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Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the
cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in
this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML).
The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network,
homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-
degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference𝑅 and coupling coefficient 𝜀will increase the risks of cascading failures. Cascading threshold values𝑅𝑐 and 𝜀𝑐 exist, where cascading
failures will spread to the entire network when 𝑅 > 𝑅𝑐 or 𝜀 > 𝜀𝑐. When facing a random attack or max-status attack, the network
with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing amax-degree
attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading
speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree⟨𝑘⟩ can improve the network invulnerability.

1. Introduction

Wireless sensor networks (WSNs) are usually made up
of hundreds, even thousands, of distributed sensor nodes
organized in ad hoc paradigm to monitor the environment.
Since they can be easily deployed and self-organized, WSNs
can cover a wide range of applications domains [1, 2]. As
in most of the scenarios WSNs are expected to operate in
unattended environments, the sensor nodes always suffer
from the risks of energy depletion, hardware malfunction,
or deliberate attacks [3, 4]. Failures of sensor nodes would
split originally connected network topology, would reduce
the coverage of the network, and might even lead to a global
network paralysis.Therefore, how to establish an invulnerable
WSN has been a hot research issue in recent years.

Most of current research on invulnerability of WSNs
mainly focuses on the connectivity and availability of the
network topology after removing a certain number of nodes
or links. Although somepromising progress has beenmade in
building an invulnerable network topology, all this work fails

to take into consideration the impacts of load redistribution
on topology invulnerability. In real WSNs, the changes in
network topology would give rise to the redistribution of
data flow in the network, thus leading to the dynamic
changes of network load. The capacity of a sensor node
tackling or transmitting data is always limited due to the
constrained hardware cost. When the real-time data load is
beyond its capacity, it is highly likely to turn into failure.
When a node fails, those nodes which transmit data via
this failure node have to choose new paths to transmit data,
thus leading to the load redistribution in the network. This
load-redistribution process might make some new nodes fail
due to capacity spilled and these failure nodes would lead
to a new round of cascading failures. Consequently, more
and more failure nodes are removed from the topology and
this process will be repeated until there is no new node
turning into failure. Therefore, the cascading process is a
commonphenomenon inWSNs, which is also a crucial factor
to influence the network invulnerability [5, 6]. Especially
with the wider application of wireless multimedia sensor
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networks, the risks of overload inWSNs tend to be higher and
the threats of cascading failures cannot be ignored anymore.
But unfortunately, current research about cascading failures
of WSNs is still rare.

Coupled map lattice (CML) is a dynamical system that
models the behavior of nonlinear systems. As far as the
network simulation is concerned, CML considers the net-
work system as a time-discrete and space-discrete system.
In the CML-modeling network system, by observing the
interaction among nodes and the self-status changes of
nodes, the dynamic behavior of the network can be well
studied [7]. CML has been widely applied in the domain
of complex networks due to its easy-modeling and high-
computation efficiency advantages.The first CMLmodel was
proposed in [8] for the studies of spatiotemporal chaos. After
that, many CML models have been developed for different
applications. Leung et al. [9] developed a radial-based CML
model for signal detection. Zhang and Wang [10] proposed
a mixed linear-nonlinear CML model for image encryption.
Konishi et al. [11] presented a car-following CML model
for suppression of traffic congestion. Kohar et al. [12] used
a quadratic CML method to research the role of network
topology in noise reduction. For cascading failures, its inner
essence is that a single node’s failure is possible to spread
to the entire network due to the coupled relationship with
others. Considering the coupled feature of cascading failures,
CML is a convincing theoretical tool to research it. Due to this
reason, Wang and Xu [13] researched the cascading process
of globally coupled networks based on CML. Cui et al. [14]
studied the cascading failures of small-world networks. Di et
al. [15] investigated the tolerance of edge cascades with CML
method. Xu and Wang [16] researched the cascading process
of scale-free networks.

But as WSN is a physical network featured by limited
transmission radius, which is quite different from general
complex network, its cascading process would demonstrate
evident differences comparedwith other networks.Therefore,
in this paper our goal is to investigate the invulnerability
of various WSN topologies towards cascading failures with
CML method. The contribution of this paper covers four
aspects:

(1)Wedevelop a cascadingmodel ofWSNs based onCML
and propose four network topology construction methods
(i.e., random network, small-world network, homogeneous
scale-free network, and heterogeneous scale-free network)
considering the limited transmission radius feature ofWSNs.

(2) We analyze the degree distribution of the network
topology generated by our methods theoretically. We prove
that the generated scale-free network topologies are featured
by pow-law degree distribution and the degree distributions
of generated random network and small-world network are
characterized by Poisson distribution.

(3) We design three attack schemes (i.e., random attack,
max-degree attack, and max-status attack) as the trigger
conditions for cascading process ofWSNs.We investigate the
cascading invulnerability under three attack schemes.

(4) Simulation results demonstrate that scale-free net-
works have stronger invulnerability when facing a random
attack. Random network and small-world network perform

better when facing a max-degree attack. Max-status attack
can trigger cascading failures with less interference. The
spreading speed of cascading failures is inversely propor-
tional to the average path length of the network and increas-
ing average degree can improve the network invulnerability.

The remainder of this paper is organized as follows.
Section 2 describes the related work. Section 3 provides the
cascading model of WSNs based on CML. Then, we give the
topology construction methods of WSNs in Section 4 and
give a theoretical analysis on their network characteristics
from the perspective of degree distribution in Section 5. In
Section 6, we propose the attack schemes and investigate the
cascading failures invulnerability of WSNs under different
attack schemes. Finally, we summarize our work and draw
conclusions in Section 7.

2. Related Works

Current research about how to build an invulnerable WSN
topology can be classified into three types: scale-free network,
small-world network, and k-connectivity network. In scale-
free networks, a few numbers of central nodes possess most
of connections in the network, making the network invulner-
able to random failures. In this area, Zhu et al. [17] proposed
two scale-free evolutionmodels EAEMandEBEM. In EAEM,
the newly joined node prefers to connect the existing nodes
with higher degree. In EBEM, the newly joined node is
more likely to build connections with the existing nodes with
higher degree andmore remaining energy. Simulation results
proved that both models are able to generate scale-free WSN
topologies, but EBEM model is more energy-efficient. Luo
et al. [18] proposed a scale-free model by introducing a link
adding/deleting action. In Luo et al.’s model, besides adding
new nodes into the network at each time round, the links
between poor-energy nodes are likely to be removed and a
new link might be built between a pair of rich-energy nodes.
Since, in real WSNs, the failures of wireless links are more
likely to occur than nodes failures, the scale-free topology
generated by Luo et al.’s model is closer to the real scenario.
The small-world network theory has also proved to be an
effective tool to improve the network invulnerability. Helmy
[19] firstly proved that, by introducingwired links as shortcuts
into WSNs, the network can maintain relatively low average
path length and high cluster coefficient. In our previous
work [20], we found that when the number of shortcuts
reaches 20% of the total number of nodes in the network,
the fault tolerance of the network can be improved by 50%.
Compared with scale-free network and small-world network,
k-connectivity topology is the most common method in
improving network invulnerability. The basic idea behind k-
connectivity topology is to ensure each node in the network
maintaining at least 𝑘 paths towards other nodes. In this way,
even if 𝑘−1 paths were cut off, the node can still deliver mes-
sages to other nodes successfully. Joshi and Younis [21] found
that when the network size is large enough, k-connectivity
network tends to be similar to random network, both of
which degree distributions follow Poisson distribution. In
WSNs, we can adopt two methods to achieve k-connectivity.
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One is to introduce relay nodes into the network. Compared
with the common nodes, relay nodes are equipped with
more powerful batteries and transmissionmodules. Han et al.
[22] proposed a relay node placement scheme PFRP. In this
scheme, common nodes choose nearest relay nodes as their
cluster heads and the backbone network that is composed of
relay nodes are designed for k-connectivity. Another one is
to adjust transmission power of sensor nodes to achieve k-
connectivity. Since inWSNs the transmission radius of sensor
nodes is always limited, network connectivity can only reach𝑘 = 2 or 3 in most cases. Lin et al. [23] firstly simplified
the transmission power adjusting issue as the transmission
range assignment issue and proved that this issue in two-
dimensional space is NP-hard.

A thorough analysis and overview of invulnerability of
WSNs can be found in [24].Through analyzing existing solu-
tions, one can conclude that existing topology construction
methods mainly focus on the improvement of fault tolerance
in a static point of view, but fail to consider the dynamic
impacts of cascading process caused by load redistribution.
Therefore, in order to understand the cascading process of
WSNs and find out which topology structure tends to be
more vulnerable against cascading failures, inwhat followswe
investigate the cascading invulnerability of different network
topologies under three attack schemes based on CML.

3. Cascading Model of WSNs Based on CML

Considering that the links between sensor nodes are bidirec-
tional in most of WSNs, we use undirected graph 𝐺 = (𝑉, 𝐸)
to represent the topology of WSNs, where 𝑉 is the collection
of sensor nodes and 𝐸 is the collection of links.

Based on the CMLmodel proposed byWang and Xu [13],
we give a CML-based cascading model for WSNs:

𝑥𝑖 (𝑡 + 1)
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1 − 𝜀) 𝑓 (𝑥𝑖 (𝑡)) + 𝜀

𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑎𝑖𝑗 (𝑡) 𝑓 (𝑥𝑗 (𝑡))𝑘𝑖 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(1)

where 𝑥𝑖(𝑡) means the status of node 𝑖 at time 𝑡 and 𝑁 is
the total number of nodes in the network. If 𝑥𝑖(𝑡) ∈ (0, 1),
node 𝑖 is at the normal status, which means its real-time
load is within its capacity. On the contrary, if 𝑥𝑖(𝑡) ≥ 1,
node 𝑖 is in failure status which means its real-time load
has already been beyond its capacity. In this case, for any
moment 𝑚 > 𝑡 + 1, 𝑥𝑖(𝑚) ≡ 0 and the edges of node 𝑖
would be also removed from the network. In this model, link
status among 𝑁 nodes is indicated by the adjacent matrix𝐴 = [𝑎𝑖𝑗(𝑡)]𝑁×𝑁. If node 𝑖 connects with node 𝑗 at time t,𝑎𝑖𝑗(𝑡) = 1. If no connection exists between nodes 𝑖 and j,𝑎𝑖𝑗(𝑡) = 0. 𝑘𝑖(𝑡) is the degree of node 𝑖 at time t, which is equal
to the sum of each element in 𝑖 row of 𝐴. In WSNs, 𝑘𝑖(𝑡) =∑𝑁𝑗=1 𝑎𝑖𝑗(𝑡) represents the number of adjacent nodes that node𝑖 has. 𝜀 ∈ [0, 1] is the coupled coefficient, representing the
coupled level between a pair of adjacent nodes. 𝜀 = 0 indicates
that adjacent nodes cannot influence each other. With the
increase of 𝜀, the mutual influence tends to be more evident.
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Figure 1: An example of load composition.

Nonlinear function 𝑓(𝑥) means the dynamic behavior of a
sensor node in WSNs. Here we choose the logistics function𝑓(𝑥) = 4𝑥(1 − 𝑥). This function is often adopted in the
network in which nodes can be easily affected by adjacent
nodes [25]. As far as WSN is concerned, on the one hand,
the capacity of sensor nodes is usually limited due to low-cost
reason, making them sensitive to load change. On the other
hand, sensor nodes in WSNs need to receive messages from
last-hop nodes and relay them to next-hop nodes, meaning
that sensor nodes are required to maintain frequent load-
exchange with their adjacent nodes.Therefore, using logistics
function to represent the dynamic behavior of WSNs is a
reasonable choice. For logistics function, 𝑓(𝑥) ∈ [0, 1] when𝑥 ∈ [0, 1].

Aiming to monitor the large area, WSNs deliver the
environmental data to the base station via multihop relay.
Therefore, the load of a sensor node consists of two parts:
sensing load and relay load. For sensor node 𝑖, the sensing
load is the load generated by its own sensing tasks, which is
only related to its self-status function 𝑓(𝑥𝑖(𝑡)). The relay load
is the load generated by relaying the data from its neighbors;
thus it is only related to the status functions of its neighbors𝜀∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑎𝑖𝑗(𝑓(𝑥𝑗(𝑡))/𝑘(𝑖)). Coupled coefficient 𝜀 is to adjust
the proportion between the sensing load and the relay load.
By combining the sensing load and relay load, we can get the
total load in (1). To state this more clearly, here we present an
example on a simplified network topology shown in Figure 1.

Assume all the nodes can operate well at time 𝑡, since
node 1 does not have connections with nodes 5 and 6,𝑎15(𝑡) = 𝑎16(𝑡) = 0. According to (1), no data packets will
be transferred from nodes 5 and 6 to node 1. For the nodes
connecting to node 1, node 1 needs to help relay the data from
them and thus their status would affect the status of node 1.
Besides performing the relay tasks, node 1 needs to take the
sensing load (1−𝜀)𝑓(𝑥1(𝑡)) generated by its own sensing tasks.
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By combining all these loads, we can get the total load of node
1 at time 𝑡 + 1 which is

𝑥1 (𝑡 + 1) = (1 − 𝜀) 𝑓 (𝑥1 (𝑡)) + ∑
𝑘=1,2,3

𝜀𝑓 (𝑥𝑘 (𝑡))3 . (2)

In real WSNs, sensor nodes always fall into failure due to
external factors (e.g., harsh environment or malicious attack)
or internal factors (e.g., hardware/software breakdown or
energy exhaustion). In CML-based cascading model, all
these factors are defined as interference 𝑅. After imposing
interference 𝑅 at time t, the status of node 𝑖 at time 𝑡 + 1 can
be expressed as

𝑥𝑖 (𝑡 + 1)
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1 − 𝜀) 𝑓 (𝑥𝑖 (𝑡)) + 𝜀

𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑎𝑖𝑗 (𝑡) 𝑓 (𝑥𝑗 (𝑡))𝑘𝑖 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑅.

(3)

Obviously, in this case, the failure probability of node 𝑖
will become higher with the increase of 𝑅. If 𝑥𝑖(𝑡 + 1) ≥ 1,
node 𝑖 will fail at time 𝑡 + 1. The adjacent nodes of node 𝑖
will be influenced by the change of 𝑥𝑖(𝑡+1) and their status at
time 𝑡+2will update according to (1). If there are nodeswhose
updated status is larger than 1 at time t + 2, they would turn
into failure immediately. In the same way, new failure nodes
would result in a new round of failure spread. This spreading
process would not stop until there is no new node turning
into failure.

4. Topology Construction Methods of WSNs

In this section, aiming to investigate the invulnerability
of different WSNs topologies towards cascading failures,
we propose four topology construction methods: random
network, small-world network, homogeneous scale-free net-
work, and heterogeneous scale-free network.

4.1. Random Network. In Erdos-Renyi (E-R) random model
[26], the initial network starts from N isolated nodes. Each
pair of nodes in the network can be connected according to
probability 𝑝. In E-R randommodel, the number of edgesM
is random, but its average value is 𝑝𝑁(𝑁 − 1)/2. The average
degree ⟨𝑘⟩ of the generated network topology is𝑝(𝑁−1). But,
for WSNs, since sensor node can only be allowed to connect
with other nodes within its transmission radius, E-R random
model is not appropriate for WSNs. Due to this reason, we
design a topology construction method for randomWSNs.

(1) Initialization. Randomly deploy N isolated sensor nodes.
The transmission radius of sensor nodes is 𝑅𝑎. After that,
each node is required to link to all the nodes within its
transmission radius. Assume the total number of links in the
network is𝑀𝑠. In order to avoid creating separated topology,
any node should have at least one effective path to any other
nodes in the network.

(2) Link Deletion. Randomly choose 𝑀𝑑 (𝑀𝑑 ≤ 𝑀𝑠) as
retained links and the remaining𝑀𝑠 − 𝑀𝑑 links are deleted

from the initial network.We still need to ensure the generated
topology is not separated.

After these two steps, we can obtain a random topology of
which the average degree ⟨𝑘⟩ is 2𝑀𝑑/𝑁 and also conforming
to the limited transmission radius feature of WSNs.

4.2. Small-World Network. As a transitive network type
between random network and regular network, the small-
world network was proposed in 1999 by Newman and Watts
[27]. Althoughmost of the nodes in the small-world network
are not directly connected, the vast majority of nodes can be
connected to each other only via a fewhops.Hence, the small-
world network exhibits a small average path length alongwith
a large clustering coefficient. As far as WSNs are concerned,
lowering relay hops from sensor nodes to the base station is
the basic idea to improve the network performance in terms
of lifetime and invulnerability.Thus, it is reasonable to expect
that constructing WSNs topology with small-world effect
is a feasible method to improve the network connectivity
and reduce the network energy consumption. Helmy [19]
firstly proved that small-world effect can also be applied in
WSNs by introducing long-distance wired cables. In their
solution, a certain amount of wired cables are deployed in
the network and the cables can make the sensor nodes at
their ends communicate with each other. Since the length
of the deployed cables could be longer than the wireless
transmission radius of sensor nodes, wired cables can play the
same role of shortcuts. In this subsection, we use a similarway
to build a small-world WSN by introducing wired cables.

(1) Initialization. According to the method mentioned in
Section 4.1, we can get a random network topology with N
nodes and𝑀𝑑 links.
(2) Random Reconnection. Reconnect links according to
probability 𝑝𝑟. The link selected for reconnection would keep
one endpoint unchanged and connect to a new node that is
different from the previous one.

Through this method, the generated topology includes𝑝𝑟𝑀𝑑 shortcuts and its average degree is still 2𝑀𝑑/𝑁.

4.3. Homogeneous Scale-Free Network. Themost evident fea-
ture of scale-free network is that the degree distribution 𝑃(𝑘)
of the network is in line with power-law distribution. Since in
scale-free networks the high-degree nodes only account for
a small proportion of the network, the failure probability of
these nodes is at a relatively low level when facing random
failures. By contrast, for the low-degree nodes that widely
spread in the network, although these nodes have to take a
much higher failure risk, the failures of these nodes have little
effect on network performance. Due to this reason, scale-free
networks demonstrate excellent survivability against random
attacks. For WSNs, aiming to build a scale-free network
topology that is closed to the practical case, besides the node
degree, energy also should be taken into consideration due
to its energy-sensitivity feature. Therefore, in this subsection
we propose a homogeneous scale-free topology construction
method considering the energy factor.
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(1) Initialization. According to the method mentioned in
Section 4.1, we can get a random network topology with 𝑚0
nodes and 𝑒0 links.
(2) Preferential Attachment. At each time step, a newnodewill
join the network and connect to 𝑚ℎ (𝑚ℎ ≤ 𝑚0) nodes that
are within its transmission radius 𝑅𝑎. The probability 𝑃𝑖𝑗(𝑡) of
the new node i connecting to the existing node j at time t is
proportional to the degree 𝑘𝑗(𝑡) and the energy 𝐸𝑗(𝑡).

𝑃𝑖𝑗 (𝑡) = 𝑘𝑗 (𝑡) 𝐸𝑗 (𝑡)
∑𝑁(𝑡)𝑛=1 (𝑘𝑛 (𝑡) 𝐸𝑛 (𝑡)) , (4)

where 𝑁(𝑡) is the total number of the sensor nodes that are
within the transmission radius of newly joined node i at time𝑡. Therefore, if a node has more energy and links, it could
have a higher probability to link with newly joined node.
After t time steps, we can create a scale-free WSN topology
with 𝑚0 + 𝑡 nodes and 𝑒0 + 𝑚ℎ𝑡 links. Its average degree is2(𝑒0 + 𝑚ℎ𝑡)/(𝑚0 + 𝑡).
4.4. Heterogeneous Scale-Free Network. Since WSNs are fea-
tured by energy sensitivity, how to prolong the network
lifetime is always a central topic in the studies of WSNs.
Aiming to achieve this goal, inmost cases clustering structure
is introduced into the network to guarantee cost-effective
data transmission via multiple hops. Clustering WSNs are
composed of cluster heads and cluster members. Cluster
members are responsible for collecting environmental data
and transferring these data to the cluster heads that they
belong to. The responsibility of cluster heads is to deliver
these data to others via multiple hops. In this subsection,
we propose a heterogeneous scale-free topology construction
method considering the clustering structure of WSNs.

(1) Initialization. According to the method mentioned in
Section 4.1, we can get a random network topology with 𝑚0
nodes and 𝑒0 links. All the nodes in the initial network are
configured as cluster heads.

(2) Preferential Attachment. At each time step, a new cluster
head or clustermember with𝑚ℎ edges enters into the existing
network with probability 𝑝𝑐 or 1 − 𝑝𝑐, respectively. The new
node will join the network and connect to 𝑚ℎ (𝑚ℎ ≤ 𝑚0)
cluster heads that are within its transmission radius 𝑅𝑎. The
probability 𝑃𝑖𝑗(𝑡) of the new node i connecting to the existing
cluster head j at time t is proportional to the degree 𝑘𝑗(𝑡) and
energy 𝐸𝑗(𝑡).

𝑃𝑖𝑗 (𝑡) = 𝛿𝑗 (𝑡) 𝑘𝑗 (𝑡) 𝐸𝑗 (𝑡)
∑𝑆(𝑡)𝑛=1 (𝛿𝑛 (𝑡) 𝑘𝑛 (𝑡) 𝐸𝑛 (𝑡)) , (5)

where 𝑆(𝑡) is the total number of cluster heads at time 𝑡 and𝛿𝑛(𝑡) is the degree saturation coefficient used for constraining
the maximum number of connections a cluster head could
have.

𝛿𝑛 (𝑡) = {{{
1 𝑘𝑛 (𝑡) < 𝑘max

0 𝑘𝑛 (𝑡) = 𝑘max. (6)

In most of the clustering WSNs, maximum number of
connections that a cluster head could have is always fixed to
ensure that cluster heads would not overload. Thus, in our
model we use 𝑘max to represent the upper limit of connections
of cluster heads. If the degree (number of connections) of
cluster head j reaches the degree saturation 𝑘max at time t,𝛿𝑗(𝑡) = 0 and thus 𝑃𝑖𝑗(𝑡) = 0, which means that the cluster
head j cannot have more connections if its degree achieves𝑘max.Through this mechanism, we can ensure that the cluster
heads with higher degree or withmore energy are more likely
to have new connections while they would not overload.

After t time steps, we can create a heterogeneous scale-
free WSN topology with 𝑚0 + 𝑝𝑡 cluster heads and (1 − 𝑝)𝑡
cluster members according to probability.

4.5. An Example of Network Topologies. Figure 2 is an
example of the network topologies generated by ourmethods.
The simulation area is 100m× 100m.The transmission radius𝑅𝑎 of sensor nodes is configured as 20m.The total number of
nodes 𝑁 = 100. Aiming to ensure the generated topologies
having the same average degree ⟨𝑘⟩, we set the following: (1)
for random network, the retained links 𝑀𝑑 = 100; (2) for
small-world network, reconnection probability 𝑝𝑟 = 0.05;
(3) for homogeneous scale-free network, the initial number
of nodes 𝑚0 = 10 and the initial number of links 𝑒0 =10; at each time step one new node will join the network
and connect with 𝑚ℎ = 1 existing node. After 90 time
steps, the network growth stops. For energy configuration,
by referencing the parameter settings in [20], we configure
the energy distribution 𝐸𝑖 complying with the truncated
normal distribution 𝑁(2, 1) and the valid interval for 𝐸𝑖
is [0, 4]. As the energy consumption during the topology
construction phase can be ignored, here 𝐸𝑖 is a static value;
(4) for heterogeneous scale-free network, the initial network
consists of 10 cluster heads and 10 links. The ratio of cluster
heads 𝑝𝑐 = 0.2. At each time step one new node will join
the network and connect with 𝑚ℎ = 1 existing cluster head.
The maximum number of connections that a cluster head
could have 𝑘max = 30. Other configurations are the same as
in homogeneous scale-free network. According to the above
configurations, it is easy to get that the average degree ⟨𝑘⟩ = 2
in four generated topologies.

Figure 3 is the average degree distribution of random
network and small-world network according to the config-
urations adopted in Figure 1 after 50 simulations. For easier
description, here we use RN and SN as the abbreviations
of random network and small-world network, respectively.
From Figure 2, we can easily find that their degree distribu-
tions follow Poisson distribution, which is consistent with the
general description of the random network and the small-
world network. In these two kinds of networks, the degree
of about 58% of nodes is 2 or 3. The degree of the remaining
nodes is mainly distributed over 1 and 4.

Figure 4 shows the average degree distribution of homo-
geneous scale-free network and heterogeneous scale-free net-
work after 50 simulations. For the convenience of description,
here we use Homo-SFN and Heter-SFN as the abbreviations
of homogeneous scale-free network and heterogeneous scale-
free network, respectively. Different from random network
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(c) Homogeneous scale-free network
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(d) Heterogeneous scale-free network

Figure 2: A sample of four topology construction methods.

and small-world network, in heterogeneous scale-free net-
work and homogeneous scale-free network the degree of
most of the nodes is 1; the highest degree in two models
is 23 and 28, respectively. From Figure 3, it can be easily
observed that in log-log coordinates the degree distributions
of heterogeneous scale-free network and homogeneous one
demonstrate an evident power-law feature. It is worth noting
that in heterogeneous scale-free network about 85% of newly
joined nodes are determined to be cluster members, which
means that all these nodes can only have one connection with
their cluster heads. Therefore, the proportion of marginal

nodes (i.e., the node whose degree is 1) in a heterogeneous
scale-free network is higher than in a homogeneous one.

5. Theoretical Analysis on Degree Distribution

Degree distribution 𝑃(𝑘) is the probability that a randomly
chosen node has k connections (or neighbors) and it can also
be defined as the fraction of nodes in the network with degree𝑘. It is considered as the most important property that could
characterize a network structure. For random network and
small-world network, their degree distributions are featured
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Figure 4: Degree distribution of homogeneous scale-free network
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by Poisson distribution. For scale-free networks, their degree
distributions are characterized by power-law distribution.
Therefore, aiming to further confirm the properties of our
models, we carry out a theoretical analysis on their degree
distributions 𝑃(𝑘) in this section.

5.1. Random Network and Small-World Network. In [26], for
a E-R random network that consists of N nodes and where
each edge is included with probability p, it has been proved
that its degree distribution follows

𝑃 (𝑘) = 𝐶k
𝑁−1𝑝𝑘 (1 − 𝑝)𝑁−1−𝑘 ≈ ⟨𝑘⟩𝑘 𝑒−⟨𝑘⟩𝑘! . (7)

E-R random model allows isolated nodes to exist, which
means the minimum degree in the network could be zero.
But in our random network model, in order to ensure
generated network topologies well-functioning, any nodes
shouldmaintain at least one path to others, whichmeans that
the minimum degree in the network should be at least one.
Besides that, we have already known the average degree ⟨𝑘⟩
in our random networkmodel is 2𝑀𝑑/𝑁.Therefore, through
the translation process, we can easily get

𝑃 (𝑘) ≈ ⟨𝑘⟩(𝑘−1) 𝑒−⟨𝑘⟩(𝑘 − 1)! = (2𝑀𝑑)𝑘 𝑒−2𝑀𝑑/𝑁𝑁𝑘 (𝑘 − 1)! . (8)

For small-world networkmodel, since the number of existing
links 𝑀𝑑 is unchanged and the shortcuts reconnection
process is still in a random way, its degree distribution is
the same as in the random network model. When 𝑁 = 100
and 𝑀𝑑 = 100, we can get 𝑃(𝑘) ≈ 2(𝑘−1)𝑒−2/(𝑘 − 1)!. As
is shown in Figure 3, the simulation curves are quite closed
to the theoretical curve. The correctness of 𝑃(𝑘) is further
validated and the random feature of our models has also
been validated by proving their degree distributions following
Poisson distribution.

5.2. Heterogeneous Scale-Free Network and Homogeneous
Scale-Free Network. As the homogeneous scale-free network
is equivalent to a heterogeneous one when the ratio of cluster
heads 𝑝𝑐 is 100%, the homogeneous scale-free network can
be deemed as a special case of the heterogeneous scale-
free network. Therefore in this section, we firstly carry
out a theoretical analysis on the degree distribution of
heterogeneous scale-free network. In heterogeneous scale-
free network model, as cluster members can be allowed to
build𝑚ℎ connections with the cluster heads that they belong
to, their degree would always be 𝑚ℎ. But for cluster heads,
their degree 𝑘𝑗(𝑡) would increase with the expanding size of
the network. According to our topology constructionmethod
in Section 4.4, in step (2) the cluster head j connects to the
newly joined node i according to the preferential attachment
probability 𝑃𝑖𝑗(𝑡).The growth rate of 𝑘𝑗(𝑡) can be described as

𝜕𝑘𝑗 (𝑡)𝜕𝑡 = 𝑚ℎ 𝛿𝑗 (𝑡) 𝑘𝑗 (𝑡) 𝐸𝑗
∑𝑆(𝑡)𝑛=1 [𝛿𝑛 (𝑡) 𝑘𝑛 (𝑡) 𝐸𝑛] , (9)

where 𝑆(𝑡) is the total number of cluster heads at time 𝑡. We
can easily get 𝑆(𝑡) = 𝑚0+𝑝𝑐𝑡. Inmost cases, the degree 𝑘𝑗(𝑡) of
most of cluster heads is much smaller than degree saturation𝑘max; we can reasonably assume that 𝛿𝑛(𝑡) = 1.

Since WSNs are mainly applied in the scenario requiring
large-scale deployment, we can reasonably assume that, after
experiencing a long-term evolution, the number of sensor
nodes has reached a large enough size. Thus, we can get the
following:

𝑆(𝑡)∑
𝑛=1

𝐸𝑛𝑘𝑛 (𝑡) = 𝑆 (𝑡) ⟨𝑘ℎ (𝑡)⟩ 𝐸 ≈ 𝑝𝑐𝑡 ⟨𝑘ℎ (𝑡)⟩ 𝐸, (10)

where ⟨𝑘ℎ(𝑡)⟩ is the average degree of cluster heads at time
t and 𝐸 is the average energy expectation of sensor nodes in
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the network. Assume𝐷(𝑡) and 𝐶(𝑡) are total degree of nodes
and cluster members, respectively; we can easily get 𝐷(𝑡) =2(𝑒0 + 𝑚ℎ𝑡) and 𝐶(𝑡) = (1 − 𝑝𝑐)𝑚ℎ𝑡. Thus, ⟨𝑘ℎ(𝑡)⟩ can be
calculated as

⟨𝑘ℎ (𝑡)⟩ = 𝐷 (𝑡) − 𝐶 (𝑡)𝑆 (𝑡) = 2𝑚0 + 𝑚ℎ𝑡 + 𝑝𝑐𝑚𝑡𝑚0 + 𝑝𝑐𝑡
≈ 𝑚ℎ (1 + 𝑝𝑐)𝑝𝑐 , 𝑡 󳨀→ ∞.

(11)

Substitute (10) and (11) into (9); then we can get

𝜕𝑘𝑗 (𝑡)𝜕𝑡 = 𝑘𝑗 (𝑡) 𝐸𝑗
(1 + 𝑝𝑐) 𝐸𝑡 . (12)

Via equivalent transformation of (12), we can get

𝜕𝑘𝑗 (𝑡)𝑘𝑗 = 𝐸𝑗𝜕𝑡
(1 + 𝑝𝑐) 𝐸𝑡 . (13)

Given the generation rules of the network, each cluster head
j has initial degree 𝑚ℎ. Consider this as the initial condition𝑘𝑗(𝑡𝑗) = 𝑚ℎ for (13); we can solve it and get

𝑘𝑗 (𝑡𝑗) = 𝑚ℎ ( 𝑡𝑡𝑗)
𝐸𝑗/(1+𝑝𝑐)𝐸 . (14)

Equation (14) can be used to get the probability 𝑃[𝑘𝑗(𝑡𝑗) < 𝑘]
𝑃 [𝑘𝑗 (𝑡𝑗) < 𝑘] = 𝑃[𝑡𝑗 > 𝑡 ( 𝑘𝑚ℎ)

−(1+𝑝𝑐)𝐸/𝐸𝑗]

= 1 − 𝑃[𝑡𝑗 ≤ 𝑡 (𝑚ℎ𝑘 )(1+𝑝𝑐)𝐸/𝐸𝑗] .
(15)

Generally assume that sensor nodes are added to the network
at regular intervals, so 𝑡𝑗 has equal probability density 𝑃(𝑡𝑗) =1/(𝑚0 + 𝑡); then we can get

𝑃 [𝑘𝑗 (𝑡) < 𝑘] = 1 − 𝑡𝑚0 + 𝑡 (
𝑚ℎ𝑘 )(1+𝑝𝑐)𝐸/𝐸𝑗

≈ 1 − (𝑚ℎ𝑘 )(1+𝑝𝑐)𝐸/𝐸𝑗 .
(16)

Degree distribution 𝑃(𝑘) of the network can be calculated as

𝑃 (𝑘) = 𝜕𝑃 [𝑘𝑗 (𝑡) < 𝑘]𝜕𝑘
= (1 + 𝑝𝑐) 𝐸𝐸𝑗 𝑚ℎ(1+𝑝𝑐)𝐸/𝐸𝑗𝑘−[(1+𝑝𝑐)𝐸/𝐸𝑗+1].

(17)

It is obvious that the network degree distribution 𝑃(𝑘) of
heterogeneous scale-free network model is in line with the
general form of power-law distribution 𝑃(𝑘) ∝ 𝑘−𝛾 and
the power-law exponent 𝛾 = (1 + 𝑝𝑐)𝐸/𝐸𝑗 + 1. When𝑝𝑐 = 1, the entire network consists of cluster heads, which

means the network is equivalent to a homogeneous scale-free
network. At this point, we can get the degree distribution of
homogeneous scale-free network

𝑃 (𝑘) = 𝜕𝑃 [𝑘𝑗 (𝑡) < 𝑘]𝜕𝑘 = 2𝐸𝐸𝑗 𝑚ℎ
2𝐸/𝐸𝑗𝑘−[2𝐸/𝐸𝑗+1]. (18)

If we set 𝐸/𝐸𝑗 = 1, 𝑃(𝑘) = 2𝑚ℎ𝑘−3 is totally the same as the
general degree distribution 𝑃(𝑘) = 2𝑚𝑘−3 of B-A scale-free
model [28]. Considering the impacts of energy factor on𝑃(𝑘),
(17) can be expressed as

𝑃 (𝑘) = ∫𝐸max

𝐸min

𝑃 (𝑘, 𝐸𝑗) 𝜌 (𝐸𝑗) 𝑑𝐸𝑗
= ∫𝐸max

𝐸min

(1 + 𝑝𝑐) 𝐸𝐸𝑗 𝑚ℎ(1+𝑝𝑐)𝐸/𝐸𝑗𝑘−[(1+𝑝𝑐)𝐸/𝐸𝑗+1]𝜌 (𝐸𝑗) 𝑑𝐸𝑗.
(19)

According to the configurations in Section 4.4, energy 𝐸𝑖
complies with truncated normal distribution𝑁(2, 1) and the
valid interval [𝐸min, 𝐸max] for 𝐸𝑖 is [0, 4]; we can easily get𝜌(𝐸𝑗) = (1/0.9545√2𝜋) exp[−(1/2)(𝑥 − 2)2] and 𝐸 = 2.
When 𝑃𝑐 = 1, degree distribution of homogeneous scale-
free network 𝑃(𝑘) ≈ 1.25𝑥−2.23 according to (18). When𝑃𝑐 = 0.2, degree distribution of heterogeneous scale-free
network 𝑃(𝑘) ≈ 0.86𝑥−4.22. As is shown in Figure 4, the
general trends of simulation curves and theoretical curves are
similar. As in our theoretical analysis the basic assumption is
that the network scale is large enough which our simulation
can hardly satisfy, there is a deviation between simulation
results and theoretical results. From the above analysis, the
scale-free feature of ourmodels has been validated by proving
their degree distributions following a power-law distribution.

6. Invulnerability Analysis of WSNs

In this section, we analyze the invulnerability of various
WSNs topologies with respect to cascading failures. In order
to make the cascading process more active, we extend the
network size. The total numbers of nodes and links increase
to 300 and 600, respectively. Other configurations are the
same as in Section 4.5. The initial status of node 𝑥𝑖(0) follows
truncated normal distribution 𝑁(0.5, 0.1) over the effective
interval (0, 1). Here we design three attack schemes as trigger
conditions for cascading process of WSNs.

(1) Random Attack. Select a node randomly from initial
network and impose interference R.

(2) Max-Degree Attack. Select the node with highest degree
from initial network and impose interference R.

(3) Max-Status Attack. Select the node with highest status
from initial network and impose interference R.

Before analysis of invulnerability, we need to define a
metric to evaluate the invulnerability of WSNs towards cas-
cading failures at first. In our CML-based cascading model,
the network is represented by graph 𝐺 = (𝑉, 𝐸); then we can



Complexity 9

get the definition of the connected subgraph and maximum
connected subgraph.

Definition 1. For the network subgraph 𝐺󸀠 = (𝑉󸀠, 𝐸󸀠), if 𝑉󸀠 ⊆𝑉 and any two of the nodes in 𝑉󸀠 can maintain at least one
effective path, then 𝐺󸀠 is one of the connected subgraphs of𝐺.
Definition 2. For the network graph 𝐺 = (𝑉, 𝐸) consisting
of 𝜔 connected subgraphs which are 𝐺󸀠1 = (𝑉󸀠1 , 𝐸󸀠1) and𝐺󸀠2 = (𝑉󸀠2 , 𝐸󸀠2), . . . , 𝐺󸀠𝜔 = (𝑉󸀠𝜔, 𝐸󸀠𝜔), if 𝑉󸀠 ∈ {𝑉󸀠1 , 𝑉󸀠2 , . . . , 𝑉󸀠𝜔}
and |𝑉󸀠| = max{|𝑉󸀠1 |, |𝑉󸀠2 |, . . . , |𝑉󸀠𝜔|}, then 𝐺󸀠 = (𝑉󸀠, 𝐸󸀠) is the
maximum connected subgraph of 𝐺.

|𝑉󸀠| is the collection size of𝑉󸀠. Referencing the definition
of availability of WSNs in [4], only the maximum connected
subgraph 𝐺󸀠 = (𝑉󸀠, 𝐸󸀠) can be still functioning after removal
of failure nodes or links. Therefore, we can reasonably
consider |𝑉󸀠| as the number of survival nodes. Considering
the dynamic changes of WSN topology over time, we define
that |𝑉󸀠(𝑡)| is the number of survival nodes at time 𝑡. As far as
the cascading process of WSNs is concerned, initial network𝐺 = (𝑉, 𝐸) is well connected. If cascading failures occurred,
the number of failure nodes is |𝑉| − |𝑉󸀠(𝑡)| at time 𝑡. Through
normalization processing, we can get the failure size

𝐿 (𝑡) = |𝑉| − 󵄨󵄨󵄨󵄨󵄨𝑉󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨|𝑉| . (20)

When no new nodes turn into failure, we can get the final
failure size 𝐿. Obviously, the final failure size L can perfectly
represent the damage level of cascading failures. Therefore,
we select L as the invulnerability metric for cascading failures
of WSNs.

6.1. Impacts of Interference 𝑅 on WSNs Invulnerability. From
Figures 5–7, it can be easily observed that, with the increase
of interference 𝑅, the final failure size 𝐿 is expanding. But the
network performances are quite differentwhen facing various
types of attacks.

From Figure 5, when facing a random attack, the invul-
nerability of two scale-free networks is much stronger than
that of the random network and the small-world network. By
observing 𝐿-𝑅 relation curve, there is a cascading threshold𝑅𝑐. In the case that 𝑅 ≤ 𝑅𝑐, imposing interference R has little
impacts on final failure size 𝐿. But once 𝑅 > 𝑅𝑐, a small
change of R could make a great impact on 𝐿. For random
network and small-world network, when 𝑅 > 𝑅𝑐 = 1.2, the
cascading failures start to spread to the entire network rapidly.
But for scale-free network, only when 𝑅 > 𝑅𝑐 = 1.7, the
cascading process can be triggered. According to our CML-
based cascading model, since a node with a higher degree
means it having more neighboring nodes to share its load, its
status would be more stable due to load-diversion effect. In
other words, these high-degree nodes can be deemed as the
“roadblocks” to stop spread of cascading failures. In scale-free
networks,most of the sensor nodes have theminimumdegree𝑚ℎ and these “marginal” nodes always connect with “central”
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Figure 5: 𝐿-𝑅 relation curve under random attack (𝜀 = 0.6).
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Figure 6: 𝐿-𝑅 relation curve under max-degree attack (𝜀 = 0.6).

nodes (i.e., high-degree nodes) in a clustering way.When fac-
ing random attack, inmost cases these marginal nodes would
be attacked and then influence their neighbors by delivering
failure status𝑥(𝑖).When reaching central nodes, as the central
nodes have stronger tolerance, then this spreading process
will cease. This clearly explains why scale-free networks can
have stronger invulnerability when facing random attack.
Similarly, as heterogeneous scale-free network is more likely
to generate high-degree nodes than homogeneous scale-free
network, its invulnerability is slightly better.

From Figure 6, opposite to the case of random attack,
random network and small-world network have stronger
invulnerability than scale-free networks when facing max-
degree attack. In fact, we can easily find that in the random
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Figure 7: 𝐿-𝑅 relation curve under max-status attack (𝜀 = 0.6).

network and the small-world network 𝑅𝑐 values under max-
degree attack slightly decrease compared to the values under
random attack. As in these two kinds of networks the degree
of nodes is distributed around the average degree ⟨𝑘⟩, the
attack objects selected by two attack schemes are not so
different. But for scale-free networks, when facing a max-
degree attack, as the node with highest degree is attacked,
marginal nodes that connect with it would be influenced by
its failure status and are highly likely to fall into failure due
to the low-degree reason. Since the number of these marginal
nodes is quite large, their failure status will spread rapidly and
finally paralyze the entire network.

As is shown in Figure 7, the performance of various
topologies when facing a max-status attack is similar to
that under random attack, but the threshold 𝑅𝑐 has been
lowered by 0.4. Since the initial status of nodes 𝑥𝑖(0) in the
network follows a truncated normal distribution𝑁(0.5, 0, 1),
in random attack scheme and attack max-status scheme the
status of attack objects is always around 0.5 and 0.9, respec-
tively. Therefore, compared with random attack scheme, the
cascading process will be triggered much earlier by imposing
R in max-status attack scheme.

6.2. Cascading Process ofWSNs under Various Attack Schemes.
According to the simulation results in the last subsection, we
can easily get that the entire network would turn into failure
when 𝜀 = 0.6 and 𝑅 = 2. Therefore, in this subsection we
adopt the same configurations to investigate the cascading
process of WSNs under various attack schemes.

As is shown in Figure 8, when facing a random attack,
the spread of cascading failures in heterogeneous scale-
free network is the fastest, followed by homogeneous scale-
free network and small-world network. Last is the random
network. For heterogeneous scale-free network, the entire
network will be collapsed over 4 time steps. By observing the
topology structure of the heterogeneous scale-free network,
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Figure 8: Cascading process under random attack (𝜀 = 0.6).

we can discover that cluster members connect with cluster
heads due to clustering mechanism and the backbone net-
work consisting of cluster heads iswell connected,making the
average path length of the entire network quite short. Thus,
in heterogeneous scale-free network, the cascading process
always follows the following order: cluster member →
cluster head → cluster head → cluster member. For
homogeneous scale-free network, as the connectivity of the
backbone network consisting of high-degree nodes is lower
compared with scale-free heterogeneous network, its average
path length tends be longer, thus making the failures spread
slower. For random network and small-world network, the
average path length is longer compared with scale-free net-
works due to their flat structures, helping the failure spread
slow down. Due to the existence of shortcuts, the average
path length in small-world network is much shorter than
in random network, thus facilitating the spread of cascading
failures.

From Figure 9, we can easily find that the max-degree
attack scheme will significantly accelerate the cascading
process, especially for scale-free networks. For instance,
for heterogeneous scale-free network, the network will be
entirely paralyzed after 3 time steps when facing a max-
degree attack. Obviously, choosing the node with maximum
degree will help the node influence adjacent nodes as many
as possible and thus speed up the cascading process.

As is shown in Figure 10, the cascading process under
max-status attack scheme is quite similar to that under
random attack scheme. As analyzed in Section 6.1, when
attack object is low-degree nodes, the cascading process is
always slower as the interference 𝑅 needs to go through
multiple relays to reach every corner of the network. But
if the attack object is central nodes with high-degree, the
interference can be spread over the entire network in a few
steps. Therefore, the spreading speed of cascading failures
is closely related to the degree of attack objects. This also
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Figure 9: Cascading process under max-degree attack (𝜀 = 0.6).
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Figure 10: Cascading process under max-status attack (𝜀 = 0.6).

explains why max-degree attack can significantly accelerate
the spread of cascading failures. But for max-status attack
scheme, the selection of attack object is only related to its
initial status 𝑥𝑖(0), but unrelated to its degree. Thus, its
cascading process is similar to random attack scheme.

6.3. Impacts of Coupled Coefficient 𝜀 onWSNs Invulnerability.
From Figures 11–13, it can be easily seen that, with the
increase of coupled coefficient 𝜀, the network invulnerability
is gradually degrading. Obviously, when 𝜀 = 0, the sensor
nodes work independently; nodes’ failure behavior cannot
influence their adjacent nodes. With the increase of coupled
coefficient 𝜀, the association among nodes is becoming closer,
making the network featured by “injure one and you injure
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Figure 11: 𝐿-𝜀 relation curve under random attack (𝑅 = 1).

them all.” Similar to 𝐿-𝑅 relation curve, there is a coupled
threshold 𝜀𝑐. When 𝜀 > 𝜀𝑐, the cascading process begins.

From Figure 11, under random attack, scale-free networks
have higher coupled threshold 𝜀𝑐, which makes them survive
in tight-coupling cases.This is because, when facing a random
attack, in scale-free network low-degree nodes are highly
likely to be attack objects and the impacts brought by the
failures of these nodes would be stopped by the “roadblock”
(i.e., high-degree nodes) due to the load-diversion effect. For
random network and small-world network, since the degree
distributions of these networks tend to be more uniform,
cascading failures would be much easier to spread to the
entire network.

As is shown in Figure 12, under max-degree attack, the
tolerance of scale-free networks declines significantly. When𝜀 > 𝜀𝑐 = 0.4, the networks would be collapsed soon. As
in the max-degree attack scheme, the attack object would be
the highest-degree nodes; the failure behavior of these nodes
would make the marginal nodes connected with them turn
into failure immediately. Since the number of these marginal
nodes is relatively huge, their failures will spread rapidly
and finally paralyze the entire network. But for random
network and small-world network the degree difference of
attack objects between random attack and max-degree attack
is not as large as in scale-free networks; coupled thresholds𝜀𝑐 under max-degree attack only slightly drop compared to
under random attack.

As is shown in Figure 13, the network invulnerability
under max-status attack scheme is similar to that under
random attack scheme.The only difference is that the coupled
threshold 𝜀𝑐 is lowered by 0.1. Under max-status attack
scheme, the attack objects would be the nodes with highest
status value 𝑥𝑖(0). According to our CML-based cascading
model, under this scheme the impacts that adjacent nodes
would suffer could be more serious, thus enhancing their
risks of cascading failures.
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Figure 12: 𝐿-𝜀 relation curve under max-degree attack (𝑅 = 1).
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Figure 13: 𝐿-𝜀 relation curve under max-status attack (𝑅 = 1).

6.4. Impacts of Adjacent Matrix 𝐴 on WSNs Invulnerability.
In our CML model, the network topology is represented by
adjacent matrix 𝐴 = [𝑎𝑖𝑗(𝑡)]𝑁×𝑁. Aiming to fully investigate
the impacts of network topology on invulnerability, we design
three types of matrix 𝐴 for each network topology. For
random network and small-world network, three types of
matrix 𝐴 are shown in Table 1. For homogeneous scale-free
network and heterogeneous scale-free network, three types of
matrix 𝐴 are presented in Table 2. Other parameters remain
the same as those in Section 4.5.

From Figures 14–16, we can easily observe that, even for
the same type of network topology, the difference of matrix𝐴 could result in an evident difference in terms of network
invulnerability. Moreover, the network failure size 𝐿 would
be significantly reduced when the matrix type is switched
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Figure 14: Failure size 𝐿 with varying types of matrix 𝐴 under
random attack (𝑅 = 2, 𝜀 = 0.6).
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Figure 15: Failure size 𝐿with varying types of matrix𝐴 under max-
degree attack (𝑅 = 2, 𝜀 = 0.6).

from 𝐴(1) to 𝐴(3). Taking the random network under the
random attack as an example, when the network topology is
constructed according to the matrix 𝐴(1), the failure size is
100%, whichmeans the entire network is paralyzed due to the
cascading failures. When the matrix 𝐴(2) is used to generate
the random network topology, the failure size 𝐿 decreases to
79%. By using 𝐴(3), the failure size 𝐿 can be further reduced
to 39%. It is easy to understand that, for the network topology
generated by the matrix 𝐴(1), its average degree ⟨𝑘⟩ = 2,
which means that the average number of neighbors owned
by a sensor node in this topology is two; at this point, the
load-diversion effect is not so obvious.Whenusing thematrix𝐴(2) to generate the network topology, the average degree ⟨𝑘⟩
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Table 1: Types of matrix 𝐴 for random network and small-world network.

Matrix types Average degree ⟨𝑘⟩ Number of retained links𝑀𝑑 Number of sensor nodes𝑁
𝐴(1) 2 200 200𝐴(2) 3 300 200𝐴(3) 4 400 200

Table 2: Types of matrix 𝐴 for homogeneous scale-free network and heterogeneous scale-free network.

Matrix types Average degree ⟨𝑘⟩ Number of new links at
each time step𝑀ℎ Number of sensor nodes𝑁

𝐴(1) 2 2 200
𝐴(2) 3 3 200
𝐴(3) 4 4 200
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Figure 16: Failure size 𝐿with varying types of matrix𝐴 under max-
status attack (𝑅 = 2, 𝜀 = 0.6).

increases to 3, the sensor node in this topology would have
more neighbors to share its load compared to the case of𝐴(1),
and its resilience to cascading failures tends to be stronger;
thus the failure size 𝐿 can be reduced. In the same way, the
failure size 𝐿 can be further reduced when using 𝐴(3). This
tells us that we can make sensor nodes have more neighbors
in order to prevent cascading failures. To achieve this, we can
increase the transmission radius of sensor nodes, but this way
would consume more energy.

7. Conclusions

In this paper, we introduce a cascadingmodel ofWSNs based
on CML and propose four network topology construction
methods considering the limited transmission radius feature
of WSNs. Then we analyze the invulnerability of various
network topologies under three different attack schemes.The
results show the following.

(1) The increase of interference R and coupled coefficient𝜀 will increase the risks of cascading failures. There are

cascading thresholds 𝑅𝑐 and 𝜀𝑐; when 𝑅 > 𝑅𝑐 or 𝜀 > 𝜀𝑐, the
cascading process begins.

(2) When facing a random attack, the network with
higher degree heterogeneity would be more invulnerable.
Thus, the heterogeneous scale-free network performs the
best, homogeneous scale-free network comes second, and
random network and small-world network come last. When
facing a max-degree attack, the network with more uniform
degree distribution tends to perform better. Thus, the invul-
nerability of random network and small-world network is
better than scale-free networks. The network performance
under max-status attack is similar to that under random
attack. But compared to random attack, max-status attack
can make the cascading failures occur with imposing less
interference R or in the case with low coupled coefficient 𝜀.

(3) Regardless of which attack scheme is selected, the
spreading speed of cascading failures in heterogeneous scale-
free network is the fastest, followed by homogeneous scale-
free network and small-world network. Last is the random
network. Compared with other schemes, max-degree attack
scheme could significantly accelerate the cascading process.

(4) Increasing the average degree ⟨𝑘⟩ can improve the
network resistance to cascading failures due to the load-
diversion effect.

In the future work, we would like to research how to
optimize the network in order to improve its invulnerability
towards cascading failures. Given that the degree distribution
is closely related to the network performance in terms of
cascading failures, designing a topology constructionmethod
with reasonable degree distribution will be a meaningful
issue. Moreover, dynamical entropy is an effective metric
to indicate the variation speed in dynamical topology of
networks [29, 30]. To have a better understanding of the
inherent laws of cascading process in WSNs, it would also be
worth discussing the cascading invulnerability ofWSNsusing
the dynamical entropy.
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