Skip to main content
Log in

Paths to Triviality

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

This paper presents a range of new triviality proofs pertaining to naïve truth theory formulated in paraconsistent relevant logics. It is shown that excluded middle together with various permutation principles such as A → (BC)⊩B → (AC) trivialize naïve truth theory. The paper also provides some new triviality proofs which utilize the axioms ((AB)∧(BC)) → (AC) and (A → ¬A) → ¬A, the fusion connective and the Ackermann constant. An overview over various ways to formulate Leibniz’s law in non-classical logics and two new triviality proofs for naïve set theory are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. There were earlier attempts at showing that the naïve theories can be non-trivial, notably [8, 23, 30, 4648] and [49]. However, these results either restrict abstraction or lack a decent conditional, one satisfying at least identity and modus ponens— AA and A,ABB—and so at best show that A & TA〉 and A(a) & a ∈ {x|A} are intersubstitutable without delivering the biconditionals ATA〉 and a ∈ {x|A} ↔ A(x/a).

  2. Both Brady’s [10] and Slaney’s [50] were published in [36] which came out in 1989. The results in these articles were however discovered about a decade earlier. Slaney tells me that he discovered his proof around the end/beginning of 1978/1979. The earliest reference to this result that I have been able to find is in Graham Priest’s 1983 paper [33, fn. 6]. Brady on the other hand has informed me that he completed [10] in late 1979 and that the results in [9] were proved in 1980. Brady gave two seminars on the results in the latter paper that year.

  3. Ax5, Ax17 and Ax18 will not concern us in this paper. The only reason for mentioning them is to give the reader a better picture of where in the logical landscape the relevant logics fit in. Notice that the logics D J X and T J X are more commonly known as DK and TK.

  4. Stronger versions of Leibniz’s law than \({LL}_{2\vdash \vdash }\) will be presented in Section 7.

  5. ⊤ and ⊥ can in naïve truth theory be defined as ∃x T(x) and ∀x T(x).

  6. Priest showed in [34, p. 363] that \(\mathcal {T}\) is interpretable in \(\mathcal {P}\) provided it is extended to its absolutely unrestricted form ∀x(x∈{x;y|A}↔A(y/{x;y|A})) where {x;y|A} is free for y in A. See Appendix B for more on this version of abstraction.

  7. I defined naïve set theory above to be \({\mathcal {P}}\) together with the extensionality axiom \(\forall x\forall y(x = y \leftrightarrow x {\overset {e}{=}} y)\). Given this it is easy to see that \((Ext_{\overset {i}{=}})\) is interderivable with the version \(\forall x \forall y(x= y \rightarrow (A(x) \rightarrow A(y)))\) of Leibniz’s law, that (E x t B ) is slightly stronger than \(\forall x \forall y((x = y\land \mathbf {t}) \rightarrow (A(x) \rightarrow A(y)))\), whereas (E x t r ) is interderivable with the rule, \(a = b \vdash A(a) \rightarrow A(b)\). This latter version of Leibniz’s law is interderivable with the seemingly weaker rule \(a = b, A(a) \vdash A(b)\) (see Section 7). From this it is easy to see that \(\mathcal {S}\) is non-trivial in \(\overset {=}{\forall }\mathbf {L}\) if and only if \(\mathcal {P}+(Ext_{r})\) is non-trivial in ∀L for any logic L which extends B B.

  8. Andrew Bacon’s paper [2], Brady’s paper [12], and the paper [22] of Field et al. should be mentioned in relation to the logic ∀T J K. Bacon shows that the positive fragment of ∀T J K[M R1] does treat naïve truth theory non-trivially. Furthermore, it is shown in [22] that the positive fragment of ∀T J K d treats \(\mathcal {P}\,+\,Ext_{\overset {i}{=}}\), and thus \(\mathcal {S}\), non-trivially. Brady claims in [12, Corollary 4–5] that the construction made use of there validates \(\mathcal {P}\,+\,Ext_{\overset {i}{=}}\) over the logic full logic ∀T J K d. This is sadly not the case. See [13] and Section 5 below for further comments.

  9. \(\mathcal {T}\) formulated in ∀Ł is, although a non-trivial theory, riddled with ω-troubles. See [1 , 26 , 28] and [37].

  10. See for instance [11 , 35 , 43] and [52].

  11. This is easily seen in the case of R9. In the case of R8 it should suffice to note that in the presence of t it is interderivable with \(A \rightarrow (\mathbf {t} \rightarrow C) \vdash \mathbf {t} \rightarrow (A \rightarrow C)\). Thus whereas R9 licenses permutation under the condition that B is true, R8 does so only if B is the particular true sentence t.

  12. He also allows a M1-logic to have the axiom (ABC) ∧ (ABC) → (AC). M1-logics are contrasted to M2-logics which defines to be any logic between ∀B d[R11] and ∀R W K d.

  13. The reader is referred to the correction note [13] for further comments.

  14. This was first shown by Moh Shaw-Kwei in [45, Theorem 1].

  15. A similar proof shows that the strongly paracomplete logic B B J K can’t be extended by R11, \(A \vdash \neg (A \rightarrow \neg A)\): let C be the Curry sentence. Then by the K-axiom and R6 one gets \(C \rightarrow (\top \rightarrow C) \land (C \rightarrow \bot )\). Conjunction syllogism (Ax12) delivers \((\top \rightarrow C) \land (C \rightarrow \bot ) \rightarrow (\top \rightarrow \bot )\) and R11 together with the K-rule \((\top \rightarrow \bot ) \rightarrow \bot \). Transitivity then yields \(C \rightarrow \bot \) from which ⊥ easily follows.

  16. I owe Weber thanks in regards to this theorem. My original proof was to the effect that \((\top \rightarrow (\bot \rightarrow \bot )) \rightarrow \bot \) is derivable in B B L[Ax9]. It was Weber who noticed that the proof sufficed for \((A \rightarrow (\neg A \rightarrow \neg A)) \rightarrow \neg A\).

  17. Such a model is shown in [32, Theorem 15].

  18. And similarly that \(\overset \rightarrow {LL}_{3}\) is derivable in \(\mathbf {BB}[\overset {\rightarrow \rightarrow }{LL_{2}}, R14]\).

  19. If one wishes to quantify over other things than sets as well, one could weaken the rule to \(Set(a), Set(b), a \overset {e}{=} b \vdash a = b\), where S e t({x|A}) is assumed to hold for every A.

  20. For more discussion on restricted quantification in non-classical logics see [4, pp. 119–126; 5; 6], [14, §13.3] and [21].

  21. For a discussion of the proof, see sections 2.3 and 5.2 of Edwin Mares and Francesco Paoli’s paper [31].

  22. I should emphasize that the proof of Lemma 7 is at heart quite similar to that given by Bacon in [3, sec. 2.2].

  23. In addtion to Bacon’s paper [3], Grišin’s paper [25] should be mentioned in connection with Theorems 14 and 15. Grišin shows ([25, §4.5]) that contraction is derivable if \(\mathcal {P}\) is extended by the extensionality axiom ∀uv(∀x((xuxv)∘(xvxu))→∀x(uxvx)) in the linear fragment of ∀R W K (∀R W K minus Ax5, Q2 and Q5) formulated substructurally.

  24. The presence of t is not required for trivializing \(\mathcal {S}\) using \(\overset \rightarrow {LL}_{3}\): use \(\mathcal {N}\) to obtain the sentence \(C \leftrightarrow \mathfrak {p}_{C} = \mathfrak {p}_{\bot }\) and then derive \(C \rightarrow (\mathfrak {p}_{C} = \mathfrak {p}_{\bot } \land \mathfrak {p}_{C} \in \mathfrak {p}_{C})\) and, using \(\overset \rightarrow {LL}_{3}\), \((\mathfrak {p}_{C} = \mathfrak {p}_{\bot } \land \mathfrak {p}_{C} \in \mathfrak {p}_{C}) \rightarrow \mathfrak {p}_{\bot } \in \mathfrak {p}_{\bot }\). From these sentences it is evident that \(C \rightarrow \bot \) follows. The rest of the proof is then similar to the proof given above.

  25. This is of course not to say that these logics are the only logics of interest for naïve set theory. For instance, the logic \(\overset {=}{\forall }\mathbf {DL}^{d\mathbf {t}}[\overset {\mapsto \rightarrow }{LL_{2}}]\) may also treat \(\mathcal {S}\) non-trivially. However, \(\overset {\mapsto \rightarrow }{LL_{2}}\) entails \((A \leftrightarrow B) \mapsto ((C \leftrightarrow A) \rightarrow (C \leftrightarrow B))\) and (AB)↦((BC)→(AC)) for sentences A, B and C in the case of \(\mathcal {S}\), and so \(\mathcal {S}\) is propositionally non-conservative in these logics. These formulas are generally not logical theorems of logics without the pre- and suffixing axioms Ax9 and Ax10, and so \(\overset {\mapsto \rightarrow }{LL_{2}}\) seems in \(\mathcal {S}\) only to be appropriate for logics with Ax9 and Ax10.

  26. In fact it can be shown that the addition of the single sentence \((\mathbf {t} \rightarrow \bot ) \rightarrow \bot \) will suffice.

  27. This is the approach taken by Brady in [11] although he gives a different reason for doing so.

  28. See [39, chapter 4] for some ideas on how to prove this.

  29. This result was to my knowledge first proven by Jean-Yves Girard in [24, Proposition 4]. Girard remarks that the result goes back to the fixed-point theorem of λ-calculus.

References

  1. Bacon, A (2013). Curry’s paradox and ω-inconsistency. Studia Logica, 101(1), 1–9.

    Article  Google Scholar 

  2. Bacon, A (2013). A new conditional for naive truth theory. Notre Dame Journal of Formal Logic, 54(1), 87–104.

    Article  Google Scholar 

  3. Bacon, A (2015). Paradoxes of logical equivalence and identity. Topoi, 34(1), 89–98.

    Article  Google Scholar 

  4. Beall, JC. (2009). Spandrels of truth. Oxford University Press.

  5. Beall, JC (2011). Adding to relevant restricted quantification. Australasian Journal of Logic, 10, 36–44.

    Google Scholar 

  6. Beall, JC, Brady, RT, Hazen, AP, Priest, G, & Restall, G (2006). Relevant restricted quantification. Journal of Philosophical Logic, 35(6), 587–598.

    Article  Google Scholar 

  7. Belnap, N.D. (1960). Entailment and relevance. Journal of Symbolic Logic, 25(2), 144–146.

    Article  Google Scholar 

  8. Brady, R.T. (1971). The consistency of the axioms of abstraction and extensionality in a three-valued logic. Notre Dame Journal of Formal Logic, 12(4), 447–453.

    Article  Google Scholar 

  9. Brady, R.T. (1983). The simple consistency of a set theory based on the logic CSQ. Notre Dame Journal of Formal Logic, 24(4), 431–449.

    Article  Google Scholar 

  10. Brady, R.T. (1989). The non-triviality of dialectical set theory. In G. Priest, R. Routley & J. Norman (Eds.), Paraconsistent logic: essays on the inconsistent (pp. 437–470) .Philosophia Verlag.

  11. Brady, R. (2006). Universal logic. CSLI Lecture Notes. CSLI Publications.

  12. Brady, R.T. (2014). The simple consistency of naive set theory using metavaluations. Journal of Philosophical Logic, 43(2–3), 261–281.

    Article  Google Scholar 

  13. Brady, RT, & Øgaard, TF. A correction to “The simple consistency of naive set theory using metavaluations”. Manuscript.

  14. Brady, R (Ed.) (2003). Relevant logics and their rivals II. Ashgate Publishing company.

  15. Curry, HB (1942). The inconsistency of certain formal logics. Journal of Symbolic Logic, 7(3), 115–117.

    Article  Google Scholar 

  16. Field, H (2002). Saving the truth schema from paradox. Journal of Philosophical Logic, 31(1), 1–27.

    Article  Google Scholar 

  17. Field, H (2003). A revenge-immune solution to the semantic paradoxes. Journal of Philosophical Logic, 32(2), 139–177.

    Article  Google Scholar 

  18. Field, H (2004). The consistency of the naive theory of properties. The Philosophical Quarterly, 54(214), 78–104.

    Article  Google Scholar 

  19. Field, H. (2008). Saving truth from paradox. Oxford University Press.

  20. Field, H (2011). Comments on Martin’s and Welch’s comments. The Review of Symbolic Logic, 4(3), 360–366.

    Article  Google Scholar 

  21. Field, H (2014). Naive truth and restricted quantification: saving truth a whole lot better. The Review of Symbolic Logic, 7(1), 147–191.

    Article  Google Scholar 

  22. Field, H, Lederman, H, & Øgaard, TF. Prospects for a naive theory of classes. Notre Dame Journal of Formal Logic (forthcoming).

  23. Gilmore, PC (1974). The consistency of partial set theory without extensionality (1967). In T. Jech (Ed.) , Axiomatic set theory (pp. 147–153). American Mathematical Society.

  24. Girard, J (1995). Light linear logic. In D. Leivant (Ed.), Logic and computational complexity (Vol. 960, pp. 145–176) . Springer.

  25. Grišin, VN (1982). Predicate and set-theoretic calculi based on logic without contractions (English translation). Mathematics USSR Izvestija, 18(1), 41–59.

    Article  Google Scholar 

  26. Hájek, P (2005). On arithmetic in the Cantor-Łukasiewicz fuzzy set theory. Archive for Mathematical Logic, 44(6), 763–782.

    Article  Google Scholar 

  27. Hájek, P (2013). Some remarks on Cantor-Łukasiewicz fuzzy set theory. Logic Journal of the IGPL, 21(2), 183–186.

    Article  Google Scholar 

  28. Hájek, P, Paris, J, & Shepherdson, J (2000). The liar paradox and fuzzy logic. The Journal of Symbolic Logic, 65(1), 339–346.

    Article  Google Scholar 

  29. Hinnion, R, & Libert, T (2003). Positive abstraction and extensionality. Journal of Symbolic Logic, 68(3), 828–836.

    Article  Google Scholar 

  30. Kripke, S (1975). Outline of a theory of truth. The Journal of Philosophy, 72 (19), 690–716.

    Article  Google Scholar 

  31. Mares, E, & Paoli, F (2014). Logical consequence and the paradoxes. Journal of Philosophical Logic, 43(2–3), 439–469.

    Article  Google Scholar 

  32. Øgaard, TF. Skolem functions in non-classical logics. Manuscript.

  33. Priest, G (1983). The logical paradoxes and the law of excluded middle. The Philosophical Quarterly, 33(131), 160–165.

    Article  Google Scholar 

  34. Priest, G (2002). Paraconsistent logic. In D.M. Gabbay, & F. Guenthner (Eds.) , Handbook of philosophical logic, 2nd edn. (Vol. 6, pp. 287–393). Kluwer Academic Publishers.

  35. Priest, G. (2006). In contradiction, 2nd edn. Oxford University Press.

  36. Priest, G, Sylvan, R, & Norman, J. (1989). Paraconsistent logic: essays on the inconsistent. Philosophia Verlag.

  37. Restall, G. (1992). Arithmetic and truth in Łukasiewicz’s infinitely valued logic. Logique et Analyse, 139–140, 303–312.

    Google Scholar 

  38. Restall, G. (2000). An introduction to substructural logics. Routledge.

  39. Restall, G (2010). What are we to accept, and what are we to reject, while saving truth from paradox Philosophical Studies, 147(3), 433–443.

    Article  Google Scholar 

  40. Restall, G (2013). Assertion, denial and non-classical theories. In K. Tanaka, F. Berto, E. Mares & F. Paoli (Eds.) , Paraconsistency: logic and applications (pp. 81–99). Springer.

  41. Ripley, D (2013). Paradoxes and the failures of cut. Australasioan Journal of Philosophy, 91(1), 139–164.

    Article  Google Scholar 

  42. Ripley, D (2015). Naive set theory and nontransitive logic. The Review of Symbolic Logic. 10.1017/S1755020314000501.

  43. Routley, R (1980). Exploring Meinong’s jungle and beyond. Canberra, Australia: Philosophy Department, RSSS, Australian National University. Departmental Monograph nr. 3.

  44. Routley, R, Plumwood, V, Meyer, RK, & Brady, RT. (1982). Relevant logics and their rivals. Ridgeview.

  45. Shaw-Kwei, M (1954). Logical paradoxes for many-valued systems. Journal of Symbolic Logic, 19(1), 37–40.

    Article  Google Scholar 

  46. Skolem, T (1957). Bemerkungen zum Komprehensionsaxiom. Zeitschrift für Mathematische Logik und Grundlagen der Mathemtik, 3, 1–17.

    Article  Google Scholar 

  47. Skolem, T (1960). A set theory based on a certain 3-valued logic. Mathematica Scandinavica, 8, 127–136.

    Google Scholar 

  48. Skolem, T (1960). Investigations on a comprehension axiom without negation in the defining propositional functions. Notre Dame Journal of Formal Logic, 1(1–2), 13–22.

    Article  Google Scholar 

  49. Skolem, T (1963). Studies on the axiom of comprehension. Notre Dame Journal of Formal Logic, 1(1–2), 162–170.

    Article  Google Scholar 

  50. Slaney, JK (1989). RWX is not Curry paraconsistent. In G. Priest, R. Sylvan & J. Norman (Eds.) , Paraconsistent logic: essays on the inconsistent (pp. 472–480). Philosophia Verlag.

  51. Terui, K. A flaw in R.B. White’s article “The consistency of the axiom of comprehension in the infinite-valued predicate logic of Łukasiewicz”. Unpublished note. Available from, http://www.kurims.kyoto-u.ac.jp/terui/whitenew.pdf.

  52. Weber, Z (2010). Extensionality and restriction in naive set theory. Studia Logica, 94(1), 87–104.

    Article  Google Scholar 

  53. White, R (1979). The consistency of the axiom of comprehension in the infinite valued predicate logic of Łukasiewicz. Journal of Philosophical Logic, 8(1), 509–534.

    Article  Google Scholar 

  54. White, R. (1993). A consistent theory of attributes in a logic without contraction. Studia Logica, 52(1), 113–142.

    Article  Google Scholar 

Download references

Acknowledgments

I am very grateful to Zach Weber for his comments on an early version of this paper and for encouraging conversations with him and Ross Brady. I would also very much like to thank Sam Roberts and the anonymous referees for their comments. The results in Sections 46 have been aided by William McCune’s automated theorem prover Prover9 and model generator Mace4 and by John Slaney’s model generator MaGIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tore Fjetland Øgaard.

Appendices

Appendix A: Naïve Set Theory and Substructural Logics

The goal of this appendix is to show that cutting structural contraction while retaining ∘ and t, is not sufficient to avoid trivializing naïve set theory. The structural rule of contraction is the rule that \(A \vdash B\) follows from \(A, A \vdash B\). Structural contraction holds in Hilbertian proof systems since such systems take the antecentent of \(\vdash \) to be sets. So in order to restrict this rule, we need a new notion of antecedent structure.

In order to make the transition as smooth as possible I have kept the notion of a proof intact. However, it is now sequents and not formulas which are the objects of proofs. \(\vdash \) will in the following be the sequent symbol. The proof system will (by and large) be that of Restall’s An Introduction to Substructural Logics ([38]).

Definition 13

(Structure)

  • 0 is a structure (but not a formula)

  • If A is a formula, then A is a structure

  • If X and Y are structures, then so is (X;Y)

  • If X is a structure, and A is a formula, then \(X \Vdash A\) is a sequent.

Substructure is defined in the obvious way.

  • X(Y) indicates that Y is a substructure of X.

  • X(Y/Z) is the structure got by replacing every substructure Y in X with Z.

The system \(\mathfrak {S}\) consists of the following rules:

$$\begin{array}{ll} \mathrm{Operational \,\,rules} &\left\{\begin{array}{ccc} \frac{~} {A \Vdash A }(ID) \\\\ \frac{X; A\Vdash B}{X \Vdash A \rightarrow B } (\rightarrow\!I) &\frac{X\Vdash A \rightarrow B\qquad Y\Vdash A}{X; Y \Vdash B}(\rightarrow\!E) \\\\ \frac{X\Vdash A \qquad Y\Vdash B} {X; Y \Vdash A \circ B}(\circ I) &\frac{X\Vdash A \circ B \qquad Y(A; B)\Vdash C} {Y(A; B/X) \Vdash C}(\circ E) \\\\ \frac{~}{0 \Vdash \mathbf{t}}(\mathbf{t} I) &\frac{X\Vdash \mathbf{t}\qquad Y(0)\Vdash A}{Y(0/X) \Vdash A}(\mathbf{t} E) \\\\ \frac{X\Vdash \bot}{X \Vdash A}(\bot E) \\\\ \frac{X\Vdash A(x/y)}{X \Vdash \forall x A}(\forall I) &\frac{X; A(x/a)\Vdash B}{X; \forall x A\Vdash B} (\forall E)\\ (y ~\text{not free in}\,\,X \Vdash \forall x A)&\quad(a ~\text{is any term free for}~ x~ \text{in}~ A) \end{array} \right. \end{array} $$
$$\begin{array}{cl} \mathrm{Structural~ rules} &\left\{\begin{array}{ccc} \frac{X\Vdash A \qquad Y(A)\Vdash B} {Y(A/X)\Vdash B }(cut) \\\\ \frac{0; X\Vdash A }{X \Vdash A}(Left\, Pop) &\frac{X\Vdash A} {0; X \Vdash A} (Left\, Push) \end{array} \right. \\\\ \textnormal{Set-theoretic~ rules} &\left\{ \begin{array}{ccc} \frac{X; A(x/a)\Vdash B }{X; a \in \{x|A\} \Vdash B}(\in\!L)\qquad \frac{X\Vdash A(x/a)} {X \Vdash a \in \{x | A\}}(\in\!R) \\\\ \frac{x \in a\Vdash x \in b \qquad x \in b\Vdash x \in a} {0 \Vdash a = b }(=\in) \end{array} \right. \\\\ \mathrm{Identity~ rules} &\left\{\begin{array}{ccc} \frac{~} {0 \Vdash a = a}(=\!ID)\qquad \frac{0\Vdash a = b \qquad 0\Vdash A(a)}{0 \Vdash A(b)}(subLL) \end{array} \right. \end{array} $$

Definition 14

(Proof) A proof of a sequent \(X \Vdash A\) from a set of sequents Γ in the system \(\mathfrak {S}\) is defined to be a finite list α 1,α 2,…,α n such that α n is \(X \Vdash A\) and every α mn is either a member of Γ, or there is a set \({\varDelta } \subseteq \{\alpha _{i}\,|\, i < m\}\) such that α m follows from Δ by one of the rules of \(\mathfrak {S}\). The existential claim that there is such a proof will be written

$${\Gamma} \Vvdash_{\mathfrak{S}} (X \Vdash A). $$

I will now show that the sequent \(0 \Vdash \bot \) is derivable in the system \(\mathfrak {S}\). The proof will mimic the proof of Lemma 7.

Definition 15

$$\begin{array}{rll} \mathfrak{p}_{A} &=_{df} \{x | A\}\\ a \triangleright b &=_{df} \forall x (a \in x \rightarrow b \in x)\\ \mathfrak{c} &=_{df} \{y | (\mathfrak{p}_{y \in y} \triangleright \mathfrak{p}_{\bot} \circ \mathbf{t}) \circ \mathbf{t}\}\\ \mathfrak{C} &=_{df} \mathfrak{c} \in \mathfrak{c} \end{array} $$

The following two lemmas are easily proven and are therefore left for the reader.

Lemma 8

For sentences A and B, \(\{A \Vdash B, B \Vdash A\} \Vvdash _{\mathfrak {S}} (0 \Vdash \mathfrak {p}_{A} \triangleright \mathfrak {p}_{B})\)

Lemma 9

\(\{0 \Vdash A(a)\} \Vvdash _{\mathfrak {S}} (a \triangleright b; \mathbf {t} \Vdash A(b))\)

Theorem 16

\(\emptyset \Vvdash _{\mathfrak {S}} (0 \Vdash \bot )\)

Proof

$$\begin{array}{rll} (1) &\, \mathfrak{C} \Vdash (\mathfrak{p}_{\mathfrak{C}}\triangleright \mathfrak{p}_{\bot} \circ \mathbf{t}) \circ \mathbf{t} & (\in\!L)\\ (2) &\, (\mathfrak{p}_{\mathfrak{C}}\triangleright \mathfrak{p}_{\bot} \circ \mathbf{t}) \circ \mathbf{t} \Vdash \mathfrak{C} & (\in\!R)\\ (3) &\, 0 \Vdash \{x | (\mathfrak{p}_{\mathfrak{C}}\triangleright \mathfrak{p}_{\bot} \circ \mathbf{t}) \circ \mathbf{t} \} \triangleright \mathfrak{p}_{\mathfrak{C}} & \text{1, 2, Lemma 8}\\ (4) &\, \mathfrak{p}_{\mathfrak{C}} \triangleright \mathfrak{p}_{\bot}; \mathbf{t}\Vdash \{x | (\mathfrak{p}_{\bot}\triangleright \mathfrak{p}_{\bot} \circ \mathbf{t}) \circ \mathbf{t}\} \triangleright \mathfrak{p}_{\bot}\;& \text{3, Lemma 9}\\ (5) &\, 0 \Vdash \mathfrak{p}_{\bot} \in \{x | (\mathfrak{p}_{\bot}\triangleright \mathfrak{p}_{\bot} \circ \mathbf{t}) \circ \mathbf{t}\}& \text{fiddling}\\ (6) &\, \{x | (\mathfrak{p}_{\bot}\triangleright \mathfrak{p}_{\bot} \circ \mathbf{t}) \circ \mathbf{t} \} \triangleright \mathfrak{p}_{\bot}; \mathbf{t}\Vdash \mathfrak{p}_{\bot} \in \mathfrak{p}_{\bot} \;& \text{5, Lemma 9}\\ (7) &\, (\mathfrak{p}_{\mathfrak{C}} \triangleright \mathfrak{p}_{\bot}; \mathbf{t}); \mathbf{t}\Vdash \mathfrak{p}_{\bot} \in \mathfrak{p}_{\bot}& \text{4, 6, (cut)}\\ (8) &\, (\mathfrak{p}_{\mathfrak{C}} \triangleright \mathfrak{p}_{\bot}; \mathbf{t}); \mathbf{t}\Vdash \bot& \text{7, fiddling}\\ (9) &\, (\mathfrak{p}_{\mathfrak{C}} \triangleright \mathfrak{p}_{\bot}\circ \mathbf{t})\circ \mathbf{t}\Vdash \bot& \text{8, \((\circ E)\) + fiddling}\\ (10) &\, \mathfrak{C} \Vdash \bot& \text{1, 9, (cut)}\\ (11) &\, \bot \Vdash \mathfrak{C}& \text{ID + \((\bot\!E)\)}\\ (12) &\, 0 \Vdash \mathfrak{p}_{\mathfrak{C}} \triangleright \mathfrak{p}_{\bot} &\text{10, 11, Lemma 8}\\ (13) &\, 0 \Vdash (\mathfrak{p}_{\mathfrak{C}} \triangleright \mathfrak{p}_{\bot} \circ \mathbf{t}) \circ \mathbf{t} &\text{12, fiddling}\\ (14) &\, 0 \Vdash \mathfrak{C}& \text{2, 13, (cut)}\\ (15) &\, 0 \Vdash \bot& \text{10, 14, (cut)} \end{array} $$

One could, just as in the structural setting, dispense with t and ∘ provided one adds a substructural counterpart of R8, namely the rule

$$\begin{array}{c} \frac{X; 0\Vdash A} {X \Vdash A}(Right\, Pop) \end{array} $$

I leave the proof to the reader. However, doing away with t and ∘ seems quite a drastic measure for the substructuralist. After all, these connectives in a sense represent the basic building blocks of a structure, namely 0 and ; respectively. Eliminating them would be comparable to removing ∧ in the structural setting.

I mentioned in Section 10 that Mares and Paoli differentiated between the external and internal consequence relation of their logic. The following defines these relations for the system \(\mathfrak {S}\).

Definition 16

External vs. internal consequence

  • (Internal consequence) \(X \vdash ^{I}_{\mathfrak {S}} A\) is defined for any structure X and formula A to hold just in case \(\emptyset \Vvdash _{\mathfrak {S}} (X \Vdash A)\).

  • (External consequence) \({\Theta } \vdash ^{E}_{\mathfrak {S}} A\) is defined for any set of formulas Θ and formula A to hold just in case \(\{0 \Vdash \theta | \theta \in {\Theta }\} \Vvdash _{\mathfrak {S}} (0 \Vdash A)\).

Thus A is an internal consequence of X just in case the sequent \(X \Vdash A\) is derivable without assumptions. That A is a logical truth (according to \(\mathfrak {S}\)) is recorded as \(0 \Vdash A\). Furthermore, A is an external consequence of the Θ’s if it is provable that A is a logical truth upon assuming the Θ’s to be logical truths.

Mares and Paoli wanted the rule

$$\begin{array}{llll} (Ext_{\in}) & \frac{\varGamma, x \in a \vdash x \in b, \varDelta \quad \varGamma, x \in b \vdash x \in a, \varDelta} {\varGamma \vdash a = b, \varDelta} \end{array} $$

to hold provided \(\vdash \) was interpreted as the internal consequence relation of their logic. In their system Γ and Δ are multiset. For empty Γ and Δ this then amounts to validating the inference that if the sequents \(x \in a \Vdash x \in b\) and \(x \in b \Vdash x \in a\) are derivable without using assumptions, then so is \(0 \Vdash a = b\) which is precisely what the rule (=∈) above does. To avoid irrelevant formulas such as \(a = b \rightarrow (A \rightarrow A)\), Mares and Paoli restricted the use of the rule

$$\begin{array}{llll} \frac{\phi(a) \vdash \varDelta}{\Gamma, a = b, \phi(b) \vdash \varDelta} & \text{(=L\(_{l}\))} \end{array} $$

to context where \(\vdash \) is the external consequence relation. It would therefore license the inference of \(0 \Vdash B\) from the assumptions \(0 \Vdash a = b\) and \(0 \Vdash A(b)\), provided one has inferred \(0 \Vdash B\) from \(0 \Vdash A(a)\). This is however easily seen to be equivalent to what the rule (s u b L L) licenses.

Substructural approaches to the paradoxes are sometimes deemed more radical than the structural. Restricting structural contraction is arguably a radical approach if the internal consequence relation is used to interpret what logical entailment amounts to. With regards to which logic does or does not trivialize the naïve theories of truth, properties and sets, the two approaches are however equivalent—all the logics set forth in Section 2 can be formulated as substructural logics in such a way that if \(\mathfrak {L}\) is the set of “substructural rules” for L, then for any set of formulas Θ,

$${\Theta} \vdash_{\mathbf{L}} A \Leftrightarrow {\Theta}\vdash^{E}_{\mathfrak{L}} A. $$

Footnote 28 From this it is easy to see that by adding rules for the naïve theory \(\mathcal {M}\) to \(\mathfrak {L}\) instead of adding its axioms, one obtains that

$$\mathcal{M} \vdash_{\mathbf{L}} \bot \Leftrightarrow \emptyset \Vvdash_{\mathfrak{L}} (0 \Vdash \bot).$$

For instance, let \(\mathfrak {T}\), in addition to (D), \((\rightarrow \!I)\), \((\rightarrow \!E)\), (⊥E) and (c u t), consist of the rules of structural permutation and weak reductio

$$\begin{array}{llll} \mathrm{[R10](Permutation\,\, rule)} \frac{X; Y \Vdash C}{Y; X \Vdash C}&\quad \frac{A \Vdash \neg A}{0 \Vdash \neg A}\mathrm{(Weak\,\, reductio)[Ax13]} \end{array} $$

and the rules for a simple negation satisfying double negation elimination, that is ¬ satisfies the rules

$$\begin{array}{llll} [R5](\neg I/\neg E) \frac{A \Vdash \neg B \qquad X \Vdash B} {X \Vdash \neg A} &\qquad \frac{X \Vdash \neg \neg A}{X \Vdash A}(\neg\neg E)[Ax4] \end{array} $$

\(\mathfrak {T}\) is the substructural version of the implication-negation fragment of the logic B B X[R10], and it is easy to show that the sequent \(0 \Vdash \bot \) is derivable from the sequents \(\neg (C \rightarrow \bot ) \rightarrow \bot \Vdash C\) and \(C \Vdash \neg (C \rightarrow \bot ) \rightarrow \bot \) in it. Thus also substructural B B X[R10] trivializes any naïve theory (cf. Theorem 3).

Appendix B: Unrestricted Pair-abstraction and the Fixed-point Theorem

Unrestricted abstraction is sometimes generalized so as to allow for impredicative definitions as it were—by generalizing the notion of an abstract to {x;y|A}, the schema of generalized unrestricted abstraction may be stated as the universal closure of

$$\forall x (x \in \{x; y | A\} \leftrightarrow A(y/\{x; y | A\}) $$

where {x;y|A} is free for y in A. This schema guarantees the existence of fixed-point terms modulo \(\overset {e}{=}\); for every formula A there is a term t A such that \(t_{A} \overset {e}{=} A(t_{A})\). That every formula has such a fixed-point term is however easily derived from \(\mathcal {P}\) alone provided the logic is sufficiently strong:

Theorem 17

(Fixed-point theorem) If \(\forall x\forall y(\langle x, y\rangle \in \{\langle x, y\rangle | A\} \leftrightarrow A)\) holds for some definition of 〈x,y〉 and {〈x,y〉|A}, then \(\mathcal {P}\) suffices for the the existence of fixed-points modulo \(\overset {e}{=}\) ; for every formula A there is a term t A such that \(t{\!_{A}} \overset {e}{=} \{x| A(y/t{\!_{A}})\}\).Footnote 29

Proof

Let

$$\begin{array}{ll} r{\!_{A}} =_{df}& \{\langle u, v\rangle | A(x/u,y/\{w| \langle w, v\rangle \in v\})\}\\ t{\!_{A}} =_{df}& \{w| \langle w, r{\!_{A}}\rangle \in r{\!_{A}}\}. \end{array} $$
$$\begin{array}{rlll} {(1)} &\,x \in t{\!_{A}} &\leftrightarrow \langle x, r{\!_{A}}\rangle \in r{\!_{A}} & \;\mathcal{P} \text{+ def.~of} ~t{\!_{A}}\\ {(2)} &\, &\leftrightarrow A(x/x, y/\{w| \langle w, r{\!_{A}}\rangle \in r{\!_{A}}\})& \;\text{1, assumption}\\ {(3)} &\, &\leftrightarrow A(y/t{\!_{A}})& \;2, \text{def.~of}\,\, t{\!_{A}}\\ {(4)} &\, &\leftrightarrow x \in \{x| A(y/t{\!_{A}})\}& \;3, \mathcal{P}\\ {(5)} &&\, t{\!_{A}} \overset{e}{=} \{x| A(y/t{\!_{A}})\} & \;\text{1--4, RQ} \end{array}$$

The purpose of this appendix is to show that the logic ∀B t is sufficiently strong to provide a definition of both 〈x,y〉 and {〈x,y〉|A} so that unrestricted pair-abstraction,

$$\forall x\forall y(\langle x, y\rangle \in \{\langle x, y\rangle| A\} \leftrightarrow A), $$

is derivable. Since ∀B t is a rather weak logic the definitions and proofs will however be quite baroque. After presenting the proofs I will give some quick comments on the prospects of finding other definitions suitable for logics which might treat naïve set theory as a non-trivial theory.

Definition 17

$$\begin{array}{rlll} a \overset{i}{=} b =_{df}& \forall x(a \in x \leftrightarrow b \in x)\\ \{a\} =_{df}& \{x| x \overset{i}{=} a\}\\ \{a, b\} =_{df}& \{x| x \overset{i}{=} a \vee x \overset{i}{=} b\}\\ \quad \langle a, b\rangle =_{df}& \{\{a\}, \{a, b\}\}\\ \partial(A)=_{df}& \left[(A \circ \mathbf{t}) \circ \mathbf{t}\right]\circ \big(\big(\big(\big(\left[(A \circ \mathbf{t}) \circ \mathbf{t}\right] \circ \left[(A \circ \mathbf{t}) \circ \mathbf{t}\right]\big) \circ \mathbf{t}\big) \circ \left[(A \circ \mathbf{t}) \circ \mathbf{t}\right]\big) \circ \mathbf{t}\big)\\ \{\langle x, y\rangle | A\} =_{df}& \{z | \exists x\exists y(\partial(\langle x, y \rangle \overset{i}{=} z) \circ A)\} \end{array} $$

Lemma 10

$$\begin{array}{ll} A\vdash_{\mathbf{BB}^{\mathbf{t}\circ}} \partial(A) \end{array} $$

Proof

This holds essentially because \(A, B \vdash _{\mathbf {BB}^{\mathbf {t}\circ }} A \circ B\) holds. That this is so is easily seen by noting that \(A \rightarrow (B \rightarrow A \circ B)\) is derivable using Ax1 and R13. \(\ \Box \)

Lemma 11

Assuming a and b to be free for x in A, then

$$\begin{array}{rll} (1) & \mathcal{P}\vdash_{\forall\mathbf{BB}} a \overset{i}{=} b \rightarrow (A(x/a) \rightarrow A(x/b))\\ \vspace*{-2mm}\\ \text{(2)} & \frac{\mathcal{P}\vdash_{\forall\mathbf{BB}^{\mathbf{t}}} A(x/a)} {\mathcal{P}\vdash_{\forall\mathbf{BB}^{\mathbf{t}}} a \overset{i}{=} b \rightarrow (\mathbf{t} \rightarrow A(x/b))} \end{array} $$

Proof

Obvious. □

Lemma 12

$$\begin{array}{ll} \mathcal{P} \vdash_{\forall\mathbf{BB}^{\mathbf{t}\circ}} \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \textbf{t}\right] \rightarrow a \overset{i}{=} c \end{array} $$

Proof

$$\begin{array}{rll} {(1)} &\, \{a\} \in \langle a, b \rangle& \text{def.\,\,of\,\,ord.\,\,pair} + \mathcal{P}\\ {(2)} &\, \langle a, b \rangle \overset{i}{=} \langle c, d \rangle \rightarrow (\mathbf{t} \rightarrow \{a\} \in \langle c, d \rangle) & \text{1, Lemma 11(2)}\\ {(3)} &\, \{a\} \in \langle c, d \rangle \rightarrow (\{a\} \overset{i}{=} \{c\} \vee \{a\} \overset{i}{=} \{c, d\})& \text{def.\,\,of\,\,ord.\,\,pair} + \mathcal{P}\\ {(4)} &\, a \in \{a\}& \text{def.\,\,of\,\,singleton} + \mathcal{P}\\ {(5)} &\, \{a\} \overset{i}{=} \{c\} \rightarrow (\mathbf{t} \rightarrow a \in \{c\})& \text{4, Lemma 11(2)}\\ {(6)} &\, a \in \{c\} \rightarrow a \overset{i}{=} c& \text{def.\,\,of\,\,singleton} + \mathcal{P}\\ {(7)} &\, \{a\} \overset{i}{=} \{c\} \rightarrow (\mathbf{t} \rightarrow a \overset{i}{=} c)& \text{5, 6, rightER}\\ {(8)} &\, \{a\} \overset{i}{=} \{c, d\} \rightarrow (\mathbf{t} \rightarrow a \overset{i}{=} c)& \text{similar to (7)}\\ {(9)} &\, (\{a\} \overset{i}{=} \{c\} \vee \{a\} \overset{i}{=} \{c, d\}) \rightarrow (\mathbf{t} \rightarrow a \overset{i}{=} c)& \text{7, 8, R7}\\ {(10)} &\, \langle a, b \rangle \overset{i}{=} \langle c, d \rangle \rightarrow (\mathbf{t} \rightarrow (\mathbf{t} \rightarrow a \overset{i}{=} c))& \text{2, 3, 9, rightER \& transitivity}\\ {(11)} &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow a \overset{i}{=} c& \text{10, R13} \end{array} $$

Lemma 13

$$\begin{array}{ll} {(1)} & \mathcal{P} \vdash_{\forall\mathbf{BB}^{\mathbf{t}\circ}} \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\right] \rightarrow b \overset{i}{=} c \vee b \overset{i}{=} d\\ {(2)} & \mathcal{P} \vdash_{\forall\mathbf{BB}^{\mathbf{t}\circ}} \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\right] \rightarrow a \overset{i}{=} d \vee b \overset{i}{=} d \end{array} $$

Proof

The proof of (2) is similar to that of (1).

$$\begin{array}{rll} {(1)} &\,\{a, b\} \in \langle a, b \rangle & \text{def.\,\,of\,\,ord. pair} + \mathcal{P}\\ {(2)} &\, \langle a, b \rangle \overset{i}{=} \langle c, d \rangle \rightarrow (\mathbf{t} \rightarrow \{a, b\} \in \langle c, d\rangle)& \text{1, Lemma 11(2)}\\ {(3)} &\, \{a, b\} \in \langle c, d\rangle \rightarrow \{a, b\} \overset{i}{=} \{c\} \vee \{a, b\} \overset{i}{=} \{c, d\} & \text{def.\,\,of\,\,ord. pair} + \mathcal{P}\\ {(4)} &\, b \in \{a, b\} & \text{def.\,\,of\,\,ord. pair} + \mathcal{P}\\ {(5)} &\, \{a, b\} \overset{i}{=} \{c\} \rightarrow (\mathbf{t} \rightarrow b \in \{c\})& \text{4, Lemma 11(2)}\\ {(6)} &\, b \in \{c\} \rightarrow b \overset{i}{=} c \vee b \overset{i}{=} d& \text{def.\,\,of\,\,singleton}, \mathcal{P} \& Ax2\\ {(7)} &\, \{a, b\} \overset{i}{=} \{c\} \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} c \vee b \overset{i}{=} d)& \text{5, 6, rightER}\\ {(8)} &\, \{a, b\} \overset{i}{=} \{c, d\} \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} c \vee b \overset{i}{=} d)& \text{similar to (7)}\\ {(9)} &\, \{a, b\} \overset{i}{=} \{c\} \vee \{a, b\} \overset{i}{=} \{c, d\} \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} c \vee b \overset{i}{=} d)& \text{4, 5, R7}\\ {(10)} &\, \langle a, b \rangle \overset{i}{=} \langle c, d \rangle \rightarrow (\mathbf{t} \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} c \vee b \overset{i}{=} d))& \text{2, 3, 6, rightER\,\,\& transitivity}\\ (11) &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow b \overset{i}{=} c \vee b \overset{i}{=} d& \text{10, R13} \end{array} $$

\(\ \Box \)

Lemma 14

$$\begin{array}{ll} \mathcal{P} \vdash_{\forall\mathbf{B}^{\mathbf{t}}} a \overset{i}{=} c \rightarrow (a \overset{i}{=} d \vee b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \vee b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d)))) \end{array} $$

Proof

$$\begin{array}{rll} {(1)} & b \overset{i}{=} b& \text{Theorem}\\ {(2)} & b \overset{i}{=} c \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} b)& \text{1, Lemma 11(2)}\\ {(3)} & b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d))) & \text{2, Lemma 11(2)}\\ {(4)} & a \overset{i}{=} c \rightarrow (b \overset{i}{=} d \rightarrow b \overset{i}{=} d)& \text{Lemma 11(1)}\\ {(5)} & a \overset{i}{=} c \rightarrow (b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d))))& \text{3, 4, rightER}\\ {(6)} & b \overset{i}{=} c \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} c)& \text{1, Lemma 11(2)}\\ {(7)} & c \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d)))& \text{6, Lemma 11(2)}\\ {(8)} & a \overset{i}{=} c \rightarrow (a \overset{i}{=} d \rightarrow c \overset{i}{=} d)& \text{Lemma 11(1)}\\ {(9)} & a \overset{i}{=} c \rightarrow (a \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d))))& \text{7, 8, rightER}\\ {(10)} & a \overset{i}{=} c \rightarrow (a \overset{i}{=} d \vee b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d))))& \text{5, 9, R6\,\,\& Ax7}\\ {(11)} & a \overset{i}{=} c \rightarrow (a \overset{i}{=} d \vee b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d))))& \text{Similar to (10)}\\ {(12)} & a \overset{i}{=} c \rightarrow (a \overset{i}{=} d \vee b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \vee b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d))))& \text{10, 11, Ax6\,\,\& Ax7} \end{array} $$

Lemma 15

$$\begin{array}{ll} A \rightarrow (B \rightarrow (C \rightarrow (D \rightarrow E))), F \rightarrow D \vdash_{\mathbf{BB}} A \rightarrow (B \rightarrow (C \rightarrow (F \rightarrow E))) \end{array} $$

Proof

Use R3, R4 and rightER. □

Lemma 16

$$\begin{array}{lll} \mathcal{P} \vdash_{\forall\mathbf{B}^{\mathbf{t}\circ}} &&\left( \left( \left( \left( \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \textbf{t}) \circ \textbf{t}\right] \circ \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \textbf{t}) \circ \textbf{t}\right]\right) \circ \textbf{t}\right) \circ\right. \right. \\ &&\left.\left. \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\right]\right) \circ \mathbf{t}\right) \rightarrow b \overset{i}{=} d \end{array} $$

Proof

$$\begin{array}{rll} {(1)} &\, a \overset{i}{=} c \rightarrow ((a \overset{i}{=} d \vee b \overset{i}{=} d) \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \vee b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d)))& \text{Lemma 14}\\ {(2)} &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow a \overset{i}{=} d \vee b \overset{i}{=} d& \text{Lemma 13}\\ {(3)} &\, a \overset{i}{=} c \rightarrow (\big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow (\mathbf{t} \rightarrow (b \overset{i}{=} c \vee b \overset{i}{=} d \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d)))& \text{1, 2, leftER}\\ {(4)} &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow b \overset{i}{=} c \vee b \overset{i}{=} d& \text{Lemma 13}\\ {(5)} &\, a \overset{i}{=} c \rightarrow (\big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow \\ &\, \qquad (\mathbf{t} \rightarrow (\big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d)))& \text{3, 4, Lemma 15}\\ {(7)} &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow a \overset{i}{=} c& \text{Lemma 12}\\ {(8)} &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow (\big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow \\ &\, \qquad (\mathbf{t} \rightarrow (\big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow (\mathbf{t} \rightarrow b \overset{i}{=} d)))& \text{6, 7, trans.}\\ {(9)} &\, \Bigg(\bigg(\Big(\big(\big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \circ \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big]\big) \circ \mathbf{t}\Big) \circ \\ &\, \qquad \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big]\bigg) \circ \mathbf{t}\Bigg) \rightarrow b \overset{i}{=} d& \text{8, R13} \end{array} $$

Lemma 17

$$\begin{array}{c} \mathcal{P} \vdash_{\forall\mathbf{B}^{\mathbf{t}\circ}} \partial\left( \langle a, b \rangle \overset{i}{=} \langle c, d \rangle\right) \circ A(a, b) \rightarrow A(c, d), i.e.\\ \mathcal{P} \vdash_{\forall\mathbf{B}^{\mathbf{t}\circ}} \left( \left[\left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\right]\circ \right.\right.\\ \left.\left( \left( \left( \left( \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\right] \circ \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\right]\right) \circ \mathbf{t}\right) \circ \left[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\right]\right) \circ \mathbf{t}\right)\!\right] \circ \\ \left.A(a, b)\right) \rightarrow A(c, d) \end{array} $$

Proof

$$\begin{array}{rll} {(1)} &\, b \overset{i}{=} d \rightarrow (A(a, b) \rightarrow A(a, d))& \text{Lemma 11(1)}\\ {(2)} &\, a \overset{i}{=} c \rightarrow ((A(a, b) \rightarrow A(a, d)) \rightarrow (A(a, b) \rightarrow A(c, d)))& \text{Lemma 11(1)}\\ {(3)} &\, a \overset{i}{=} c \rightarrow (b \overset{i}{=} d \rightarrow (A(a, b) \rightarrow A(c, d)))& \text{1, 2, leftER}\\ {(4)} &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow a \overset{i}{=} c& \text{Lemma 12}\\ {(5)} &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow \Big[b \overset{i}{=} d \rightarrow (A(a, b) \rightarrow A(c, d))\Big]& \text{3, 4, trans.}\\ {(6)} &\, \Bigg(\bigg(\Big(\big(\big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \circ \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big]\big) \circ \mathbf{t}\Big) \circ \\ &\, \qquad \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big]\bigg) \circ \mathbf{t}\Bigg) \rightarrow b \overset{i}{=} d& \text{Lemma 16}\\ {(7)} &\, \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \rightarrow \\ &\,\quad \Big[\Bigg(\bigg(\Big(\big(\big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big] \circ \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big]\big) \circ \mathbf{t}\Big) \circ \\ &\, \qquad \big[(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \circ \mathbf{t}) \circ \mathbf{t}\big]\bigg) \circ \mathbf{t}\Bigg) \rightarrow (A(a, b) \rightarrow A(c, d))\Big]& \text{5, 6, leftER}\\ {(8)} &\, \partial\big(\langle a, b \rangle \overset{i}{=} \langle c, d \rangle \rangle\big) \circ A(a, b) \rightarrow A(c, d)& \text{7, R13} \end{array} $$

Theorem 18

\(\mathcal {P} \vdash _{\forall \mathbf {B}^{\mathbf {t}\circ }}\langle a, b\rangle \in \{\langle x, y\rangle | A\} \leftrightarrow A(a, b)\)

Proof

$$\begin{array}{rll} {(1)} &\, \partial\big(\langle x, y\rangle \overset{i}{=} \langle a, b\rangle\big) \circ A(x, y) \rightarrow A(a, b) & \;\text{Lemma 17}\\ {(2)} &\, \exists x\exists y(\partial\big(\langle x, y\rangle \overset{i}{=} \langle a, b\rangle\big) \circ A(x, y)) \rightarrow A(a, b) & \;\text{1, RQ \& Q8}\\ {(3)} &\,\langle a, b\rangle \in \{\langle x, y\rangle | A\} \rightarrow A(a, b) & \;2, \mathcal{P} \text{+ def.\, of}\,\,\{\langle x, y\rangle | A\}\\ {(4)} &\, \partial\big(\langle a, b\rangle \overset{i}{=} \langle a, b\rangle\big) \rightarrow (A(a, b) \rightarrow \partial\big(\langle a, b\rangle \overset{i}{=} \langle a, b\rangle\big) \circ A(a, b))& \;\text{Ax1\& R13}\\ {(5)} &\, \partial\big(\langle a, b\rangle \overset{i}{=} \langle a, b\rangle\big)& \;\text{Lemma 10}\\ {(6)} &\, A(a, b) \rightarrow \partial\big(\langle a, b\rangle \overset{i}{=} \langle a, b\rangle\big) \circ A(a, b)& \;\text{4, 5, R2}\\ {(7)} &\, A(a, b) \rightarrow \exists x\exists y(\partial\big(\langle x, y\rangle \overset{i}{=} \langle a, b\rangle\big) \circ A(x, y))& \;\text{6, Q4}\\ {(8)} &\, A(a, b) \rightarrow \langle a, b\rangle \in \{\langle x, y\rangle | A\}& \;7, \mathcal{P} \text{+ def.\,of}~\,\{\langle x, y\rangle | A\}\\ {(9)} &\, \langle a, b\rangle \in \{\langle x, y\rangle | A\} \leftrightarrow A(a, b)& \;\text{3, 8, R1} \end{array}$$

\(\ \Box \)

Corollary 3

B t suffices for the fixed-point theorem.

Proof

This follows from Theorem 17 and Theorem 18. □

B t trivializes naïve set theory (Theorem 14). The question then is if there are logics weak enough not to trivialize naïve set theory, yet strong enough so as to make unrestricted pair-abstraction derivable. As the definition of {〈x,y〉|A} above should make clear, there are countless non-equivalent ways of defining sets of ordered pairs provided the logic is weak enough. What should also be clear is that defining {〈x,y〉|A} as {z|∀xy( (〈x,y〉=z)→A)} for some variant \(\partial ^{\prime }\) of , would not improve the situation: \(\mathcal {P}\) in \(\overset {=}{\forall }\mathbf {BB}\) suffices for deriving 〈a,b〉∈{〈x,y〉|A}→( (〈a,b〉=〈a,b〉)→A(a,b)). To get \(\langle a, b\rangle \in \{\langle x, y\rangle | A\} \rightarrow A(a, b)\) from this one would then most certainly require the weak permutation rule R8 which trivializes naïve set theory (Theorem 15). The only option left as I see it would be to use {〈x,y〉|A}= d f {z|∃xy( (〈x,y〉=z)∧A)}. However, this is not an option for the naïve set theoriest either: in order to have that A(a,b)⊩〈a,b〉∈{〈x,y〉|A}, one would need a function \(\partial ^{\prime }\) such that \(A \vdash \partial ^{\prime }(A)\). Furthermore, in order to prove \(\langle a, b\rangle \in \{\langle x, y\rangle | A\} \rightarrow A(a, b)\), one would need \(\partial ^{\prime }(\langle a, b\rangle = \langle c, d\rangle ) \land A(a, b) \rightarrow A(c, d)\). These two assumptions suffice for a triviality proof:

$$\begin{array}{rll} {(1)} &\, C \leftrightarrow \partial^{\prime}(\langle \mathfrak{p}_{C}, \mathfrak{p}_{C}\rangle = \langle \mathfrak{p}_{\bot}, \mathfrak{p}_{\bot}\rangle)& \;\mathcal{N}\\ {(2)} &\, C \rightarrow \partial^{\prime}(\langle \mathfrak{p}_{C}, \mathfrak{p}_{C}\rangle = \langle \mathfrak{p}_{\bot}, \mathfrak{p}_{\bot}\rangle) \land \mathfrak{p}_{C} \in \mathfrak{p}_{C}& \;\text{1, fiddling}\\ {(3)} &\, \partial^{\prime}(\langle \mathfrak{p}_{C}, \mathfrak{p}_{C}\rangle = \langle \mathfrak{p}_{\bot}, \mathfrak{p}_{\bot}\rangle) \land \mathfrak{p}_{C} \in \mathfrak{p}_{C} \rightarrow \mathfrak{p}_{\bot} \in \mathfrak{p}_{\bot}& \;\text{assumed theorem}\\ {(4)} &\, C \rightarrow \bot& \;\text{2, 3, fiddling}\\ {(5)} &\, \mathfrak{p}_{C} = \mathfrak{p}_{\bot}& \;\text{4, extensionality + fiddling}\\ {(6)} &\, \langle \mathfrak{p}_{C}, \mathfrak{p}_{C}\rangle = \langle \mathfrak{p}_{\bot}, \mathfrak{p}_{\bot}\rangle& \;5, {LL}_{2\vdash\vdash}\\ {(7)} &\, \partial^{\prime}(\langle \mathfrak{p}_{C}, \mathfrak{p}_{C}\rangle = \langle \mathfrak{p}_{\bot}, \mathfrak{p}_{\bot}\rangle)& \;\text{6, assumed rule}\\ {(8)} &\, \bot& \;\text{1, 4, 7, R2} \end{array}$$

I therefore conclude that the prospects of finding a logic and a way of defining {〈x,y〉|A} so that the logic does not trivialize naïve set theory, yet is strong enough to make unrestricted pair-abstraction a theorem thereof, are dim, at best.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Øgaard, T.F. Paths to Triviality. J Philos Logic 45, 237–276 (2016). https://doi.org/10.1007/s10992-015-9374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-015-9374-6

Keywords

Navigation