{\alpha+k}$'s has been destroyed, Corollary 12 together with the T_{2}-properness of \mathbb{K}_{ξ}^{0} 's implies that $\dot{\mathbb{Q}}_{\alpha}$ is not trivial. Now, the last assertion of Corollary 12 easily imples that $a=a_{\alpha}$.

4. Proof of Theorem 2

The proof is completely analogous to that of Theorem 1 . Therefore we just define the corresponding poset $\mathbb{P}_{\omega_{2}}$, the use of the poset \mathbb{M}_{α}^{1} defined below instead of \mathbb{K}_{α}^{1} at the α th stage of iteration being the only significant change. We leave it to the reader to verify that the proof of Theorem 1 can be carried over.

For successor α let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α}-name for some proper forcing of size ω_{1} adding a dominating real. Let us consider some limit α and a \mathbb{P}_{α}-generic filter G_{α}. Suppose also that we have already constructed an almost disjoint family $A_{\alpha} \subset \omega^{\omega}$ such that

$$
(* *) \quad \forall E \in\left[A_{\alpha}\right]^{<\omega} \forall f \in \mathcal{F}(|f \upharpoonright(2 \omega) \backslash \cup E|=|f \upharpoonright(2 \omega+1) \backslash \cup E|=\omega)
$$

Equation ($* *$) yields

$$
\forall E \in\left[\mathcal{F} \cup A_{\alpha}\right]^{<\omega} \forall f \in \mathcal{F} \backslash E(|f \upharpoonright(2 \omega) \backslash \cup E|=|f \upharpoonright(2 \omega+1) \backslash \cup E|=\omega) .
$$

Let $F: \operatorname{Lim} \cap \omega_{2} \rightarrow L_{\omega_{2}}$ be the same as in the proof of Theorem 1 . Unless the following holds, $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α}-name for the trivial poset. Suppose that $F(\alpha)$ is a sequence $\left\langle\dot{b}_{i}: i \in \omega\right\rangle$ of \mathbb{P}_{α}-names such that $b_{i}=\dot{b}_{i}^{G_{\alpha}} \in \omega^{\omega}$ and none of the b_{i} 's is covered by a finite subfamily of A_{α}. In this case $\mathbb{Q}_{\alpha}:=\dot{\mathbb{Q}}_{\alpha}^{G_{\alpha}}$ is the two-step iteration $\mathbb{K}_{\alpha}^{0} * \dot{\mathbb{M}}_{\alpha}^{1}$ defined as follows.

In $V^{\mathbb{P}_{\alpha}}, \mathbb{K}_{\alpha}^{0}$ is some $T_{0} \cup T_{2}$-proper poset of size ω_{1}.
Let us fix a recursive bijection $\psi: \omega \times \omega \rightarrow \omega$ and $s \in \omega^{<\omega}$. Set $\mathrm{sq}(s)=\operatorname{dom}(s) \times(\operatorname{dom}(\mathrm{s})+\operatorname{ran}(s))$ and

$$
\overline{\bar{s}}=\{2 k+1: k \in \psi(s)\} \cup\{2 k: k \in \psi(\mathrm{sq}(s) \backslash s)\} .
$$

In $V^{\mathbb{P}_{\alpha} * \mathbb{K}_{\alpha}^{0}}$ find an ordinal $\eta_{\alpha} \in \omega_{1}$ such that there are no finite subsets J, E of $(\omega \cdot 2) \times\left(\omega_{1} \backslash \eta_{\alpha}\right), A_{\alpha}$, respectively, and $i \in \omega$, such that $b_{i} \subset$ $\bigcup_{\langle\zeta, \xi\rangle \in J} f_{\langle\zeta, \xi\rangle} \cup \bigcup E . \mathbb{M}_{\alpha}^{1}$ consists of sequences $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$ satisfying the following conditions:
$(i)_{f}$ Conditions $(i)-(i i)$ from the definition of \mathbb{K}_{α}^{1} in the proof of Theorem 1 hold;
$(i i)_{f} s \in \omega^{<\omega}, s^{*} \in\left[\left\{f_{\langle m, \xi\rangle}: m \in \overline{\bar{s}}, \xi \in c_{m}\right\} \cup\left\{f_{\langle\omega+m, \xi\rangle}: m \in \overline{\bar{s}}, y_{m}(\xi)=\right.\right.$ $\left.1\} \cup A_{\alpha}\right]^{<\omega}$. In addition, for every $2 n \in\left|s \cap f_{\langle 0,0\rangle}\right|, n \in z_{\alpha}$ if and only if there exists $m \in \omega$ such that $s(j)=f_{\langle 0,0\rangle}(2 m)$, where j is the $2 n$ 'th element of the domain of $s \cap f_{\langle 0,0\rangle} ;$ and
$(\text { iii })_{f}$ For all $m \in \overline{\bar{s}} \cup\{2 k, 2 k+1: k \in \psi((\omega \backslash \operatorname{dom}(s)) \times \omega)\}$, limit ordinals $\xi \in \omega_{1}$ such that $\eta_{\alpha}<\xi \leq\left|y_{m}\right|$, and suitable ZF^{-}models M containing $y_{m} \upharpoonright \xi$ and $c_{m} \cap \xi$ with $\omega_{1}^{M}=\xi, \quad \xi$ is a limit point of c_{m}, and the following holds in M : $\left(\operatorname{Even}\left(y_{m}\right)-\min \operatorname{Even}\left(y_{m}\right)\right) \cap \xi$ codes a limit ordinal $\bar{\alpha}$ such that $S_{\bar{\alpha}+m}^{M}$ is non-stationary.
For conditions $\vec{p}=\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$ and $\vec{q}=\left\langle\left\langle t, t^{*}\right\rangle,\left\langle d_{k}, z_{k}: k \in\right.\right.$ $\omega\rangle\rangle$ in $\mathbb{M}_{\alpha}^{1}, \quad \vec{q} \leq \vec{p}$ if and only if
$(i v)_{f} s \subset t, s^{*} \subset t^{*}$, and $t \backslash s$ has empty intersection with all elements of $s^{*} ;$
$(v)_{f}$ If $m \in \overline{\bar{s}} \cup\{2 k, 2 k+1: k \in \psi((\omega \backslash \operatorname{dom}(s)) \times \omega)\}$, then d_{m} is an end-extension of c_{m} and $y_{m} \subset z_{m}$.

5. Final remarks

The fact that $S_{\alpha}^{\prime} \cap S_{\beta}=\emptyset$ for all $\alpha, \beta<\omega_{2}$ together with the freedom to choose \mathbb{K}_{α}^{0} to be an arbitrary $T_{0} \cup T_{2}$-proper forcing of size ω_{1} allow for combining the proofs of Theorems 1, 2 and [1, Theorem 1]. In addition, we could take \mathbb{K}_{α}^{0} to be a name for a two-step iteration with second component equal to the poset used in the proof of [1, Theorem 1] at stage α, and first component equal to a name of a c.c.c. poset of size ω_{1} (Theorem $7(2)$ allows us to arrange a suitable bookkeeping of such names). This gives us the following statements.

Theorem 14. It is consistent with Martin's Axiom that there exists a Δ_{3}^{1} definable wellorder of the reals and a Π_{2}^{1} definable ω-mad family of infinite subsets of ω.

Theorem 15. It is consistent with Martin's Axiom that there exists a Δ_{3}^{1} definable wellorder of the reals and $a \Pi_{2}^{1}$ definable ω-mad family of functions.

The following questions remain open. In all questions we are interested in families of infinite subsets of ω as well as in families of functions from ω to ω.

Question 16. Is it consistent to have $\mathfrak{b}>\omega_{1}$ with a Σ_{2}^{1} definable mad family?

The answer to Question 16 is "no" for the case of ω-mad families. This follows from Corollary 38 of [10] (it talks only about ω^{ω}, but its proof works for $[\omega]^{\omega}$ as well). Indeed, suppose that $\mathfrak{b}>\omega_{1}$ and A is a Σ_{2}^{1} definable ω-mad family. Every Σ_{2}^{1} definable set either contains a perfect set or has size at most ω_{1}, see [9, Theorem 21.2]. Since the size of A is at least $\mathfrak{b}>\omega_{1}$, A must contain a perfect set. But this cannot happen for an ω-mad family by [10, Corollary 38].
Question 17. Is it consistent to have $\omega_{1}<\mathfrak{b}<2^{\omega}$ with a Π_{2}^{1} definable $(\omega$ - $) \mathrm{mad}$ family?

In the proofs of Theorems 1 and 2 we ruled out all mad families of size ω_{1} by making \mathfrak{b} big. Alternatively, one could use the methods developed in [1] and prove the consistency of $\omega_{1}=\mathfrak{b}<\mathfrak{a}=\omega_{2}$ together with a Δ_{3}^{1} definable ω-mad family. This suggests the following

Question 18. Is it consistent to have $\mathfrak{b}<\mathfrak{a}$ and a Π_{2}^{1} definable (ω-)mad family?

Question 19. Is a projective (ω-)mad family consistent with $\mathfrak{b} \geq \omega_{3}$?
Acknowledgments. The authors would like to thank the anonymous referee for the discussion following Question 16.

References

[1] Fischer, V., Friedman, S.D., Cardinal characteristics and projective wellorders, Annals of Pure and Applied Logic 161 (2010), 916-922.
[2] Goldstern, M., A taste of proper forcing, in: Set Theory, (Curacao, 1995; Barcelona, 1996), 71-82, Kluwer Acad. Publ., Dordrecht, 1998.
[3] Jensen, R.B., Solovay, R.M., Some applications of almost disjoint sets, in: Mathematical Logic and Foundations of Set Theory (Y. Bar-Hillel, ed.), Jerusalem 1968, pp. 84-104.
[4] Kastermans, B., Steprāns, J., Zhang, Y., Analytic and coanalytic families of almost disjoint functions, Journal of Symbolic Logic 73 (2008), 1158-1172.
[5] Kurilić, M.S., Cohen-stable families of subsets of integers, Journal of Symbolic Logic 66 (2001), 257-270.
[6] Malykhin, V.I., Topological properties of Cohen generic extensions, Trudy Moskovskogo Matematicheskogo Obshchestva 52 (1989), 3-33. (In Russian)
[7] Mathias, A.R.D., Happy families, Annals of Mathematical Logic 12 (1977), 59-111.
[8] Miller, A.W., Infinite combinatorics and definability, Annals of Pure and Applied Logic 41 (1989), 179-203.
[9] Miller, A. W. Descriptive set theory and forcing. How to prove theorems about Borel sets the hard way. Lecture Notes in Logic, 4. Springer-Verlag, Berlin, 1995.
[10] Raghavan, D., Maximal almost disjoint families of functions, Fundamenta Mathematicae 204 (2009), 241-282.

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strasse 25, A-1090 Wien, Austria.

E-mail address: sdf@logic.univie.ac.at
URL: http://www.logic.univie.ac.at/~sdf/
Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strasse 25, A-1090 Wien, Austria.

E-mail address: lzdomsky@logic.univie.ac.at
URL: http://www.logic.univie.ac.at/~1zdomsky/

[^0]: 2000 Mathematics Subject Classification. Primary: 03E15, 03E35; Secondary: 03E17, 03E45.

 Key words and phrases. Almost disjoint coding, mad families, projective sets and wellorders.

 The authors would like to acknowledge the support of FWF grant P19898-N18.
 ${ }^{1}$ Such families of functions are called strongly maximal in $[4,10]$. We call them ω-mad just to keep the analogy with the case of subsets of $[\omega]^{\omega}$.

[^1]: ${ }^{2}$ In what follows the phrase " X codes an ordinal β in a suitable ZF^{-}model M " means that there exists $\alpha<\omega_{2}^{L}$ such that $X=\omega_{1}^{M} \cap X_{\alpha} \in M$ and $\phi(\beta, X)$ holds in M.

[^2]: ${ }^{3}$ The tuples $\left\langle s, s^{*}\right\rangle$ and $\left\langle c_{k}, y_{k}: k \in \omega\right\rangle$ will be referred to as the finite part and the infinite part of the condition $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$, respectively.

