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Functional brain imaging has revealed two types of dynamic patterns of brain in
the resting-state: the dynamics of spontaneous brain activities and the dynamics of
functional interconnections between spontaneous brain activities. Although these two
types of brain dynamics are usually investigated separately in the literature, recent
functional magnetic resonance imaging (fMRI) studies have shown that they exhibit
similar spatial patterns, suggesting the dynamics of spontaneous brain activities and
the dynamics of their interconnections are associated with each other. In this study,
we characterized the local blood oxygenation level dependent (BOLD) dynamics and
the functional connectivity dynamics (FCD) in the resting-state, and then investigated
their between-region associations. Time-varying FC was estimated as time-varying
correlation coefficients using a sliding-window method, and the temporal variability of
BOLD and time-varying FC were used to quantify the BOLD dynamics and the FCD,
respectively. Our results showed that the BOLD dynamics and the FCD exhibit similar
spatial patterns, and they are significantly associated across brain regions. Importantly,
such associations are opposite for different types of FC (e.g., within-network FCD
are negatively correlated with the BOLD dynamics but the between-network FCD are
positively correlated with the BOLD dynamics), and they are spatially heterogeneous
across brain networks. The identified heterogeneous associations between the BOLD
dynamics and the FCD appear to convey related or even distinct information and might
underscore the potential mechanism of brain coordination and co-evolution.

Keywords: functional connectivity dynamic, BOLD dynamic, associations between brain dynamics, spatial
heterogeneity, resting-state

INTRODUCTION

The human brain is a highly dynamic system, which is characterized by non-stationary
neural activities and represented by ever-changing mental states at time scales ranging from
milliseconds to hours (Lehmann and Skrandies, 1980; Lehmann et al., 1987; Allen et al., 2014).
Investigating the resting-state brain dynamics from functional magnetic resonance imaging (fMRI)
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has been an important research theme for its crucial role towards
understanding the mechanisms and the relevance of brain’s
spontaneous states.

The brain dynamics can be clearly observed from fluctuations
of blood oxygen level dependent (BOLD) fMRI signals,
which reflect ongoing postsynaptic excitation of local neuronal
assemblies. Different brain regions exhibit different degrees
of BOLD fluctuations at rest (Zang et al., 2007; Kannurpatti
et al., 2008; Biswal et al., 2010), with the default mode network
(DMN) showing higher amplitude of low frequency fluctuations
(ALFF) in resting-state (Zang et al., 2007; Zou et al., 2008).
This observation coincides with the fact that the DMN regions
generally have higher neuronal activity (Shulman et al., 1997)
and metabolic rate (Raichle et al., 2001) during the resting-state,
suggesting an association between the amplitude of fluctuations
and the level of local neuronal activity.

Besides the evident dynamics of neural activities, another
type of brain dynamics, dynamics of brain connectivity, has
also attracted rapidly increasing interests during recent years.
Dynamic functional connectivity (FC) indicates the temporal
changes of synchronizations between neural activities. Mounting
evidence has demonstrated that FC fluctuates significantly within
time scales of seconds to minutes during the resting-state
(Hutchison et al., 2013; Di et al., 2015), and such FC dynamics
(FCD) are related to some physiological and psychological
factors. FCD reflect the brain’s evolving network configurations
and might be associated with changing patterns of neural
communication that subserve certain brain functions. Spatial
heterogeneity of FCD has also been reported in the literature: FC
between DMN and frontal-parietal network has relatively larger
variability, while the within-network FC of visual network, DMN
and sensorimotor network (SMN) is more stable than that of
orbitofrontal-limbic network (Allen et al., 2014; Zalesky et al.,
2014).

Despite great achievements in the research of both
types of brain dynamics (BOLD dynamics and FCD), the
relationships between them have been seldom explored.
Exploring such relationships may provide a better understanding
of the characteristics and mechanisms of FCD, because the
non-stationarity of signals shall have an influence on the
dynamic patterns of FC (Hutchison et al., 2013). In this study,
we hypothesized that the two resting-state brain dynamics,
local BOLD dynamics (LBD) and FCD, are associated across
brain regions. This hypothesis is based on the following
two observations. First, brain signal dynamics (Vakorin
et al., 2011; Di et al., 2013; Yang et al., 2014; Huang et al.,
2016) and FCD (Allen et al., 2014; Zalesky et al., 2014) share
similar spatial patterns. For example, some dominant intrinsic
connectivity networks (ICNs), such as DMN and frontal-parietal
network, do not only exhibit high variability in their local
activities (Zuo et al., 2010), but also vary considerably in
their connectivity or network metrics (Honey et al., 2007; van
den Heuvel and Sporns, 2013; Allen et al., 2014). In contrast,
some ICNs with stable activities during the resting-state,
such as the SMN, have relatively stable within-network FC
(Zalesky et al., 2014). Second, electrophysiological evidence
shows that the high-frequency neural activity (such as

gamma oscillations) might be closely related to local BOLD
signals, while the lower-frequency neural activity (such as
theta oscillations) might reflect long-range synchronizations
between distinct brain regions. Those high-frequency and
low-frequency neural activities have been found to be coupled
via both amplitude and phase (i.e., cross-frequency coupling;
Allen et al., 2011; Whitman et al., 2013), which further
implies potential associations between BOLD activities and
their FC.

To validate our hypothesis, we conducted a detailed
examination of LBD and FCD across the whole brain and
investigated their potential associations using a resting-state
fMRI dataset consisting of 102 normal subjects. The LBD
were quantified as the temporal variance of BOLD signals
at regions of interest (ROIs) defined by the Dosenbach atlas
and the FCD were quantified as the temporal variance of
the time-varying correlation coefficients between regions.
We first showed that two types of dynamics, the LBD and
the FCD, exhibit similar spatial patterns across the whole
brain. We further correlated the LBD with the FCD across
ROIs of the whole brain as well as of each ICN and identified
significant across-ROI associations between LBD and FCD.
It was found that the LBD are positively correlated with
the within-network FCD but negatively correlated with the
between-network FCD. Interestingly, the degree of associations
shows significant spatial heterogeneity (i.e., different ICNs
have largely different degrees of associations between LBD and
FCD). In summary, the converging results demonstrated that
the BOLD dynamics and the FCD are spatially associated
and such associations are heterogeneous among brain
networks.

MATERIALS AND METHODS

Data Collection and Preprocessing
We analyzed a publicly available imaging dataset (Oulu) from the
1000 Functional Connectomes Project. After removing data with
large head motion (>3 mm or 3◦), 102 subjects were included in
current study for further analysis (mean age: 21.2 years, range:
20–23 years; 66 females and 36 males). In total 245 resting-
state fMRI images were acquired for each subject using a
repetition time (TR) of 1.8 s. High-resolution T1 weighted
anatomical image for each subject was also available. More
information about MRI acquisition of the data could be found
at http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html.

The fMRI data were preprocessed using statistical parametric
mapping (SPM81) under MATLAB7.6 environment. The images
were motion corrected for each subject, and coregistered to
the subject’s high-resolution anatomical image. The anatomical
images were segmented using the new segment routine in SPM8.
Then, the deformation field obtained from segmentation was
applied to all functional images to normalize them into the
standard MNI space. After that, the functional images were
temporally filtered by a second order Butterworth bandpass

1http://www.fil.ion.ucl.ac.uk/spm/
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filter (0.01–0.1 Hz). One-hundred and sixty ROIs were defined
using Dosenbach atlas in six different ICNs (Dosenbach et al.,
2010): cerebellum network, cingulo-opercular network (CON),
DMN, fronto-parietal network (FPN), occipital network, SMN
(Detailed MNI coordinates of ROIs are provided in Table A5
of Supplementary Materials). The BOLD response of each ROI
was the average of all voxels in this ROI. For each ROI, six rigid
body head motion parameters, six head motion derivatives, the
first five eigenvectors from white matter (WM) signals, and the
first five eigenvectors from cerebrospinal fluid (CSF) signals were
regressed out using linear regression. The WM and CSF masks
were defined for each subject using the segmented WM and CSF
images with a threshold at p > 0.99.

Estimation of Dynamic FC and Definitions
of Different Types of FC
For each subject i = 1 . . . N (N = 102, number of subjects),
dynamic FC was estimated with a sliding window method,
wherein we computed correlation coefficient matrices corr(t)i,
t = 1 . . . T (T = 240, number of TRs), from windowed segments.
We used a symmetric rectangle window of 30 s and slid in
steps of 1 TR. Finally, the dynamic FC estimates, corr(t)i, were
concatenated to form corri, a C × C ×T (C = 160, number
of ROIs) array representing the changes in correlation between
ROIs as a function of time. Here, the window size of 30 s was
shown to be a reasonable choice for estimating FCD, because
previous studies reported that changes of FC are not sensitive to
the window size in the range of 20–40 s (Allen et al., 2014; Li et al.,
2014).

Because the FC within one ICN and the FC between different
ICNs have largely different dynamic patterns (Zalesky et al.,
2014), we further defined two types of FC and investigated them
separately: the within-ICN FC was referred to FC between ROIs
within the same ICN and the between-ICN FC was referred to
as FC between ROIs at different ICNs. Correspondingly, the
dynamics of within-ICN FC and the dynamics of between-ICN
FC were referred as the within-ICN FCD and the between-ICN
FCD.

Identification of Spatial Heterogeneity of
Local BOLD Dynamics and FC Dynamics
We first characterized the LBD and investigated their spatial
heterogeneity among ICNs. For each subject, the temporal
variance of BOLD signals was calculated for all 160 ROIs to
measure the LBD of ROIs. For each ICN, its LBD were calculated
as the mean of LBD of all ROIs within this ICN. Nonparametric
repeated measures analysis of variance (ANOVA) was used to
test the difference of LBD across ICNs. If there exists significant
difference, post hoc Wilcoxon rank sum test was conducted to
examine whether LBD are significantly different between two
ICNs.

The FCD was calculated as the temporal variance of Fisher
z-transformed time-varying correlation coefficient for each
subject. Before analyzing the FCD, we used a statistic to
test the FCD (temporal variance of FC) based on the vector
autoregressive (VAR) null model (Chang and Glover, 2010;

Zalesky et al., 2014). The details of the statistic are provided
in Figure S2 of Supplementary Materials. To investigate the
spatial heterogeneity of FCD, we conduct statistical analysis only
using the FCD that rejects the null hypothesis at two levels:
the ICN level and the network-pair level. First, to examine
whether FC has similar dynamic patterns with BOLD signals in
terms of their spatial distribution, we compared the within-ICN
FCD and the between-ICN FCD for each ICN. For one ICN,
its within-ICN FCD were calculated as the mean of temporal
variance of within-ICN FC between ROIs within this ICN,
while its between-ICN FCD were calculated as the mean of
temporal variance of between-ICN FC between ROIs of this
ICN and ROIs of other ICNs. The Wilcoxon rank sum test was
conducted to examine the difference between the within-ICN
FCD and the between-ICN FCD for each ICN. Second, to explore
more details of the spatial heterogeneity of FCD, we further
compared the FCD among 21 network-pairs. The 21 network-
pairs were defined as following: 6 within-ICN FC groups and
15 between-ICN FC groups. Similarly, for each subject, the FCD
were averaged within each network-pair to obtain the mean
FCD of each network-pair. Nonparametric repeated measures
ANOVA was used to test the differences of FCD, then Wilcoxon
rank sum test was conducted to examine whether the FCD
are significantly different among network-pairs. To address the
problem of multiple comparisons, the thresholds of significance
for above comparisons were corrected by false discovery ratio
(FDR; Nichols and Hayasaka, 2003).

Associations between Local BOLD
Dynamics and FC Dynamics
The Pearson correlation coefficient between LBD and FCD
was calculated for the exploration of the potential associations
between dynamics of local activities and dynamics of their
connections. First, for each ROI, its within-ICN FCD were
calculated as the mean of the temporal variance of within-ICN
FC between this ROI and others ROIs within the same ICN,
while its between-ICN FCD were calculated as the mean of
the temporal variance of between-ICN FC between this ROI
and ROIs of other ICNs. Then we correlated the within-ICN
FCD or the between-ICN FCD with the LBD across all ROIs
using Pearson correlation coefficient for each subject. The
correlation coefficients were Fisher z-transformed and finally,
one sample t-test was conducted across subjects to examine
whether the correlations are significantly different from 0 at the
group level.

To explore more details of the associations between
brain dynamics, we correlated the within-ICN FCD or the
between-ICN FCD with the LBD across ROIs within each
ICN. Similarly, one sample t-test was conducted across subjects
to examine whether the Fisher z-transformed correlations are
different from 0 at the group level. Furthermore, to investigate
the potential spatial heterogeneity of the associations, the
nonparametric repeated measures ANOVA was used to test
the difference of correlations among ICNs. After that, two
sample t-test was conducted across subjects to examine whether
the correlations are different between two ICNs at the group
level.
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FIGURE 1 | Graphical representation of blood oxygenation level dependent (BOLD) dynamics and FC dynamics (FCD). The connectogram visualizes the temporal
variance of BOLD and FC in the whole brain. Background transparency varies such that the most transparent backgrounds are associated with the smallest
temporal varaince of BOLD or FC, and the most opaque backgrounds are associated with the largest temporal varaince of BOLD or FC. The most dynamic and
statble FC (1%) are displayed in the middle of the connectogram with the red and blue, respectively. Regions of interests (ROIs) were defined using Dosenbach atlas
in six different ICNs: CER, cerebellum network; CON, cingulo-opercular network; DMN, default mode network; FPN, fronto-parietal network; OCC, occipital network;
SMN, sensorimotor network.
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FIGURE 2 | Local BOLD dynamics (LBD) within six ICNs during the
resting-state. On each box plot, the central line denotes the median; the
edges of the box are the 25th and 75th percentiles. Significant difference
between LBD of ICNs is indicated with short thin vertical marks and
∗(p < 0.05, false discovery ratio (FDR) corrected). ROIs were defined using
Dosenbach atlas in six different ICNs: CER, cerebellum network; CON,
cingulo-opercular network; DMN, default mode network; FPN, fronto-parietal
network; OCC, occipital network; SMN, sensorimotor network. The exact
p-values can be found in Table A1 of the Supplementary Materials.

RESULTS

Spatial Heterogeneity of Local BOLD
Dynamics and FC Dynamics across ICNs
LBD, FCD and the most variable or stable FC are depicted
in Figure 1 using a connectogram (Detailed FCD of all FC is
provided in Figure S1 of Supplementary Materials). It can be
observed from Figure 1 that: (1) BOLD signals within DMN and
frontal-parietal network are more variable, and BOLD signals
within cerebellum network and CON are relatively stable; (2) the
between-ICN FCDwithin DMN and frontal-parietal network are
larger, while the between-ICN FCD within cerebellum network,
CON and SMN are relatively smaller; (3) the within-ICN FCD
of CON and SMN are larger, while the within-ICN FCD of
DMN and frontal-parietal network are relatively smaller; (4) the
FC among DMN, frontal-parietal network and occipital network
is more variable, while the FC within these ICNs is more
stable.

The temporal variance of BOLD signals for each ICN is shown
in Figure 2. It could be observed that BOLD signals within DMN
and frontal-parietal network have significantly larger variability
while BOLD signals within cerebellum network, CON and SMN
have significantly smaller variability. The comparisons of the
temporal variance of FC are shown in Figure 3 (comparison
between the within-ICN FCD and the between-ICN FCD for
each ICN) and Figure 4 (comparison of the FCD of 21 network-
pairs). It can be seen that: (1) the between-ICN FC exhibit
significantly larger variability than the within-ICN FC for all
ICNs; (2) for the within-ICN FC, the FC within CON and
SMN have significantly larger temporal variability than the FC
within other ICNs; (3) for the between-ICN FC, the FC between
cerebellum network and other ICNs as well as the FC between

FIGURE 3 | Comparison between within-ICN FCD and between-ICN FCD at
each ICN. Within-ICN FCD is marked in red, and between-ICN FCD is marked
in blue. On each box plot, the central line denotes the median; the edges of
the box are the 25th and 75th percentiles. Significant difference between
within-ICN FCD and between-ICN FCD is indicated with ∗(p < 0.05, FDR
corrected). ROIs were defined using Dosenbach atlas in six different ICNs:
CER, cerebellum network; CON, cingulo-opercular network; DMN, default
mode network; FPN, fronto-parietal network; OCC, occipital network; SMN,
sensorimotor network. The exact p-values can be found in Table A2 of the
Supplementary Materials.

CON and other ICNs have significantly smaller temporal
variability than the other between-ICN FC, while the FC between
DMN and other ICNs as well as the FC between frontal-parietal
network and other ICNs have significantly larger variability
than the other between-ICN FC. These results indicated that

FIGURE 4 | Comparison of FCD between network-pairs. Within-ICN FCD is
marked in red, and between-ICN FCD is marked in blue. On each box plot,
the central line denotes the median; the edges of the box are the 25th and
75th percentiles. Significant difference between FCD for each pair of ICNs is
indicated with ∗(p < 0.05, FDR corrected). ROIs were defined using
Dosenbach atlas in six different ICNs: CER, cerebellum network; CON,
cingulo-opercular network; DMN, default mode network; FPN, fronto-parietal
network; OCC, occipital network; SMN, sensorimotor network. The exact
p-values can be found in Table A3 of the Supplementary Materials.
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FIGURE 5 | Correlation between LBD and FCD. Significant correlation is indicated with *. ROIs were defined using Dosenbach atlas in six different ICNs: CER,
cerebellum network; CON, cingulo-opercular network; DMN, default mode network; FPN, fronto-parietal network; OCC, occipital network; SMN, sensorimotor
network.

BOLD signals and FC have similar dynamic patterns in terms of
their spatial distribution (for example, DMN and frontal-parietal
network have relative larger LBD and between-ICN FCD, while
the other four ICNs have relative smaller LBD and between-ICN
FCD).

Local BOLD Dynamic and FC Dynamics
Were Associated
The correlation between LBD and within-ICN FCD and the
correlation between LBD and between-ICN FCD are depicted
in Figure 5. It can be observed a significantly negative
correlation between LBD and within-ICN FCD (r = −0.0921;
p = 2.31 × 10−5), but a significantly positive correlation between
LBD and between-ICN FCD (r = 0.2272; p = 1.11 × 10−37)
for the whole resting-state network. The associations between
LBD and FCD within each ICN are shown in the right
panel of Figure 5. Consistent positive correlations between
LBD and between-ICN FCD could still be observed for
all 6 ICNs. On the other hand, the negative correlation
between LBD and within-ICN FCD is only significant in
DMN. We compared the correlations among ICNs and the
results are shown in Figure 6. Remarkable spatial heterogeneity
of associations between brain dynamics is observed: for the
associations between LBD and within-ICN FCD, DMN has
the strongest negative correlation among ICNs (although it
is near-significant for the comparison with the correlation of
cerebellum network); for the associations between LBD and
between-ICN FCD, frontal-parietal network has the smallest
correlation and CON has significantly larger correlation than
frontal-parietal network, occipital network and sensorimotor
network have.

FIGURE 6 | Comparison of correlation between LBD and FCD among six
ICNs. Significant difference between correlations of ICNs is indicated with
short thin vertical marks and *. ROIs were defined using Dosenbach atlas in
six different ICNs: CER, cerebellum network; CON, cingulo-opercular network;
DMN, default mode network; FPN, fronto-parietal network; OCC, occipital
network; SMN, sensorimotor network. The exact p-values can be found in
Table A4 of the Supplementary Materials.

DISCUSSION

In this study, we investigated the spatial characteristics of two
types of brain dynamics, the BOLD dynamics and the FCD,
and further explored their associations. The main findings were:
(1) the BOLD dynamics and the FCD show similar spatial
heterogeneity; (2) the FCD are correlated with the BOLD
dynamics across brain regions; and (3) the correlations between
FCD and BOLD dynamics exhibit spatial heterogeneity.
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Spatial Heterogeneity of Local BOLD
Dynamics
The present study explored the temporal variance of BOLD
within six ICNs and revealed remarkable spatial heterogeneity
of the BOLD dynamics during the resting-state. BOLD activities
within DMN were identified to be most variable in our study
and this result is consistent with the findings based on ALFF,
which is also a mathematical measure of local signal dynamics.
Typically, brain regions with greater metabolic and neural
activities at rest, such as regions in DMN, have larger ALFF
(Zuo et al., 2010). More dynamic activities of DMN might be
due to the fact that it is one of the most dominant networks
that are recognized as highly active when the brain is at
wakeful rest (Raichle et al., 2001). We also speculate that the
highly dynamic patterns of some ICNs, such as DMN and
FPN might because these ICNs contain some functional hubs
of the brain (Hagmann et al., 2008; Tomasi and Volkow,
2011; Smallwood et al., 2012; Liang et al., 2013; Zanto and
Gazzaley, 2013). For one thing, the functional hubs are highly
connected to the regions within the same ICN. For another,
the functional hubs are also functional connected to many
regions in other ICNs. Therefore, these hubs and the whole ICNs
they belonged to may be more easily to be influenced by the
information flow from other brain regions and are therefore
highly variable. The high BOLD dynamics in DMN and FPN
might also be explained by the dynamic range. The variability
of BOLD activity reflects the dynamic range of possible neural
responses to incoming stimuli (Garrett et al., 2013). Regions
with greater dynamic ranges would permit a greater range of
responses to stimulation or tasks. Since DMN and frontal-
parietal network participate in various brain functions and are
able to respond to a more diversified range of stimuli, a greater
dynamic range may result in more variability in their BOLD
activity.

Spatial Heterogeneity of FC Dynamics
Our observation that the within-ICN FC was more stable than
the between-ICN FC was consistent with a previous study
(Zalesky et al., 2014). Particularly, the FC within DMN, occipital
network and frontal-parietal network is most stationary, and in
contrast, the FC between these networks is most variable. The
spatial heterogeneity of resting-state FCD might be explained
by the different information-processing roles of brain regions
(Tagliazucchi et al., 2012a,b; Allen et al., 2014; Zalesky et al.,
2014). For example, compared with other brain regions, brain
regions playing a role in adaptive processes in childhood have
relative higher variable FC (Marusak et al., 2017). In the
present study, we identified that the within-ICN FC and the
between-ICN FC of some dominant networks have significantly
different temporal variability (e.g., DMN has the most variable
between-ICN FC but the most stable within-network FC). DMN
is a coherent system which includes functional hubs of the
whole brain network (Tomasi and Volkow, 2011; Smallwood
et al., 2012). Our findings implied that these functional hubs
also have significantly different temporal variability in their
within-ICN FC and their between-ICN FC. Indeed, it could be

observed from Figure 1 that some functional hubs (such as PCC
and mPFC) have remarkably different within-ICN FCD (more
stable) and between-ICN FCD (more variable). These findings
could partially explain the inconsistent findings on the dynamics
of hub-related FC in previous literature. Shen et al. (2015)
showed that hub regions have higher temporal stability in their
FC, while some other studies have reported that FC involving
hubs is highly variable (Allen et al., 2014). These inconsistent
observations on hub-related FC might be due to the different
atlases used, which could assign one specific FC to different
types (within-network or between-network). The significantly
different dynamics of FC might be explained by the following
two reasons. For one thing, the within-network communication
should be relatively stable to resist the interference from other
brain regions so as to maintain their networks’ robustness
and adaptability. For another, the between-ICN FC represents
the communication between multiple brain sub-systems. These
connections typically have relatively longer distances and thus
larger workloads (Crossley et al., 2013). To optimize the cost
in communication, the between-ICN FC should be maximally
variable so that they could switch among hugely possible
metastable states.

Associations between BOLD Dynamics
and FC Dynamics
There is scattered evidence showing that the dynamics of brain
activities and the connections between brain activities (i.e., static
FC) is correlated. For example, larger variability of EEG
signals was suggested to reflect the higher integration between
distributed neuronal populations (Vakorin et al., 2011). Also,
the interaction between temporal variability of BOLD activities
and the strength of their synchronization is linearly correlated
(Yang et al., 2014). Our previous research also suggested that
the strength of FC was influenced by the ALFF in local regions
(Di et al., 2013). This study attempts to explore the interaction
between brain signal dynamics and FCD (instead of static FC)
for a more comprehensive characterization of the temporal
complexity of brain dynamics.

We found that LBD and FCD were significantly associated
and the associated patterns were different for within-ICN FC
and between-ICN FC. One possible explanation of the negative
correlation between LBD and within-ICN FCD is that the
higher variability in BOLD of one region could enhance the
strength and stability of its synchrony with signals at other
homogeneous regions. Considering that regions within the same
ICN might receive homogeneous input, their within-network
connections would be strong and relative stable (Rubinov et al.,
2009). Under this situation, noise might be the major cause of
the variability in within-ICN FC. For those ICNs with larger
activities at rest, such as DMN and frontal-parietal network,
the amplitude of neural signal would be larger relative to the
noise level (assume that different ICNs might have similar noise
levels). When the noise reaches some finite level, the system
embedded in an adequate noisy environment (high signal-to-
noise ratio, SNR) acquires an enhanced sensitivity towards
detection of signals, which is referred to the ‘‘stochastic resonance
phenomenon’’ (Gammaitoni et al., 1998; Moss et al., 2004;
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Rouvas-Nicolis and Nicolis, 2007). As a result, within-ICN FC
would be stable, since low-amplitude noise would have less
influence on within-ICN FC calculated from high-amplitude
signals. In contrast, for those ICNs with less metabolic or
neural activity (such as cerebellum network), noises might
saturate the neural signals (Garrett et al., 2013). Therefore,
within-ICN FC of these ICNs is sensitive to the noise and
more variable. An interesting observation is that this negative
correlation between LBD and within-ICN FCD could only
be identified within DMN, implying this negative correlation
may only exist in those ‘‘heterogeneous’’ networks. Among
six ICNs, DMN is the heterogeneous network because it
is suggested to be comprised of different fractions (Laird
et al., 2009; Andrews-Hanna et al., 2010). This may partially
explain why the whole resting-state FC network (which is also
heterogeneous) and the DMN share similar associations between
brain dynamics.

The between-ICN FCD was identified to be positively
correlated with the LBD across the whole brain and even
within each ICN. One possible interpretation is that the higher
variability of local signal could guarantee its between-ICN
FC closer to the ‘‘critical state’’ (He, 2011), in which those
connections are more flexible and thus more prone to switch
among different states. If FC is close to the critical state, it
might have high rewiring likelihoods when the brain networks
evolve among different reconfigurations. In this situation, noisy
dynamics in the brain regions might enable it to persist the
ongoing rewiring (Rubinov et al., 2009).

Overall, we argued that the BOLD signal dynamics might
modulate FCD in different ways so as to maintain the balance
between integration and segregation of brain network, with
the purpose of optimizing the cost and efficiency of the brain
system. Therefore, this study may contribute to a more complete
understanding of the mechanisms of FCD.

Methodological Considerations and
Limitation
First, we used Dosenbach atlas to define 160 ROIs from six ICNs.
It should be noted that the ROIs within each ICN were not
the same. Therefore, the comparison results might be influenced
by the un-balanced ROI size, although the statistical analysis
was cautiously used. The dynamic FC in current study was
estimated using rectangular windows with a fixed window size.
A recent study has shown that tapered windows could provide
less sensitive to state transitions and in contrast, rectangular
windows could better capture the sharp transition of brain
connectivity states (Shakil et al., 2016). However, since it is not
clear that brain FC varies sharply or smoothly, we are not sure
which types of window could be better used for estimating real
dynamic patterns of FC during the resting-state. Researchers
also showed that sliding window based FC estimation method
would give poor estimates of dynamic FC, if a fixed window
size is used. The estimated dynamic FC could not reliably
reflect the underlying state transitions unless suitable window
sizes (comparable to the state duration) were used. Therefore,
adaptive dynamic FC estimation methods with variable window

size selection could be used for better capturing the dynamics in
the future.

The dynamic patterns and the static patterns of brain
might be correlated. Zalesky et al. (2014) have reported
evidence showing that a consistent set of FC has significant
fluctuations in their connectivity strength over time and the
between-ICN (or intermodular) FC is typically more variable
than the within-ICN (intramodular) FC. Another study on
FCD of neurocognitive networks found similar patterns that
the FC between independent components within the same
network (or module) is more stable than the FC between
independent components in different networks (Marusak et al.,
2017). Considering that the within-ICN FC typically has larger
connectivity strength than the between-ICN FC has, it is
reasonable to assume a negative association between the FC
variability and FC strength across the whole brain FC. In current
study, although our identified dynamic patterns have similar
spatial distribution with the static patterns (e.g., larger variability
in FC (between-ICN FC) corresponds to smaller FC strength
and smaller variability in FC (within-ICN FC) corresponds to
larger FC strength), the detailed relationships between dynamic
patterns and static patterns of brain are not explored. Whether
and how these patterns are related to each other should be
considered and investigated in the future study.

The sliding window approach is the most commonly used
method to probe the dynamic patterns in FC. By evaluating
two sliding window based methods on an fMRI dataset
with extremely large sample size (n = 7500), a recent study
demonstrated that these two methods can capture highly
replicated and reliable dynamic patterns in resting-state FC
(Abrol et al., 2017). Abrol et al. (2017) also conducted a
surrogate dataset analysis which showed that the dynamic
FC patterns captured by the sliding window approaches are
indeed statistically significant. Another study used a dataset
with simultaneously measured EEG and fMRI data to explore
whether the sliding window based approach can capture real
dynamic patterns that are corresponding to electrophysiological
signatures. They not only identified dynamic FC similar to
that observed in previous studies in an independent sample,
but also showed that FC changes are highly associated with
EEG spectral signatures (Allen et al., 2017). The above findings
demonstrated that the sliding window approach is robust
against variation in data quality, analysis and grouping, and
can capture real variations in FC between brain regions.
Although the sliding-window approach has identified numerous
valuable dynamic patterns in FC, there are still several critical
issues which must be considered in applying the method and
interpreting results. Many factors, such as SNR (Hutchison
et al., 2013), head motions (Power et al., 2012), variations in
the BOLD amplitudes and power (Liu and Duyn, 2013; Fu
et al., 2017), and even the approaches (especially the sliding
window approach) can induce variations in the estimated FC
(Hindriks et al., 2016). A recent study showed that the statistical
assessment of results is needed in dynamic FC studies (Hindriks
et al., 2016). In the present study, to statistically justify the
significance of the observed FCD (temporal variance of FC),
we developed a statistic based on the VAR null model. Our
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results showed that most of the FC rejects the null hypothesis.
We evaluate the FC pairs that reject the null hypothesis for
further statistical analysis, and observed significant associations
between BOLD dynamics and FCD. The converging results
suggest that our findings are not caused by sampling variability
in the estimation.

CONCLUSION

Conventionally, the heterogeneity of brain signals dynamics
and brain FCD were investigated separately. Here, we first
validated that both dynamics of BOLD and dynamics of FC were
different across ICNs and even brain regions. Then we provided
evidence showing that dynamics of BOLD were associated with
dynamics of FC. Interestingly, similar associations (both positive
association and negative association) between brain dynamics
were further identified in DMN (for other ICNs, only negative
association between LBD and between-ICN FCD could be
identified). Overall, our results suggested that there is ubiquitous
spatial heterogeneity in dynamics of BOLD, dynamics of FC and
their associations. The associations between brain dynamics may
provide a new interpretation regarding the evident FCD. Further
investigation on brain dynamics and their associations could be
performed in various tasks or for different cohorts, which can
improve our understanding of a variety of problems (such as
brain development, task performance and neurological diseases)
related to brain dynamics.
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