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The analysis of observational data is often seen as a key approach to understanding

dynamics in romantic relationships but also in dyadic systems in general. Statistical

models for the analysis of dyadic observational data are not commonly known or applied.

In this contribution, selected approaches to dyadic sequence data will be presented

with a focus on models that can be applied when sample sizes are of medium size

(N = 100 couples or less). Each of the statistical models is motivated by an underlying

potential research question, the most important model results are presented and linked

to the research question. The following research questions and models are compared

with respect to their applicability using a hands on approach: (I) Is there an association

between a particular behavior by one and the reaction by the other partner? (Pearson

Correlation); (II) Does the behavior of one member trigger an immediate reaction by

the other? (aggregated logit models; multi-level approach; basic Markov model); (III) Is

there an underlying dyadic process, which might account for the observed behavior?

(hidden Markov model); and (IV) Are there latent groups of dyads, which might account

for observing different reaction patterns? (mixture Markov; optimal matching). Finally,

recommendations for researchers to choose among the different models, issues of data

handling, and advises to apply the statistical models in empirical research properly are

given (e.g., in a new r-package “DySeq”).

Keywords: observational data, dyadic interaction, relationship research, dyadic data analysis, behavioral

interactions, sequence data, interval sampling, DySeq

INTRODUCTION

The primary purpose of this contribution is to give an overview of statistical models that allow
for analyzing behavioral coding of dyadic interactions. To this end, specific research questions
that often arise in the analysis of dyadic interactions are linked to the corresponding statistical
models. Furthermore, it will be shown how to estimate these models, and how to interpret these
models relying on an empirical example. Hence, we aim at promoting the presented analyses and
tomake themmore accessible for applied researchers, especially in the field of relationship research.
Therefore, a commented R-script, example data and an R-Package with additional functions will be
provided.
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In psychology, especially in relationship research, many
research questions concern dynamics of social interactions. The
smallest unit, in which interactions can occur, is a dyad. In
principle, dyads can be categorized by their type, linkage, and
distinguishability (Kenny et al., 2006). The specification of the
type of dyad depends on the roles of the two dyad members
(e.g., mother-child dyads, heterosexual, or homosexual couples).
Linkage describes the mechanisms by which (or the reason why)
the two dyad members are linked. The two partners may be
voluntarily linked (e.g., two friends), they may be linked by
kinship (e.g., mother and child), there may be an experimental
linkage (e.g., the two partners, who do not know each other
before the experiment, are asked to solve an experimental
task together), or there may be a yoked linkage, that is, the
two members of the dyad experience the same environmental
influences, but they do not interact with each other (see Kenny
et al., 2006).

Finally, dyads can be considered distinguishable or
indistinguishable. In distinguishable dyads, there is at least
one relevant quality (role) of the two members, which allows
for a clear distinction between the two (e.g., mothers and
daughters). In indistinguishable dyads, there is no such quality
(role) that may differentiate between the two members (e.g.,
monozygotic twins). The choice of the statistical model for the
analysis of dyadic data strongly depends on the distinguishability
of the two partners (for an overview see Kenny et al., 2006).
In this contribution, we focus on distinguishable dyads (e.g.,
heterosexual couples).

As in many other fields of psychology, research on dyadic
interactions relies mainly on self- and partner reports. Typically,
these reports describe an overall evaluation of a psychological
mechanism (e.g., evaluation of the joint efforts to cope with
stress) or they describe typical patterns of behaviors, which
the two members of the dyad experience when being together
(e.g., how they jointly deal with the stress of one partner).
However, self-and other reports potentially suffer from different
biases: Self- (and partner) reports about behavior may integrate
an evaluative perspective about past behaviors but also social
comparisons with other couples which may be top-down
biased by overarching constructs as relationship satisfaction,
for example. They may also be biased due to self-deception,
exaggeration, social desirability, mood dependency, or oblivion
(e.g., Lucas and Baird, 2006).

Hence, in many contributions authors call for multimethod
measurements (e.g., Eid and Diener, 2006) including behavioral
coding and the analysis of behavioral interactions. However,
the analysis of behavioral interactions requires statistical
approaches that are not commonly used in psychology. With
this contribution, we aim at informing researchers about how
to analyze dyadic observational data using prototypical research
questions. We will focus on sequentially coded data (interval
sampling) as this is the preferred method when different
behaviors can be observed in interaction sequences (Kenny et al.,
2006). Interval sampling implies that the observation period is
divided into time intervals of the same length (e.g., 8 min may be
divided into 48 intervals of 10 s length each). For each interval,
it is coded if a particular behavior occurred (0 = no; 1 = yes).

The resulting entries in the data matrix are sequences of so-
called states describing the (non-) occurrence and re-occurrence
of that particular behavior. There are as many sequences for
an observational unit (e.g., a couple) as there are behaviors of
interest (e.g., one sequence for the behavior of the 1st partner and
one sequence for the behavior of the 2nd partner).

Figure 1 depicts an example of interval sampling for two
behaviors: Stress communication by one partner (SC) and
coping reaction by the other partner (e.g., dyadic coping: DC).
Hence, the dyads form the observational units producing two
interdependent sequences. The entries in the data matrix indicate
if the behavior occurred within a given sequence (interval), 1-1-
0 for stress communication, for example, indicates that the 1st
partner communicated her or his stress in the first interval, did
so in the 2nd but did not communicate her or his stress in the 3rd
interval.

CONCEPTUAL MODELS FOR DYADIC
INTERACTIONS

In order to understand associations in dyadic data, three
conceptual models have been introduced (see Kenny, 1996): The
Actor-Partner Interdependence Model (APIM), mutual influence,
and the common fate model. Although these three models were
originally designed for scaled (metric) cross-sectional data, there
are extensions and applications to longitudinal and sequential
data for the APIM in Kenny et al. (2006). A longitudinal adaption
for the common fate model was presented by Ledermann and
Macho (2014), yet to our knowledge no adaptations of the
common fate or mutual influence model for sequence data
exist. Figure 2 shows the adaptation of the APIM (A) and our
analogous adaptation of the common fate model (B) for sequence
data.

In the standard (cross-sectional) form, the APIM is used for
modeling influences within (actor effect) and across (partner
effect) partners. To this end, path analysis can be used to
model two regressions simultaneously. Considering heterosexual
couples, for example, one could be interested in knowing if
coping competencies affect relationship satisfaction. The male

FIGURE 1 | Interval sampling for the example dataset. Displayed are the

first three 10-s intervals after stress was induced. Horizontal arrows between

the boxes refer to actor effects. Crossed arrows refer to partner effects. Stress

(SC): did stress communication occur? Coping (DC): did dyadic coping occur?
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FIGURE 2 | (A) shows the conceptuell Actor-Partner-Interdependence Modell

(APIM), ax is the actor effect for variable x, ay is the actor effect for variable y,

px is the partner effect for variable x, py y is the partner effect for variable y; (B)

shows the common fate model. Both partners are influenced by the latent

common variable phi. The APIM is adapted from Cook and Kenny (2005).

partner’s relationship satisfaction may depend on his own
coping competencies (actor effect) but also on his partner’s
(her) competencies (partner effect). The same is true for female
relationship satisfaction which may depend on her partner’s (his)
coping competencies (partner effect) as well as her competencies
(actor effect).

The APIM has been adapted for the analysis of longitudinal
metric data (Cook and Kenny, 2005) and sequence data (Kenny
et al., 2006). In the adapted version for metric data (see also
Figure 2A), the same constructs are repeatedly measured over
time (e.g., her SC and his DC). Effects between two time intervals
within one partner (female partners’ SC at time t–1 to SC at
time t) are called actor effects, which correspond to autoregressive
effects in time-series analysis. Effects from one partner at t–1 to
the other partner at t, are called partner effects (female partners’
SC at time t–1 to male partners’ DC at time t). These effects
correspond to cross-lagged effects in time-series analysis. The
adaptation of the APIM for binary categorical sequence data
is depicted in Figure 1. In this adaptation, the occurrence of
male partners’ behavior (here DC) at time t is predicted by their
immediate previous behavior at t–1 (men’s actor effect), and by
the behavior of their partners at t–1 (men’s partner effect). The
occurrence of female partners’ behavior (here SC) at time t is
predicted by their behavior at t–1 (women’s actor effect), and by
the behavior of their partners at t–1 (women’s partner effect).

In the common fate model, it is assumed that there is
a property of the couple which influences both partners’
behaviors. Consider a conflict between partners, where the
conflict describes the couple as a whole and will likely lead to
stress communication. In the same vein, female partners’ stress
may be seen as a property of the couple. Her stress will likely
lead to stress communication by her and coping reactions by him.
In sequential data and according to the common fate model, her
stress communication and his coping reaction may be indicators
of a latent status (female partners’ stress) which can change over
time (see Figure 2B). Hence, changes in the two behaviors are
modeled as indicators of one latent variable. Depending on the
research question and the underlying assumptions, researchers
may choose between the models. In the remainder of this

contribution, we will outline possible adaptations, applicability
and interpretation of the different models relying on prototypical
research questions.

GENERAL RESEARCH QUESTIONS

Research questions that arise in relationship research are
oftentimes comparable to the following four questions: (1) Is
there an association between behaviors of dyad members (e.g.,
is more frequent SC related to more frequent DC)? (2) And
if so, how do the partners interact? Does the behavior of one
member trigger an immediate reaction by the other (does SC by
one partner evoke a prompt DC reaction by the other)? (3) Or
is there an underlying dyadic process, which might account for
the observed behavior (is the stress of one partner simultaneously
influencing both partners’ behavior such that one partner shows
SC and the other DC behaviors)? (4) Are the mechanisms
producing the behavioral patterns the same for all couples or
is there unobserved heterogeneity such that there are different
typical response patterns (does the experience of stress lead to
very prompt and adequate SC and DC behaviors in all couples
resulting in a quick solution to the problem or are there couples
struggling with the stressor for a long time)?

EXAMPLE DATA

We will exemplify the typical data structure and illustrate the
statistical models throughout this contribution using a sample
study from relationship research (Bodenmann et al., 2015).
In this sample 198 heterosexual couples living in Switzerland
participated. The couples had to have been in the current
romantic relationship for at least a year and to use the German
language as their primary language. 56% of the women and 40%
of the men were students, and their age ranged from 20 to 45
years. During the study, either the woman, the man, or both
partners were stressed using the Trier Social Stress Test (TSST;
Kirschbaum et al., 1993).

Directly after the stress induction, both partners joint again,
and the couple was left alone for 8 min without any further
instruction. During this period, which was introduced as time
the experimenters would need for some adjustment of the
experimental installations (a “fake” waiting-condition), the two
partners were filmed. In fact, these 8 min of the waiting situation
were at the core interest of the study as this situation was
supposed to reveal how partners interact after one or both of
them has been stressed. In the remainder, this waiting condition
will be called the interaction sequence.

For the sake of simplicity, we consider those 64 couples
where only the female partner was stressed and restrict our
analyses to her stress communication (sequence 1) and the
male partner’s support reaction (sequence 2; supportive dyadic
coping). Stress communication (SC) includes all verbal and non-
verbal behaviors signaling stress. Supportive dyadic coping (DC)
includes all verbal and non-verbal behaviors aiming to support
the partner’s coping efforts. Both behaviors were coded relying on
the SEDC (Bodenmann, 1995) in 48 intervals of 10 s length. The
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data structure hence consists of two interdependent sequences
with 48 entries. The presented statistical models can be applied
to any comparable data situation.

Graphical Inspection
Before running analyses on the sequential data to answer
particular research questions, the inspection of the state
distribution plot (Figure 3) allows for a first graphical
examination of the paired sequences. To this end, the
two sequences have been joined via the state expand
procedure (Vermunt, 1993). For each time interval, the
joint occurrence/non-occurrence of the two behaviors (see
Table 1) is depicted resulting in four possible states per time
interval.

For the sample data, we see that in the beginning, the
simultaneous display of stress communication (SC) by women
and DC reaction by men (DC) (both reactions) is the most
frequently displayed behavior (almost 100%). After roughly 10
intervals (1 min and 40 s), frequencies for the combination of no
SC and no DC reaction (no reaction), a stress communication
but no DC reaction (SC only), and no SC but a DC
reaction (DC only) increase. In the following minutes, the
frequencies of SC only and DC only remain rather stable, but
frequencies for no reaction increase further while frequencies
for both reactions decrease. One possible explanation could
be that couples intensively discuss the stressful event in the
beginning, and thereon some of the couples manage to be
less stressed. Hence, no SC nor DC reaction is necessary for
them, while other couples still discuss the stressful event until

FIGURE 3 | State distribution plot of the example data. Y-axis: relative

frequency of shown behavior; X-axis: observation intervals; SC only: only

stress communication was shown without dyadic coping; DC only: only dyadic

coping was shown but no stress communication; none: neither stress

communication nor DC were shown; SC+DC: stress communication and

dyadic coping were shown.

TABLE 1 | Resulting four states of the state-expand procedure.

DC (dyadic coping)

No Yes

SC (stress communication) No None DC only

Yes SC only SC+DC

Yes: behavior was shown, no: behavior was not shown.

the end of the interaction sequence. These two mechanisms
are also reflected by the Shannon entropy (Shannon, 2001).
This coefficient as a measure of dispersion (Figure 4A) shows
that couples show very homogeneous behavioral patterns in
the first sequences (simultaneous display of SC and DC) and
that the couples become more dissimilar at sequence 20.
That is, they show all different combinations of SC and DC
behavior.

An additional first insight can be gained by inspecting the
number of state-transitions as a measure of stability. The number
of state-transitions depicts how often couples change from one
state into another. A high number indicates frequent changes
in a couple’s behavior. Hence, the number of state-transitions
allows differentiating between volatile couples who frequently
change their behavior (high scores) from those who tend not to
change their behaviors frequently (low scores). The histogram
in Figure 4B shows that the majority of couples change their
behavior about 10 to 20 times out of 47 possible changes during
the 48 intervals, which is roughly about one to two times within
a minute.

Research Question 1: Is there an association between
behaviors of dyad members (e.g., is more frequent SC related
to more frequent DC)? Or, more specifically, do men show DC
behavior more frequently if their partners communicate their
stress (SC) more frequently?

This very general research question can be answered by
calculating the Pearson correlation between the frequencies of the
behavior of interest shown by the first partner and the frequencies
of the interesting response by the other partner.

For the sample data set, we find a very high Pearson
correlation of r = 0.86 (p < 0.001) between the frequencies of
stress communication and DC responses. Which, overall, implies
that, in couples with women showing high rates of SC, men tend
to show more DC reactions. And vice versa, if women show low
rates of SC, men show low rates of DC as well. However, due
to the aggregation of the data, information about the direction
and the contingency (i.e., promptness) of this association are lost.
Hence, it remains an open question if SC leads to prompt DC
reactions, if DC leads to prompt SC reactions, or if the association
is bidirectional.

Research Question 2: Does the behavior of one member
trigger an immediate reaction by the other? Or, more specifically,
does SC by one partner evoke a prompt DC reaction by the other
and vice versa?

FIGURE 4 | Entropy plot (A) and histogram of state-transitions (B) for the

example data. Entropy refers to the Shannon entropy.
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Three strategies, which can be used for addressing this
research question, will be shown: (A) The aggregated logit models
approach by Bakeman and Gottman (1997), (B) Multi-Level
logistic regression, and (C) Basic Markov Models.

(A) Bakeman and Gottman’s (1997) approach originally consists
of three steps, but a fourth step can be added to estimate
a full APIM. The first step is to produce a state-transition
table for each couple. Table 2 shows the transition table for
couple 129 as an example. The behavior of interest (DC by
men) in interval t, is mapped against the combination of the
observed behaviors (SC by women and DC by men) in the
previous interval t–1. Hence, for the data set, 64 tables (one
for each couple) are obtained.
In the second step, 64 logit models are estimated (separately
analyzing the 64 frequency tables for the 64 couples). The
odds of showing the behavior of interest against not showing
the behavior are predicted by the past behaviors of the two
partners. The first line of Equation (1) shows that these odds
are predicted by SC of the women in the preceding interval
(t–1; partner effect), the DC behavior by the men (t–1; actor
effect), and their interaction (SC (t–1)∗DC(t–1)). The latter
means that the effect of SC at t–1 on DC might depend on
whether DC was also present at t–1 and vice versa.

P (DCt)

1− P (DCt)
= exp(β0) ∗ exp (β1)

SCt−1 ∗

exp (β2)
DCt−1 ∗ exp(β3)

SCt−1∗DCt−1

⇔ ln

(

P (DCt)

1− P (DCt)

)

= β0 + β1 ∗ SCt−1

+β2 ∗ DCt−1 + β3 ∗ SCt−1 ∗ DCt−1 (1)

Any coding for occurrence and non-occurrence of behavior
can be chosen. However, effect coding (1 = behavior is
shown and −1 = the behavior is not shown) benefits the
most straightforward interpretation of coefficients: exp(β0)
are the average odds of showing DC against not showing
DC; all other exp(β) represent odds ratios (e.g., the factor to
which the odds change if SC was present at t–1). An exp(β2)
= 2, for example, would result in two times higher odds for
showing DC in the current interval if DC was shown in the
previous interval (t–1). Whereas, if DC was not shown in
the previous interval, the odds would be divided by 2 due
the effect coding. The interaction term equals 1, if the two

TABLE 2 | State-transition table for couple ID 129.

Prior behavior t–1 Dyadic coping (t)

SC DC Yes No

Yes Yes 23 4

Yes No 1 1

No Yes 3 1

No No 3 11

SC, stress communication; DC, dyadic coping; yes, behavior was shown; no, behavior

was not shown.

behaviors were shown at the previous interval (t–1) but also
if they were not shown. Hence, in both cases the odds are
multiplied by exp(β3). However, if only one behavior was
shown (SC = −1 and DC = 1 or SC = 1 and DC = –1)
the odds are divided by exp(β3).
The second line of Equation (1) presents the same model
in the logit-parameterization: The natural logarithm is
taken of both sides of the equation. The parameters are
now symmetrically distributed around 0 (no effect) and
range from −∞ (negative effect) to −∞ (positive effect).
Predicted logits and odds of observing DC can be used for
single case analysis as shown for couple 129 in Table 3.
The third step uses the logit parameterization of all
models and aggregates the β-parameters by averaging. The
β-parameters are t-distributed, which allows for standard
hypothesis testing. The aggregated βs can be transformed
back into odds ratios afterward by applying the exponential
function. Table 4 depicts the aggregated estimates for the
64 couples of the sample data. Overall, the odds ratios for
intercept, the partner effect, and the actor effect are positive
and statistically significant. Therefore, it is principally more
likely to observe DC than no DC and the probability
increases with preceding stress-related behaviors (either
SC and/or DC), yet there is no statistically significant
interaction effect.
The fourth step is to enter the second behavior (SC) as the
dependent variable and run steps 1 through 3 again. For
the sample data, this results in a second aggregated logistic
model with women’s SC as the dependent variable. Table 5
(first column; SC) shows the estimates for this step. The
model shows that a preceding SC increases the probability
for showing SC again (actor effect) and that preceding DC
also increases the probability for SC (partner effect).
Together the third and the fourth step correspond to
an APIM, which can be displayed as a path-diagram
(see Figure 5). However, this representation is only

TABLE 3 | Results of logit analysis for couple ID 129.

Parameter β exp(β)

Grand mean 0.33 1.39

DC at t−1 (Actor effect) 0.92 2.52***

SC at t−1 (Partner effect) 0.50 1.65***

Interaction effect −0.10 0.91

***p < 0.001; SC, stress communication; DC, dyadic coping.

TABLE 4 | Averaged logit parameters over all 64 couples.

Parameter β exp(β)

Grand mean 0.25** 1.28**

DC at t−1 (Actor effect) 0.79*** 2.21***

SC at t−1 (Partner effect) 0.70*** 2.01***

Interaction effect 0.04 1.04

**p < 0.01, ***p < 0.001; SC, stress communication; DC, dyadic coping.
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TABLE 5 | Comparing results of aggregated logit model and MLM.

Estimated β

SC DC DC–SC

AGGREGATED LOGIT MODELS

Mean logit 0.28** 0.25** 0.03N

Actor effect 1.05*** 0.79*** −0.25N

Partner effect 0.52*** 0.70*** 0.27N

Actor*Parter 0.10 0.04 −0.06N

MLM APPROACH

Mean logit 0.25** 0.22* 0.03

Actor effect 1.26*** 0.97*** −0.29***

Partner effect 0.49*** 0.69*** 0.21*

Actor*Parter 0.03 0.01 −0.02

*p < 0.05, **p < 0.01, ***p < 0.001, Np-values not available; SC, stress communication

as dependent variable; DC, dyadic coping as dependent variable; SC-DC, differences

between SC and DC estimates.

FIGURE 5 | Odds ratios for partner and actor effects (horizontal

arrows) and partner effects (crossed arrows) between stress

communication (SC) and dyadic coping (DC).

recommended if interaction effects are small and not
significant because the interaction effects cannot be easily
integrated into the graphical presentation. If interaction
terms are present, a tabulation of the results is more
accessible.

(B) Instead of runningmultiple logit models, a single multi-level
model can be used. The multi-level model has to address
three challenges: The longitudinal aspect of sequence data,
the fact that sequences are categorical, and the dyadic data
structure.
The longitudinal aspect can be addressed by the multi-
level modeling approach itself because it accounts for
dependencies within nested observation. Repeated
measures, for example, can be seen as multiple observations
that are nested within individuals. For sequence data, each
but the first interval can be seen as providing an observation
that is depending on prior observations. Thus, the example
data set provides 94 observations (two variables times 47
intervals) for each dyad.
Multi-level models can be extended to generalized multi-
level models (Hox et al., 2010) allowing for categorical
dependent variables (multi-level logistic regression). The
dependent variable for each interval is the occurrence of the
behavior at time interval t (occurrence= 0; non-occurrence

= 1). The independent variables are the occurrence of the
same behavior at t-1 (actor effect; AE = 1; non-occurrence:
AE = −1), and whether the partner showed the other
behavior at t–1 (partner effect; PE= 1) or not (PE= −1).
The dyadic data structure can be addressed by incorporating
a dummy coded moderator variable (e.g., sex), which
distinguishes between the twomembers of a dyad. Equations
(2, 4) present the corresponding model equations in logit
parameterization:
Level-1-Equation:

ln

(

P(DV = 1)

1− P(DV = 1)

)

= β0j + β1j ∗ AE+ β2j ∗ PE

+ β3j ∗ AE ∗ PE+ β4j ∗ Sex

+β5j ∗ AE ∗ Sex

+β6j ∗ PE ∗ Sex

+ β7j ∗ AE ∗ PE ∗ Sex (2)

Conditional Level-1 Equations:

If Sex = 0 : ln

(

P(DV = 1)

1− P(DV = 1)

)

= β0j + β1j ∗ AE+ β2j ∗ PE+ β3j ∗ AE ∗ PE (3)

If Sex = 1 : ln

(

P(DV = 1)

1− P(DV = 1)

)

=
(

β0j + β4j
)

+
(

β1j + β5j
)

∗ AE+
(

β2j + β6j
)

∗ PE

+
(

β3j + β7j
)

∗ AE ∗ PE

Level-2-Equations:

β0j = γ0 + e0j;β1j = γ1 + e1j; ...;β7j = γ7 + e7j (4)

In Equations (2–4), the dependent variable (DV) changes
from male to female partners. If male behavior is to be
predicted, DV represents DC. If female behavior is to be
predicted DV represent SC. In the same vein, AE represents
male DC and PE represents female SC at the previous
interval if the occurrence of male DC is predicted; AE
represents female SC and PE male DC at the previous
interval if the occurrence of female SC is predicted. Equation
(3) shows the conditional equations for men and women if
the variable sex = 0 (upper conditional equation for male
partners) or if sex = 1 (lower equation for female partners).
Hence, predicting DC behavior by male partners, the upper
equation has to be interpreted, predicting female SC, the
lower equation has to be interpreted.
The partner with sex= 0 (male partners) form the reference
category. The corresponding average logit, actor, partner,
and interaction effects can be obtained directly from the
equation. For the non-reference category (sex = 1; female
partners), the average logit, actor, partner, and interaction
effects differ from the ones for the reference category by
the logit parameters associated with the variable sex. For
example, β1j is the actor effect for the reference category
(male partners), and β5j shows if the actor effect for the
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non-reference group (female partners) is larger (positive
value) or smaller (negative value); the actor effect for female
partners is, hence, depicted by (β1j and β5j). The same is
true for partner effects (β2j and β6j) and the actor∗partner
interaction (β3j and β7j) considering female partners. The
intercept (β0j) represents the average logit for the reference
group (male partners), and the main effect of sex (β4j) shows
the difference of female partners’ intercept from the male
partners’ intercept.
Finally, each βj is located at level-1 indicating that
the regression coefficients may differ between couples.
The level-2-equations show that each couple’s regression
parameters βj depend on the average effect over all couples
(γ; fixed effects) and a couple-specific residual (ej; random
effect). The fixed effects at level-2 represent the average
effects across all couples and conceptually correspond to
the average parameters of the aggregated means approach.
Additionally, the variances of the random effects indicate
how much the regression effects differ between the couples.
For example, the variance of the level-2 random component
associated to the intercept (var

(

e0j
)

) describes differences in
the mean logits (for the reference group) between couples.
Moreover, correlations between random effects can be
investigated. For example, a positive cor(e1j, e2j) indicates
that larger (couple specific) actor effects are associated with
larger partner effects in the reference group. Or another
example, cor(e5j, e6j) is the correlation of the level-2
random effects associated with the differences of the female
regression parameters compared to the corresponding
male regression parameters. And a positive estimate of
cor(e5j, e6j) indicates that in couples with larger than average
differences for female partners’ actor effects we also find
larger than average differences for the partner effects. That
is couples with higher female actor effects tend to produce
higher female partner effects and vice versa.
Models with different subsets of random effects can be tested
against each other for finding a parsimonious model (Hox
et al., 2010). For the example data the comparative fit index
BIC (Schwarz, 1978) was used. In the best fitting model we
only specified a random intercept var

(

e0j
)

, random actor
var

(

e1j
)

and random partner effects var
(

e2j
)

.
The lower part of Table 5 provides the fixed effects
estimates of the generalized multi-level model. Overall,
the fixed effects are very similar to the effects of the
aggregated logit approach. Table 6 shows the random effects
of the generalized multi-level model. The variances of the
random effects can be found on the main diagonal. More
interestingly, we find that the random intercept correlates
negatively with the random parts of the actor and partner
effects (r = –0.71 and r = –0.66) indicating that in couples
with high base rates of SC and DC behaviors, the occurrence
of these behaviors is less strongly associated with prior
behavior than for couples with lower base rates. Random
components of actor and partner effects correlate positively
(r = 0.77) indicating that in couples with larger influences
from SC at t–1 on DC (or DC at t–1 on SC) we also find
larger influences fromDC at t–1 onDC (or SC at t–1 on SC).

TABLE 6 | Random effect for MLM.

Mean logit Actor Partner

Mean logit 0.27

Actor −0.71 0.06

Partner −0.66 0.77 0.17

Variances of level-2 residuals are on the principal diagonal; their correlations are shown in

the other cells.

The generalized multi-level model bears the advantage
that all estimates can be obtained by one single model.
Furthermore, random effects and their correlations can be
modeled, tested and interpreted. Additionally, the model
tests whether the effects differ between the depended
variables.
However, the generalized multi-level model bears the
disadvantage that the data set has to be prepared in an
unusual way with one entry representing one observation
of only one behavior, the two preceding behaviors of both
partners and the dummy coded variable. That procedure
results in twice as many entries as there are intervals
minus 2 (e.g., 2 ∗ 47 entries for one couple). Additionally,
depending on the sex of the partner, actor (partner) variables
represent either SC (female actor and male partner) or DC
behavior (female partner and male actor). Furthermore,
multi-level-models require large sample sizes for estimating
the coefficient variances properly. A simulation study
conducted by Maas and Hox (2005) showed that standard
errors at level-2 are biased downward if level-2 sample
sizes (e.g., couples) are comparably small (<50). Unbiased
standard errors could be found for a sample size of 100 at
level-2. Furthermore, if random effect variances are small,
the estimation of model parameters can become erroneous
with negative variances, for example.

(C) Basic Markov Modeling can also be used for addressing
research question two. Basic Markov (or AR-1 Markov)
models are based on Markov chains. A Markov chain
describes a process over discrete time (Briggs and Sculpher,
1998) where the state at time t (e.g., showing DC) depends
only on the previous state at t–1. This assumption is
called stationarity (Ross, 2014) and fits perfectly to research
question 2.

Most important for the interpretation of Markov chains is the
transition matrix. The cells of the transition matrix (see Table 7)
depict the transition probabilities to move from a state at t–1
(depicted in the rows) to a particular state at t (depicted in
the columns). Cells on the main diagonal are often interpreted
as stability as they indicate the probability to remain in the
particular state.

In Table 7, the first cell shows that a couple showing no SC
nor DC behavior at a given interval (t–1) will very likely (with
a probability of 0.79) show no SC nor DC at the next interval
(t). Keeping in mind that at the beginning of the interaction
sequence almost all couples showed SC and DC, we can derive
that once a couple attained the status of no stress reaction and
no support over the curse of time, they most likely finished their
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coping process. The remainder of the 1st row shows that it is very
unlikely that a state without SC nor DC will be followed by a state
of only SC [p(SC|none)= 0.06], or only DC [p(DC|none)= 0.06].
However, a small but substantial probability of p(SC+DC|none)
= 0.10 depicts that a state with SC and DC will occur after a state
without any of the two behaviors.

The transition probabilities may also be interpreted in terms
of actor and partner effects, yet the Markov model provides
conditional actor and partner effects, that is the actor effect for
showing SC at t for female partners, for example, may depend on
whether the male partner displayed DC or not. Consider the case
without previous display of DC, the actor effect is then calculated
as the sum of the transition probabilities of the state with SC only
at t–1 to one of the two states with display of SC (SC only and
SC+DC): p(SC|SC)+ p(SC+DC|SC)= 0.33+ 0.40= 0.73 (row
2 of Table 7). In cases with additional display of DC at t–1, the
sum of the two transition probabilities from the state with stress
communication and dyadic coping at t–1 to the two states with
stress communication at t reflects the conditional actor effect:
p(SC|SC+DC) + p(SC+DC|SC+DC) = 0.08 + 80 = 0.88 (last
row of Table 7). Male actor effect and both partner effects are
calculated analogously.

Therefore, one advantage of basic Markov models is that
partner∗actor interactions effects can easily be interpreted in
terms of probabilities. Moreover, most software packages for
Markovmodeling, such as the R-Packages TraMineR (Gabadinho
et al., 2009) or seqHMM (Helske and Helske, 2016) can read
data that is structured as sequences rendering the data handling
process comparably easy. Finally, basic Markov models can be
extended to hidden Markov models and to mixture Markov
models, which can be used to answer research questions 3
and 4.

Research Question 3: Is there an underlying dyadic process,
which might account for the observed behavior? Such as a
latent dyadic coping process, which simultaneously affects the
occurrence of DC and SC.

This question can be addressed using a hiddenMarkov model.
In this type of Markov model, it is assumed that the (two)
observed variables function as indicators of one underlying
latent variable with changing status over time as presumed in
the common fate model (Figure 2B). At the level of the latent
variable, the process is assumed to follow a Markov chain with
initial state probabilities (the probability to be in a particular
state at t = 0; that is before the first interval) and transition
probabilities.

TABLE 7 | Transition probabilities for example data.

->None ->SC ->DC ->SC+DC

None-> 0.79 0.06 0.06 0.10

SC-> 0.19 0.33 0.08 0.40

DC-> 0.32 0.05 0.31 0.32

SC+DC-> 0.05 0.08 0.06 0.80

None: “no stress communication and no dyadic coping”; SC, “only stress communication,

but no dyadic coping”; DC, “only dyadic coping, but not stress communication”; SC+DC,

“stress communication and dyadic coping”; X-> transition from X; ->X transition to X.

The link between the latent process and the observed variables
is defined by its emission, which is the conditional probability
of observing a particular (combination of) behaviors depending
on the latent state. For instances, a couple with a stressed female
partner should show high rates of SC, DC and the combination of
the two behaviors (i.e., high conditional probabilities to observe
these behaviors if the latent state reflects the female partner’s
stress).

The Markov chain can be restricted to model theoretical
assumptions. For example, one may assume that two latent
states exist. One that correspond to a state of solving stress,
and a second of having successfully coped with it. A plausible
assumption would be that couples, who left a state of stress
solving, will not enter it again. In terms ofMarkovmodeling, such
a state, which cannot be left once it has been entered, is called an
absorbing state.

In order to demonstrate the meaning of an absorbing state,
the results for the latent states model are presented in Table 8.
The emissions show that state 1 can be interpreted as being
in stress, because we find high probabilities of showing stress-
related behaviors: p(SC+DC|State1= 0.77; p(DC|State1)= 0.09;
p(SC|State1) = 0.07 which sum to p = 0.93, the total probability
of showing a stress related behavior. To the contrary, in state 2,
which can be described as a state of solved or reduced stress, we
find a relatively high probability of showing no stress behavior
[p(none|State2)= 0.66].

The initial state probabilities show that all couples are initially
in a state of stress and the transition matrix shows that the
probabilities for leaving this state (solving the stress) is 0.03.
Returning to a state of being in stress is not possible due to the
model restriction. So over time, more and more couples will cope
with the stress and enter state2.

Models with different numbers of latent states can be tested
against each other using fit indices such as the BIC (e.g., a
model with two latent states vs. a model with three latent states).
Moreover, it is also possible to test if a particular hidden Markov
model explains observations better than a model without any
latent structure (basic Markov model). In this example, the basic

TABLE 8 | Hidden Markov model with 2 latent states.

Initial states State1 State2

Probabilities 1 0

Transitions ->State1 ->State2

State1-> 0.97 0.03

State2-> 0 1

Emissions None SC DC SC+DC

State1 0.07 0.09 0.07 0.77

State2 0.65 0.09 0.12 0.14

None: “no stress communication and no dyadic coping”; SC, “only stress communication,

but no dyadic coping”; DC, “only dyadic coping, but not stress communication”; SC+DC,

“stress communication and dyadic coping”; X-> transition from X; ->X transition to X;

State2 was modeled as an absorbing state.
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Markov model (BIC: 5138) fitted better than the hidden Markov
model (BIC: 5742), which can be interpreted as evidence against
an underlying process.

The advantage of this model is that it allows for adapting the
common fate model to sequence data. Furthermore, assumptions
about the latent process can be tested via model comparisons.
An additional merit is that the minimum number of sequences
is one. Hence, the model can be fitted to very small sample sizes
or even be used in single case analysis.

The disadvantage of the hidden Markov model is that this
model is supposed for long sequences. With only few time
intervals, for example three, the use of hidden Markov models
is not recommended. In these cases, latent Markov models are
considered more promising (Zucchini and MacDonald, 2009; see
Bartolucci et al., 2015 for an implementation).

Research Question 4: Are there latent groups of dyads, which
might account for observing different reaction patterns? Or, more
specifically, can dyads be grouped according to their typical
pattern of displaying SC and DC behaviors? For example, are
there “fast copers” who quickly reduce the perceived stress, but
also stress-prone couples (“slow copers”) who do not find their
way to reduce the stress?

From the number of state-transitions, one can see that there
are differences with respect to the number of observed state
changes across the couples. Some are rather volatile, and others
remain rather stable in their state. The focus of research question
4 is to reveal if there are several typical patterns of observed
behaviors that allow for identifying groups of couples that differ
in their stress treatment. Detecting unobserved groups with
different response patterns in categorical data is commonly done
relying on Latent Class Analysis (e.g., Collins andWugalter, 1992;
Hagenaars and McCutcheon, 2002; Asparouhov and Muthen,
2008). Hence, a first approach to answer research question 4 is to
combine Latent Class Analysis and Markov modeling resulting
inmixture Markov models (Van de Pol and Langeheine, 1990). A
second approach is sequence clustering (Abbott, 1995).

Mixture Markov Model
Mixture models or so-called latent class models assume that
the population consists of several latent (unknown) subgroups.
Detecting these subgroups accounts for so-called unobserved
heterogeneity in the population. Dealing with sequence data,
the notion of unobserved heterogeneity implies that there are
different subgroups differing in their specific transition matrices.
For example, if there was a group of “fast copers,” their transition
probabilities into a state without SC and DC behavior would be
comparably high. For “slow copers,” we would presume smaller
transition probabilities to the state without SC and DC behaviors.
The assignment of the couples to the latent classes is probabilistic,
that is, for every couple, there are as many probabilities to belong
to a particular latent class as there are classes. The couple is
presumed to belong to the class with the highest assignment
probability.

As a special case, a mixtureMarkovmodel with only one latent
group is equivalent to the basic Markov model, hence model
comparisons between models without unobserved heterogeneity
andmodels withmultiple classes are possible. For the sample data

set, model comparisons did not support a Markov model with
two latent classes nor with three latent classes as the associated
BIC indicated worse model fit than for the basic Markov model
(BIC = 5205 for two and BIC = 5292 for three latent classes
compared to BIC= 5138).

However, to illustrate mixture Markov models, results of the
model with two latent classes are depicted in Table 9. The latent
classes contain 59 vs. 41% of the couples. The first latent class is
characterized by rather stable transition probabilities to remain
in the two states of showing no SC and DC behavior (p = 0.86)
or to remain in a status with simultaneous display of SC and DC
behavior (p= 0.84) whereas the 2nd class shows lower transition
probabilities to remain in the same two states (p = 0.60 and p =
0.76, respectively). Also in the 1st class the transition probabilities
to enter the state without SC and DC behavior are somewhat
higher (p = 0.24 and p = 0.43 from SC behavior only and DC
behavior only to the state of no SC and no DC) than in the 2nd
latent class (p= 0.16 and p= 0.23).

The advantage of this model is that it accounts for unobserved
heterogeneity caused by a categorical variable. A disadvantage is
that, to our knowledge, no recommendations for required sample
sizes exist. However, as a simulation study by Dziak et al. (2014)
showed the most basic latent class analysis needs at least 60
observations if groups are very dissimilar but several hundred for
less pronounced dissimilarities.

Sequence Clustering
A second modeling approach is based upon the idea of
subgrouping sequences. This modeling tradition is known as
sequence analysis. However, we will refer to this approach as
sequence clustering, because in this approach classical cluster
analysis is adapted for sequence data.

Within this approach, optimal matching procedures (OM;
Abbott and Tsay, 2000) can be seen as a viable alternative to

TABLE 9 | Mixture Markov model with 2 latent groups.

Most probable Group 1 Group 2

Group proportion 0.59 0.41

TRANSITIONS

Group 1 ->None ->SC ->DC ->SC+DC

->None 0.86 0.03 0.05 0.07

>SC 0.24 0.23 0.09 0.44

->DC 0.43 0.06 0.34 0.17

->SC+DC 0.04 0.07 0.04 0.84

Group 2 ->None ->SC ->DC ->SC+DC

->None 0.60 0.12 0.10 0.18

>SC 0.16 0.40 0.07 0.37

->DC 0.23 0.04 0.28 0.46

->SC+DC 0.07 0.09 0.09 0.76

None: “no stress communication and no dyadic coping”; SC, “only stress communication,

but no dyadic coping”; DC, “only dyadic coping, but not stress communication”; SC+DC,

“stress communication and dyadic coping”; X-> transition from X; ->X transition to X.
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mixture Markov models. Essentially, OM categorizes behavioral
sequences of individuals or couples according to their similarity
in a stepwise procedure: The first step is defining (dis-)similarity
via an appropriate distance measure (in OM called cost),
the second step is identifying clusters of similar sequences
by applying a clustering algorithm. These clusters can be
interpreted, and covariates may be included in a statistical model
predicting cluster membership.

In the first step, the metric of similarity and difference
between sequences is defined by Levenshtein-distances (1966):
Two sequences are similar if essentially the same pattern of
behavior is shown Levenshtein (1966). They differ to the extent
to which some elements of one sequence have to be changed to
perfectly match the other sequence (cost).

Consider a first case, where the sequence of couple 1 perfectly
fits the sequence of couple 2 but with a shift of one interval
(that is the couples exactly show the same behavioral pattern, yet
the observation of couple 1 is one-time interval “behind”). For
example: The first sequence is “0-1-1-1” and second sequence is
“1-1-1”. In this case, the two sequences can be made identical by
removing the first element in the first sequence and shifting the
remainder of the sequence to the left (deletion), or by copying
the first element of couple 1 and paste it at the beginning of
the second sequence (insertion). Therefore, the minimal cost of
transforming both sequences into each other is one operation.

Consider a second case with two totally identical sequences
which only differ at the entry in the fourth interval. For example,
the first sequence is “0-0-0-1” and the second is “0-0-0-0”. The
two sequences can be made identical by substituting the fourth
interval in the first sequence with “0” or by substituting the
fourth interval in the second sequence with “1”. Again only one
operation is needed. However, substitution is weighted differently
than insertion or deletion, and the cost of this transformation
would be one times a weight (weighting).

A higher weighting stands for more dissimilarity. The
specific weighting is often derived from theoretical assumptions;
however, the weighting can also be derived by applying the
“TRATE”-formula of Gabadinho et al. (2009; Equation 5). That is,
a basic Markov model is fitted, and the transition probabilities of
two states, which should be substituted, are subtracted from two.
Thus, if the transition between the two states is very likely, the
weighting becomes smaller. The value becomes zero when each
of the two states is always followed by the other. And if they never
occur in consecutive order, the weight becomes two.

Cost for i 6= j : 2− p
(

i|j
)

− p
(

j|i
)

for i = j : 0

i = state observed at time interval t

j = state observed at t + 1 (5)

For every two observation units (couples) the minimal cost is
computed for transforming their sequences into each other. The
results are stored in a distances matrix with as many rows and
columns as number of observations. Cells represent the minimal
cost between the associated observation units. This dissimilarity
matrix corresponds to other distance measures, like the Euclidian
distance for example, in an ordinary cluster analysis, except that
it assumes sequence data rather than metric data.

In a second step, clusters of similar sequences can be identified
via a clustering algorithm. In this example, the Ward error sum
of squares hierarchical clustering method (Ward, 1963) will be
used because that is the default algorithm in the R-Package
TraMineR (Gabadinho et al., 2009). The algorithm is commonly
used (Willett, 1988), yields a unique and exact hierarchy of cluster
solutions, and is comparable to most methods for identifying the
number of clusters.

The algorithm treats each sequence as a single group, in
the beginning. Then pairs of sequences are merged stepwise
minimizing the within-group variances. The latter is determined
by the squared sum of distances between each single observation
and its clusters centroid. The silhouette test (Kaufman and
Rousseeuw, 1990) can be used for determining which cluster
solution provides the best representation of the data. The
test is well-established and yields the benefit that it provides
the silhouette coefficient reflecting the consistency of clusters.
According to Struyf et al. (1997), a reasonable structure can be
assumed if the coefficient is above 0.51.

In the application, the silhouette test resulted in a two-cluster
solution with a coefficient of 0.05. Hence, additional methods
should be used for validating the findings. These may include
inspection of the dendrogram, scree plot, or principle component
plot. All three methods lead to a two-cluster solution (see the
accompanying R-script).

The last step is to interpret or to describe the clusters. Figure 6
shows the state-distribution plots for both clusters. The obvious
difference between the two clusters is that, in cluster 1, couples
quickly enter states of no stress communication and no dyadic
coping, whereas, in cluster 2, most of the couples remain in the
state of stress communication and dyadic coping over the whole
interaction sequence. Because of this, the first cluster will be
referred to as the “fast copers” and the second as the “slow copers.”

Covariates can be used for further interpretations. A
correlation between the cluster membership and men’s self-
assessed dyadic coping ability (an additional variable in the data
set) reveals a weak negative correlation (r=−0.21), which would
indicate that men in the “slow coper” cluster tend to evaluate
their dyadic coping ability lower than men in the “fast coper”
cluster. This association, however, is not statistically significant
(ptwo−tailed = 0.095).

Additional possible follow-up investigations include the
application of strategies from previous sections. Table 10

provides the results of applying the aggregated logit models
separately for both clusters. It shows that the actor effect is
lower within the “slow coper” group, while the difference
is not statistically significant, it might indicate that stress
communication shown in this group is less stable or less
continuously (e.g., female partners may be more often
interrupted while communicating stress). The difference in
partner effects is statistically significant, the partner effects
is lower in the “slow coper” group. This finding indicates
that the DC response for this group is less likely (or not as
prompt). Furthermore, the interaction effect was not statistically
significant in the overall sample. However, estimating the
aggregated logit models separately for the two clusters shows
that for the “fast coper” the interaction effect is negative: if stress
communication is accompanied by dyadic coping the probability
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FIGURE 6 | State distribution plots both clusters identified by the OM-procedure. Y-axis: relative frequency of shown behavior; X-axis: 48 observation

intervals; SC only: only stress communication was shown but no dyadic coping; DC only: only dyadic coping was shown but no stress communication; none: neither

stress communication nor DC were shown; SC+DC: stress communication and dyadic coping were shown.

TABLE 10 | Mean log-linear parameter comparison for cluster 1 and 2 with

DC as depended variable.

Parameter Cluster 1 Cluster 2 Pa

Grand mean −0.07 0.67*** <0.001

Actor effect 0.84*** 0.73*** 0.347

Partner effect 0.83*** 0.52*** 0.023

Interaction −0.11* 0.24* 0.001

*p < 0.05, ***p < 0.001.
ap-value for parameter mean difference between clusters.

that stress reaction will be maintained is less than expected by
the main effects. For the “slow coper” it is the opposite: if stress
communication is accompanied by dyadic coping, it is more
likely that it will be maintained. These findings indicate that at
least two separate styles of dyadic coping might exist.

Identifying the exact nature of these separate styles might be
subject of further research. However, possible explanations are
that the “slow copers” encourage their partners to communicate
their stress by active listening, while “fast copers” tend to appease
the partners. An alternative explanation might be that stressed
partners of slow coping couples like to be comforted and keep
their SC up so that their partners keep up their DC.

WHAT DID WE LEARN?

The main purpose of this article is promoting the presented
analyses. Thus, a detailed substantive discussion of the findings
with respect to couple research will not be provided. Instead,
the overall findings will be sketched in a more general way
to highlight the main interpretations of the different statistical
models.

The Pearson correlation revealed a strong linear relationship
between the number of observed SC and DC. Aggregated logit
model and the multi-level model revealed the bidirectional
effects between these two variables. The multi-level model

also revealed that couples with high actor effects also tend
to show higher partner effects. However, the nature of this
relationship seems to be different across couples. The entropy
plot shows that couples are similar at the beginning of the
observation period but start to differ at interval 20 (2 min;
40 s). Sequence clustering revealed that the sample can be
clustered into two groups, while the mixture Markov model
did not reveal two classes. At first glance, this seems somewhat
inconsistent. However, the OM-procedure assigned 70.31% of
sequences to the same group as the two-class mixture model did
in terms of highest probability for class membership. Thus, even
though the two approaches differ with respect to the number
of clusters/groups, the identified groups are comparable. Both
groups are very similar in the beginning (most prominent states
are “simultaneous SC and DC”) but develop differently across
time. The first cluster can be characterized by a faster increase
of the state without SC and DC. Additionally, this cluster (fast
coper) shows a shorter duration of SC while the other (slow
coper) shows much longer durations and higher rates of SC and
DC states.

The aggregated logit models revealed stronger actor and
partner effects for the “fast copers” than for the “slow copers,”
indicating a more prompt reaction and/or simultaneous SC and
DC. These effects are accompanied by a statistically significant
negative interaction effect in the “fast coper” cluster, indicating
that simultaneous SC and DC (or the absence of both) decreases
the chance that further DC will be shown, while the opposite is
true in the “slow coper” cluster. Hence, if SC is present, the DC
reaction is more stable for the “fast copers.” Additionally, once
SC and DC ended, the chance that it ended completely is higher
in the “fast coper” cluster.

Overall the coping style of the “fast copers” seems to be more
coherent (more prompt DC reactions) compared to the “slow
copers.” This finding is supported by the additional correlation
analysis showing that men of the “slow coper” cluster assess their
DC style less good as men of the “fast coper” cluster. These
findings may be used for further research questions: For example,
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it could be interesting to investigate if belonging to the fast vs.
slow copers is more beneficial for relationship satisfaction in the
long run.

WHERE TO FIND THE ANALYSES AND
STATISTICAL ROUTINES?

A commented R-script for reproducing all results of this paper
can be downloaded at GitHub1. It provides a step-by-step guide
through all presented analyses2 and instructions for installing
the “DySeq”-Package (providing sample data and supplemental
functions).

ALTERNATIVE APPROACHES OR CHOICES

The aggregated logit model, the multi-level model and the
presented Markov models assume stationarity. According to
Helske and Helske (2016) such models can still be useful for
describing data, even if stationarity cannot be assumed. However,
Markov models can be extended to semi-Markov models (Yu,
2010), which do not rely on this assumption.

A disadvantage of ourmulti-level adaptation is that the model
does not allow for estimating random effects for both members
of a dyad separately. Kenny et al. (2006) proposed the double
entry approach from Raudenbush et al. (1995) in order to obtain
these estimates, however common R packages cannot handle
this kind of analysis whereas the presented adaption in this
contribution can be estimated by common R packages for multi-
level modeling such as lme4 (Bates et al., 2015).

Sequence clustering is very flexible and can be configured
in many different ways. Therefore, it is important to justify
specifications of the statistical model or notify if the specifications
were chosen arbitrarily. The substitution-cost-matrix was derived
using the “TRATE”-formula from Gabadinho et al. (2009). The
“TRATE”-formula is based on the transition matrix containing
information about prompt changes from one state to another.
Thus, it uses the same information as the aggregated logit models,
and therefore, is best suited to detect subgroups with respect to
prompt reactions. However, alternative methods for deriving the
substitution-cost-matrix can be found in Gauthier et al. (2009).

Alternatives also exist regarding the clustering algorithm. An
extensive overview of alternatives can be found in Kaufman
and Rousseeuw (2009). However, one of the most appealing
features of the presented Ward algorithm is that it is comparable
to many other methods for determining the correct number
of clusters. In some cases different tests may indicate different
numbers of clusters. In these cases, additional analyses with
additional variables including cluster membership as a covariate
may reveal if the clusters differ from another. Meaningful
differences between association patterns for these additional

1https://github.com/PeFox/DySeq_script
2Relying on the following packages “TraMineR” (Graphical analysis, state-changes,

entropy, and OM-procedure; Gabadinho et al., 2009), “gmodels” and “MASS”

(research question 2; Venables and Ripley, 2002; Warnes et al., 2015), “fpc”

(optimal number of clusters; Henning, 2015), and “cluster” (ward algorithm;

Maechler et al., 2015), “seqHMM(Markov modeling; Helske and Helske, 2016).

variables between clusters may indicate that these clusters exist.
However, OM-procedures as cluster analysis are explorative in
nature, and findings should be cross-validated before being
generalized.

It is worth to mention that mixture Markov models can be
combined with any other Markov modeling approach as well.
For example, it is also possible to apply a mixture hidden Markov
model (MHMM) resulting in different common fate models for
latent classes. Moreover, the R-package seqHMM (Helske and
Helske, 2016) provides a multi-channel approach to estimate
separate emissions for each dependent variable.

COMMONLY KNOWN PROBLEMS AND
SOLUTIONS IN PRACTICAL
APPLICATIONS

Dropouts may occur meaning that observation units leave the
sample before the observation period has ended. Furthermore,
they may produce sequences with different lengths. However, all
presented models can deal with sequences of different lengths as
long as drop outs occur completely at random (MCAR). Minimal
problems can occur, such as that dropouts may form their own
cluster when the OM-procedure is applied.

If dropouts occur systematically, the interpretability of model
results is questionable. To our knowledge, no procedures for
handling data with dropouts that are not missing at random
(MNAR) exist for the presented models. Methods like multiple
imputation (e.g., Schafer and Graham, 2002) can be used if
missingness can be considered random (MAR).

However, it is often difficult to assess if dropouts are occurring
at random or systematically. Therefore, it is strongly advised to
choose an experimental design that limits the risk for dropouts.
In the present study, the observation took place as an 8-min long
waiting condition between other parts of the experiment. The
risk that a couple leaves such a condition earlier than expected
is minimal. Whereas, it is very likely that dropouts occur if an
observation stretches over weeks and demands multiple testing
sessions.

Zero Frequencies
Some behavior may rarely be shown, or some couples may
never show a certain behavior. That is especially a problem
for the aggregated logit model: For all state-transition tables
all cell frequencies must be larger than zero for logit models
to be estimated. If some couples do never show a particular
behavior, one way is excluding these couples. But, this may lead
to biased estimations if zero frequencies occur systematically. An
alternative is adding a constant, typically 0.5, to all cells (Everitt,
1992) to make the model estimable at the cost of a weak bias
toward lower effects. It is, therefore, a conservative approach for
handling zero frequencies.

The multi-level can be affected by this, too. However, the
same problem is referred to as incomplete information (Field,
2013). Adding a constant to frequencies is, to our knowledge,
not possible in most applications for multi-level modeling. Thus,
excluding those couples is recommended.
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Low Frequencies
Typically, it is advised that the predicted cell frequency in a logit
model should be at least five for every cell. That is especially
important for single case analysis. In this case, Hope’s (1968)
Monte Carlo test should be used for statistical inferences.

PRACTICAL ADVICES

Observation Duration
Clearly, a longer observation is always better, yet other aspects
like costs, the strain on the subjects, and practical issues have to be
considered. The ideal length of the observation duration depends
on the subject: If the topic is an ongoing, endless process, the
duration should be long enough to observe transitions between
several states and long enough to generate enough time intervals
for avoiding zero frequency issues. If the subject of interest
is a process with a well-defined beginning and ending, the
observation duration should be long enough to observe both,
beginning and ending, for the vast majority of observation units.
The optimal duration, in this case, may be derived from previous
research, or a pilot study should be conducted.

The Length of Time Intervals
If interactions and changes are very fast, small intervals are
needed to observe underlying patterns. Therefore, shorter
intervals seem to be always better, yet this is not true for all cases.
The interval length influences the estimation and meaning of
stabilities and transitions. For example, if the subject of interest
is the transition between jobs, and time is measured in 1-s
intervals, the probability that a person will stay in her or his
job the next second will be near 1. This indicates that it is very
unlikely that someone will change her or his job at all. However,
if time were measured in years, the probability for staying at
a job might be, for example, 0.80. The interpretation changes
along. The expected probability that a person will change her
or his job within a year is 0.20. This example shows that it is
important to consider the length of time intervals when it comes
to interpretation of transition probabilities.

Consequently, this should be the central criteria for choosing
an appropriate length of time intervals: The duration of time
intervals should yield the most meaningful interpretation of the
actual research question and can best be derived relying on prior
studies or pilot studies in most cases.

The number of intervals depends directly on the observation
duration and the length of observation intervals (observation
duration divided by the length of one interval). If aggregated logit
models should be applied, the number of intervals should be high
enough to avoid too many zero frequency issues. Remember that
every case with at least one zero frequency on their transition
table will underestimate the true effects (at least if the default
option for handling zero frequencies is used). If single logit
models should be analyzed, the power depends directly on the
transition probabilities and the number of intervals (in fact the
time intervals become the number of observation units for this
kind of analysis). Furthermore, low frequencies will occur more
often if the number of intervals is low and if some transition

probabilities are close to zero. Hence, one should sample as many
intervals as possible.

Because plausible transition probabilities may vary strongly
between several research subjects, no rules of thumbs can be
given. However, the accompanying R-Package “DySeq,” provides
a function (EstFreq) that simulates the estimated number of cells
with low or zero frequencies depending on the expected mean
state-transition-table. Another function (EstTime) computes the
minimum number of time intervals that results in as many
cases with low or zero frequencies as considered tolerable by the
researcher. Both functions are only implemented for cases with
two dichotomous coded behaviors of interest.

If the number of coded behaviors increases, researchers should
collect much more observations. The number of cells in the
transition table increases exponentially; hence, more intervals are
needed. In this example, each transitions table had eight cells
(2∗2∗2 dimensions: Number of Levels of DC times DC times
Stress) containing 48 observations yielding an average absolute
cell frequency of six if frequencies were distributed even over all
cells. As frequencies are rarely even distributed, 48 observations
seem a lower limit for the applicability of the reported models.

If, for example, DC would comprise three categories: No DC,
positive, and negative DC: The transitions table would have 18
cells. Hence with 48 observations the mean frequency for even
distributed data would be 2.67 (leading to low-frequency issues
and very likely producing zero frequencies). If the same average
cell frequency were achieved as before, 288 observation intervals
would be needed.

This example illustrates that the number of cells increases
dramatically the more behaviors are coded, and thereupon
the number of needed intervals increases also dramatically.
Therefore, coding as few different behaviors as necessary is
recommended if logit models should be applied. The applicability
of the OM-procedure does not depend on individual frequencies,
and thus is principally applicable for any number of coded
behaviors.

The Number of Observation Units
An ordinary power analysis of correlations can be used for
research question one: According to G∗Power 3 (Faul et al., 2007)
the number of needed observations for α = 0.05 (two-tailed), 1-β
= 0.80 and r = 0.30 is N = 84, for r = 0.50 it is N = 29, and for
r = 0.80 it is N = 9.

For the aggregated logit models, a power analysis for t-testse
can be used and reveals a minimum number of N = 199
observational units for small effects (d = 0.20), N = 34 for
medium effects (d = 0.50), N = 18 for strong effects (same α and
β as above). If deviations between groups should be tested (e.g.,
Table 10), the needed samples sizes are N = 788 (d = 0.20), N =

128 (d = 0.50), and N = 52 (d = 0.80) if groups are of equal size.
For multi-level analysis, the number of couples is more

important than the number of time intervals. As mentioned
before a sample size of 100 couples is recommended. Basic and
hidden Markov Model can be estimated with any number of
couples. However, if only one sequence should be analyzed,
specialized software packages are required such as depmixS4
(Visser and Speekenbrink, 2010). For OM-distances, no power
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analysis or rules of thumb exist, but OM-distances have been
applied successfully in studies with even relatively small sample
sizes (N < 50; Wuerker, 1996; Blair-Loy, 1999). However, studies
with many expected clusters often show bigger sample sizes, e.g.,
N = 578 for 9 clusters in Aassve et al. (2007).

Although most of the proposed models have existed for some
time, they have not readily been used in psychological research on
dyadic sequence data. However, we are confident that using the
proposed models to investigate sequence data will broaden the
range of research hypotheses in the context of social interactions
and our understanding of the underlying processes. We hope
to contribute to the research on sequence data by promoting
these models and making their applications more accessible by
providing an accompanying R-script and -package.
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