Skip to main content
Log in

Propositional Quantification in Bimodal \(\mathbf {S5}\)

  • Original Research
  • Published:
Erkenntnis Aims and scope Submit manuscript

Abstract

Propositional quantifiers are added to a propositional modal language with two modal operators. The resulting language is interpreted over so-called products of Kripke frames whose accessibility relations are equivalence relations, letting propositional quantifiers range over the powerset of the set of worlds of the frame. It is first shown that full second-order logic can be recursively embedded in the resulting logic, which entails that the two logics are recursively isomorphic. The embedding is then extended to all sublogics containing the logic of so-called fusions of frames with equivalence relations. This generalizes a result due to Antonelli and Thomason, who construct such an embedding for the logic of such fusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonelli, G. A., & Thomason, R. H. (2002). Representability in second-order propositional poly-modal logic. Journal of Symbolic Logic, 67, 1039–1054.

    Article  Google Scholar 

  • Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge tracts in theoretical computer science (Vol. 53). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bull, R. A. (1969). On modal logics with propositional quantifiers. Journal of Symbolic Logic, 34, 257–263.

    Article  Google Scholar 

  • Fine, K. (1970). Propositional quantifiers in modal logic. Theoria, 36(3), 336–346.

    Article  Google Scholar 

  • Fine, K. (1977). Postscript to worlds, times and selves (with A. N. Prior). London: Duckworth.

    Google Scholar 

  • Gabbay, D. M. (1971). Montague type semantics for modal logics with propositional quantifiers. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 17, 245–249.

    Article  Google Scholar 

  • Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many-dimensional modal logics: Theory and applications. Studies in logic and the foundations of Mathematics (Vol. 148). Amsterdam: Elsevier.

    Google Scholar 

  • Gabbay, D. M., & Shehtman, V. B. (1998). Products of modal logics, part 1. Logic Journal of the IGPL, 6, 73–146.

    Article  Google Scholar 

  • Gallin, D. (1975). Intensional and higher-order modal logic. Amsterdam: North-Holland.

    Google Scholar 

  • Holliday, W. H. (forthcoming). A note on the algebraic semantics for S5 with propositional quantifiers. Notre Dame Journal of Formal Logic.

  • Kaminski, M., & Tiomkin, M. (1996). The expressive power of second-order propositional modal logic. Notre Dame Journal of Formal Logic, 37(1), 35–43.

    Article  Google Scholar 

  • Kaplan, D. (1970). S5 with quantifiable propositional variables. Journal of Symbolic Logic, 35(2), 355.

    Google Scholar 

  • Kaplan, D. (1978). On the logic of demonstratives. Journal of Philosophical Logic, 8, 81–98.

    Google Scholar 

  • Kremer, P. (1993). Quantifying over propositions in relevance logic: Nonaxiomatizability of primary interpretations of \(\forall p\) and \(\exists p\). Journal of Symbolic Logic, 58(1), 334–349.

    Article  Google Scholar 

  • Kripke, S. A. (1959). A completeness theorem in modal logic. Journal of Symbolic Logic, 24, 1–14.

    Article  Google Scholar 

  • Kuhn, S. (2004). A simple embedding of T into double S5. Notre Dame Journal of Formal Logic, 45, 13–18.

    Article  Google Scholar 

  • Kurucz, A. (2007). Combining modal logics. In P. Blackburn, J. van Benthem, & F. Wolter (Eds.), Handbook of modal logic (pp. 869–924). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Lewis, C. I., & Langford, C. H. (1932). Symbolic logic. London: Century.

    Google Scholar 

  • Montague, R. (1965). Reductions of higher-order logic. In J. W. Addison, L. Henkin, & A. Tarski (Eds.), Symposium on the theory of models (pp. 251–264). Amsterdam: North-Holland.

    Google Scholar 

  • Nerode, A., & Shore, R. A. (1980). Second order logic and first-order theories of reducibility orderings. In J. Barwise, H. J. Keisler, & K. Kunen (Eds.), The Kleene symposium (pp. 181–200). Amsterdam: North Holland.

    Chapter  Google Scholar 

  • Segerberg, K. (1973). Two-dimensional modal logic. Journal of Philosophical Logic, 2, 77–96.

    Article  Google Scholar 

  • Stalnaker, R. (1976). Possible worlds. Noûs, 10, 65–75.

    Article  Google Scholar 

  • Williamson, T. (2013). Modal logic as metaphysics. Oxford: Oxford University Press.

    Book  Google Scholar 

Download references

Acknowledgements

Thanks to Jeremy Goodman for prompting me to think about the complexity of \(\Lambda _{\mathsf {PE}}\), and to Timothy Williamson and three anonymous referees for comments on drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fritz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, P. Propositional Quantification in Bimodal \(\mathbf {S5}\). Erkenn 85, 455–465 (2020). https://doi.org/10.1007/s10670-018-0035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10670-018-0035-3

Navigation