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ABSTRACT

It is sometimes thought that randomized study group allocation is uniquely proficient at

producing comparison groups that are evenly balanced for all confounding causes.

Philosophers have argued that in real randomized controlled trials this balance assump-

tion typically fails. But is the balance assumption an important ideal? I run a thought

experiment, the CONFOUND study, to answer this question. I then suggest a new ac-

count of causal inference in ideal and real comparative group studies that helps clarify the

roles of confounding variables and randomization.
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1 Confounders and Causes

The reasoning behind classical controlled experiments is simple. The

researcher sets up an experimental condition and a control condition so that

they are as alike as possible in every causally relevant way except for one

experimental factor. If there is a difference in effect, then logic compels us
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to accept that the experimental factor is a cause of the effect. John Stuart Mill

called this inference scheme the ‘method of difference’.

Regrettably, human studies are not so simple. Comparative group studies,

in which researchers compare human populations, deviate considerably from

Mill’s ideal, as human populations are heterogeneous in terms of variables

that might be relevant but the researchers cannot manipulate (for example, age).

When these variables are not balanced among the study groups, statisticians,

epidemiologists, and social scientists tend to call them ‘confounding factors’ or

‘confounders’. One clever way of ‘controlling for’ confounders is by allocating

participants to the study groups such that the confounders are balanced among

the groups, similarly represented within each.

One a posteriori strategy for achieving balance in comparative group studies

involves looking for factors we suspect to be relevant and ensuring that the

groups are ‘matched’ for each of these factors. This strategy is harnessed in

observational group studies, a mixed bag of study designs in which subjects

are generally followed in the course of routine life.

The a priori strategy involves randomly allocating participants to the study

groups. If the study’s sample is large enough (so the rationale goes), we can

rest assured that confounders, including the ones we do not suspect, will be

distributed evenly across the groups. In other words, we run a randomized

controlled trial (RCT). From the second half of the twentieth century on-

wards, RCTs became increasingly popular in the human sciences. The evi-

dence-based medicine (EBM) movement began in the early 1990s, and the

evidence-based policy movement in education, social planning, and other

areas followed on its heels. Both movements recommend that, whenever pos-

sible, decision- and policy-makers should use RCTs instead of observational

studies when assessing the effectiveness of an intervention.

A treatment or policy intervention is effective only if it causes some out-

come. Researchers thus measure effectiveness through a causal inference. In

an RCT, randomization is thought crucially important for the causal infer-

ence; one influential claim sometimes made on its behalf is that randomization

controls for all of the confounding variables, including those that are known

(suspected) as well as those that are unknown (unsuspected).

John Worrall ([2002]), drawing on work by Peter Urbach (for example,

Urbach [1985]), considers various arguments for the superiority of the RCT

and concludes that it is overrated within EBM. Notably, he rejects the claim

that randomization controls for all confounding variables, even probabilistic-

ally speaking. Yet Worrall worries that epidemiologists (Worrall [2002]) and

philosophers (Worrall [2007]) commit to the assumption that—at least in the

ideal—RCTs control for all confounding variables. Philosophers often worry

about confounders as other causes of the study outcome—what I will call

‘confounding causes’—that could explain a difference in outcome between

Jonathan Fuller902

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/70/3/901/4819269 by U

N
IVER

SITY O
F PITTSBU

R
G

H
 user on 21 O

ctober 2019

Deleted Text:  (EBP)
Deleted Text: 2002


study groups if they too are distributed differently between groups. If RCT

causal inference demands balance in confounding causes yet RCTs cannot

supply it (with a reasonable probability), confounding causes seem to present

a confounding conundrum at once philosophical and scientific.

In this article, my aim is to probe the importance of confounders in RCT

causal inference. Doing so will throw light on the role of randomization, which

is often at issue in debates about whether randomized studies are epistemically

superior to observational studies. I call the assumption that all confounding

causes are balanced among the study groups the ‘balance assumption’. Some

argue that RCTs, our gold standard studies, are usually unable to balance all

confounders and thus the balance assumption fails (first commitment). Yet,

intuitively, the balance assumption is an important ideal for comparative

group study causal inference (second commitment). It thus seems that either

our gold standard studies typically fall short of the ideal, or one of the previ-

ous two commitments is mistaken.

I will accept the first commitment in Section 2, and deny the second com-

mitment in Section 3—the balance assumption is the wrong logical ideal. In

Section 4, I will propose an alternate ideal, along with the required conditions

for causal inference, based on a new account of causal inference. The ideal

ought to guide the design of comparative group studies, while the required

conditions ought to guide the interpretation of group study results. Finally, in

Section 5, I will distinguish two concepts of ‘confounder’. I will argue that

confounders are primarily important not as causes but as correlates of the

ultimate ‘other cause’, which I call ‘C’. The role of randomization is not to

balance confounding causes, but to prevent systematic imbalances in these

confounding correlates at baseline.

2 The Balance Assumption

There are three parts to the balance assumption in need of clarification: what a

confounding cause is, what it means for a confounding cause to be balanced in

a study, and what it means for all confounding causes to be balanced.

The concept of epidemiological confounding has undergone several histor-

ical revolutions (Morabia [2011]), and is a highly confused concept even its

modern form (Greenland and Robins [1986]; Pearl [2009]). The confusion may

be partly due to a clustering of multiple related yet distinct concepts under the

term ‘confounder’. One sense of confounder or confounding factor is an al-

ternate cause of the study outcome (not the study exposure) that researchers

must control for in order to avoid a faulty causal inference. This ‘direct causal’

concept of confounder is widely used in the philosophical literature on RCT

causal inference (Papineau [1994]; Worrall [2002]; Howson and Urbach [2006];

Cartwright [2010]; Howick [2011]; La Caze [2013]). As Worrall ([2002],
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pp. S321–2) argues, ‘The effects of the factor whose effect is being investi-

gated must be “shielded” from other possible confounding factors [. . .]

There is, however, clearly an indefinite number of unknown factors that

might play a causal role’. David Papineau ([1994], p. 439) cautions us to

wonder whether ‘some other confounding cause is responsible’ for a mea-

sured association in a study. Meanwhile, Jeremy Howick ([2011], p. 35)

describes conditions that a factor must satisfy in order to count as a con-

founding factor, including that ‘the factor potentially affects the outcome’.1

Finally, Colin Howson and Peter Urbach ([2006], p. 184) define ‘prognostic

factors’ (a term often used interchangeably with confounding factors) as

‘those respects that are causally relevant to the progress of the medical con-

dition under study’.

An inventory of common confounding factors makes for a heterogeneous

list. For instance, Howick ([2011]) mentions exercise, age, social class, health,

and placebo effects as potential confounders. Exercise is believed to play a

preventive causal role in mechanisms that produce cardiovascular outcomes

like heart attack and stroke, and for this reason might be associated with these

outcomes in a study. Yet it is not clear that the next two factors on the list are

causes. Age is certainly a stock example of a confounding variable that ran-

domization is supposed to disarm. Yet age, as the number of years elapsed

since a participant was born, may only be associated with health outcomes

because both age and health outcomes change over time, and these changes

have a characteristic direction (for example, health outcomes tend to worsen).

Similarly, it is arguable whether social class is a genuine cause, or if it is merely

associated with causes like income and education. Variables like age, social

class, postal code, and appreciation for classical music might all be associated

(positively or negatively) with outcomes like heart attack or stroke, but it is

not obvious that they causally affect those outcomes. They may fail

Howick’s own causal criterion for confounders. Thus there are variables

that plausibly defy the direct causal concept of confounder yet are con-

sidered paradigmatic confounding factors nonetheless. I will distinguish

confounders that are causes of the study outcome (‘confounding causes’)

from those that are not. The balance assumption I will examine here refers

exclusively to confounding causes.

The kinds of causes considered as potential confounders by philosophers

and by scientists (diseases, genes, lifestyle factors, environmental exposures,

demographic characteristics) are what epidemiologists Kenneth Rothman and

Sander Greenland ([2005]) call ‘component causes’. According to Rothman

and Greenland, component causes are individual factors that interact within

1 Howick’s ([2011], p. 35) second condition for a confounder is an orthodox one: ‘The factor is

unequally distributed between experimental and control groups’. If this condition is not estab-

lished or if it fails, we can call the factor a ‘potential confounder’.
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‘complete causal mechanisms’. Exercise interacts with dietary and metabolic

factors to produce healthy outcomes; genes and environmental exposures

interact to produce diseases; and diseases and a lack of treatment interact to

produce disease outcomes. Epidemiologists commonly represent complete

causal mechanisms using ‘causal pies’, with component causes represented

by slices within the pies. For now, I will understand confounding causes as

component causes of the outcome (other than the study exposure) that are

imbalanced among the study groups. In Section 4, I will fill in this sketch by

exploring the logical relationship between confounding causes and study out-

comes. Then in Section 5, I will turn to a distinct concept of confounder and

explain its relevance for group study causal inference.

Worrall ([2002]) presumes that the notion of balance used by the method-

ologists he cites is statistical: a factor is imbalanced when its distribution is

highly skewed and balanced otherwise. In other words, a variable is balanced

when its average value or relative frequency is not significantly different be-

tween groups. What does it mean for all confounding causes to be balanced?

For Worrall’s methodologists, it means that each confounder (suspected or

unsuspected) is balanced. Therefore, I will understand the balance assumption

as maintaining that each potential confounding cause is distributed similarly

among the study groups. A balanced distribution of each confounder is ap-

pealing because at first glance it is the kind of ideal comparability that war-

rants a causal inference in a comparative group study with positive findings.

Although Worrall attributes to his sources the idea that randomization

achieves balance in all variables, some confounders (for instance, placebo

effects) are principally controlled through other common RCT design features

(such as blinding).

Worrall ([2002]) reconstructs various arguments made by methodologists

and philosophers as claiming that balance in all potential confounders prob-

ably (rather than certainly) obtains in an RCT.2,3 After all, even if there is only

one confounding cause and the process determining its distribution in the

2 Howick ([2011], p. 50; my emphasis) also quotes Bradford Hill’s Principles of Medical Statistics

([1991]) as claiming: ‘We can equalise only for such features as we can measure or otherwise

observe, but we also need unbiased allocation for all other features, some of which we may not

even know exist. Only randomisation can give us that’. More recently, Edward Cox and col-

leagues ([2014], p. 2350; my emphasis) state that: ‘Randomization ensures reasonable similarity

of the test and control groups and protects against various imbalances and biases that could lead

to erroneous conclusions’.
3 In response to Worrall ([2002], [2007]), statistician Stephen Senn ([2013]) objects that his fellow

statisticians are well aware that many potential confounders will be imbalanced in a randomized

trial, and that the conventional analysis of trials assumes as much (see also La Caze et al. [2012]).

He further argues that Worrall’s concern about baseline imbalances is irrelevant because ‘It is

not necessary for the groups to be balanced’ (p. 1442); to believe otherwise is to subscribe to a

myth that Senn assumes ‘no medical statisticians believe’ (p. 1439). Even if Senn is right, because

the balance assumption seems to function as an important ideal in philosophical accounts of

RCT inference as well as in actual clinical research (as we will see), it is worthy of examination.
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study is random, there is still a small chance that the distribution of that one

cause is significantly skewed.

Just how probable is it that the balance assumption will obtain in any given

RCT? Worrall ([2002], p. S324) argues that it is potentially unlikely: ‘given

that there are indefinitely many possible confounding factors, then it would

seem to follow that the probability that there is some factor on which the two

groups are unbalanced (when remember randomly constructed) might for all

anyone knows be high’. He argues that it is a ‘quantificational fallacy’ to infer

that the probability of balance in indefinitely many confounders is high from a

high probability of balance in any one particular confounder. I accept

Worrall’s point that if there are an indefinite or unknown number of potential

confounders, then the probability that all potential confounders are balanced

is indefinite or unknown—and not necessarily high.

But perhaps we can be a bit more definite. Again, since Worrall describes

the balancing for which randomization in particular is responsible, let us

concentrate on the distribution of confounding causes at baseline. We can

quantify the probability that all causes are balanced at baseline, p(‘all’).

Assuming that the relevant causes are statistically independent of one an-

other, p(‘all’) ¼ (p(‘one’))n, where p(‘one’) is the probability that one cause is

balanced, and n is the number of unique causes. Let us also permit a weak

degree of balance; say, a range of similarity in the distribution of the cause

between groups that we would expect 95 times out of 100 when we randomize

‘in the long run’, so that p(‘one’) ¼ 0.95. Then p(‘all’)¼ (‘0.95’)n. If n ¼ 14,

then p(‘all’) ¼ 0.49. Thus, if there are fourteen or more unique confounding

causes in an RCT, one or more will probably be imbalanced at baseline, even

if the probability of balance is high for any one given cause. Fourteen is

probably an underestimation of the number of statistically independent

causes in a randomized trial. For instance, dozens of genes contribute to

the endpoints in which health researchers and social scientists are interested,

and most genes are inherited independently of one another. The upshot is

that there is good reason to doubt that the balance assumption is true for

even one of our best RCTs.

Worrall ([2007]) cites philosophers, including Nancy Cartwright ([1989]),

who endorse the importance of controlling for all confounding causes in an

RCT, cashed out in terms of probabilistic independence between group allo-

cation and each cause. According to Cartwright ([1989], p. 64), in an ‘ideal

RCT’, by definition the ‘assignment of individuals to either the treatment or

the control group should be statistically independent of all other causally

relevant features that an individual has or will come to have’. Might there

be a link between (i) probabilistic independence between group assignment
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and each cause, and (ii) a balanced frequency distribution for each cause?

Worrall ([2007], p. 472) conjectures:

[. . .] if we were to take the study population and divide it again and

again by some randomizing device into control and experimental

groups and keep a cumulative total of the relative outcomes in the two

groups, then we would expect that in the indefinite long run, the

innumerable other possible causal factors would balance out [among

study groups].

Worrall is pointing out that in a long-run RCT, the balance assumption might

be satisfied. Along these lines, Papineau ([1994], p. 447)—whose account of

RCT inference Worrall ([2007]) also discusses—claims that randomization

ensures that all other causes of the outcome are probabilistically independent

of the treatment, which will ‘show up, not just in this sample, but in the long-

run frequencies as the randomized experiment is done time and again’. But as

Worrall argues, whatever may be true in a long-run or ideal RCT is not ne-

cessarily true in a real RCT. Thus, the probabilistic accounts that Worrall

surveys provide us with no further reason to believe that the balance assump-

tion will obtain in reality.4 However, the question of whether ideal RCT causal

inference should rely on the balance assumption remains. This question will

occupy us in the next section.

3 The CONFOUND Study

So far we have seen that balancing all causes in an RCT is a lofty ideal. But

why bother with these confounded confounding causes in the first place?

Cartwright ([2011], p. 751) makes explicit one powerful intuition favouring

this strategy: ‘The underlying supposition is that differences in probabilities

require a causal explanation; if the distribution of causes in the two groups is

the same but for T yet the probability of O differs between them, the only

possible explanation is that T causes O’. This supposition is based on the

intuition that a difference in effect implies a difference in cause. To harness

this inferential machinery, one runs a Mill’s method of difference study. The

method of difference is the usual paradigm for classical controlled experi-

ments, but Cartwright ([2011], p. 751) suggests that observational studies

and RCTs involve the same logic.5

4 Nor should the accounts of Cartwright and Papineau be understood as describing the distribu-

tions of confounding causes that typically obtain in finite, real-world RCTs. Rather, they

describe ideal sufficient conditions for causal inference. Cartwright ([2010], p. 64), citing

(Worrall [2002]), concedes that ‘it is of course not clear how closely any real RCT approximates

the ideal’. In Section 4, I will examine the sufficient conditions that Cartwright proposes.
5 J. S. Mill would not agree; he denied that the method of difference can be applied to group

comparisons (Mill [1882]; Morabia [2013]).
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For instance, in a case-control study the investigators compare a positive

case of the outcome with a control case in which the outcome is absent. The

choice of control is not made arbitrarily; the investigators select a control

that is similar to the case in its causally relevant background circumstances.

The investigators can then look for a potential cause of the outcome that was

present in the positive case but absent in the control case. In a comparative

group study, a balanced distribution of other causes seems to do the work

that similarity in background causal circumstances does in a case-control

study.

Of course, complete identity in all background causes, which the method of

difference demands, is unlikely. Nonetheless, as Mackie ([1965]) argues, the

method of difference is a logical ideal towards which scientists strive in their

controlled experiments. Analogously, balance in each and every confounding

cause, however improbable, seems to function as an ideal for our group com-

parisons, and our confidence in the soundness of our causal inference increases

as the comparability of our groups increases. Embracing this idea, Howick

([2011]) recognizes that clinical trials are typically not sufficiently large to rule

out all baseline confounders. But in response to Worrall ([2002], [2007]), he

argues that this fact does not undermine the advantages of RCTs over obser-

vational studies: the former allow us to rule out a greater number of confoun-

ders than the latter, and it is on this basis that RCTs should be judged

superior. Even though our randomized studies do not achieve the ideal, if

they are closer to it than our non-randomized studies, then perhaps they are

better after all.

I turn to now the question of whether we should in fact hold onto this ideal

of balance in all confounding causes. In particular, is the balance assumption

ever enough for sound causal inference in comparative group studies, and is it

ever needed for sound causal inference? The first part of the question asks if

balance in all confounding causes is sufficient for the conclusion that the

exposure caused or prevented the outcome in a study showing a difference

in outcome between groups. The second part asks if balance in all confound-

ing causes is necessary for the causal conclusion in a study showing a differ-

ence in outcome. The following thought experiment will suffice to answer both

questions. In the tradition of referring to clinical studies using a handy acro-

nym, I will call this one the CONFOUND (CONceptual and epistemic

FOUNDations of causal inference) study. The comparisons I am about to

describe could be controlled trials of an intervention, but they could just as

easily be observational group studies examining any kind of exposure, harm-

ful or beneficial. The CONFOUND study actually includes two group com-

parisons: CONFOUND 1 and CONFOUND 2.
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3.1 CONFOUND 1

CONFOUND 1 will examine a hypothesis that any comparative group study

is designed to test: the exposure (X) caused the outcome (Y). There are, of

course, other causes of Y (confounding causes) for which the investigators

must control. For simplicity’s sake, we will restrict the number of relevant

confounding causes to two: C1 and C2. Also to make matters simple, X, Y, C1,

and C2 are all dichotomous variables—that is, each variable is either present

or absent in an individual participant. Each variable is measured as a fre-

quency in the overall study group.6

Finally, I will make two deterministic assumptions. The first assumption is

that causes act deterministically, that the set of causes present for an individ-

ual fully determines whether or not that individual gets the outcome. This

simplification will allow us to rule out the possibility that any difference in the

frequency of Y between groups is due solely to chancy causation. The assump-

tion that causes determine their effects is traditionally called determinism, and

can be summarized by the slogan, ‘same (complete) cause, same effect’. But we

can more precisely call it ‘forward determinism’, to distinguish it from a dis-

tinct deterministic assumption that I will also assume. The second assump-

tion—call it ‘reverse determinism’—is that whether or not an individual gets

the outcome fully determines whether or not there was a complete cause of the

outcome. Reverse determinism adheres to the slogan, ‘some effect, some (com-

plete) cause’. It discounts the possibility that any difference in the frequency of

Y between groups is due solely to Y’s spontaneously popping into existence,

uncaused. Together, forward determinism and reverse determinism imply that

any difference in the frequency of the outcome between groups is proof of

some relevant causal difference. Despite these two simplifying assumptions,

the lessons learned in this section will apply just as well to situations in which

we do not assume determinism and compare probabilities instead of frequen-

cies (as we will see in Section 4.2).

The CONFOUND 1 investigators measure the frequencies of Y, C1, and C2

in a group exposed to X, as well as in an unexposed group. Their results are

presented in Table 1. As is typical, the investigators have incomplete back-

ground knowledge. In fact, all they know is that Y is the effect of one or more

of X, C1, and C2, which exhaust the variables that are plausibly causally rele-

vant. Table 1 is similar in many respects to a Mill’s method of difference table,

but while a Mill table typically has a ‘+’ or ‘–’ representing the presence or

absence of a factor for an individual, Table 1 includes a number representing

the frequency of a factor in a study group.

6 In epidemiology, the absolute risk measures the relative outcome frequency, or the proportion

of individuals with the outcome. In medicine, risks are often interpreted probabilistically (Fuller

and Flores [2015]).
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Despite their ignorance of the relevant causal mechanisms, the investigators

see from Table 1 that (i) X is positively correlated with Y: an increased fre-

quency of X is accompanied by an increased frequency of Y. They also see that

(ii) all confounding causes of Y are balanced in the study; each confounding

cause is (perfectly) uncorrelated with exposure X. They suppose that (iii) if all

causes of Y are balanced except X and X is positively correlated with Y, then X

must have caused Y. The investigators also happen to be disciples of Mill, so

they reason using a kind of method of difference inference scheme: from (i),

(ii), and (iii), they conclude that X caused Y in the study.

At this point in our thought experiment, we will allow ourselves to be om-

niscient and find out what really happened at the individual level. In each

participant, Y represents the presence of a clinically important protein bio-

marker. The presence of Y is fully determined by the conjunction of C1 and C2.

The confounders C1 and C2 represent two other proteins, each coded by dif-

ferent genes. C1 is a precursor for Y, while C2 is the enzyme that catalyses the

conversion of C1 to Y. The pathway is represented in Figure 1. X plays no part

in this mechanism, which is the only mechanism that produces Y. Thus, X does

not cause Y. How then can we explain the study results?

The key is that to say C1 and C2 are balanced is not to say all that much of

use. Neither C1 nor C2 will cause Y without the other. Rather than the distri-

bution of C1 and the distribution of C2 provided by Table 1, we need to know

the distributions of C1&C2, C1&:C2, :C1&C2, and :C1&:C2. The frequen-

cies for C1 and for C2 in Table 1 are consistent with a range of possible

frequencies for these four conjunctions. It turns out that the actual frequencies

are those reported in Table 2. This table reveals that in the exposed group,

50% of individuals were positive for both C1 and C2 (C1&C2), which explains

the 50% frequency of Y in that group because C1 and C2 are jointly sufficient

for Y. However, in the unexposed group, the 50% of individuals who were

Table 1. Comparative group study in which all confounding causes are

balanced. Numbers are frequencies; groups are equal in size.

Y X C1 C2

Exposed 0.5 1.0 0.5 0.5

Unexposed 0 0 0.5 0.5

Figure 1. Mechanism producing Y in CONFOUND 1.
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positive for C1 (column ‘C1&:C2’) were not the same 50% of individuals who

were positive for C2 (column ‘:C1&C2’). Because neither C1 nor C2 will cause

Y without the other, no one in the unexposed group was positive for Y.

Exposure X plays no role in this causal story. Yet the researchers thought

that it must because all confounding causes were balanced and there was a

difference in outcome between the groups!

Even those who doubt the likelihood of balancing all confounding causes in

a randomized trial sometimes accept the sufficiency of this condition. For

instance, Howson and Urbach ([2006], p. 197) suggest that a guarantee that

the comparison groups are balanced for each prognostic factor ‘has at least the

virtue that if it were true, then the conditions for an eliminative induction

would be met, so that whatever differences arose between the groups in the

clinical trial could be infallibly attributed to the trial treatment’. What the

hypothetical CONFOUND 1 study shows is that the balance assumption is

not enough for sound causal inference. In a comparative group study with

positive results, the finding that all confounding causes are balanced is not

sufficient for inferring that X caused Y, as demonstrated by the folly of our

black box researchers.

3.2 CONFOUND 2

Although the balance assumption is not sufficient, it might perhaps be

necessary. It might be indispensable for sound causal inference, and thus a

crucial consideration for trialists. To investigate this possibility, let us com-

mission a second thought study, CONFOUND 2. This time, let us hypothesize

that another exposure (X*) caused outcome Y. The researchers in this study

are in much the same situation as before: they are told that C1 and C2 are the

only plausible confounding causes, and that they can make deterministic assump-

tions, but they are given no other information. They measure the frequencies of

X*, C1, C2, and Y in a study population (Table 3). Once more, the researchers

observe that (i) X* is positively correlated with Y. They still maintain that (iii) if

all causes of Y are balanced except X* and X* is positively correlated with Y, then

X* must have caused Y. However, it is now not that case that (ii) all confound-

ing causes of Y are balanced in the study: C1 is extremely imbalanced. Thus,

Table 2. Supplementary data for Table 1. Numbers are frequencies; groups are

equal in size.

Y X C1&C2 C1&:C2 :C1&C2 :C1&:C2

Exposed 0.5 1.0 0.5 0 0 0.5

Unexposed 0 0 0 0.5 0.5 0
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they do not conclude that X* caused Y in the study. They were reasonable not

to do so, given their epistemic disadvantage. We, on the other hand, are able to

take a look inside the black box and find out what really happened.

The human pathway involving the four variables is represented in Figure 2.

As before, the C2 enzyme always catalyses the conversion of C1 to Y. This

time, X* is very similar to C1, so C2 will also catalyse the conversion of X* to

Y. Table 4 explains the results of Table 3 in light of this mechanism. We know

from the biological mechanism that what is most salient is the frequency of

individuals who are positive for C1&C2. This frequency is the same in both

groups, C1&C2 is perfectly balanced. In the unexposed group, the 25% of

individuals who were positive for C1&C2 fully account for the 25% frequency

of Y. In the exposed group, the 25% of individuals who were positive for

C1&C2 accounts for half of all individuals who were positive for Y. The re-

maining 25% of Y-positive participants in the exposed group must have gotten

the outcome via some other causal pathway. Since C1 and C2 on their own

cannot cause Y, the only other difference—X*—must be involved. Indeed, X*

Figure 2. Mechanism producing Y in CONFOUND 2.

Table 3. Comparative group study in which not all confounding causes are

balanced. Numbers are frequencies; groups are equal in size.

Y X* C1 C2

Exposed 0.5 1.0 0.75 0.5

Unexposed 0.25 0 0.25 0.5

Table 4. Supplementary data for Table 3. Numbers are frequencies; groups are

equal in size

Y X* C1&C2 C1&:C2 :C1&C2 :C1&:C2

Exposed 0.5 1.0 0.25 0.5 0.25 0

Unexposed 0.25 0 0.25 0 0.25 0.5
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caused Y in the other 25% of participants with C2 in the exposed group, who

are found in the column ‘:C1&C2’.

This reasoning reveals that the balance assumption is not necessary for

sound causal inference. Even if the assumption fails, we might still be able

to confidently infer that an exposure caused a difference in outcome between

groups, if only we had the right information. In summary then, the balance

assumption is not enough and not needed; in a study with positive results, the

truth of the balance assumption is neither necessary nor sufficient for a sound

causal inference.

Unfortunately, the balance assumption may function as an ideal not only

in philosophical accounts of RCT inference but also in real-world research.

Yusuf et al. ([1990], p. 77) note: ‘By using as an analogy experiments

conducted in a test tube or in animals, it is often argued that all extraneous

and confounding variables can and should be controlled’. Britton et al.

([1999], p. 117) suggest: ‘In the classical laboratory experiment, the effect

of the variable of interest is isolated by controlling the values of other rele-

vant variables [. . .] there may be a residual feeling that an RCT is a form of

laboratory experiment’. Both articles argue that the quest to control all

confounders is misguided, and perhaps arises through inappropriate analogy

with classical (Mill’s method of difference) experiments.

A balanced distribution of each confounding cause is the wrong logical ideal

for making inferences in comparative group studies. Consequently, we should

not appraise the epistemic worth of a group study—whether a randomized

trial or non-randomized study—according to how closely it approaches this

ideal. However, we are not done with confounders and causes just yet. As I

will show in the next section, the idea of balancing ‘other causes’ is not too far

off the mark.

4 Disjunction C and the Ideal Study

Returning to the confounding conundrum I posed at the outset, I accepted

that in an RCT it is unlikely that all confounding causes are balanced

among the study groups; the balance assumption probably fails.

However, we need not worry yet because we have also seen that the balance

assumption is not the ideal condition we might have thought it was for

making causal inferences in comparative group studies: it is neither neces-

sary nor sufficient.

In Section 4.1, I will introduce two new concepts: complex causes and C.

These concepts are useful for understanding comparative group study causal

inference, but also causation in epidemiology and the social sciences more

generally. I will then propose a new account of causal inference in comparative
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group studies, distinguishing the ideal conditions (Section 4.2) from the

required conditions (Section 4.3) for causal inference.

4.1 The ultimate other cause: C

It is well documented among philosophers and scientists that what we ordin-

arily call causes are components of more complete causal mechanisms. In the

world of epidemiology, Rothman and Greenland ([2005]) distinguish ‘compo-

nent causes’ from the complete mechanisms, which they call ‘sufficient causes’.

Mackie ([1965], [1980]) developed a nomenclature to describe the logical re-

lations among causes and their effects. In Mackie’s language, the conjunction

A&B&C is minimally sufficient for D just when all components (A, B, C) are

jointly sufficient for D, but no subset of the components (neither A, nor B, nor

C, nor A&B, nor A&C, nor B&C) is sufficient for D. Similarly, Rothman and

Greenland ([2005], p. S144) define a sufficient cause of disease as ‘a set of

minimal conditions and events that inevitably produce disease; “minimal”

implies that all of the conditions or events are necessary to that occurrence’.

A conjunct in a minimally sufficient condition can be a negated term, repre-

senting an ‘interfering factor’ or ‘counteracting cause’. What I will call a

complex cause or sufficient cause has similar properties; it can be described

by a conjunction (C1&C2&. . .) of non-redundant single (negated or unne-

gated) terms, where C1&C2&. . . is minimally sufficient for causing Y.

Although Mackie’s minimally sufficient conditions fully determine the

effect, our definition of a complex or sufficient cause should not be under-

stood as precluding the possibility of chancy causes, those that act indeter-

ministically. A complex cause can be minimally sufficient for causing Y even

if the chance of Y occurring given the complex cause is less than 100% (think

of a radioactive atom causing the stochastic emission of an alpha particle).

As Papineau ([1985]) suggests, sufficiency can be expressed here in terms of

the cause determining the chance of the effect rather than the effect itself.7

Component causes are parts of complex causes; they are represented by the

conjuncts. We can now define confounding causes as component causes within

complex causes that exclude the exposure under consideration. On their own,

confounding causes are insufficient for causing the outcome in a study.

Neither precursor proteins, nor enzymes, nor exercise, nor placebos are suffi-

cient causes. This fact explains why confounding causes are only derivatively

important: they are important insofar as they constitute complex causes, but it

7 I also do not intend to rule out the possibility that Y is a quantitative variable. Cartwright

([2012]) adapts Mackie’s definition to account for quantitative or multivalued effect variables:

instead of being sufficient for the effect, a complex might be sufficient for producing a contri-

bution to the value of the effect.
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is controlling for complex causes that is of ultimate importance in causal

inference.8

Both Mill and Mackie were aware that there exists a ‘plurality of causes’

(Mackie [1980], p. 307) for any phenomenon (Rothman and Greenland [2005]

use the term ‘multicausality’). There are many sufficient causes—each

uniquely constituted—of the effect, Y. In the CONFOUND study, we

considered only one complex cause that excluded the exposure (C1&C2).

In any real study, there will be a great many more. At first glance, the plurality

of complex causes might pose a problem for the comparability of our groups.

If something like the balance assumption—but for complex causes rather than

confounding causes—is desired, then we run into the same initial problem that

plagued the balance assumption, namely, given the number of unique complex

causes in a group study, it might be improbable that each unique complex

cause is distributed equally among the groups. Fortunately, what is needed for

sound causal inference is something much weaker than a balancing of each

unique complex cause.

To help understand why, let us define a disjunction, C, where C includes all

unique complex causes of Y except any that involve exposure X as a conjunct:

C¼ (C1,1&C1,2&. . .) �. . . � (Cn,1&Cn,2&. . .Cn,m).9 The conjuncts in this gen-

eral formula (for example, C1,1) are potential confounding causes, while the

disjuncts (for example, C1,1&C1,2&. . .) are complex causes (note that Cn,1 may

or may not be identical to C1,1). Since C is a disjunction of complex causes, it is

satisfied whenever an individual has any sufficient cause of Y (except those

containing X, by stipulation). C is the ultimate ‘other cause’. Assuming

determinism, what matters for sound causal inference is not the distribution

of each unique complex cause, because any sufficient cause will cause Y. What

matters is the distribution of participants satisfying C, which abstracts away

the particulars. In the next section, we will explore what matters for causal

inference if we do not assume determinism.

Think back to CONFOUND 2 and Table 4. Sufficient cause C1&C2 was

perfectly balanced between the study groups, which allowed us to causally

attribute the difference in outcome to the exposure (X*). Since C1&C2 was the

only sufficient cause of the outcome that did not include the exposure, we can

fill in the general formula for C using only one conjunction: C ¼ C1&C2 for

this exposure and this outcome. If instead there were two sufficient causes, it

8 Judea Pearl ([2009], p. 195) examines traditional no-confounding criteria and similarly chal-

lenges the sufficiency and necessity of the assumption that all potentially relevant variables are

unassociated with the exposure. Pearl proposes as a solution the notion of a ‘non-trivial suffi-

cient set’ that bares similarities to my concept of a sufficient or complex cause.
9 Or C ¼ Vi�jCij. I am assuming that Y is a dichotomous variable. For quantitative effect vari-

ables there is an analogue of the dichotomous C term, which we can call ‘quantitative C’.

Quantitative C is a function of confounding causes, while the quantitative Y variable is a func-

tion of quantitative C (and of X when X causes Y).
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would not matter if each complex cause was greatly imbalanced so long as the

disjunction of both sufficient causes (C) was not.

4.2 The ideal comparative group study

In the CONFOUND study, causal conclusions follow deductively from (i) the

positive association between exposure and outcome, (ii) the premise that C is

distributed equally between groups, and (iii) our two deterministic assump-

tions, forward determinism and reverse determinism.10 To see how, consider

Table 5, representing ideal conditions for a comparative group study causal

inference. We need only consider three factors: Y, X, and C. Forward deter-

minism (same (sufficient) cause, same effect) ensures that every instance of a

complex cause produces the outcome, and thus the frequency of Y in the

unexposed group can be no less than the frequency of C. Reverse determinism

(some effect, some (sufficient) cause) guarantees that every instance of the

outcome is produced by a complex cause, so that the frequency of Y in the

unexposed group can be no more than the frequency of C. Together, these two

deterministic assumptions imply that the frequency of C in the unexposed

group is equal to the frequency of Y: z ¼ y:X
. Because C is distributed per-

fectly evenly between the groups, the frequency of C in the exposed group is

also equal to y:X
.

The final special feature of the ideal study represented by Table 5 is that the

frequency of the outcome is greater in the exposed group compared to the

unexposed group (y
X
> y:X

). In other words, the study shows a ‘positive

result’.11 Recall that we already worked out that the frequency of C in the

exposed group is equal to y:X
in our ideal study. Therefore, in the exposed

group the frequency of Y (¼ y
X

) is greater than the frequency of C (¼ y:X
).

Table 5. Ideal conditions for a comparative group study causal inference.

Numbers and variables are distributions. Assume all complex causes have an

equal effect on Y, y
X
> y:X

.

Y X C

Exposed y
X

1.0 z

Unexposed y:X
0 z

10 Whenever X causes Y via a causal mechanism that includes downstream confounding causes, C

will occur (that is, X causes Y by causing C). X can thereby cause imbalances in C that would not

bias our causal inference were we to conclude that X caused Y. To avoid false negative infer-

ences, we can stipulate that it is the conjunction of (i) C and (ii) the absence of a complex cause

involving X that is distributed equally between study groups. From now on, I will speak only of

C’s distribution in ideal and real studies and will assume conjunct (ii).
11 The finding that y

X
< y:X

could also be regarded as a positive result, suggesting that X prevents

Y. I do not have space to discuss the logic of prevention here.
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There must be some individuals who got outcome Y but lacked a complex

cause in C. According to the assumption of reverse determinism, these out-

comes must have had some cause. If not C, each of these outcomes must have

been caused by one of the complex causes excluded from C: complex causes

involving X. Thus, exposure X is a cause of the outcome. Furthermore, we can

causally attribute the difference in outcome between study groups to the

exposure.

I have relied on a deterministic ideal only to make vivid the deductive val-

idity of group study causal inference. This reasoning is equally valid if we

allow for indeterministic causation and measure the probabilities of Y and C.

Instead of considering the distributions in Table 5 as frequency distributions,

we can consider them as probability distributions. Instead of forward deter-

minism, assume that the probability of Y is completely determined by the set

of causes present for an individual (the probability of Y is zero in the absence

of a complex cause and greater than zero in the presence of a complex cause).

Then any difference in the probability of Y between groups must be due to

some relevant causal difference. If C is distributed equally (C is probabilistic-

ally independent of the exposure), then the relevant causal difference must

involve the exposure, and we can causally attribute the difference in the prob-

ability of the outcome to the exposure. In measuring the probability of C

rather than the probability of each complex cause in C, I am assuming (for

simplicity) that each complex cause determines the same probability of Y. I

will have more to say about this assumption shortly.

Cartwright ([2010]) also articulates sufficient conditions for causal inference

to undergird her ideal RCT. She starts by defining subpopulations that are

each homogeneous with respect to the combination of causally relevant fac-

tors (confounding causes) that are present. In the CONFOUND study, there

were four unique subpopulations: C1&C2, C1&:C2, :C1&C2, and :C1&:C2.

According to Cartwright ([2010], p. 64), ‘In an ideal RCT each Ki [subpopula-

tion] will appear in both [study] wings with the same probability’. Then if there

is a higher probability of the outcome in the treatment group (p(YjX) >

p(Yj:X)), these conditions entail that the treatment causes the outcome in

at least one of the subpopulations. Cartwright’s conditions for causal infer-

ence are sufficient by the lights of my account, as some of the subpopulations

will contain complex causes in C and these subpopulations will each be equally

distributed between the groups. However, Cartwright’s ideal RCT is more

demanding than my ideal study (Table 5) for two reasons. First, it requires

that unique subpopulations not containing complex causes in C are each

distributed equally, which is not needed. Similarly, in Cartwright’s ideal

RCT each unique subpopulation containing a complex cause in C is distrib-

uted equally, which is also stronger than necessary, especially if we assume

that each complex cause fixes the same probability of Y.
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If we allow that two unique complex causes might fix two unique probabilities

of the outcome (a reasonable allowance), then we should instead demand that

C’s contribution to the probability of Y is the same for both groups, or that C’s

contribution is balanced. C’s contribution to the probability of Y is the average

probability of Y among C subpopulations, multiplied by the total probability of

C subpopulations. We can think of it as the force that C exerts on Y. If C’s

contribution to the probability of Y is the same for both groups, yet the total

probability of Y—the net force on Y—is greater in the exposed group (p(YjX)>

p(Yj:X)), then X is causally responsible for this difference in probability.12,13

The condition that C’s contribution be balanced is the key criterion of an

ideal study, requiring the most metaphysically modest assumption among

those that we have been working with: the probability of Y is completely

determined by the set of causes present. Whenever unique complex causes

fix unique probabilities of the outcome, C’s contribution can ‘balance out’

in several ways, just as there are multiple ways to balance a scale using weights

of different masses. If instead all unique complex causes fix the same prob-

ability of the outcome, C’s contribution is balanced whenever the probability

of C is the same in all study groups; and if complex causes fully determine the

outcome, C’s contribution is balanced whenever the frequency of C is the same

in all study groups—whenever C is balanced.

To summarize, a balanced distribution of all confounding causes is a con-

founded (confused) logical ideal. On the other hand, a balanced contribution

12 The proof of this principle requires some work. First, we must define a ‘C subpopulation’ as a

homogeneous subpopulation with at least one complex cause in C and without any complex causes

that are not contained in C. Then we can define ‘C’s contribution to the probability of Y (CP(Y ))’ as

the (weighted) average probability of Y among C subpopulations, multiplied by the total prob-

ability of C subpopulations. If there are two unique complex causes (complex1 and complex2):

Cp(Y) ¼ p(YjC) � p(C)

Cp(Y) ¼ [p(Yjcomplex1)p(complex1jC) + p(Yjcomplex2)p(complex2jC)] �

[p(complex1) + p(complex2)].

The total probability of Y in a study group is the sum of C’s contribution to Y and :C’s

contribution to Y, or:

p(Y) ¼ p(YjC)p(C) + p(Yj:C)p(:C)

p(Y) ¼ Cp(Y) + p(Yj:C)p(:C).

The p(Yj:C) ¼ 0 in the unexposed group because the :C partition of the unexposed group

contains no complex causes (none in C, none involving X), and—by the assumption of reverse

determinism—Y can only ever occur when it is caused. If Cp(Y) is the same in both groups, yet the

total probability of Y is greater in the exposed group, then p(Yj:C)> 0 in the exposed group. This

is only possible if the :C partition of the exposed group contains some complex causes involving

X, in which case X causes Y in one or more subpopulations of the exposed group.
13 A similar principle applies when Y is a quantitative effect variable and a quantitative C variable

represents the contribution to Y of causes that do not interact with X (for a linear model, see

Cartwright [2012]). In this case, in the ideal study the average effect of quantitative C on quan-

titative Y is the same in all study groups.
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of C among study groups is an unconfounded ideal, free from confusion and

free from epidemiological confounding. In a comparative group study show-

ing an association between exposure and outcome, the premise that C’s con-

tribution is balanced between groups is sufficient for our causal conclusions

(so long as we make the necessary metaphysical assumptions).14

The causal conclusions to which I am referring (the exposure is a cause of

the outcome, the difference in outcome in the study is causally attributable to

the exposure) are somewhat modest. They tell us nothing about whether the

exposure will cause the outcome in a different population, such as a relevant

target population for an intervention. Nor do they quantify the exposure’s

effect size in the overall study population (the aggregate of all study groups),

let alone in any other population. These inferences require further assump-

tions that I cannot develop here.15

4.3 Required conditions for causal inference

So far I have argued that perfect balance in C’s contribution to Y is sufficient

for sound causal inference in a positive group study. I have not shown that

perfect balance is required for the causal inference, and in fact it is not. To

conclude that X caused Y, all we require is that C’s contribution is less imbal-

anced than Y’s distribution. If we make deterministic assumptions, then when-

ever C is less imbalanced than Y, the Cs cannot account for all of the

difference in Y, which leaves only X to account for some of the difference.

If we instead assume that each complex cause fixes the same probability of Y,

we can conclude that X caused Y when the ratio of C’s probability in the

exposed group to its probability in the unexposed group is less than the

ratio of Y’s probabilities (p(CjX)/p(Cj:X) < p(YjX)/p(Yj:X)). Whenever

C’s probability is less imbalanced than Y’s probability, C cannot fully account

for the difference in Y’s probability, and X must be partly causally responsible.

To see this, we can insert any value we like for Y and C in Table 5 (easing the

requirement that C is evenly distributed), and suppose any values we want for

14 If C’s contribution is balanced and there is no difference in outcome between groups, it is not

necessarily true that the exposure did not cause the outcome. It could be the case—however

unlikely—that the exposure caused the outcome in some participants and prevented the out-

come in just as many participants.
15 Roughly, the effect size quantifies the difference in outcome that the exposure makes in the

population. In order to accurately predict the effect size in a population of interest, the distri-

bution of the exposure’s ‘support factors’ in the exposed group must be properly representative

of their distribution in the population of interest. The support factors are those causes that

interact with the exposure to cause the outcome. In CONFOUND 2, enzyme C2 was a support

factor for X*. Because the distribution of:C1&C2 in the exposed group was representative of its

distribution in the overall study population, the difference in outcome between groups (0.25)

accurately predicts the effect size in the overall study population.
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the probability of Y given C and the probability of Y given:C (I will leave this

exercise to the reader).

Although it may be unrealistic and unnecessary for sound causal infer-

ence, a perfectly balanced contribution of C serves an important function as

a regulative ideal for the design of a comparative group study. The various

techniques and tricks used in comparative studies—randomization, double-

blinding, stratification, matching—are an attempt to bring the distribution

of C closer to the ideal, so that we can feel more confident that any differ-

ence in outcome is due to the exposure. However, we should not despair that

real studies typically fall short of the ideal; all that is required in the inter-

pretation of the study’s result is that C’s contribution is less imbalanced

than the outcome.16 Much of the philosophical literature on RCT causal

inference has focused on inferences in ideal studies; but in interpreting the

results of real studies, we should not let the ideal be the enemy of the

sufficient.

In summary, rather than a balance in confounding causes, group study

causal inference depends upon a balanced contribution of C. We should

have more confidence in our causal inference whenever we are more

confident that C’s contribution is less imbalanced than the outcome. Any

of the complex causes in C are sufficient for causing the study outcome.

Meanwhile, confounding causes are only conjuncts of complex causes in

C—on their own, they are not sufficient for the outcome. Are philosophers

of science then wrong about the importance of confounders in group stu-

dies? We will now see that they are not wrong; they have simply exaggerated

the importance of confounders as causes. Recognizing the importance of

confounders as correlates of C helps clarify the role of randomization in

group studies.

5 Confounders as Causes, Confounders as Correlates

Though we have relieved the tension between the implausibility of balancing

each confounding cause and the apparent need to do so in a group study, there

is something left unresolved: why statisticians are so worried about confound-

ing variables. So far, we have examined the role of confounders as causes of

the study outcome, a role that philosophers often assume in their accounts of

RCT causal inference. In this section, we will analyse a concept of confounder

16 My account of comparative group study causal inference is most related to a regularity theory of

causation of the kind proposed by Mackie ([1980]), given the similarity of my sufficient causes to

Mackie’s minimally sufficient conditions, as well as my reliance on regularity assumptions like

reverse determinism. In comparison, the classic ‘potential outcomes’ approach to causal infer-

ence (Rubin [1974]; Greenland and Robbins [1986]) is closely related to counterfactual theories

of causation, while causal Bayes nets approaches (Spirtes et al. [1993]; Pearl [2009]) are tied to

interventionist theories.
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distinct from the ‘direct causal concept’: confounders as correlates. More pre-

cisely, confounders are important as correlates of C.

Earlier, I noted that philosophers typically cast confounders as causes, but

that some of our stock examples of confounders may not fit the bill. For

example, it is not obvious that age and social class are causal variables.

They are, however, associated with outcomes of interest—for instance, older

patients are more likely to have atherosclerosis as a result of the accumulation

of plaque in their arteries over time, and are thus more likely to have a heart

attack or stroke.

In contrast to the philosophers, methodologists in epidemiology and the

social sciences have historically worried about confounders not simply be-

cause they are (sometimes) causes but crucially because they are correlates

of the outcome. Rothman and Greenland ([1998], p. 120) state: ‘In general, a

confounder must be associated with both the exposure under study and the

disease under study to be confounding’. Meanwhile, Guyatt et al. ([2008],

p. 777) define a confounder as: ‘A factor that is associated with the outcome

of interest and is differentially distributed in patients exposed and unex-

posed to the [exposure] of interest’. This textbook also discusses the im-

portance of balancing prognostic factors (potential confounders): ‘If

prognostic factors—either those we know about or those we do not

know about—prove unbalanced between a trial’s treatment and control

groups, the study’s outcome will be biased’ ([2008], p. 70). In other

words, confounders can lead us to falsely conclude that the exposure

caused or prevented the outcome when in fact it did not.

Associational definitions of ‘confounder’ are often unclear or incomplete.

Where must a factor be ‘associated with the outcome of interest’ before it

qualifies as a confounder? Presumably, in the comparative group study if its

imbalance is to bias the study’s results. However, an association between an

imbalanced variable and the study outcome is not enough. If the treatment

causes an excess of the outcome in the treatment group, any imbalanced vari-

able will be automatically associated with the outcome; but the result is not

thereby biased. What Guyett et al. are truly worried about are variables that

are associated with instances of the outcome not caused by the treatment. But

to say this is just to say that they are worried about variables associated with

instances of the outcome caused by complex causes in C. In fact, we often

suspect that a certain variable might be a confounder in a comparative study

like a trial once we have observed its association with the outcome in a prog-

nostic study—that is, a study searching for correlations between variables like

age and outcomes like heart attack in a population that is not exposed to the

trial treatment. If we assume that the heart attacks in this untreated popula-

tion all had some cause, those causes must be found in C. Thus, if age is

associated with the outcome in this untreated population, it is associated
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with C. If the association between age and C also holds in the trial and age is

imbalanced between trial groups, we should worry that C’s contribution is

imbalanced. In short, confounders like age are important not as causes of the

outcome but as correlates of C.

I have referred to the concept of a confounding cause as a ‘direct causal’

concept because, on this interpretation, a confounder is causally relevant to

the outcome in a direct sense: it causes the outcome. We can consider the

distinct concept of ‘confounder as a correlate of C’ to be an ‘associational-

causal’ concept of confounder: confounding variables are factors associated

with complex causes of the outcome in C. To avoid ambiguity, from this point

on I will reserve the term ‘confounding factor’ for the direct causal concept,

and label the associational-causal concept with the term ‘prognostic factor’ or

‘covariate’. (Of course, many variables are both a prognostic factor and a

confounding cause.) Though I have argued that the importance of balancing

confounding causes in a group study has been exaggerated, I do not wish to

deny a role for the direct causal concept of confounding causes in our causal

reasoning. It may sometimes be background knowledge—our understanding

of the confounding causes and how they mutually interact—that reveals a

potential imbalance in C’s contribution rather than statistical correlations.

How might a covariate, a correlate of C, wind up imbalanced between the

study groups? One mechanism involves chance: in a randomized study,

randomization can throw up a highly unequal distribution. There are also

non-random or systematic ways in which prognostic factors come to be imbal-

anced. In a non-randomized trial or in an observational group study, if the

investigators or care providers can select which patients will receive the treat-

ment of interest and which patients will not, for conscious or unconscious

reasons they might treat with the new drug those patients that are on average

younger or healthier. Then age or health will be associated with the drug, and

as a result the drug might be associated with C. In this case, it is said that the

study suffered from selection bias.

Properly executed randomization prevents selection bias in a controlled

trial by preventing selection. Study investigators and participants are pre-

vented from deciding group assignment; instead, group allocation is deter-

mined by a random process. Thus, randomization militates against systematic

imbalances in C by barring systematic imbalances in prognostic factors at

baseline. Of course, the possibility of a large baseline imbalance due to

chance remains and, as we saw in Section 2, a chance imbalance is probable

if we think that the number of relevant variables is great enough. Fortunately,

just as we should not worry about balancing all confounding causes, we

should not be concerned about the dismal prospects of balancing all of C’s

correlates, of which there will be many. Like confounding causes, prognostic

factors—as correlates of C—are only derivatively important. They serve an

Jonathan Fuller922

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/70/3/901/4819269 by U

N
IVER

SITY O
F PITTSBU

R
G

H
 user on 21 O

ctober 2019



epistemic function, alerting us to imbalances in C. It is the distribution of C

itself that is of ultimate concern in causal inference, and C is only one variable.

Once we have controlled for all systematic sources of imbalance in a trial

(through randomization and subsequent methods), the chance that C’s con-

tribution is distributed more-or-less evenly between groups is relatively high,

so long as the trial population is relatively large.

In an observational group study, the investigators typically do not dictate

which patients receive the exposure because usually the data are collected in

routine practice. Although they cannot prevent provider selection or patient

self-selection, observational studies are not defenceless against selection bias.

Investigators can match the study groups for similar distributions of prognostic

variables, stratify the study groups according to prognostic variables and ana-

lyse results within strata, or make statistical adjustments to the data based on

observed imbalances in prognostic variables. However, as the common refrain

goes, these methods can only control for variables that are observed and that we

suspect are relevant. The methods leave open the possibility of a hidden asso-

ciation between exposure and C that is not predicted by the observed, suspected

prognostic variables. If we get a positive study result, we might then lack con-

fidence that C’s contribution is less unequally distributed than the outcome, or

we might have difficulty assessing how confident we can be. How worried we

should be about unforeseen selection bias should depend on how complete our

knowledge is about the relevant variables, which will vary by circumstance.

A virtue of my account of comparative group study causal inference is that

it proposes a common logic for randomized and non-randomized studies. In

comparison, a causal Bayes nets account of causal inference in clinical re-

search that includes an ‘ideal intervention’ on the exposure variable (for ex-

ample, Steel [2011]) is more straightforwardly applicable to a randomized

study compared with an observational group study, because it requires that

patient characteristics (endogenous variables) do not influence exposure.

A unified account of comparative group study causal inference allows us to

compare randomized studies with non-randomized studies directly (in general

and in particular cases). We can compare our confidence in studies that are

quite distinct by holding them up to a singular ideal. In the design of any

comparative group study, we strive towards the ideal of a properly balanced

distribution of C among study groups. In interpreting the data from any

study, our causal inference is secure if C’s contribution is less imbalanced

than the outcome. The diverse methods of RCTs and observational stu-

dies—randomizing, matching—can be seen as promoting a balanced distribu-

tion of C or as correcting for imbalances in C (via prognostic factors).

When we examine the ideal and required conditions for causal inference, we

see that the matter of whether or not a study was randomized is not a premise

in either inference. We can make a causal inference in any comparative study
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when the study groups are sufficiently comparable, regardless of how we go

about generating and assessing comparability. In understanding just what

kind of comparability is needed, confounding causes are merely pixels in a

more complex causal picture.

6 Summary

It is unlikely that a randomized trial—even if well designed and conducted—

will achieve a balanced distribution for each confounding variable. Yet balance

in all confounders, construed as confounding causes of the study outcome, is

sometimes held up as a logical ideal, our confidence in our causal inference

increasing as our comparative group study approaches the ideal. It turns out

that the balance assumption is a false idol. Instead, we must worry about the

distribution of sufficient or complex causes of the outcome that do not involve

the study exposure (those included in C). In the ideal comparative study, C’s

contribution is balanced among study groups. In any real study, if C’s contri-

bution is less imbalanced than the outcome, then we can conclude that the

exposure caused the outcome. Confounders are primarily important not as

causes of the outcome but as correlates of C (prognostic factors or covariates)

that may alert us to an imbalance in C’s contribution. Randomization prevents

systematic imbalances in prognostic factors at baseline, which may improve the

comparability of our study groups. But on the account of comparative group

study causal inference presented here, it is the comparability of the study groups

with respect to C that is of direct relevance.
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