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ABSTRACT

We answer three questions: 1. Can we give a wholly mathematical explanation
of a physical phenomenon? 2. Can we give a wholly mathematical explanation
for a whole physical theory? 3. What is gained or lost in giving a wholly, or
partially, mathematical explanation of a phenomenon or a scientific theory?
To answer these questions we look at a project developed by Hajnal Andréka,
Judit Madarász, István Németi and Gergely Székely. They, together with col-
laborators, present special relativity theory in a three-sorted first-order formal
language.

1. INTRODUCTION
In this paper we discuss mathematical explanations in science (henceforth:
MES). We answer three questions.

Question 1 : Can we give a wholly mathematical explanation of a
physical phenomenon?

To answer this question we should define ‘wholly mathematical’ and
‘explanation’.
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Question 2 : Can we give a wholly mathematical explanation for a
whole physical theory?

Our answer is ‘yes’, and this implies a positive answer to the first question, for
at least the phenomena of that theory. The interesting follow-on question is:

Question 3 : What is gained or lost in giving a wholly, or partially,
mathematical explanation of a phenomenon or a scientific theory?

The three questions are new to the literature on mathematical explanations in
science, but the last two are more radical. So in the next section, we shall write
a little more about them.

In the 3rd section, we write about types of mathematical explanation in
science, in particular we focus on (partly and wholly) mathematical explanations
in science. In Section 4 we discuss an actual case of a mathematical explanation
of a physical theory, namely special relativity theory. This will help us to answer
the third question. But to give a thorough answer, we need more. A philosophical
discussion of the case follows in Section 5. In the 6th section we consider some
possible objections and in the last section we draw conclusions.1

2. THE NEW QUESTIONS
The use of mathematics in explanations in science is recognised in the literature
[Steiner 1978; Baker 2005, Pincock 2007, Lyon and Colyvan 2008, Batterman
2010]. What is controversial is whether ultimately all such use can be dispensed
with, without loss. We agree with others in the field that mathematical results
are indispensable to some explanations of some physical phenomena, in the
sense that if we nominalise the explanation, we have lost information, predictive
power, precision, or we have a weaker understanding of the phenomena. We add
nothing new debate directly, since it is possible, if difficult, to reject the project
we consider in its entirety. Our contribution is indirect, and works through our
answers to the second and third questions we raised in the introduction.

Our indirect contribution, nevertheless, strengthens the claim that is more
common in the literature that mathematics is indispensable to some explana-
tions in science. To situate our contribution in the literature, we think it is
important to give sufficient background on MES to be able to indicate later
what is new in our claims and to provide motivation for giving a new account
of explanation in science. We give the background in Section 3.

Next, we start to develop our own account of MES for wholly mathematical
explanations of physical phenomena and wholly mathematical explanations for
a whole physical theory. We shall then be in a position to look at a particular

1Roughly, Molinini is most responsible for Section 3, and Friend is most responsible

for Sections 4 and 6. We worked together on the introduction, Sections 2, 5 and on the

conclusion.
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case and propose it as an instance of a wholly mathematical explanation for a
whole physical theory.

The particular case is a mathematical explanation for special relativity the-
ory. We refer to the work of Hajnal Andréka, et al. [2002].2 Henceforth, we
shall refer to this and succeeding other work by the same authors and their
collaborators as ‘the Andréka-Németi project’.

In the Andréka-Németi project, axioms and definitions are written in a three-
sorted first-order formal language,3 and from these axioms we logically derive
some of the standard ‘laws of physics’ and all of the typical phenomena and
standard predications of special relativity theory. A similar project is undertaken
by Thomas Benda in Taiwan [2008].4 So, the Andréka-Németi group are not
alone in developing such a project; in fact, it has a history.5 Since the Andréka-
Németi project is quite developed, and since the authors of this paper are more
familiar with it than with Benda’s project, we shall confine our attention to the
Andréka-Németi project.

On the third question: the philosophical significance of introducing a dis-
tinction between mathematical explanations of whole scientific theories and
mathematical explanations of particular empirical phenomena is that with a
mathematical explanation of a scientific theory we engage very different and new
questions about the theory and the phenomena. If our arguments for our answer
to the second and third questions are convincing, then the standard epistemol-
ogy of science is revised. Elaborating: in the standard view, explanations must

2[Andréka et al., 2002] only develops special relativity. However, in [Andréka et al.,

2012] the 2002 theory is extended to general relativity.
3We are picking up on the literature of mathematical explanations of science, where

the distinction between logic and mathematics is not important. Thus, we continue to use

the term ‘mathematical language’ since this fits better with the literature we are engaging.

On the other hand, the Andréka-Németi group insist on the term ‘logical foundations’ for

their relativity theory. The three-sorted language looks like a set theoretic language on

the grounds that it contains ‘membership’. Since some philosophers and mathematicians

consider set theory to be mathematics and others consider it to be logic, we take the

distinction as fuzzy (at best).
4An important difference between the projects is that Benda gives his axiomatic foun-

dation in the language of Gödel-Bernays set theory, and, arguably, this presupposes more

extravagant ontological commitments. But the argument about ontological commitment

is tricky, since it depends on how much of the respective mathematical theories are

presupposed, or drawn upon, by the axioms in the relativity theories.
5The idea of reconstructing the theory of special relativity through an axiomatic sys-

tem is not a novelty. Work in this direction started in 1911 with Alfred Arthur Robb’s

book Optical Geometry of Motion: A New View of the Theory of Relativity. In his 1959

paper ‘Axioms for relativistic kinematics with or without parity’, P. Suppes issued the

challenge to formalise special relativity in first-order logic. The challenge was taken up

by Ax, Goldblatt and others. They successfully formalised the ‘core’ of special relativity.

Ax presupposes Minkowski space-time. The Andréka-Németi group deepen the project by

deriving Minkowski space-time (as did Goldblatt) and extend the project beyond the core

to obtain the standard well-known results of special relativity, such as the result that clocks

travelling fast appear to keep time more slowly when observed by a body travelling more

slowly [Andréka et al., 2007, Theorem 11.6, p. 631].
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include observation or causal statements. In contrast, in the case we consider
‘observation’ is not empirical observation, but is replaced with ‘co-ordinatising’
(more later). ‘Causation’ is replaced with a formal representation of ‘before and
after’ on the same trajectory of an inertial body and a calculation.6 Thus, if
this is to count as an explanation at all, then it is one that departs from the
standard view since observation statements and causation are given a purely
mathematical interpretation. Our account of a wholly mathematical explana-
tion of a physical theory is one that answers a why question, is written in a
formal mathematical language where we derive mathematical representations
of what were previously thought of as ‘laws of the science’, and where the
methodology comes from mathematical practice.

More interestingly, the philosophical significance of our conclusions reaches
to the philosophy of mathematics, since it tells something of the nature of
mathematical explanation, application, theory, model, and confirmation of
mathematical theories and concepts. To draw this out, in Section 5 we shall
further develop our account of mathematical explanation in science, to make it
a pluralist account. Furthermore, and we shall return to this in the conclusions,
the notion of a wholly mathematical explanation for a whole physical theory
gives a new twist to the ontological dispute that is taking place around the
enhanced indispensability argument for mathematical realism. This introduces
the topics in our paper.

3. TYPES OF MATHEMATICAL EXPLANATIONS IN SCIENCE
The philosophical analyses of MES, (e.g., those proposed in [Baker, 2005;
Batterman, 2010; Lyon and Colyvan, 2008; Pincock, 2007; Steiner, 1978]) focus
on the notion of mathematical explanation of phenomena. Specifically, they
concentrate on how mathematical posits yield explanatory power when used to
account for an empirical phenomenon, be it physical, biological, or even social.
For instance, Aidan Lyon and Mark Colyvan [2008] have provided an example
in which the regular or chaotic behaviour of the Hénon-Heiles system, i.e., a
particle moving in a two-dimensional potential called the ‘Hénon-Heiles poten-
tial’, is explained using the mathematics of phase-space theory. According to
them, it is only through the mathematical resources of phase-space theory that
we get the reasons why high- (or low-) energy Hénon-Heiles systems exhibit
chaotic (or regular) motion. By appealing to the mathematics of phase spaces,
together with the mathematical tools provided by the Poincaré map and the
theory of differential equations, we are giving a partially mathematical explana-
tion. Indeed, this explanation essentially depends on the mathematics employed
and it ignores the causal nature of the phenomenon being analysed. Without
the mathematics we could only know that the Hénon-Heiles systems exhibit

6The notion of causation becomes more interesting in the development of general rela-

tivity, where it is replaced with curvature of lines or dimensions, and with the direction of

the time dimension.
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high- and low-energy or chaotic or regular motion but we would lack a precise
mathematical description of that motion or the ability to show precisely when, or
under what circumstances, the systems exhibit the different behaviours. There-
fore, we conclude with Lyon and Colyvan that mathematics is indispensable
to the explanation of this particular physical phenomenon, since if we dispense
with the mathematics we incur a net loss.

Another example of MES has been discussed in [Baker, 2005] and relates
to evolutionary biology. The specific biological phenomenon chosen by Baker
concerns the prime-numbered life-cycle length of an insect called ‘periodical
cicada’, henceforth just ‘cicada’. It turns out that the emergence periods of the
periodical cicada are exactly 13 or 17 years. The rest of the time they stay
dormant underground. 13 and 17 are prime numbers. In order to explain why it
is evolutionarily advantageous for the cicadas to have such a prime-numbered
dormant period, biologists use a number-theoretical result.7 The result tells us
that the particular emergent periods of 13 and 17 minimise overlap with lower
life-periods of predators and nearby life-periods of different subspecies (since
mating between subspecies would produce offspring that would not be coor-
dinated with either subspecies, thus reducing mating opportunities). Number
theory, or more precisely a theorem in number theory, is therefore essential,
or ‘indispensable’, for the general explanation provided by biologists, which, of
course, also makes use of specific ecological facts and general biological laws.
Again, we have a case where the explanation of a scientific fact, and more pre-
cisely of a biological phenomenon, depends essentially on a mathematical fact.
The mathematical fact is essential in the sense of giving us a completely precise
description and explanation. We maintain that the two examples above are (at
least) partly mathematical explanations of physical phenomena.8

We make our first definition.

A partial MES is one where appeal to mathematics is essential to, or
indispensable to, the explanation.

That is, if we were to omit the mathematical part of the explanation, our expla-
nation would be noticeably poorer; we would have a general idea, but it would
lack sufficient precision to make predictions or satisfy us as an explanation.

To perform such assessment, i.e., to remove the mathematical claim and see
whether the explanation loses its explanatory power, amounts to performing
what Christopher Pincock calls the ‘replacement test’:

7The number-theoretic result is actually a consequence of two lemmas. A detailed treat-

ment of the mathematics involved in the cicada explanation is given in [Baker, 2005]; so

we shall not repeat it here.
8Arguably, the first example is a wholly mathematical explanation, but we shall see

this in more detail later.
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[W]e may wonder if any explanations make [essential] use of a mathe-
matical claim . . . I propose a simple replacement test to answer this sort
of question. Starting with an explanation that involves a mathematical
concept or theorem, the test involves considering what happens if this
concept or theorem is removed. If the resulting argument is no longer an
explanation or else has less explanatory power, then I conclude that the
mathematical concept or theorem is making an explanatory contribution
to the original explanation. [2012, p. 204]

Let us run the test for the cicadas. We focus on the mathematical concept
of prime number, which is the mathematics used in the cicada explanation, and
therefore we want to replace ‘every 13 or 17 years, where these are prime num-
bers’ with something ‘non-mathematical’, say ‘not every’ year, or ‘infrequently’.
Substituting for ‘every 13 or 17 years’, we are told that cicadas emerge not every
year, and therefore, this decreases the probability of hybridizing with other sub-
species. The substitution is woefully imprecise and misleading. There are two
things to say. First, even the imprecise explanation contains mathematics: the
idea of appearing ‘not every’ year (or ‘infrequently’), already presupposes being
able to individuate and count years, to subtract a year, from a set of years. It
is not very exciting mathematics, and it is not very sophisticated mathematics,
but it is still mathematics, for all that. The ‘quantity’ ‘not every’ is vague. It
is more in the spirit of the logical quantifier ‘not all’. Similarly, any notion of
‘lessening the probability’, however vague, is still a mathematical notion. So
we have not eliminated mathematics from our explanation. This first retort
depends on a stringent account of nominalising. There are, of course, different
accounts of nominalising; so, with a sufficiently liberal notion of nominalisation,
the re-phrasing is successfully nominalised. So our retort is weak. Nevertheless,
there is more to say.

The second thing to say is that the imprecise explanation is poorer, since we
cannot predict when each colony will emerge under the nominalisation. More-
over, while we understand that not mating between subspecies is explanatory,
we do not have a sense of how it is that the cicada is so very successful in
avoiding hybridization, or, looking at the rate of non-success, why it is that this
is so very rare. Moreover, we might be misled into making other hypotheses to
explain the phenomena. For example, it is consistent with our vague explana-
tion to hypothesise that one colony sends out a signal to all the others which
prevents or deters the others from emerging. This hypothesis was, in fact put
forward. But this is false. If we miss the mathematically pre-determined pattern,
we cannot explain why the signal sending is unsuccessful on very rare occasions.
Please forgive the mathematics: to be precise, after coinciding they would first
coincide again in 13 × 13, 13 × 17 or in 17 × 17 years. The imprecise yet partly
mathematical, explanation is poorer and Pincock’s replacement test is passed.9

9Note that some philosophers have proposed a nominalist interpretation of Baker’s

cicada case (cf., [Daly and Langford, 2009; Saatsi, 2011]). The goal of these philosophers is
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What about Lyon and Colyvan’s example of MES? One of the main results of
their 2008 paper is that even if phase-space theory can be nominalised (some-
thing which is, prima facie, feasible), the resulting nominalisation would not
have the explanatory power of the mathematical explanation. Again, although
a nominalistic treatment can be proposed, it lacks the explanatory power that
the mathematical treatment offers. We conclude, then, that at the present state
of play, there are some explanations of some physical phenomena for which
appeal to some mathematics is essential.

This is sufficient background in the literature to start to answer our first
question. To do so, we shall give more definitions.

An explanation of a phenomenon is an answer to a why question
concerning that phenomenon.

What is a mathematical explanation of an empirical phenomenon?

A [partly ] mathematical explanation of a phenomenon is an answer to
a why question that includes essential appeal to mathematical facts
[Mancosu, 2011].

This is not enough, since answers to why questions can be quite unsatisfactory,
even when they do appeal to mathematics. Therefore, it will be useful to add a
means of rating the answers to the why questions. Philosophers have proposed
rating explanations in terms of particular virtues that explanations seem to
have, such as elegance, unification, simplicity, and so on. We propose that there
should be (at least) three elements as necessary preconditions:

(i) the why question should be recognized by some good (accepted)
members of the scientific community;10

to argue against mathematical explanations of physical phenomena by showing that cases

such as the cicada example can be explained nominalistically and the real explanation

lies in the physical facts and the causal relationships involved in the phenomenon. Baker

and Colyvan [2011] have replied to such attacks and defended the genuine explanatory

character of the cicada example. Since the reply, there has been no further challenge for

this case. Indeed, Davide Rizza, for instance, has provided the most elaborate nominalistic

reconstruction of the cicada case [2011]. But Rizza’s criticisms of Baker’s example concerns

the ontological commitment to abstract (mathematical) entities, not the explanatory role

played by mathematics in the cicada case. Indeed, he recognises that mathematics plays

an explanatory role in the cicada case: ‘It seems to me that, simple as it is, the Magicicada

case shows how mathematics can play a relevant explanatory role in a non-ontological way’

[2011, p. 113]. Our concern in this paper is not with ontology directly but rather with the

quality of the explanation.
10This highlights the social aspect of science. For those who prefer to think of science

as absolute, or who prefer to ignore the socio-politico-economic aspect, our formulation is

still acceptable since we do not insist that the recognition of the question occurs at the

time when the question is asked. Thus, it is not constitutive or a quality, but an indicator

of quality. We might recognise it only in considerable hindsight. Moreover, it should be
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(ii) the explanation should be phenomenologically satisfying to those
same members of the scientific community, so that they do not
immediately feel the need to ask a further why question (the
explanation has come to an end, for now);11

(iii) the explanation should recover all (or most)12 of the phenomena
with the complete precision that was found in the previous
explanation.

Explanations are rated ordinally. To rate the quality of one explanation over
another we compare them and see how they differ. To rate a new explanation
higher than an old one it must:

(iv) contribute something new to the scientific theory. The explanation
brings new questions that would not have been asked or new
predictions that would not have been made under the old
explanation.

What is our account of a wholly mathematical explanation of a physical
phenomenon?

A wholly mathematical explanation in science, for a phenomenon, is
one that answers a why question, and is written (i.e., fully expressed,
or in principle can be expressed) in a mathematical language, where
the constants can be interpreted in a physical theory, but equally,
they could be interpreted mathematically, or left uninterpreted.

Our first example was the Hénon-Heiles potential. This is, arguably, such an
explanation. We can leave the mathematics of phase spaces uninterpreted (by
physical observations or entities). However, it will not count as purely mathe-
matical if we think that the mathematics of phase spaces is essentially explained
in terms of empirical observation or causation (even as the pre-conditions for
causation). We leave aside this debate since we can do better.

obvious that we cannot demand that the questions be recognised by all members of the

scientific community. Of course, the other limit case of the ‘scientific community’ is that

there is one scientist who recognises the question, only briefly. When this is the case, if the

question is a good one, it will take longer to be recognised by that same scientist or other

scientists.
11A weaker version is that we are willing to suspend our further why questions about

that phenomenon. It is worth being careful on this point. As scientists, we might be drawn

to ask other, deeper questions, or meta-questions about the explanation we are given. This

is a type of acceptance of the explanation, not a rejection, and indicates fruitfulness of the

explanation.
12In general, the explanation should recover all of the phenomena, but as we shall see

in the next section, there are occasions when we want to know also when it is that we lose

a class of phenomena.
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In this paper we shall consider a wholly mathematical explanation of several
phenomena of science, since the case we are considering is a mathematical expla-
nation of a whole physical theory, and therefore, of each of the phenomena of
the theory.13

Our account of a wholly mathematical explanation of a physical
theory is one that answers a why question, is written in a formal
mathematical language where we derive mathematical representations
of what were previously thought of as ‘laws of the science’, and where
the methodology comes from mathematical practice.14

In our case, the presentation begins with axioms written in a formal first-
order language. From the axioms we can derive formal representations of what
are more standardly thought of as ‘laws of the scientific theory’ as theorems
of the formal axiomatic system. For example, we derive that observers cannot
travel faster than the speed of light. Note that this is already more precise than
the (disputed) law that ‘nothing travels faster than light’. We then make the
calculations and geometrical transformations to derive each of the phenomena
of the theory; where the phenomena are tested against observation. What the
formal system gives us is a means of calculating, given initial observation data
substituting for the sorts in the language, what will be the case at a later time.
For example, if we are interested in the trajectory of a particular inertial body,
and how its clock appears to us, and we are given the data that the inertial body
is travelling at a particular speed and on a trajectory which is at a particular
angle with our own, then we can find out what the time will be for that inertial
body at a particular later time for us. Thus the constants in the original logical
language can be interpreted as observations. In fact this is the intention of the
Andréka-Németi group.

However, it is also important to note that the constants, and, mutatis
mutandis the ‘prediction’, can also be left uninterpreted, or be interpreted math-
ematically, as a mathematical theorem divorced from any intention to apply it
to physics. We can make mathematical models of the theory. This is crucial for
the explanation to count as wholly mathematical. It follows from giving a wholly
mathematical explanation that we could just take the mathematical explana-
tion as an interesting piece of mathematics in its own right, without paying
heed to the initial motivation of explaining a physical theory. This last option

13Our claim is at two levels simultaneously. At the object level, each phenomenon

receives a wholly mathematical explanation; at the meta-level the whole set of phenomena

(and the previous laws of the ‘theory’) receive a wholly mathematical explanation.
14We are not certain that we need this last conjunct, but it does fit the particular

example we have in mind. In our test case, it is the mathematical methodology that brings

questions that would not have been asked under a different explanation.

193Using Mathematics to Explain a Scientific Theory •
D

ow
nloaded from

 https://academ
ic.oup.com

/philm
at/article/24/2/185/1752454 by guest on 19 April 2024



is possible, but is strained in the case of the Andréka-Németi project, since it
is not mathematically natural, obvious, or interesting, at least ab initio.15

4. AN ACTUAL CASE: THE RELATIVITY THEORIES
EXPRESSED IN A THREE-SORTED FORMAL

FIRST-ORDER LANGUAGE
Let us turn to our case study: the Andréka-Németi project. Insofar as this
project is a convincing presentation of a mathematical explanation for a physi-
cal theory, we have a positive answer to the first and second questions. Moreover,
if the mathematical explanation gives us new insights into the physical theory,
which we would not have appreciated or thought of in the absence of the math-
ematical explanation, then we have a net epistemological gain in exploring the
mathematical explanation. This anticipates our answer to the third question.

In the actual case we have in mind we are presented with the axioms:

Ax1 G = Eucl(n,F).
Ax2 Obs ∪ Ph ⊆ Ib.

Ax3 (∀h ∈ Ib)(∀m ∈ Obs)
(
trm(h) ∈ G

)
.

Ax4 (∀m ∈ Obs)
(
trm(m) = t̄

)
.

Ax5 (∀m ∈ Obs)(∀l ∈ G)
(
ang2(l) < 1 ⇒ (∃k ∈ Obs) l = trm(k) and

ang2(l) = 1 ⇒ (∃ph ∈ Ph) l = trm(ph)
)
.

Ax6 (∀k, m ∈ Obs)
(
Rng(wm) = Rng(wk)

)
.

AxE (∀m ∈ Obs)(∀ph ∈ Ph) vm(ph) = 1.

The axioms are copied from [Andréka et al., 2002, p. 52]. Let us explain how
to read the axioms to disperse any suspicion that there are essentially physical
notions included in them. G is a set of lines. Lines are part of geometry. Axiom 1
says that the set of lines are (straight) lines in a Euclidean n-dimensional vector
space over a field F. All of these are mathematically definable notions in a
first-order language.

Intuitively, and for the intended interpretation, in the meta-language, ‘Obs’
stand for ‘observers’. ‘Ph’ is the set of photons. ‘Ib’ is inertial bodies. ‘Observ-
ing’, here, means a co-ordinating system. Observers do not ‘see’ in our (causal)
sense, and they do not need photons to ‘see’, then to pick out a point in space.
Observers only pick out (give the co-ordinates for) a point, a set of points, or
a line (made up of points) in an n-dimensional vector space. More carefully,

15That is, if we were to present the mathematical theory or the family of mathematical

theories to mathematicians without telling them what the intended interpretation is, we

doubt that the mathematicians would be interested in the theory, since it looks like an

arbitrary (mathematically ad hoc) 3-sorted formal theory. Moreover it is fairly standard;

so it does not look likely to provide new and interesting mathematical insights.
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they do not perform an action of ‘picking out’, instead, they are just the source
(initial data/premises of an argument/starting place for the calculation). Co-
ordinates in Euclidean space are mathematical entities, n-tuples, where n is the
number of dimensions. Lines can be thought of as trajectories of an inertial body.
But they can also be thought of as simply straight lines in an n-dimensional
vector space. (To avoid tedium, we shall not repeat all of these niceties, but
will take them as read. We return to more intuitive and familiar language.)
Axiom 2 tells us about the inertial bodies. Observers and photons are inertial
bodies. Note that we have not ruled out the possibility of there being other
sorts of bodies. We have also not ruled out the possibility that photons should
be observers. This will be shown in Axiom 5. The upshot will be that they
therefore travel on straight Euclidean lines. This is correct for special relativity.
In general relativity we also have accelerating bodies.

The term ‘tr’ stands for ‘trajectory’. So, the trajectory of h according to
m, that is trm(h), is a straight line in a vector space according to Axiom 3.
In Axiom 4, we learn that observers can observe themselves. That is, co-
ordinatising is reflexive. Their ‘self-observation’ takes them along their own time
axis t̄. This makes sense if we remember that inertial bodies travel in straight
Euclidean lines, at a constant speed. All they can ‘observe’ about themselves is
the time — the ticking of a clock. Notice that no supposition is made about time
having a direction. It is simply a singled-out axis for an observer. If we choose
one of several possible axioms of orthogonality, we can use it to give spatial
dimensions relative to an observer’s time axis. The observer then ‘determines’
the n-dimensional space in which it travels.

It is Axiom 4 which is important for deducing the strange clock effects of
special-relativity theory. Axiom 5 distinguishes inertial observers from pho-
tons by their velocity. The Andréka-Németi group consider the angle between
l and the time axis, for l ∈ Eucl(n,F). They use the square of the tangent
(instead of the tangent itself) of the angle, namely ang2(l), in order not to
have to presuppose that the angles have real values. Similarly, they do not
want to presuppose that points on a line must have real values, or that lines
are best represented by the real line (of points). Points are n-tuples, where
n is the number of dimensions. Thus, the field might only have a rational
number of possible points. They leave open the possibility that lines and
points could also have real values, and when they need this, they introduce
an axiom allowing for values of all roots. More explicitly, for l = {r + a · s :
a ∈ F} ∈ Eucl(n,F), they define ang2(l) in the following way:

ang2(l) =
s2
1 + s2

2 + · · · + s2
n−1

s2
0

if s0 	= 0, and

ang2(l) = ∞ if s0 = 0,

where s0 is the vertical (or time) component of vector s, and s1, s2, . . . , sn−1

its horizontal (or space) components.
Take the first conjunct of Axiom 5. For all observers, if the angle squared of

a line, l, is less than 1 with respect to the trajectory of the observer, then the
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trajectory of the inertial body making the line is that of an(other) observer. The
second conjunct is about photons. If the angle squared of the trajectory of the
inertial body is equal to 1, then the body travelling on that line is defined to be
a photon.16 We do not even have a mysterious constant number featuring as the
speed of light. Anything travelling slower than light is simply labelled ‘observer’
by definition. ‘Photons travel at the speed of light’ is wholly determined by
means of the fixed square of the angle with respect to the time axis for an
observer. So we distinguish observers from photons using a formal mathematical
stipulation in an axiom of the theory.

It turns out that Axiom 6 does a lot of work in the derivations of some of the
paradigmatic phenomena in special relativity theory. Because it is appealed to so
frequently the Andréka-Németi group deploy a mathematical methodology: later
in the 2002 text, they look at weaker versions of Axiom 6. Note this, because
we shall return to it in the next section, since they do not treat mathematical
axioms as laws in science. Regardless, this version of Axiom 6 tells us that for
any two observers k and m, the range ‘Rng’ of the worldview of m is identical
to that of k. That is, the two observers co-ordinate the same sets of points
and lines. They might, of course, have different relations bearing between said
points, since they might be travelling at different speeds from each other, or in
different directions. The worldview of an observer is simply a set of points that
they observe as they travel. So they are just sets of n-tuples, where n is the
number of dimensions.

Axiom E is so called because it is ‘Einstein’s axiom’. We learn from it that
the speed of photons, i.e., of light, is fixed. It is fixed at ‘the angle squared
of the line of the photon’ = 1 for all observers. All photons are observed as
travelling at the fixed speed of light. Indeed, they form a light cone through
their angle with the observer (who observes himself as travelling in time only).
Essentially, all that happens in the derivations is that we derive what is observed
relative to an observer. The observation is not a ‘seeing’. It is simply a fixing of
a set of co-ordinates which forms a straight line in a vector space. We can then
immediately derive the fact that photons are not observers. What observers
‘observe’ (pick out the co-ordinates) of each other is calculated by transfor-
mations. The transformations are affine transformations for the most part. The
others are Poincaré transformations, Lorentz transformations, or Galilean trans-
formations, and these are just calculated in the usual and purely mathematical
way.

The reason we worked through the axioms was to convince the reader that
all that has been said by the axioms is mathematical. It can be interpreted, as
we have suggested, in order to explain special relativity theory and to derive
the phenomena of special relativity. Indeed this is the intention of the Andréka-
Németi group.

16Axiom 5 ‘states that we have the tools for (performing) thought experiments: on any

appropriate straight line [in the n-dimensional vector space over F] we can assume there

is an observer; and the same for photons’ [Andréka et al., 2002, p. 50].
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5. PHILOSOPHICAL REMARKS ABOUT THE ACTUAL CASE
As we mentioned at the end of Section 3, it is in no way necessary to make the
intended interpretation, since the explanation is wholly mathematical. Without
the interpretation in the meta-language, we could happily follow the proofs
without a physical interpretation, or with a quite different one.

The new theory of special relativity looks quite interesting in this sparse
mathematical description. There are no accelerating bodies (no curvature in the
trajectories), no energy, and no mass. Or more carefully, we are free to ignore
this interpretation of the mathematics if we so choose, and we can still carry
out the calculations and predictions of special relativity theory with complete
precision. In the mathematical, or logical, theory, (what can be interpreted as)
bodies do not collide, in the sense of changing the path of another body. If two
inertial bodies meet they do no more than intersect each other in a Euclidean
plane. All they ‘do’ is intersect. Thus, all we have is lines in fields in a Euclidean
geometry. The Andréka-Németi group later add a new axiom to give a unique
direction to time to make up Minkowski space. They only do this when they
‘need’ it to explain some phenomena ‘better’ in a ‘less static’ way.

We have mentioned ‘adding axioms’ three times: adding an axiom to give real
values, modifications to Axiom 6, and now, adding an axiom to give a direction
to time. We now address what this means. The list of axioms we gave above
forms the basic system of axioms. The Andréka-Németi group call it BASAX.
It is sufficient to derive all of the phenomena of special relativity theory. But
the Andréka-Németi group working on this project are using a mathematical
methodology. The axiom system given above is not complete for the entire
project even if it meets the present needs of special relativity theory. The axioms
above are treated as hypotheses. They are not thought to be literally true or
physically revealing.

The axiomatisation of physical theories is not new and is not restricted to
the relativity theories. Hilbert suggested axiomatising, especially mechanics,
in 1900 [Truesdell, 1991, p. 6, n. 1]. However, the Andréka-Németi project is
unlike previous axiomatisations of physical theories. Here, let us just point out
two differences. One is that we are not presented with one set of axioms, but
with many different non-equivalent sets of axioms, what the Andréka-Németi
group call ‘variants of special relativity’ [Andréka et al., 2012, p. 8]. The other
is that the (sets of) axioms can stand alone, and can constitute the physical
theory. In contrast, in previous so-called axiomatisations of physical theories
we are presented with one set of axioms that is meant to give us the basis for
calculations in the physical theory. The axioms are (maybe mistakenly presented
as being) indispensably accompanied by a less formal theory. In the Andréka-
Németi project, different sets of axioms are (maybe mistakenly) presented as
being strictly dispensable. In their words: ‘we want to obtain a formalized theory
which contains its own “interpretation” ’ [Andréka et al., 2012, p. 8]. That is,
ultimately, the mathematics can be used to interpret itself.

There are two ways of thinking about this, depending on how we want to
individuate ‘theories’. If we individuate theories by a set of axioms and rules of
inference, then, the methodology of the entire Andréka-Németi project includes
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several theories, and there is not one theory of special relativity; there are
several. For example, we can add axioms to BASAX or we can take some away.
We can weaken or strengthen axioms. This is interesting to do, in order to
extend our explanation. We shall give more details later.

In contrast, if we insist on the definite article when we say ‘the theory of
special relativity’, then we can say that the Andréka-Németi theory of special
relativity is a family of mathematical ‘systems’, where the family is the the-
ory, and the systems are individuated by sets of axioms together with rules of
inference, a notion of model, and so on.

Regardless, what we are left with are still mathematical explanations either
in the form of theories or in the form of families of mathematical systems. This
is what we wanted to emphasise in this section. And these (this) explanation(s)
invite(s) mathematical questions. We shall return to this when we discuss the
methodology more philosophically.

Summarising in the language of the first way of thinking of the Andréka-
Németi project: it gives a series of mathematical theories individuated by
different combinations of axioms. The explanations (if they are really expla-
nations) are mathematical explanations (as opposed to physical explanations).
If the Andréka-Németi group are giving explanations, then we have answered
questions one and two in the positive. It is then possible (since actual) to give
wholly mathematical explanations for physical theories and, as a special case,
wholly mathematical explanations for physical phenomena.

The more thorny question is: are they really explanations? According to our
characterisation of explanation they are. They answer the why questions about
the laws and the phenomena of special relativity using mathematical language.
Remember our criteria for explanation.

(i) the why question should be recognised by some good (accepted)
members of the scientific community.

In our case, the Andréka-Németi group form a community. They publish in top
journals in the field. They have contacts and academics who follow their work
with interest in Canada, the U.S.A., Brazil, England, the Netherlands, Belgium,
Germany, Romania, Bulgaria, and Taiwan, amongst others.

(ii) the explanation should be phenomenologically satisfying to those
same members of the scientific community, so that they do not
immediately feel the need to ask a further why question (the
explanation has come to an end, for now).

Adopting a strategy that is generally used in the debate on mathematical
explanation (cf. [Baker, 2009; Mancosu, 2011]), we note that scientific practice
provides evidence for the genuine character of the explanation. In other words,
the testimony (part of the practice) of the intuitions of the practising scientists
provides evidence that we have a genuine MES. In the Andréka-Németi project,
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the explicitly stated motivations are to find the (logical) reasons for the laws and
phenomena in the relativity theories. They want to analyse the logical struc-
ture of relativity theories and find which most basic (i.e., mathematical/logical)
axioms are responsible for a certain theorem:

In our approach, axiomatization is not the end of the story, but rather the
beginning. Namely: axiomatizations of relativity are not ends in them-
selves (goals), instead, they are only tools. Our goals are to obtain simple,
transparent, easy-to-communicate insights into the nature of relativity,
to get a deeper understanding of relativity, to simplify it, to provide a
foundation for it. Another aim is to make relativity theory accessible for
many people (as fully as possible). Further, we intend to analyze the log-
ical structure of the theory: which assumptions are responsible for which
predictions; what happens if we weaken/fine-tune the assumptions, [we
explore] what we could have done differently. We seek insights, a deeper
understanding. We could call this approach ‘reverse relativity’ in analogy
with ‘reverse mathematics’. [Andréka et al., 2007, p. 608]17

In communicating their results, the Andréka-Németi group regard their explana-
tions as really explanatory. For instance, they consider that their logical proof of
why fast-moving clocks appear to slow down from the point of view of a slower-
moving observer provides genuine (logical) explanations of this phenomenon
[Székely, 2011]. Therefore, it is easy to see how in this case the testimonies
of scientists support the claim that we are confronted with a genuine case of
MES (unless we want to dismiss the members of the Andréka-Németi group
as ‘not scientists’ but then what are they?).18 Additionally, it should be noted
that these scientists even consider these explanations to be more natural than
the explanations provided within the standard formulation of relativity theo-
ries, and this is because of their logical character, and logic is considered to be
a more basic tool of communication and understanding than carefully trained
and developed (physical) intuitions.

(iii) The explanation should recover all (or most) of the phenomena with
the complete precision that was found in the previous explanation.

Throughout, the Andréka-Németi group have been careful to be explaining
the phenomena of special relativity. In some cases they reason counter-factually
with respect to the phenomena, and thereby discover the strengths and limita-
tions of some axioms. For example, they might find out that by weakening

17Cf. for more similar claims in the Introduction chapters of [Andréka et al., 2002] and

[Székely, 2009].
18The Andréka-Németi group think of themselves as logicians, but unlike many logicians

they are not interested in developing logical systems for their own sake; they are interested

in scientific theories and the relationship between logic and the scientific phenomena.
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an axiom too much we lose some phenomena but not other phenomena.
Sometimes this is their motivation for changing the axioms! They thereby
discover axiomatic or mathematical limitations. Other reasons for changing
axioms include: elegance, simplicity (sufficient axioms), naturalness (easier
axioms), or maximising the explanation — saying exactly and only what is
needed in order to capture some, or all, of the phenomena. This is a type of
‘reverse-mathematics’ motivation included in their methodology.

Furthermore, for the purposes of rating the explanation, we look to see if:

(iv) the new explanation contributes something new to the scientific
theory, if the explanation brings new questions that would not have
been asked or new predictions that would not have been made
under the old explanation.

The traditional ‘explanations’ are poorer.19 To illustrate this, consider the fol-
lowing example. In a standard textbook on space-time physics we have the
following ‘explanation’ for the idea that no particle travels faster than light:
‘No particle has ever been observed to travel faster than light. Therefore, a
particle will always travel less than one meter of distance in one meter of light-
travel time’ [Taylor and Wheeler, 1966, p. 32]. Apart from the logical fallacy of
inferring from lack of observation of x to x’s never happening, we have a mere
stipulation (‘supported’ by poor induction) that there are no particles traveling
faster than light. Such an ‘explanation’ invites the question ‘why?’ and invites
inquiry into the nature of ‘observation’, ‘particle’, ‘travel’, and ‘light’. What
does it mean to say that ‘no particle has been observed to travel faster than
light?’ In contrast to this ‘explanation’, the Andréka-Németi group derive a
theorem which tells us that there are no faster-than-light observers [Andréka
et al., 2012, p. 2]. They derive it from Axiom 5 very quickly, but that does not
rule out the possibility that there should be faster-than-light particles. So this
is only the beginning of their explanation. For, already in [2002] they show us a
model for faster-than-light particles in a 2-dimensional setting! This gives us a
type of mathematical limitation result. In another work, they demonstrate the

19It might be objected that our view of mathematical explanations is entirely in line

with Hempel’s account of scientific explanation and his idea of explanations as deduc-

tions. This is false. The differences between the explanations we are considering here and

Hempel’s are: (1) the Andréka-Németi group are using a series of mathematical theories,

not just one; so they offer both proofs within a particular axiomatic theory and proofs of

the connections between the theories; (2) few of the proofs are formal — but they can be

made so; in fact there are formal proofs that check all of the informal proofs; (3) some

proofs are semantic, coming from model theory, which is also not hypothetico-deductive at

all; (4) the axioms are not hypotheses, in Hempel’s sense. They are not black-box hypothe-

ses waiting to be elucidated; they are written in the formal language of the theory or

family of theories. They are not premises to a deductive argument. The explanations given

by the Andréka-Németi group have (temporarily) stopped with the axioms, but are com-

pleted with the other sets of axioms. So, there is a difference, albeit a subtle one, between

Hempel’s hypotheses and the axioms of the Andréka-Németi group.
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consistency of faster-than-light particles with a set of axioms which is powerful
enough to derive all of the (other) paradigmatic and observed effects of relativ-
ity theory [Székely, 2012]. In this way they explore exactly what it would take
logically to allow faster-than-light particles. Because of these further enquiries
and their attending explanations, it seems fair to say that the Andréka-Németi
explanation is much richer than the standard explanation. The Andréka-Németi
project passes the Pincock replacement test.

In our quoted standard explanation, are we making a straw-man argument?
No. Taylor and Wheeler are from MIT and Princeton, respectively. While the
text we refer to for a traditional explanation is meant as a textbook for stu-
dents, not for professional scientists in the field; their explanations end with
physical observations and ‘physical’ constants (such as ‘observation’, ‘particle’,
‘travel’, and ‘light’), not mathematical constants. And there is not much further
explanation of these in the standard professional literature.

Our claim here is that when there is no further explanation we are left with
the following reactions:

(i) we give up further search since we cannot ‘understand’ (any better);
(ii) we develop an ‘intuition’ which corresponds to the constants; or
(iii) we seek further explanation in the form of concepts we already

understand.

Many students and less formally educated people fall in to (i). Most professional
physicists fall into (ii). The Andréka-Németi group fall into (iii). In the absence
of already having the required intuitions, when we are confronted with these
possibilities we experience what we shall call a ‘malaise’. It is this malaise
which motivates the Andréka-Németi project.

Let us illustrate the malaise with a story told by Németi. In a class on relativ-
ity theory attended by Németi, the professor explained the twin paradox to the
students. The students were puzzled, wondered at this ‘paradox’, and generally
experienced a sense of malaise. This is all we mean by ‘malaise’ here. Németi
then asked the professor for a better explanation. Instead of an explanation, he
was told the following: continue with your courses on relativity theory. Write a
Ph.D. thesis in relativity theory. Become a professor teaching relativity theory.
Then if you are very fortunate, after a few years, you will understand the twin
paradox.20

We do not think that the story is unrepresentative of relativity theory (as it is
usually presented and taught).21 We saw an example of a standard explanation
for particles not travelling faster than light earlier. We interpret the story in the
following way. The professor himself was unable to give a better explanation.

20The story was told in a conversation among Németi, Andréka, and Friend.
21We do not want to make a survey of the literature and text books. This is too tedious.

But even Einstein states his principle in English, not in a formal language: that the laws

of physics should behave in the same way for all particles and everywhere in the universe.
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But he had ‘gotten used to it’. He had followed (ii) in the above methodology
which is standard in the practice of physics. Or, he observed in his colleagues
that they had ‘gotten used to it’ and was waiting for the day when he would
‘get used to it’. ‘Getting used to’ something is a matter of time and exposure,
and either is a type of explanation or substitutes for explanation!

Take the first disjunct. If intuition, or a sense of familiarity is a type of
explanation, then with the intuition, the explanation has come to an end, maybe
a temporary end. The twin paradox is after all called a ‘paradox’. It is supposed
to be puzzling. It invites why questions. That is, it invites further explanation; so
at best it is an incomplete explanation. It is interesting to observe that labelling
it a ‘paradox’ seems to license an authority not to have a further explanation!
This little story is about a lack of explanation in a perfectly robust scientific
theory. So at least the Andréka-Németi explanation is more complete than the
standard one, since it does not rely on physical intuitions, but rather, on logic
and mathematics. Maybe these are intuitions too, but they are arguably more
fundamental or more basic.

After all, where could we look for a better explanation than the one given in
the story? Not to the laws of relativity theory, since they promptly lead us to the
paradox, and leave some physical constants without further explanation, except
implicitly through the other laws. Instead, we have to question the physical laws
themselves, and ask for explanations of those. How can we do this? The answer
turns on what we think is ‘more primitive’ or ‘more basic’ than a scientific law.
The answer we (and many scientists) give is: mathematics and logic are more
primitive.22 But ultimately, of course, this can be disputed. In this case we have
a draw.

Nevertheless it remains that the Andréka-Németi group are so satisfied with
their explanations that they are now adding refinements, and suggesting further
experiments, and discovering new results (some of which are not easy to test).
That is, the explanations are fruitful. Moreover they are sufficiently satisfied
that they extended the theory (or family of theories) of special relativity to
that of general relativity. They are presently working on representing Newtonian
kinematics and are just starting to look into using their methodology to explain
quantum theory. (But they are cautious about this, since they recognise that
it will be very difficult. The project might take several generations of scientists
and logicians.)

There is one more argument supporting the claim that the Andréka-Németi
project gives us genuine examples of MES. Apart from the practice, the gen-
uine character of the explanations given within the Andréka-Németi project is
supported by a pluralist account of mathematical explanation in science, as

22The evidence that we are not alone, or first, in thinking of mathematics and logic as

more primitive is that the mathematical foundation of the relativity theories has a history.

Axiomatisations of special relativity have been studied, among others, by [Ax, 1978; Benda,

2008; Goldblatt, 1987; Suppes, 1959] and the Andréka-Németi project.
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proposed in [Molinini, 2011].23 Molinini proposes to investigate MES using two
different notions: intellectual tools and conceptual resources.24 An intellectual
tool is an ability to reason that is used in the practice of explaining a sci-
entific fact, while a conceptual resource is a concept that permits the use of
our intellectual tools in a particular situation [Molinini, 2011, p. 352]. There
is a plurality of explanations in science. They differ from one another in what
intellectual tools are used and in what conceptual resources are used. In the
Andréka-Németi project, conceptual resources are provided by axioms (and dif-
ferent sets of axioms) written in the formal first-order language and give us
mathematical concepts that allow us to analyse or see a physical situation in
a certain way. We then use logical reasoning as a tool to reason over that sit-
uation.25 Reasoning26 in the standard practice of physics is not as strict as
mathematical or logical reasoning.

Intellectual tools and conceptual resources vary from one community of inves-
tigators to the next, and the factors that influence these are: the subjective
preferences and aptitudes of individual members and the historical context of
the community. In Molinini’s account, the explanations provided in the Andréka-
Németi project are genuine MES. However, note that our argument here does
not depend on our adopting Molinini’s account of MES. It is only strengthened
by, or fits best with, such an account.27 If we have another pluralist account of
explanation in science, then the Andréka-Németi project might well count as
an explanation amongst others. If we required a single account of explanation
in science, it is possible that the Andréka-Németi explanation would not count!
But then we shift the burden of proof. The philosopher holding to such a single

23After all, as Juha Saatsi has observed, it might be thought that scientific practice

does not provide evidence for genuine MES. Even if some scientists claim that we have

a genuine MES, ‘surely it is down to the philosopher of explanation to scrutinize their

claims and set them right’ [Saatsi, 2011, p. 153]. In the context of our example, however,

it is worth noting that the intuitions coming from the group are not simply intuitions of

working scientists, but also of logicians and philosophers, sometimes all embodied in the

same person.
24Obviously, it would take more space to illustrate here how the account proposed by

Molinini fits the case of the relativity-project theory. Nevertheless, such an analysis is

provided in [Friend, 2014]; so we shall not reproduce it here but we shall offer only the

general strategy.
25In passing, note that the mathematics used by the Andréka-Németi group is a perfect

tool for reasoning. Indeed, it makes the relativity-theory project objective in the sense that

it is subject to logical correction [Friend, 2014].
26‘Reasoning’ should be thought of in contrast to making calculations, since these are

rigorous and precise in physics.
27Although [Friend, 2014] gives the only available analysis of the explanations provided

in the Andréka-Németi project according to Molinini’s account, other accounts might be

thought to accommodate these explanations as well. For instance, our impression is that the

Andréka-Németi explanations could be accounted for in terms of the inferential conception

of the applicability of mathematics advocated by [Bueno and Colyvan, 2011; Bueno and

French, 2012]. However interesting, we shall not pursue this issue here, and we leave it for

future work.
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account of scientific explanation would have to say what the Andréka-Németi
group are doing if it is not explaining, especially since they think of their project
as exactly explaining an area of science.28

6. FURTHER DOUBTS: ARE THESE ‘GENUINE’
EXPLANATIONS?

We have slipped in the word ‘genuine’ without due precision. There could
be another type of doubt. Some philosophers of science draw a very natural,
Quinean sort of distinction between a description or account and an explana-
tion.29 The idea behind the distinction is to emphasise that a description or
account is not ‘genuine’, even if one concedes that it could count as a poor
explanation.

A description falls short of a genuine explanation, since it does not
tell us why the phenomenon is happening to this sort of physical
object, and not another.

In other words, it does not fall strictly within the confines of the phenomena
investigated by that science. The description might be consistent with the obser-
vations of that science, but it will be applicable to other phenomena in another
science. In contrast,

A genuine explanation for a physical phenomenon (or set of
phenomena) uniquely focuses on those physical objects, and cannot
be re-applied to some other phenomenon (a phenomenon supervening
on another type of object, or set of objects, altogether).

Given this distinction, the argument goes, mathematics by itself cannot explain
physical phenomena, it can only describe them since the mathematical the-
ory can be re-applied to other phenomena with quite different objects (by
re-interpreting the constants). Therefore, there can be no genuine explanations
of physical phenomena which are wholly mathematical. Call this argument A.
If you are not swayed by this argument then skip the rest of this section.

There are at least three counter-arguments. We start with the weakest one.
Focus on the ‘uniqueness of the description’. We use ‘description’ in order not
to beg any questions, ‘uniqueness’ applies to the set of data, or the phenomena
being explained. In the case of the Andréka-Németi project uniqueness is guar-
anteed when we have both the mathematical theory and the meta-theory which
interprets the mathematics, i.e., gives the application of the mathematics to

28These are interesting questions but not to make this treatment too long, we leave

them aside for a future project.
29Private conversation between Bueno and Friend, June 2012, São Paulo (Brazil). We

do not claim that this doubt originated with Bueno. Rather, it is a very natural doubt,

and it was Bueno who drew Friend’s attention to it.
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the physical phenomena. See, for example, how we interpreted the constants of
the axioms in Section 4. Otherwise we simply have a mathematical theory. The
meta-language then gives us one of several possible applications of the theory.
Thus, without the meta-language part of the explanation — without this partic-
ular interpretation in mind — there is no uniqueness, and it would be unlikely
for someone exposed only to the mathematical theory to guess at the intended
application (which was the impetus for developing the particular mathematical
theory).

Under this counter-argument, it is the package: mathematical theory +
meta-theoretical intuitive explanation which counts, then, as a partly math-
ematical explanation of the physical phenomena we observe in the relativity
theories. In other words, it is because the mathematical theory is checked against
the particular ‘data’, i.e., the predictions of the original physical theory, that
we know that the mathematical theory applies to the physics. And we note,
only as a corollary, that the meta-theoretical intuitive explanation is strictly
dispensable for understanding the mathematics. However, it is indispensable
for understanding the physics. This answer is a start, but it is not quite right,
and misses a lot of subtleties.

The second counter-argument is less conciliatory, and attacks the distinction
between description and explanation. In the case of physical sciences, we suspect
that the distinction relies on the notion of causation supported by appropriate
physical laws, and possibly particular views of causation. That is, an explanation
is such, only if it has an indispensable, and irreducible, causal element (making
the observations unique in the sense of the origin of each of the causes). The
distinction between a description and an explanation begs the question against
the very idea of a purely mathematical explanation of physical phenomena. This
is because any mathematical theory can be re-applied elsewhere. Therefore, a
priori, i.e., in light of the distinction, there can be no (wholly) mathematical
explanations of physical phenomena.

When confronted with a question-begging position, one way out is to offer
an equally question-begging counter-position which comes to the opposite, or
at least a different, conclusion. We present such a position for argumentative-
strategic reasons: we want to show that there are two question-begging theories
of explanation which come to quite different conclusions. We do not think
that one is right and the other wrong. We think both are wrong. Here is the
temporary strategic move to present a counter-question-begging position.

Purported ‘explanations’ of physical phenomena which stop at, or have as
primitives, physical constants, intuitions, or purportedly irreducibly physical
ideas expressed as physical laws are never proper explanations of why the
phenomena occur. They only tell us that they occur.

Argument: an explanation of why something is the case has to reach deeper
than just to point to the physical causal laws, and then derive from those laws
the phenomena of the theory. The reason we have to reach deeper is that such
a purported explanation still leaves us dissatisfied, or it relies on our having
correct intuitions. It does not answer why ; it answers that. A deeper and more
satisfying explanation can be had only by looking at the underlying mathematics
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or logic of the theory. That is, the explanation should explain the physical laws
too, by treating elements in the laws as logical constants, and it is only by
looking at the underlying mathematics and logic that we can do this. Therefore,
any ‘explanation’ worthy of being so called has to be mathematical or logical.
Call this argument B.

Not only does argument B raise the standards very high for explanations in
science, but, it is circular and begs the question; but so does A when we presup-
pose that explanations in science require causation. What should we conclude?
It is a matter of taste and training as to which explanations we find more satis-
fying. For those who develop the required intuitions, reaction (ii), they will be
satisfied with the existent explanations. Others will adopt reaction (i) or (iii).
Nevertheless, the ‘actual therefore possible’ argument stands — especially if it
is a matter of taste or ability to develop intuitions! That is, given our example,
it is possible (if only recognised by those of similar tastes in explanation) for
there to be a purely mathematical explanation for a physical theory and for
physical phenomena.

From a question-begging argument, such as A or B, we should draw no direct
conclusion. However, we can draw an indirect conclusion: some philosophers
insist that ‘explanations’ of physical phenomena must include direct inescapable
reference (guaranteeing uniqueness) via causation and laws to the physical phe-
nomena, hence A. Other philosophers do not recognise the above distinction,
and therefore admit the possibility of purely mathematical explanations for
physical phenomena. For our case here, the latter philosophers will not require
the conciliatory first argument, but will happily accept that our actual case
counts as a purely mathematical genuine explanation of physical phenomena.

For the former philosophers that subscribe to argument A, are they
warranted in their insistence? The situation is more subtle than we sug-
gested in the first counter-argument (about the package mathematical
theory + intuitive/causal/observation-laden meta-language interpretation that
together ensure uniqueness of the description, i.e., an explanation). We address
the missed subtleties.

First, in some applications, the fit between the mathematical theory and the
data might be unhappy — as it sometimes is in physics. It is usual for there to be
some massaging of the raw mathematical theory to fit the data; at the very least
this takes the form of corrections to the mathematical idealisations and at worst
we have gerrymandering which makes no mathematical sense, such as with re-
normalisation. (On re-normalisation techniques see [Steiner, 1992] and [Maddy,
1997, Ch. 6].) Thus, applying mathematics is not straightforward. Especially if
it makes no mathematical sense, the massaged mathematical theory will not be
re-applied elsewhere, since it will not count as a proper mathematical theory!
So we have uniqueness, but for mathematically perverse reasons. This is not the
case with the Andréka-Németi project, since the mathematical theories are all
mathematically acceptable (internally consistent).

Second, in other cases where the mathematics is coherent, the adjustment, or
gerrymandering of the theory will make it mathematically ‘unnatural’ or ‘odd’ or
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‘non-standard’. In all these cases, the re-application will be delayed, if not post-
poned indefinitely — and this for reasons to do with mathematical psychology —
what mathematicians count as ‘natural’ or ‘normal’ or ‘standard’. And the latter
is influenced by mathematicians’ mathematics and logic background, not based
on their encounters with applications in physics. Thus, for reasons of mathe-
matical ‘unnaturalness’ we will not find the mathematical theory re-applied in
wholly other areas.

Prima facie, the Andréka-Németi project is like this. The mathematical the-
ories are standard, but mathematically uninteresting or ad hoc. In particular,
Axiom 5, distinguishing observers from photons by their velocity, or square of
the angle with the dimensional axes, is mathematically ad hoc, even if it is phys-
ically elegant.30 Therefore, it is unlikely that the mathematical theories will be
re-applied to other areas of mathematics or to other scientific theories, at least
not in the foreseeable future. But there is a more subtle point to add.

Third, our case is not of one mathematical theory but of several, whose inter-
relations with the physical theory are made explicit by specifying which axioms
are needed for which phenomena. Moreover, the interrelations between the the-
ories is also made explicit by saying which sets of axioms strictly imply which
other sets, or which sets of axioms are equivalent to which other sets. Thus,
this presentation of special relativity theory prompts some purely mathemati-
cal enquiry about limitative results of the theory and individual axioms. These
are a logician’s or a mathematician’s questions, not a physicist’s (although, of
course an individual physicist is partly also a mathematician, and so might well
ask these questions too, but he does so as a mathematician). In fact, the distinc-
tion between a mathematician and a physicist is not so easy to maintain in the
Andréka-Németi project, and the blurring of the distinction plays well for our
position. This concerns the methodology of the Andréka-Németi project. The
methodology of tweaking axioms and proving the logical meta-relations between
theories is not driven by purely mathematical concerns (since the mathematics
is not prima facie mathematically interesting), but by the combination of the
mathematics with the intended interpretation.

Fourth, the mathematical theories in our actual case are mathematical; and
we have claimed that it would be unnatural to re-apply them elsewhere — either
to other theories of science or to other theories of mathematics, at least as they
stand. But this is oversimplified. If we think mathematical theories can be used
to explain science, the next obvious steps are to use mathematical theories also
to explain: cosmology theory, Newtonian mechanics, or quantum theory. These
projects are on the agenda. Note, however, that it is highly unlikely that it will
be the same suite of mathematical theories (individuated by sets of axioms and
rules of inference and construction of models) which explain the other physical
theories; cosmology theory requires non-standard interpretations of space and
time (and therefore, different ones from that of the relativity theories), quantum

30Interestingly, because it is mathematically ad hoc, it invites mathematicians and

logicians to change the axiom in some way — thereby deepening the explanation!
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theory seems to require its own logic and some subtle means of distinguishing
particle from wave.

Prima facie, we have several sciences, i.e., special relativity, general
relativity, electro-magnetic theory, Newtonian mechanics, quantum theory, var-
ious branches of chemistry and biology, and so on. The individuating and
partitioning of these theories has a history. The history is driven by an interplay
between institutions on the one hand and theory making, observations, and tests
on the other hand. The relativity theories help us to explain phenomena that are
far away and very fast. The observations focused on in Newtonian mechanics,
which confirm Newtonian mechanics, concern ‘medium-sized dry goods’. They
are enough to predict the impact of two cars, to calculate the speed with which a
medium-sized dry object will meet the ground when dropped from a particular
height, etc.

It is not clear where the boundary is between the theories. In fact, this is
one of the motivations for thinking that Newtonian mechanics is strictly false
and that we should do everything in what was considered to be the realm of
Newtonian mechanics by appeal to the relativity theories. But even if we do
this, then consider the borderline between quantum theory and the relativity
theories. Argument A pre-supposes that we have a definite set of observations we
want to explain with our theory. The set of observations is not fixed. There are
vague, or fuzzy, boundaries. So we will not explain all and only the phenomena
of that theory with the theory. For example, quantum ‘entanglements’ might be
‘explained’ by appeal to superliminal particles (particles that travel faster than
light). This is just a tenuous hypothesis, but it indicates a possible link between
the theories.

Worse: we issue a challenge. For any set of phenomena, and for any theory
that explains those phenomena and is intended to pick out only those phenom-
ena, and not other phenomena, we believe it is possible to find another set
of phenomena (extensionally different from the first set) that is also explained
by the same theory. For example, neoclassical economic theory uses Newtonian
mechanics as the central science of the theory — maybe metaphorically, but they
are quite convinced by it, nevertheless. At the very least, if we allow elements of
a mathematical model to count as objects and relations between those elements
to count as phenomena, then insofar as we have a mathematical explanation, we
can often make other mathematical models; so the ‘theory’ can be ‘interpreted’
by different models. This might be abuse of the language. Regardless, there is
another way. We can relax the actual individuation of the ‘sciences’ and allow
some quirky objects to enter the science, or introduce some Cambridge objects.

While we can play these argumentative games, there is an underlying serious
point. We should not be too näıve about our observations, especially in relativ-
ity theory. Observation statements are interpreted. Phenomena are interpreted.
Moreover, they can be interpreted in different (but still consistent) ways. So,
all that the observations do is to fix some conditions for the interpretation of
the constants or primitive concepts in the theory. There is no stand-alone set of
phenomena, or observations that can only be interpreted in one way. Instead,
there are packages consisting in observations + interpretations, and these are
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accompanied by a logic or mathematics. Therefore, with any explanatory theory,
we start with sets of data, phenomena, or observations; we interpret them and
build a theory; we might then build other theories and revisit the observations
in the light of the different theories. We then notice that the ‘observations’
we started with appear a little different, depending on our interpretations and
theories. For example, an ‘event’ in the Andréka-Németi rendition of special
relativity is just a point in time/space. It is the intersection of two trajectories.

Given these four counter-arguments to argument A, we should draw some
more general conclusions concerning the idea of a scientific explanation, espe-
cially when it takes the form of a mathematical theory, or a suite of such theories.
We turn to more general comments in the conclusion.

7. CONCLUSION
We have drawn a new and important distinction between two different types of
MES: wholly mathematical explanation of phenomena and mathematical expla-
nation of scientific theories. The motivation for drawing this distinction comes
from the fact that all the literature on MES focuses on individual phenomena;
but in our analysis of an actual case, i.e., the Andréka-Németi project, we find
an explanation of a theory, or more carefully, of a set of phenomena that was
(more traditionally) explained by the laws of special relativity. The explana-
tion is written in a three-sorted first-order mathematical language. This can be
observed from the axioms and definitions given in the 4th section. For further
scrutiny of the claim, the reader is referred to the actual texts [Andréka et al.,
2002; Székely, 2009].

If we have a full first-order mathematical theory from which we can derive
representations of all of the purported laws of special relativity as theorems of
the new mathematical axiomatic theories, and we can also derive the phenom-
ena of the theory, then we have answered in the positive the first and second
questions with which we began. The more interesting question is the third: what
are the advantages of giving a wholly mathematical explanation of a physical
theory?

We now enumerate the gains. We (1) learn something more about explana-
tions in science. Some explanations of scientific phenomena are mathematical
because they follow from a mathematical explanation of the whole set of phe-
nomena, but this is not the general case in science, in fact it is so far unique
to the actual case we look at.31 The cicada example proposed by Baker most
clearly shows that we might have partly mathematical explanations of phenom-
ena that do not come from a mathematical theory of that area of science. We
do not have a mathematical formulation of evolutionary biology (and perhaps

31Note also that the work of Ax and Goldblatt, for example, only gave the ‘core’ of

special relativity theory. They stopped short of deriving the typical phenomena. Moreover,

as a result, since their mathematical basis is different from that used by the Andréka-

Németi group, it is still not clear that they had all that they would have needed to derive

all the phenomena.

209Using Mathematics to Explain a Scientific Theory •
D

ow
nloaded from

 https://academ
ic.oup.com

/philm
at/article/24/2/185/1752454 by guest on 19 April 2024



it is inconceivable at present to give such a formulation without significant loss
of information). Furthermore, evolutionary theory does not predict the prime-
numbered emergence of cicadas, and this is why biologists appeal to number
theory to complete their explanation. This example tells us about the taxonomy
of MES. There is no clear relationship between, on the one hand, partly math-
ematical explanations of phenomena and wholly mathematical explanations of
phenomena and, on the other hand, the relationship between explanations of
theories and explanations of phenomena.

It might be objected that in the Andréka-Németi project we are not faced
with genuine mathematical explanations. In the 5th and 6th Sections we have
addressed this doubt, and we have provided some arguments to defend the
genuine character of our example. In light of the several considerations we have
offered, the explanation given within the Andréka-Németi project should be
considered to be a genuine case of MES.

In general, the other epistemological gains are that we can derive new results
about the physical and the mathematical theories. With this sort of explana-
tion we are prompted to ask questions we would not have asked if we only had
a ‘physical’ explanation. Mathematical explanations prompt mathematical and
logical questions — questions about consistency of phenomena with axioms
of the theory (this exploration tells us very explicitly what axioms explain
what phenomena), and this, in turn, prompts questions about the interdepen-
dence of phenomena. And these questions are further explored by looking to
the interdependence of the mathematical axioms or theories.

To enumerate the further gains, consider the structure of the explanations.
The Andréka-Németi group start with a particular phenomenon; they explain it
using a particular set of axioms and attending proofs of the phenomenon. These
axioms are also sufficient to derive representations of what were previously con-
sidered to be laws of the physical theory, as theorems of the new mathematical
theory. Or, we derive phenomena as mathematical theorems that can be under-
stood (grasped) in terms of the ‘laws’ of the standard physical theory or in terms
of the formal axiomatic theory. This is (2) a ‘deepening’ of our understanding.
Furthermore, it is (3) more precise. We can then carry on the derivation to
make general predictions. We can feed in particular initial data (from observa-
tions, or hypothetical observations) to make ‘predictions’ that we can test by
measurement and observation. This is a type of interpolation within the theory;
we confirm what we already know in the science. So far, the Andréka-Németi
project has recovered all of the observed current data of special and general rel-
ativity theory. Even better: (4) in exploring and developing the explanations we
also learn about our mathematical concepts. The gain is not only in ‘deepening’
our understanding of the relativity theories. We also (5) make the theory more
accessible, since it is developed in terms of simpler or more primitive (logical)
notions, but also (6) in making predictions in the scientific theory — which
we might eventually test. If we did not think that faster-than-light objects or
‘particles’ are consistent with our theory, then we would never think to look
for their effects, or take seriously the data that suggest that they do exist. The
advantage of bringing the mathematical methodology to bear on the physics is
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in (7) counter-factual reasoning. For example, we might learn that an axiom is
stronger than it needs to be to recover the data. Or, we might learn that if we
subtract an axiom from a set of axioms we lose some data or observations. So
the axiom is necessary for the completeness of the theory (completeness with
respect to capturing all the phenomena associated with the science). Again, this
is a logical or mathematical question, and it is suggested by this methodology
very clearly, since we are free to make these ‘mathematical experiments’ with
the axioms. Axioms are thought of as hypotheses not as physical laws. We also
(8) explore what is consistent with the theories that explain all the phenomena.
For example we learn that it is consistent with most of the theories (and with
the known phenomena) that some objects travel faster than light.32 We think
that the Andréka-Németi project makes a significant contribution to physics.

Finally (9), the notion of wholly mathematical explanation for a whole phys-
ical theory gives a new twist to the ontological dispute that is taking place
around the enhanced indispensability argument for mathematical realism.33 So
the project reaches into disputes in metaphysics. Here, we sketch at least two
potential new issues that emerge from our analysis and that have a direct impact
on the dispute between platonists and nominalists. Until now, the platonists
endorsed the enhanced (or explanation-based) version of the indispensability
argument to support their realism about mathematical entities. For instance,
Baker and Colyvan have focused on the indispensable explanatory role of some
mathematical object or of a piece of mathematics like a theorem (cf., [Baker,
2009; Lyon and Colyvan, 2008]).

(I): Take one of our main results that it is a mathematical theory (individuated
by sets of axioms) and a mathematical methodology (used to navigate between
the sets of axioms, such as model theory) that together are playing an explana-
tory role in science. Philosophers who accept this result and who are platonists
(about mathematical entities), can recast the indispensability argument and
argue for the explanatory indispensability of a lot of mathematics. The first-
order theories used by the Andréka-Németi group have links and ties to arguably
most of mathematics; so under a suitable ‘rounding out’ of the mathematics we
recover most of mathematics, maybe most immediately via Zermelo-Fraenkel
set theory.34 Moreover the Andréka-Németi group use several sets of axioms;
so their methodology invites extending their theories to others in mathematics

32The Andréka-Németi group have recently worked out this result for 3 and 4 dimensions

[Andréka et al., 2014].
33In this article we are interested in explanations that essentially rely on mathematical

results, not on the existence of mathematical entities. Nevertheless, because of the impor-

tance of the debate on mathematical explanation for the platonist/nominalist debate via

the enhanced indispensability argument, and because of the potential contribution that

our study might have in this area, we discuss this issue briefly here.
34The parts not included are the parts that have not (yet) been linked to the rest

of mathematics; so we can imagine an isolated mathematician with little institutional

training writing in his or her own formal language and developing a consistent or coherent

‘mathematical’ faute de mieux (in the absence of any better way of describing the activity)
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instead of focusing on the explanatory indispensability of some mathematical
objects or theorems. This option has not yet been explored in the literature but
is it not prima facie uninteresting.

(II): Secondly, the test case that we have presented gives further support for
the claim that mathematics explains physical facts and sometimes reaches fur-
ther in terms of explanatory power (when compared to the traditional physical
explanation). As we have seen, the Andréka-Németi group are able to explain
mathematically phenomena that are poorly explained in the standard treat-
ment of special relativity. This fact has a twofold effect on the dispute about
the enhanced indispensability argument: (i) it reinforces the idea that there exist
mathematical explanations of physical phenomena, thus giving support for the
premise that ‘mathematical objects play an indispensable explanatory role in
science’; (ii) it makes a problem for the nominalists who want to rephrase some
mathematical explanations that, as in the case of our example, are not obtain-
able or, at least have not been obtained, in purely physical terms. As we have
seen, through the usual treatment of special relativity we are not able to explain
some phenomena that the Andréka-Németi group explain mathematically. This
is interesting for the philosophy of mathematics because the types of questions
asked are different depending on whether we explain a science using causal laws
and physical constants or pure mathematics. The tool we use, the type of expla-
nation we give, influences the direction of further mathematical and scientific
exploration. We hope that our efforts might give a fresh and stimulating impetus
to the debate about mathematical explanation in science.
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