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Typicality and the Approach to Equilibrium in
Boltzmannian Statistical Mechanics

Roman Frigg, LSE

January 2009

Abstract

Systems prepared in a non-equilibrium state approach, and eventually reach, equilibrium.
Why do they do so? An important contemporary version of the Boltzmannian approach
to statistical mechanics answers this question in terms of typicality. The problem with
this approach is that it comes in different versions, which are, however, not recognised
as such and not clearly distinguished. The aim of this paper is to identify three different
versions of typicality-based explanations of thermodynamic-like behaviour and evaluate
their respective success. My conclusion is that the first two are unsuccessful because they
fail to take the system’s dynamics into account. The third, however, is promising. I give
a precise formulation of the proposal and present an argument in support of its central
contention.

1 Introduction

Consider a gas confined to the left half of a container. Removing the dividing
wall results in the gas spreading uniformly over the entire available space.
It has approached equilibrium. Statistical mechanics (SM) aims to explain
the approach to equilibrium in terms of the dynamical laws governing the
individual molecules of which the gas is made up. What is it about molecules
and their motions that leads them to spread out when the wall is removed?
And why does this happen invariably? That is, why do we never observe
gases staying in the left half even after the shutter has been removed?

An important contemporary version of the Boltzmannian approach to
SM, originating in the work of Joel Lebowitz (1993a, 1993b), answers these
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questions in terms of the notion of typicality. Intuitively, something is typ-
ical if it happens in the ‘vast majority’ of cases: typical lottery tickets are
blanks, typical olympic athletes are well trained, and in a typical series of
a thousand coin tosses the ratio of the number of heads and the number of
tails is approximately one. The aim of a typicality-based approach to SM
is to show that approaching equilibrium is the typical behaviour of systems
like gases.

This approach has grown increasingly popular in recent years (references
will be given below). The problem with it is that it comes in different versions,
which are, however, not recognised as such, much less clearly distinguished.
The aim of this paper is to distinguish three different kinds of typicality-
based explanation of the approach to equilibrium and evaluate their respec-
tive success. My conclusion will be that the first two are unsuccessful because
they fail to take the system’s dynamics into account. The third, however,
is promising. I give a precise formulation of the proposal and present the
outline of a proof of its central contention.

2 Classical Boltzmannian SM

Consider a system consisting of n classical particles with three degrees of
freedom each. The state of this system is specified by a point x, also referred
to as the system’s microstate, in its 6n-dimensional phase space Γ, which is
endowed with the Lebesgue measure µ

L
. The dynamics of the system is gov-

erned by Hamilton’s equations of motion, which define a measure preserving
flow φt on Γ, meaning that for all times t φt : Γ → Γ is a one-to-one mapping
such that µ(R) = µ(φt(R)) for all measurable R ⊆ Γ. The system’s mi-
crostate at time t0 (its ‘initial condition’), x(t0), evolves into x(t) = φt(x(t0))
at time t. In a Hamiltonian system energy is conserved and hence the motion
of the system is confined to the 6n− 1 dimensional energy hypersurface ΓE.
The measure µ

L
can be restricted to ΓE, which induces a natural invariant

measure µ on ΓE.

To each macrostate Mi of the system, i = 1, ...,m, there corresponds a
macro-region ΓMi

consisting of all x ∈ ΓE for which the macroscopic variables
assume the values characteristic for Mi. The ΓMi

together form a partition
of ΓE, meaning that they do not overlap and jointly cover ΓE up to measure
zero. The Boltzmann entropy of a macrostate Mi is defined as S

B
(Mi) :=

k
B

log[µ(ΓMi
)], where k

B
is the Boltzmann constant. Given this, we define
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the Boltzmann entropy of a system at time t, S
B
(t), as the entropy of the

system’s macrostate at t: S
B
(t) := S

B
(Mx(t)), where x(t) is the system’s

microstate at t and Mx(t) is the macrostate corresponding to x(t).

Among the macrostates of a system two are of particular importance, the
equilibrium state, Meq, and the system’s state at the beginning of the process,
Mp (also referred to as the ‘past state’). The latter is, by assumption, a low
entropy state.1 The idea now is that the behaviour of S

B
(t) should mirror

the behaviour of the thermodynamic entropy S
TD

, at least approximately.2

So we expect the Boltzmann entropy of a system initially prepared in Mp to
increase more or less monotonically, reach its maximum fairly quickly, and
then remain at or near the maximum for a long time. In other words, we
expect the dynamics to be such that it carries the system’s initial state x(t0) ∈
ΓMp into ΓMeq reasonably quickly and then keeps it there for a long time. I
refer to this as ‘thermodynamic-like behaviour’.3 The explanandum then is
this: why does the system under investigation behave in a thermodynamic-
like way?

The standard Boltzmannian response to this question is to introduce
probabilities and argue that the values of these probabilities come out such
that the system is overwhelmingly likely to evolve in a thermodynamic-
like way.4 Typicality approaches to SM eschew commitment to probabil-
ities and offer a different kind of explanation: the systems behaves in a
thermodynamic-like way because it is typical for systems of this kind to be-
have in this way.5

Before turning to a discussion of this approach, an important technical
result needs to be stated. Under certain conditions it is the case that ΓMeq

1If we study laboratory systems like the above-mentioned gas, Mp has low entropy by
construction. If we take the universe as a whole to be the object of study, then that Mp

be of low entropy is the subject matter of the so-called ‘Past Hypothesis’ (Albert 2000,
96).

2This ‘mirroring’ need not be perfect and occasional deviations of the Boltzmann en-
tropy from its thermodynamic counterpart are no cause for concern (Callender 2001).

3This definition of thermodynamic-like behaviour is the one adopted by those writing
on typicality; see, for instance Goldstein (2001, 43-44). Lavis (2005, 255) gives a somewhat
different definition. These differences are inconsequential for what follows.

4A discussion of the different ways of introducing probabilities into the Boltzmannian
framework can be found in Frigg (2009).

5This explanatory strategy is reminiscent of probabilistic explanations appealing to
high probabilities, and hence is open to similar objections. For the sake of argument I set
these worries aside and accept that something being typical has explanatory power.
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is vastly larger (with respect to µ) than any other macro-region. I refer to
this matter of fact as the ‘dominance of the equilibrium macrostate’. This
dominance is then often glossed as being equivalent that for large n, ΓE is
almost entirely taken up by equilibrium microstates (Bricmont 1995, 146;
Goldstein 2001, 45; Zangh̀ı 2005, 191, 196).

Some caution is needed here. In certain systems non-equilibrium states
can take up a substantial part of the phase space due to the degeneracy of
below-equilibrium entropy values, and hence it not true that ΓE is almost
entirely filled with equilibrium states (Lavis 2005, 255-258; 2008, Sec. 2).
However, it turns out that those non-equilibrium states that occupy most
of the non-equilibrium area are close to equilibrium (in the sense of having
close to equilibrium entropy values). We can then lump the equilibrium and
these close-to-equilibrium states together and get an ‘equilibrium or almost
equilibrium’ region, which indeed takes up most of ΓE. The approach to equi-
librium has then to be understood as the approach to this this ‘equilibrium or
almost equilibrium’ state, which is sufficient to give us thermodynamic-like
behaviour in the sense introduced above.

3 Typicality

Consider an element e of a set Σ. Typicality is a relational property of e,
which e posses with respect to Σ, a property P and a measure ν, often referred
to as ‘tyicality measure’. Roughly speaking, e is typical if most members of
Σ have property P and e is one of them. More precisely, let Π be the subset
of Σ consisting of all elements that have property P . Then the element e is
typical iff e ∈ Π and ν

Σ
(Π) := ν(Π)/ν(Σ) ≥ 1 − ε, where ε ≥ 0 is a small

real number; ν
Σ
( · ) is referred to as the ‘measure conditional on Σ’, or simply

‘conditional measure’.6 Derivatively, one can then refer to Π as the ‘typical
set’ and to those elements that possess property P (i.e. the members of Π) as
‘typical elements’. Conversely, an element e is atypical iff it belongs to the
complement of Π, Ω := Σ \ Π, in which case we refer to Ω as the ‘atypical
set’ and to its members as ‘atypical elements’.

As an example consider the number π, which is typical with respect to
the interval [0, 1], the property ‘not being specifiable by a finite number of
digits’ and the usual Lebesgue measure on the real numbers, because it is a

6This definition of typicality is adapted from Dürr (1998, Sec. 2), Lavis (2005, 258),
Zangh̀ı (2005, 185), and Volchan (2007, 805).
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theorem of number theory that the set of all numbers that have this property
has measure one.

The element of interest in SM is a microstate x, and it is generally agreed
that the relevant measure is the Lebesgue measure µ. However, views diverge
when it comes to specifying the relevant set Σ and relevant property P .

I now turn to a discussion of three different typicality-based accounts of
SM that emerge from the writings of Goldstein, Lebowitz, and Zangh̀ı. In
conversation Goldstein and Zangh̀ı have pointed out to me that they would
not subscribe to Accounts 1 and 2 and that (something like) Account 3 is
what they had intended. However, since the relevant papers can reasonably
be read as proposing Accounts 1 and 2 it worth discussing them briefly to set
the record straight (Sections 4 and 5) before turning to a detailed discussion
of Account 3 (Section 6).

4 First Account

The first account sets out to explain the approach to equilibrium in terms of
the dominance of the equilibrium macrostate. Zangh̀ı explains:

‘reaching the equilibrium distribution in the course of the tem-
poral evolution of a system is inevitable due to the fact that the
overwhelming majority of microstates in the phase space have this
distribution; a fact often not understood by the critics of Boltz-
mann [...]’ (Zangh̀ı 2005, 196, my translation)

On this view, then, a system approaches equilibrium simply because the over-
whelming majority of states in ΓE are equilibrium microstates. If we now
associate Σ with ΓE and property P with ‘being an equilibrium state’ (and,
as indicated above, regard microstates as elements of interest and use the
Lebesgue measure µ as typicality measure), the dominance of the equilib-
rium macrostate implies that equilibrium microstates are typical, and the
view put forward in the above quote can be summarised as the claim that
systems approach equilibrium because equilibrium microstates are typical
and non-equilibrium microstates are atypical.

This explanation is unsuccessful. If a system is in an atypical microstate,
it does not evolve into an equilibrium microstate just because the latter
are typical. Typical states do not automatically attract trajectories.7 In

7Uffink (2007, 979-980) illustrates this with the example of a trajectory.
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fact there are Hamiltonians – for instance the null Hamiltonian or a collec-
tion of uncoupled harmonic oscillators – that give raise to a dynamics that
does not carry non-equilibrium states into equilibrium. To explain why non-
equilibrium microstates eventually wind up in equilibrium the typicality of
ΓMeq is not enough and appeal has to be made to the system’s dynamics.

5 Second Account

An different line of argument can be found in Lebowitz (1993a, 1993b, 1999)
and Lebowitz & Goldstein (2004). This account differs from the above in
that it focusses on the internal structure of the micro-regions ΓMi

rather
than the entire phase space:

‘By “typicality” we mean that for any [ΓMi
] [...] the relative volume

of the set of microstates [x] in [ΓMi
] for which the second law is

violated [...] goes to zero rapidly (exponentially) in the number of
atoms and molecules in the system.’ (Goldstein & Lebowitz 2004,
57)8

This definition contains different elements that need to be distinguished.
Let Γ

(++)
Mi

be the subset of ΓMi
containing all x that lie on trajectories that

come into ΓMi
from a macrostate of higher entropy and that leave ΓMi

en-

tering into a macrostate of higher entropy; Γ
(+−)
Mi

, Γ
(−+)
Mi

and Γ
(−−)
Mi

are de-
fined accordingly. These four subsets form a partition of ΓMi

. Furthermore,

Γ
(+)
Mi

:= Γ
(++)
Mi

∪ Γ
(−+)
Mi

and Γ
(−)
Mi

:= Γ
(+−)
Mi

∪ Γ
(−−)
Mi

are the subsets of ΓMi
that

have a higher and lower entropy future respectively.
There is an interpretative question about how to understand the notion

of a set of microstates in ΓMi
violating the Second Law. A plausible reading

takes these to be states that have an entropy decreasing future. Let us call
this property D. Hence, x has D iff x ∈ Γ

(−)
Mi

. Entropy decreasing states are

atypical in ΓMi
iff µi(Γ

(−)
Mi

) < ε, where µi( · ) := µ( · )/µ(ΓMi
). Furthermore let

us say that a system is globally entropy decreasing, GD, iff entropy decreasing
states microstates are atypical in every ΓMi

. The claim made in the above
quote then is tantamount to saying that a system with a reasonably large
number of molecules is GD.

8Square brackets indicate that the original notation has been replaced by the notion
used in this paper. I will use this convention throughout.
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This claim needs to be qualified. The atypicality of x with property D
in ΓMi

trivially implies µ(Γ
(+−)
Mi

) < ε. Due to the time reversal invariance

of the Hamiltonian dynamics we have µ(Γ
(−+)
Mi

) = µ(Γ
(+−)
Mi

) and therefore

µ(Γ
(−+)
Mi

) < ε. Since Γ
(+)
Mi

= Γ
(−+)
Mi

∪ Γ
(++)
Mi

we obtain µ(Γ
(++)
Mi

) > 1 − 2ε.
Hence, even if x with property D are atypical in ΓMi

, it is not the case
that, as we would expect, most states in ΓMi

behave thermodynamic-like
since most states have a higher entropy past ! But this is a familiar problem
and remedy can be found in conditionalising on ΓMp (Albert 2000, Ch. 4).9

So the correct requirement is that, at any time t, microstates violating the
Second Law must be atypical in ΓMi

∩ φt(ΓMp) rather than only ΓMi
.

Do relevant systems meet this requirement? Immediately after the passe
quoted above Goldstein & Lebowitz offer the following answer:

‘Boltzmann then argued that given this disparity in sizes of differ-
ent M ’s, the time evolved [Mx(t)] will be such that [µ(Mx(t))] and
thus [SB(t)] will typically increase in accord with the law.’ (2004,
57)

So the argument seems to be that the relevant condition must be true because
the equilibrium state is much larger than other macrostates.

This is unconvincing. The disparity of sizes of macro-regions is, of course,
compatible with being GD, but the latter does not follow from the former.
Whether macro-regions have the above internal structure depends on the
system’s phase flow φt and every attempt to answer this question without
even mentioning the system’s dynamics is doomed to failure right from the
start (and this is true both of the qualified and the unqualified version of the
claim).

6 Third Account

As we have seen, the basic problem with the two accounts discussed so far is
that they attempt to explain the approach to equilibrium without reference
to the system’s dynamics. The third account, which emerges from a passage
in Goldstein’s (2001), rectifies this problem:

9Notice that an attempt do define D in terms of Γ(−)
Mi

∪ Γ(++)
Mi

rather than only Γ(−)
Mi

leads to a contradiction.
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‘[ΓE] consists almost entirely of phase points in the equilibrium
macrostate [ΓMeq ], with ridiculously few exceptions whose total-

ity has volume of order 10−1020
relative to that of [ΓE]. For a

non-equilibrium phase point [x] of energy E, the Hamiltonian dy-
namics governing the motion [x(t)] would have to be ridiculously
special to avoid reasonably quickly carrying [x(t)] into [ΓMeq ] and
keeping it there for an extremely long time – unless, of course, [x]
itself were ridiculously special.’ (Goldstein 2001, 43-44)

This is an interesting claim, but one that stands in need of clarification. A
reasonable reading of this passage seems to be that an argument involving
three different typicality claims is made:

Premise 1 : The system’s macrostate structure is such that equi-
librium states are typical in ΓE in the sense introduced in Section
4.
Premise 2 : The system’s Hamiltonian is typical in the class of all
Hamiltonians.
Conclusion: Initial conditions lying on trajectories showing thermodynamic-
like behaviour are typical in ΓMp with respect to µp( · ) := µ( · )/ µ(ΓMp).

Let us refer to this as the ‘T-Argument’. Premise 1 is familiar from Section 4
and is taken for granted here. Premise 2 and the conclusion are restatements
in the language of typicality of the claims that the Hamiltonian of the system
and the initial condition be not ‘ridiculously special’.

The T-Argument, if sound, gives us the sought-after explanation of the
approach to equilibrium in terms of typicality. But before we can address
the question of soundness we need to make Premise 2 more precise. What
does it mean for a system’s Hamiltonian to be typical in the class of all
Hamiltonians? More specifically, what is the typicality measure and what is
the relevant property P?

Let us begin with the first question. The problem is that function spaces
do not come equipped with normalised measures that can plausibly be used to
capture the intuitive idea that some sets of functions are typical while others
are atypical. A natural way around this difficulty is to replace the measure
theoretic notion of typicality introduced in Section 3 by a topological one
based on Baire categories for an introduction). Sets can be of two kinds:
meagre (first Baire category) or nonmeagre (second Baire category). Loosely
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speaking, a meagre set is the ‘topological counterpart’ of a set of measure
zero in measure theory, and a nonmeagre set is the ‘counterpart’ of a set
of non-zero measure. Given this, it is natural to say that meagre sets are
atypical and nonmeagre sets are typical. I call this notion of typicality ‘t-
typicality’ (‘t’ for ‘topological’) and, to avoid confusion, from now on refer
to the notion of typicality introduced in Section 3 as ‘m-typicality’ in order
to make it explicit that it is a measure theoretic notion.

Unfortunately there is no straightforward answer to the question about
the property P . But a more promising line of argument emerges from Dürr’s
(1998) and Maudlin’s (2007) discussion of typicality in the so-called Galton
Board, a triangular arrangement of nails on an infinitely long vertical board.
Balls are fed into the board from the top and then move down the board.
Every time a ball collides with a nail it moves either to the right (R) or to the
left (L). If we follow a ball’s trajectory and take down whether it moves to
the left or to the right every time it hits a nail, we obtain a string of R’s and
L’s that looks as random as one that has been generated by a coin toss: the
Galton Board seems to exhibit random behaviour. Why is this? Dürr’s and
Maudlin’s answer is that the Board appears random because random looking
trajectories are typical in the sense that the set of those initial conditions
that give rise to non-random looking trajectories has measure zero in the set
of all possible initial conditions, and this is so because the board’s dynamics
is chaotic (Dürr 1998, Sec. 2).

Translating this idea into the context of SM suggests that the relevant
property P is being chaotic. This sounds prima facie plausible, and, most im-
portantly, would make Premise 2 true. Markus & Meyer prove the following
theorem:

Completely integrable Hamiltonians are meagre in the space of all
normalised and infinitely differentiable Hamiltonians on a compact
symplectic manyfold. (1974, 13)10

This implies that non-integrable Hamiltonians are nonmeagre, which is tan-
tamount to saying that the class of chaotic Hamiltonians is nonmeagre,11 and

10Two Hamiltonians that only differ by a constant are considered equivalent, and an
equivalence class of Hamiltonians is called a ‘normalised Hamiltonian’. This is because in
practical calculations any Hamiltonian of this class can be chosen as a representative since
they all yield the same flow (Markus & Meyer 1974, 11).

11I here follow common practice and assume that non-integrability implies chaos, at
least on some region of the phase space. However, to the best of my knowledge there is
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hence t-typical.12

The question now is whether the T-Argument valid, i.e. whether the con-
clusion follows from the premises. This turns out to be a thorny issue. There
is an entire class of systems that are chaotic but whose phase space is full
of invariant curves, namely so-called KAM systems (Argyris, Faust & Haase
1994, Ch. 4). Naturally one would expect these curves to divide ΓE into a
set of closed volumes bounded by the invariant curves, which would prevent
the system from approaching equilibrium (invariant curves are ubiquitous in
KAM systems and so it would be highly unlikely that ΓMp and ΓMeq would
not be separated by one). In systems with two degrees of freedom this is ex-
actly what happens: the two dimensional invariant surfaces divide the three
dimensional energy hypersurface in disconnected parts. Fortunately the sit-
uation is better for systems with f > 2 degrees of freedom. The energy
hypersurface has 2f − 1 dimensions, and for another surface to divide it into
two disconnected parts it must have 2f − 2 dimensions. But the invariant
KAM tori are f -dimensional, and since 2f − 2 > f for all f > 2 invariant
KAM surfaces do not divide ΓE into separate parts; the invariant surfaces are
a bit like lines in a three-dimensional Euclidean space. So the trajectories
can, in principle, wander around relatively unhindered and without being
‘sandwiched’ between invariant surfaces. This process is known as Arnold
Diffusion. It has first been proven analytically to exist in a particular exam-
ple, and there is now numerical evidence that it can also be found in other
systems. In such systems the chaotic parts of ΓE are connected and form a
single net, the so-called Arnold Web, which permeates the entire phase space
in the sense that a trajectory moving on the web will eventually visit almost
every finite region of ΓE.13

This looks like what we need, but unfortunately some difficulties arise on
the finishing line. These can be circumvented only at the cost of accepting
three conjectures, which are only supported by plausibility arguments.

First, there is no proof for the existence of Arnold webs in all noninte-
grable systems with f > 2. The good news is that so far there are no known
examples where this is not the case, and so we can venture the conjecture
that all nonintegrable systems with f > 2 have Arnold Webs (Conjecture

no strict mathematical proof of this.
12Mathematicians refer to t-typical Hamiltonians as ‘generic’.
13In fact, Ott (1993, 257) and Lichtenberg & Liebernmann (1992, 61) say that the

system visits every finite region of ΓE , but this seems to be too strong.
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1).14

Second, there is a question about the relative measure in ΓE occupied
by Arnold Webs. It could in principle be that these webs are of measure
zero, or else only fill a small part of the phase space. If this were the case,
it would be unlikely that m-typical initial conditions would come to lie on
trajectories that wander around randomly (and therefore wind up in ΓMeq),
which would undercut the conclusion in the T-Argument. However, numer-
ical simulations on simple systems have shown that the relative measure
occupied by invariant KAM curves decreases as f increases (Earman & Re-
dei 1996, 70). Furthermore, Sklar (1993, 175) observes that there are good
numerical reasons to think that large systems are ‘at least ergodic-like’ on
the ‘overwhelmingly largest part’ of the accessible part of the phase space,
and Vranas (1998, 695-698) gathers a welter of numerical evidence for the
conclusion that many systems of interest in SM are ε-ergodic, i.e. ergodic on
nearly the entire energy hypersurface. This suggests that it may well be the
case that Arnold webs not only have finite measure, but that they in fact fill
most of ΓE (Conjecture 2).

Third, in order to explain thermodynamic-like behaviour we need to know
how how much time the system spends in different parts of the phase space.
Again, little is proven rigorously, but Ott (1993, 257) suggests that system
is ergodic on the Arnold Web (Conjecture 3). The numerical evidence just
mentioned supports this conjecture.

If we assume that these three assumptions are correct, then the T-Argument
is sound. By Premise 2 the system is chaotic, and by Conjecture 1 it has
an Arnold Web, which, by Conjecture 2, fills most of the energy surface and
hence most of ΓMp . Therefore points on the Web are m-typical in ΓMp . By
Conjecture 3, these points wander around ergocially on the Web and hence
approach ΓMeq fairly soon and stay there for a long time (where ‘fairly soon’
means that the time taken to arrive at equilibrium is much shorter than
the time spent in equilibrium) because, by Premise 1, non-equilibrium states
occupy a much smaller volume that equilibrium states.

To put this argument on secure footing, more would have to be said about
the three conjectures. This is an extremely difficult task, and so it is worth
asking whether there is not a simpler way to arrive at the same conclusion. I
will now discuss a plausible way of doing so and show that it is a blind alley.

14Or if not all nonintegrable systems have Arnold Webs, then those that don’t should
be so few that the class of those with Arnold Webs is still nonmeagre.
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Hence there is no way around trying to make progress on the conjectures.

The new line of argument departs from the observation that we might
have chosen too liberal a notion of chaos. In fact, there is a great deal of
controversy over the correct characterisation of chaos (Smith 1998, Ch. 10),
and so we might say that KAM systems show the wrong kind of chaotic
behaviour: they exhibit ‘local chaos’, meaning that the dynamics is chaotic
only on parts of the phase space. What we need, so the argument goes, is that
the relevant systems show ‘global chaos’, which disqualifies KAM systems.

The question then becomes how to characterise global chaos. Commonly
this is done either of two ways, a topological and a measure-theoretic one.
The former always involves ergodicity, and is therefore untenable: Markus
& Meyer (1974, 14) also prove that in the space of all normalised and in-
finitely differentiable Hamiltonians on a compact symplectic manyfold the
class of ergodic Hamiltonians is meagre, and hence strongly chaotic systems
are t-atypical. Topological definitions of chaos (the best know of which is
is Devaney’s) always involve topologically transitivity, the condition that for
any two open regions A and B in ΓE, there is a trajectory initiating in A
that eventually visits B. But this condition does not fit the bill: while it
is at least plausible that topological chaos is a sufficient condition for the
approach to equilibrium, it requires a revision of P that seems to render
Premise 2 false. As Markus & Meyer (ibid., 1) point out, ergodic systems
are meagre because generic systems have invariant surfaces preventing the
trajectory from accessing the entire phase energy hypersurface. But a system
that cannot access certain regions of ΓE not only fails to be ergodic; it also
fails to be topologically transitive. So topologically transitive systems must
be meagre too, and hence also fail to be t-typical. For this reason shifting
attention to global chaos is a dead end.

7 Conclusion

I have distinguished three different accounts of how typicality is used to
explain thermodynamic-like behaviour. I have argued that wile the first
two fail, the third is promising and I have sketched a proof. The proof
rests on three conjectures which need to be further substantiated to put the
argument on secure footing. Furthermore, an argument needs to be given
that m-typicality and t-typicality have explanatory power from the point of
view of physics.
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